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Abstract 

We present a navigation system using multiple sen- 
sors for unknown and dynamic indoor environments. 
To achieve the robustness and flexibility of the mobile 
robot, we develop a Behavior-Based system architec- 
ture, consisting of multi-layered behaviors using mul- 
tiple sensors: ultrasonic sensors and a video camera. 

Basic behaviors required for navigation, such as, 
avoiding obstacles, moving towards free space, and fol- 
lowing targets, are redundantly developed as agents 
and combined in a behavior-based system architecture. 

We demonstrate the capabilities of our system in 
unstructured real office environments, using an indoor 
mobile robot developed by Toshiba. 

1 Introduction 

In mobile robot navigation, there are two distinctive 
approaches: (1) the conventional “SMPA (Sensing- 
Modeling-Planning-Action)” approach and (2) the 
“behavior-based” approach. The SMPA approach con- 
sists of modules that each sense the world, build two 
or three dimensional models, and plan actions for the 
robot using the model in a sequential manner [5]. All 
the modules must be complete and working before any 
action takes place. A serious problem in this approach 
is reliability. If one module fails, either due to software 
or hardware bugs, the entire system will break down. 

On the other hand, the behavior-based approach de- 
composes the system into individual modules, each of 
which is responsible for one behavior to be performed 
by the entire system [l,  21. Each behavior contains a 
complete path, from sensing to action, and is executed 
in a completely parallel manner. The behavior-based 
approach is more reliable than the SMPA approach. 

Even if one module fails, other behaviors can still pro- 
duce meaningful actions for the robot. However, it 
shows inefficiency in achieving a mission because a 
behavior-based system with fixed priorities tends to 
adopt a lower-level reflexive behavior in a complex en- 
vironment. 

To solve these problems and to achieve the desired 
robustness and flexibility of the behavior-based sys- 
tem, we employ two approaches: a three-clustered 
system architecture and redundant behaviors using 
multiple sensors. The three-clustered system archi- 
tecture consists of a manager (Motion-Executor) and 

adaptive level behaviors. The reflexive-level group con- 
sists of agents which maintain minimal safety of the 
robot. The role of the purposive-level group is to 
achieve the global mission of the robot: to  navigate the 
robot to the final goal efficiently. The adaptive-level 
agents save the failure of the purposive-level agents or 
deadlock situations. The details of the three-clustered 
system architecture are described in [ll]. In this 
paper, we mainly describe redundant behaviors using 
both ultrasonic sensors and a video camera. 

Multi-layered behaviors include the reflexive- 
level obstacle-avoider, the adaptive-level free-space- 
explorer, wall-follower and open-space-explorer, and 
the purposive-level target-tracker and target-searcher. 
Vision-based target tracking behaviors are comple- 
mented with sonar-based behaviors. For example, in- 
tersection tracking behavior is coupled with the sonar- 
based wall following behavior. Doorway tracking be- 
havior is also associated with the sonar-based open- 
space-explorer. Such redundant behaviors using two 
different sensors can be very useful for detecting and 
recovering from failure of each behavior. 

For each behavior, an Energy-based motion decision 

three-clustered behaviors: the reflexive, purposive, and a 
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method determines the robot’s position and orienta- 
tion to  minimize an Energy-based cost function. The 
Energy-based cost function consists of two te rm:  in- 
ternal energy and external energy. Internal energy in- 
cludes the smoothness constraint about the robot tra- 
jectory. The range measurements from multiple sen- 
sors act on the robot as external energy. 

In the following sections, we first describe an ac- 
tive sensor fusion method to combine multiple sensor 
data, along with the principle of the Energy-based mG 
tion decision algorithm, which determines the robot 
location using range measurements. This principle 
is then exploited to develop range-based behaviors in 
Section 3. In Section 4, we describe a vision-based 
behavior, target tracking, which can guide the robot 
by tracking a specified target. In Section 5,  we dis- 
cuss behavior arbitration mechanisms and the Motion- 
Executor. In Section 6, we present the experimental 
results of a mobile robot equipped with four ultrasonic 
sensors and a video camera. 

Figure 1: The Energy-based motion decision algo- 
rithm. 

2 Active Sensor Fusion 

In a behavior-based mobile robot, each behavior com- 
putes a motion command directly from sensor data 
without building any internal representation. There- 
fore, behaviors become more robust when multiple sen- 
sor data are used to compute motion commands. In 
this section, we present a method, based on active con- 
tour models, to compute the position and direction of 
the robot by fusing multiple sensor data. 

To determine the best position and orientation of the 
robot using the range readings from multiple sensors, 
we make use of energy-minimizing curves, known as 
“snakes” , which were introduced in [8]. In their origi- 
nal formula, snakes, c(s), are computed by minimizing 
an energy functional E 

g 

E = L ( E i n t  + Eezt)ds 

41C‘ (~ )1 I2  + PllC”(S)1l2 + P(c(s))ds (1) + =  1 
where the primes denote.differentiation and P is the 
potential associated to the external forces. The elas- 
ticity and rigidity of the model ate controlled by a and 
p, respectively. 

If c is a local minimum for E ,  it satisfies the associ- 
ated Euler-Lagrange equation: 

- (ac‘)’ + (pc”)” + V P ( C )  = 0. (2) 
In this formulation, each term appears as a force ap- 

plied to the curve. A solution can be seen as realizing 
the equilibrium of the forces acting on the curve. 

In the present work, we apply the same algorithm 
to compute the position and orientation of the robot, 
at which the equilibrium of all forces is maintained. 
Forces acting on the robot include internal and exter- 
nal forces: 

0 As internal forces, we consider a smooth force, f, , 
from the smoothness constraints on the robot’s 
trajectory and a damping force, f d ,  from the robot 
dynamics ’, 

0 The range forces, fi, from multiple range mea- 
surements, pushes the robot to the location where 
equilibrium is achieved between the range forces 
(the safest position), and 

0 Other external forces, ft (e.g., the target forces) 
can be added to attract the robot. 

The location of the robot is presented by a 2D vector 

v = (X,Y> ( 3) 

where (z, y) is the Cartesian coordinate of the robot’s 
position on the floor. 

Then, the internal smoothness force is computed by 

f, = .(vi’ - Vi) (4) 

where vi’ is the i t h  location, computed from the 
smoothness constraints. and vi is the current robot 

We can easily add another external force due to acceleration 
of the robot 
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position. a is a parameter to control the smoothness 
in the robot movement. 

Based on simple trigonometry, it is easy to com- 
pute the robot's location, v t ,  satisfying the smooth- 
ness constraint by [lo] 

v+ = (zi',&* ( 5 )  
2 ~ i - l -  xi-2 - 2(yi-l- 

2yi-1- vi-2 - 2(zi- l -  

where A0 is the angle between the two lines formed by 
three robot locations. 

The internal damping force is given by 

where Vi and vi-1 are the current and previous robot 
locations, and d controls the effect of the dynamics of 
the robot. 

The range force for each sensor is simply computed 
as 

f: = k(sj  - ~ j )  (7) 

where sj = (zi,d) represents the Cartesian coordi- 
nate values for the j t h  range reading, and k is the 
range force parameter which controls the effect of the 
range force on the total energy functional, E. 

From (4), (6), (7), a new location of the robot, sat- 
isfying the force equilibrium condition from multiple 
sensors, is simply computed by 

fl 

j = O  

where n is the number of sensors. The new location 
is controlled by three parameters: a, d, and k for the 
smoothness constraint, damping force and image force, 
respectively. 

3 Range-Based Behaviors 

Many mobile robot systems use acoustic sensors, be- 
cause they provide an inexpensive means to obtain 
range information around the robot by computing the 
echo travel time. The ultrasonic ranging sensor has 
been also proven to be very effective for indoor navi- 
gation. 

Using the Energy-based motion decision algorithm 
and ultrasonic sensors, we present four rangebased 
behaviors: free-space exploring, obstacle avoiding, 
obstacle-boundary following, and open-space explor- 
ing. 

3.1 Free-Space-Explorer 
The free-spaceexplorer pushes the robot to the largest 
open space, which corresponds to the safest area for the 
robot. To achieve this goal effectively, the free-space- 
explorer uses the Energy-based method, with the range 
force parameter, L, at around unity. This results in the 
range forces from sensors having a major influence and 
the robot internal energy having a small effect. In this 
case, the robot moves to the location where equilibrium 
between range forces is achieved. 

3.2 Obstacle-Avoider 
The obstacle-avoider only uses range measurements re- 
flected from nearby obstacles, because any range mea- 
surements that are greater than a specified distance 
guarantees the robot safety. For the obstacle-avoider, 
the range forces from nearby obstacles act as repul- 
sive forces on the robot (Remember that, in the origi- 
nal Energy-based motion decision, the range forces act 
as the attractive forces). The repulsive range forces 
pushes the robot to a new location. 

The range force is inversely proportional to the range 
measurement. In other words, nearer obstacles provide 
the greater repulsive forces. In (8), the range force , 
f: , is replaced by a repulsive range force: 

(9) 
-ksj  if p j  < pI 
0 otherwise 

where sj is a Cartesian coordinate value of the j t h  
range measurement p j  and pd is the minimum safety 
distance for the robot. 

3.3 0 bst acle-Boundary-Follower 
The obstacle-boundary-follower uses an algorithm sim- 
ilar to the obstacle-avoider. In the case of the free- 
space-explorer and the obstacle-avoider, the range 
forces from nearby obstacles were either attractive 
or repulsive. For the obstacle-boundary-follower, the 
range measurements from nearby obstacles are used to 
compute tangential forces. In (8), the range force (fi) 
is replaced by a tangential range force: 

f/ = 
k(sj  - si-1) if Pi < Pth and pj-1 < P t h  

otherwise 
(10) 

( 0  

where si is a Cartesian coordinate value of j - t h sonar 
measurement p j ,  and Pth is a threshold distance for 
nearby obstacles. 

The robot will only be pushed by these tangential 
forces. As long as good range measurements are avail- 
able without any systematic error, such as specular 
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reflection for sonar, the robot will never collide with 
obstacles, because it will always move along the tan- 
gential directions of nearby obstacles. 

The failure of this behavior can be easily detected 
by the null motion command from this behavior which 
corresponds to two possible situations: (1) there are no 
obstacles to follow and (2) obstacles are not detected 
due to sensor error. Additional sensing from the delib- 
erate motion of the robot or other sensor is required to 
detect the real failure. In the present work, we use the 
exploratory rotational motion of robot to obtain mul- 
tiple range measurements at one robot location. These 
multiple range measurements are then used to confirm 
the failure of the behavior. 

3.4 Open-Space-Explorer 
In indoor navigation, a robot often needs the open- 
space-explorer which can find an exit (e.g., a door- 
way) in a room by just using robust reflexive behav- 
iors, without using any sophisticated vision systems or 
algorithms. We present the open-space-explorer based 
on the free-space-explorer . 

Figure 2: 
space-explorer . 

The open-space-explorer using the free- 

The basic idea is to  hypothesize an oblique wall, im- 
mediately behind the robot (as shown in Figure 2) and 
to update the actual range measurements with the syn- 
thetic range readings reflected from this hypothesized 
wall. Then, with these updated range readings, a new 
robot location is computed by the algorithm of the 
free-space-explorer as described in Section 3.1. 

How can it be determined whether the robot goes 
through a doorway or not? For example, Gat pro- 

posed a “squeezing” behavior for the robot to wiggle 
through a very narrow doorway [4]. However, this 
method only works when the robot knows that it is 
approaching a doorway. Our approach is to use high- 
level heuristics about the environment as well as low- 
level sensor information. First, it computes the change 
of range readings from the left and right side sonars. 
When the robot passes through a doorway, large fluc- 
tuations in both the left and right sonar readings must 
be observed. When this large fluctuation is detected, 
it checks the existence of an intersection or a wall to 
confirm the completion of the behavior. 

4 Vision-Based Behaviors 

In most examples of indoor mobile robot navigation, 
one of the most important capabilities is to recognize 
some features, such as intersections and walls, and then 
track them to guide the robot - target tracking. 

The target-tracker extracts two kinds of information 
from an input color image: a steering angle direct- 
ing the robot towards a target and verification of the 
tracking accuracy [lo]. The robot normally controls 
its steering, merely by using the steering angle com- 
puted from the tracker. However, this steering angle 
includes some errors, because of inaccurate motion of 
the robot. The tracking trajectory is used to verify 
whether the robot exactly moves toward the target or 
not. If the robot moves exactly toward the center be- 
tween targets, the trajectories of these two targets on 
the image will diverge from the image center to the 
image boundary. Using these lines, the tracker checks 
whether the robot accurately follows the commands 
or not. When both targets disappear from an image 
frame at the same time, the tracker assumes that its 
mission has been completed. If only one target dis- 
appears, the tracker commands the robot to  turn in 
the direction of this target, until the target is again 
visible. Then it repeats the same procedure until it 
accomplishes the tracking. 

In the following sections, we describe two tracking 
behaviors: wall tracking and intersection tracking. 

4.1 Wall-Tracker 
Part of an indoor environment can usually be de- 

scribed by sets of parallel 3-D lines (e.g., walls and 
corridors). In the image, they form a vanishing point 
with associated lines [7]. 

We can extract vanishing points by using the fact 
that a set of parallel lines in the world intersect at a 
vanishing point in the image, as shown in Figure 3. 
However, the image lines will never meet at one point 
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Figure 3: A typical indoor scene. 

because of image noise and the errors in localizing lines 
in the image. We represent the uncertainty in edge lo- 
cation using a 1-D Gaussian distribution along the di- 
rection perpendicular to each edge line. Therefore, the 
search for vanishing points can be easily accomplished 
by finding a small neighborhood in the image plane 
intersected by a sufficient number of straight lines. An 
example of the extracted vanishing point for Figure 3 
is shown in Figure 4. 

Figure 4: Extracted vanishing point and the associated 
lines. 

Since this vanishing point specifies the 3-D orienta- 
tion of the parallel lines, a mobile robot can be aligned 
with the parallel lines using this vanishing point. The 
relation between the camera and world coordinate sys- 
tems is specified by the image coordinates of this van- 

354 t 
300 ’ 

0 5 10 15 20 
Sequence number 

Figure 5: The computed distances from the wall by 
wall-following behavior. 

ishing point [9]: 

where f is the focal length of the camera, and 0 and 
a indicate the pan and tilt angle of the camera with 
respect to the world coordinate system. Therefore, the 
angle needed to align the robot with the wall - steering 
angle - becomes: 

(12) 
Yu e = arctan -. 
f 

We have done a series of navigation experiments in 
a real office environment, shown in Figure 3. Using 
the extracted vanishing point, the wall-following be- 
havior commanded the robot to move along the corri- 
dor. Figure 5 shows the correct distance (i.e., half of 
the corridor width) and the computed wall distances 
by wall-following behavior. When the computed dis- 
tance shows a large discrepancy with respect to the 
correct distance (e.g., at the points A, B, C, and D in 
the figure), the behavior controls the robot to the cen- 
ter of the corridor. The robot navigated a distance of 
10 meters along a narrow corridor without any failure 
in repeated trials. 

4.2 Intersection-Tracker 
In an indoor environment, when a behavior-based 
robot fails to accomplish its mission, such as finding 

1679 



rl 

x 
4 a 

PI 
P) P 
4 

U 
4 
4J 

f 
U 

C 

4 
4J 4 
PI 

g 
PI 

,; 

Figure 6: 

320 * 

0 1 2 3 4 5 6 7 8 9  
Sequence number 

The average column value of two vertical 
edges, tracked by intersection tracking behavior. 

a specific target; it may be a better strategy to find 
and move to a nearest intersection rather than wan- 
dering around. 

In the present work, we use a simple heuristic - in- 
tersections exist at the end of walls - to extract an in- 
tersection. Vertical edges on the walls are candidates 
of intersections. The algorithm works in the following 
steps: 

1. First compute a vanishing point; 

2. Find two corresponding straight lines on the floor, 
which form the vanishing point; 

3. Extract vertical lines on each straight line, l e  
cated at approximately the same distance from 
the robot; 

4. Track the two vertical lines by a real-time tracker. 

The steering angle of the robot is determined by 

where f indicates the focal length, Cj is the column 
value of the image center, and Cavg is the average col- 
umn value of two vertical edges. 

Figure 6 shows the computed average column value 
of two vertical edges from the experiments. The 
straight line A represents the column value of the cor- 
rect image center. The curve B indicates the average 
column position of two vertical edges before the robot 

moves. The discrepancies between A and B, corre- 
sponding to AC, are used in the intersection-tracking 
behavior to control the robot. The curve C shows 
the resulting average column positions, corrected by 
the intersection-tracking behavior. Under ideal condi- 
tions, we should not observe any errors between the 
correct image center (the line A) and the corrected av- 
erage column position of the two vertical edges (the 
curve C). However, when vertical edges are distant 
(e.g., 10 meters from the robot) in the beginning of 
the experiment, large errors (30 pixels) are observed. 
As the robot approaches the vertical edges, the error 
is reduced to less than 5 pixels. 

5 Integration 

To be a useful system in a complex indoor environ- 
ment, the robot must be able to carry out a global mis- 
sion by selecting an appropriate behavior in sequence 
among many available behaviors. The integration of 
multiple behaviors into such a coherent system raises 
three important issues: the representation of a global 
mission and behavior arbitration. 

5.1 Mission interface 
Any typical indoor environment (e.g., an office build- 
ing) can be represented by a combination of rooms, 
corridors, and intersections [6]. Based on this fact, we 
observe that the robot can demonstrate a goal-directed 
navigation capability only with three target tracking 
behaviors: doorway tracking, wall tracking, and inter- 
section tracking behavior. Therefore, we can represent 
a global navigation mission as a sequence of these three 
tracking behaviors. Currently, this sequence is gener- 
ated by a human operator. Using common sense-like 
rules, a list of adaptive-level candidate behaviors is also 
generated for the recovery of the failure of each target 
tracking behavior. For example, when the robot is in a 
room and a doorway tracking behavior fails, the open- 
space-explorer is the best alternative behavior to get 
out of the room. If the open-space-explorer is not ac- 
tivated or fails, the wall-follower provides the behavior 
to get out of the room by following the walls of the 
room. 

5.2 Behavior arbitration and failure re- 
covery 

There are two kinds of behavior arbitration in our sys- 
tem: arbitration between different-level groups and 
that inside each group [ll]. We use the fixed prior- 
ity order among three groups: A behavior from the 
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reflexive-level group has the highest priority because 
of the safety of the robot except in the case of dead- 
lock situation. For efficient goal-directed navigation, 
the purposivelevel group has higher priority than the 
adaptive-level while tracking or searching is s u c c e s ~  
fully executed. If a failure of the purposive-level be- 
havior or a deadlock situation occurs, an appropriate 
behavior from the adaptive-level group is selected from 
the specified list of behaviors. 

Different behavior arbitration mechanisms for the 
reflexivelevel, purposive-level, and adaptive-level 
work in parallel to  determine the motion command. 
For the reflexive-level group, priority-based arbitra- 
tion is adopted according to the reliability of each sen- 
sor. If the behavior from an agent with higher priority 
emerges, others from agents with lower priority are ig- 
nored. 

For the purposive-level group, the priority of each 
paired target tracker and target searcher is determined 
according to the mission. This arbitration is done by 
the sequence of tracking behaviors to be executed. 

The adaptive-level behavior can be invoked either 
when a target tracking behavior failed or a deadlock 
situation occurred. For the failure of the tracker, an 
appropriate behavior is selected from the list of adap- 
tive behaviors of the current tracking behavior. De- 
tecting the failure of the target tracking behavior is 
done by comparing the motion command from the tar- 
get tracker with that from the best adaptive-level be- 
havior. 

For a deadlock situation, the arbitration of the 
adaptive-level behavior can be easily done if the robot 
can detect the deadlock situation. For the detection of 
the deadlock situation, work is still under progress. 

6 Experimental Results 

We have carried out a series of real navigation ex- 
periments in an unmodified office environment, using 
BIRDIE, which is equipped with 18 ultrasonic sensors 
and a color camera [ll]. 

Missions for the robot are specified as a sequence of 
behaviors to be accomplished: (1) go through a door- 
way, (2) turn to the left after passing a doorway, and 
(3) go to an intersection by following a long flat wall on 
the left-hand-side. The motion executor monitors all 
the behaviors to confirm whether or not this sequence 
of behaviors is accomplished. Work for a more general 
mission level interface is still underway. 

Figure 7 shows a diagram of an experiment in a 
real office environment. The robot should accom- 
plish the mission, given as a sequence of behaviors, 

without colliding with any obstacles. In this exper- 
iment, five behaviors (obstacle-avoider, open-space- 
explorer, obstacle-boundary-follower, intersection- 
tracker, intersection-searcher) were working in paral- 
lel. 

mw 

IT 

Is 

Figure 7: An experimental result from a real mobile 
robot navigation. 

At starting position, A, the robot found and tracked 
a red target, Targetl, located at a doorway to simu- 
late the doorway tracking behavior. The sonar-based 
open-space-explorer confirmed the resulting motion 
command from the target-tracker. While the robot 
was approaching B, Targetl was removed and the 
target-tracker failed to track the target. The motion- 
executor immediately detected this failure from the 
discrepancy between the two redundant behaviors, the 
simulated doorway-tracker and the sonar-based open- 
space-explorer. Since the target could not be found 
by the target-searcher, the motion-executor used an 
actuator command computed from the most appropri- 
ate adaptive-level behavior, the open-space-explorer, 
to reach C. At C, however, the obstacle-avoider de- 
tected a static obstacle and commanded the robot to 
D. The motion-executor again used a command com- 
puted from the open-space-explorer, because the first 
goal, going through open space, was not yet accom- 
plished. When the robot passed through the door- 
way, from D to E, the successful accomplishment of 
the first goal was confirmed. At E, the intersection- 
searcher used the vanishing point to extract a can- 
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didate of intersection on the left hand side of the 
robot. From E ,  two redundant behaviors, such as 
the intersection-tracker and the sonar-based obstacle- 
boundary-follower, were working in parallel. F’rom E 
to F ,  however, the intersection-tracker commanded 
the robot since there was no wall for the sonar-based 
obstacle-boundary-follower to follow. From F , the two 
redundant behaviors commanded the robot to  move 
along a wall until it reached an intersection G. The ac- 
complishment of the second goal was confirmed when 
both targets disappear from an image frame at the 
same time. 

7 Conclusions 

We have demonstrated that a navigation system, con- 
sisting of a few basic behaviors, along with a proper be- 
havior selection mechanism can provide sufficient nav- 
igation capability for a mobile robot working in indoor 
environments. The three-clustered system architecture 
with the redundant adaptive-level behaviors have im- 
proved the robustness and flexibility of the behavior- 
based system by providing an efficient mechanism to 
recover the failure of the purposive-level behaviors. 

We have also demonstrated that Range-based be- 
haviors, using an efficient Energy-based motion deci- 
sion algorithm, are very robust and flexible for mo- 
bile robot navigation in unmodified office environment, 
through real world experiments. From our prelim- 
inary experimental results, we have also found that 
vision-based behaviors using vanishing points are ro- 
bust against errors of preprocessing (e.g., edge detec- 
tion) and image noise. We are now developing other 
vision-based behaviors such as obstacle-avoidance and 
target-approaching. The obstacle-avoider computes 
the surface orientation and the time to  contact from 
the image velocity field [3]. 

Work is currently underway to improve our mobile 
robot, BIRDIE, by adding other sensors, such as in- 
frared sensors, touch sensors, and a digital compass. 
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