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Many behaviors are associated with heritable genetic variation

[Kendler and Greenspan (2006) Am J Psychiatry 163:1683–1694].

Genetic mapping has revealed genomic regions or, in a few cases,

specific genes explaining part of this variation [Bendesky and

Bargmann (2011)Nat Rev Gen 12:809–820]. However, the genetic basis

of behavioral evolution remains unclear. Here we investigate the

evolution of an innate extended phenotype, bower building, among

cichlid fishes of Lake Malawi. Males build bowers of two types, pits

or castles, to attract females for mating. We performed comparative

genome-wide analyses of 20 bower-building species and found that

these phenotypes have evolved multiple times with thousands of

genetic variants strongly associatedwith this behavior, suggesting a

polygenic architecture. Remarkably, F1 hybrids of a pit-digging and a

castle-building species perform sequential construction of first a pit

and then a castle bower. Analysis of brain gene expression in these

hybrids showed that genes near behavior-associated variants dis-

play behavior-dependent allele-specific expression with preferential

expression of the pit-digging species allele during pit digging and of

the castle-building species allele during castle building. These genes

are highly enriched for functions related to neurodevelopment and

neural plasticity. Our results suggest that natural behaviors are as-

sociated with complex genetic architectures that alter behavior via

cis-regulatory differences whose effects on gene expression are spe-

cific to the behavior itself.

Malawi cichlids | bower building | cis-regulatory evolution |
genome sequencing

Understanding behavioral evolution requires identifying the
genetic and regulatory architectures encoding neural de-

velopment and function. To characterize the evolution of a
complex social behavior, we focused on the remarkable bower-
building feats performed by ∼200 cichlid fish species in Lake
Malawi that live on sandy substrate. Bowers are species-specific
sand structures that serve as signals in male–male competition
and female mate choice (1). Malawi cichlid species build two
basic bower types: (i) pits, which are depressions that resemble
nests in the sand, and (ii) castles, which resemble miniature
volcanoes (2). Bower building requires highly repetitive activity
in which males perform hundreds of scoop–spit bouts with their
mouths per hour, interspersing construction with the courtship of
females and aggressive encounters with conspecific males (Fig.
1A) (2, 3). To dig pits, males collect sand from the center of the
pit and spit it elsewhere, while to build castles, males gather sand
from elsewhere and spit it in a targeted location (Fig. 1 B and C
and Movie S1). Pit and castle bower types are distributed widely
across the Malawi cichlid sand-dweller phylogeny, suggesting
that parallel evolution and/or hybridization may be responsible
(4). Furthermore, bower building is innate. Naive males born in
an aquarium, who have experienced neither sand nor other
males, perform species-specific bower behavior when housed
with sand and gravid females.

Results

Extensive Genetic Differences Exist Between Pit-Digging and Castle-

Building Species. To identify genetic variants associated with bower
building, we sequenced the genomes of 20 male individuals from
20 sand-dwelling Lake Malawi cichlid species: 11 pit-digging spe-
cies and nine castle-building species (SI Appendix, Table S1).
Species in these two groups construct either pits or castles despite
differences within the groups in color pattern, ecology, feeding
mode, and other characteristics (2). Sequence reads from each
species (mean coverage ∼25×) were aligned using the Malawi
cichlid reference genome (4) and were mapped to Malawi linkage
groups (LGs) (Methods). A maximum-likelihood phylogeny based
on variant sites (Fig. 1D) is consistent with repeated evolution of
pit-digging and castle-building behavior in our sampled species.
Like other recently evolved species flocks (5), East African

cichlids share genetic polymorphisms because of incomplete
lineage sorting and hybridization (6–9). Therefore, we used both

Significance

We do not fully understand how behavior evolves. Here we in-

vestigate the genomic basis of bower building among Lake

Malawi cichlid fishes. Males construct bowers of twomajor types,

pits and castles, to attract females in mating displays. Thousands

of genetic variants are strongly associated with divergence in

bower behavior. Remarkably, F1 hybrids of pit-digging and castle-

building species perform sequential construction of first pit and

then castle bowers. Analysis of brain gene expression in hybrids

showed behavior-dependent allele-specific expression with

preferential expression of pit-digging alleles during pit digging

and castle-building alleles during castle building. Our results

suggest that behaviors evolve via complex genetic architectures

featuring cis-regulatory differences whose effects on gene ex-

pression are specific and context dependent.
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population-based and phylogeny-based analytical approaches to
understand genomic correlates of bower building. We applied the
population-based fixation index (FST) to identify genomic regions
differentiating pit-digging vs. castle-building species. We observed
∼15.5 million SNPs and ∼130,000 insertion/deletions (indels) in
the sample set; 1.5% of variable sites were notably divergent be-
tween pit-digging vs. castle-building groups (FST >0.2, compared
with 0.08 genome-wide mean). We compared patterns of FST di-
vergence across the genome (Fig. 2A) with a population-structure–
corrected genome-wide association study on bower behavior and
found that the two are strongly correlated (SI Appendix, Fig. S1).
We next identified outlier 10-kb regions based on mean FST of

SNPs [10% false-discovery rate (FDR), FST >0.2] and individual
indels (10% FDR, FST >0.1) (Fig. 2A). Outlier regions were ob-
served on every LG, but peaks on LG2 and LG11 are striking for
their size (1.3 Mb and 6 Mb, respectively) and consistency across
SNP and indel data. Broad peaks of differentiation on LG2 and
LG11 could be caused by structural changes [e.g., inversions (10)]
associated with bower behavior or with other traits such as male
sex determination (11). However, sex-determination systems are
not known for these species, and we could not identify structural
variants that could explain the broad peaks of genetic differenti-
ation on LG2 or LG11 (Methods) (12, 13).

Characterizing Variants Associated with Bower Type. We hypothe-
sized that if high-FST regions across the genome are the product
of selection on bower building or associated behavioral traits, then
they should be enriched near genes involved in brain function and
development. To test this, we examined 1,563 genes located within
25 kb of an outlier 10-kb region (∼30% of these genes are located
on LGs 2 and 11) for functional enrichment (14). This gene set
was significantly enriched for tissue types, pathways, human dis-

orders, and phenotypes associated with brain development and
behavior, including axon guidance, synaptic transmission, autism
spectrum disorder, and spatial learning (Fig. 2B and Dataset S1).
Together, these analyses identify genomic regions and genetic
variants associated with bower behavior and demonstrate that genes
near these variants are strikingly enriched for putative functions in
brain and behavior.
To assess the role of ancestral variation in differentiation of pit-

digging vs. castle-building behaviors, we classified SNPs as either
“new” if they were only found in sand-dwellers or “ancient” if they
were also found in the genomes of non–sand-dwellers, including
species from other African rift lakes. For new variants found only in
sand-dweller species, we marked alleles as derived if they were not
shared with the rock-dweller Metriaclima zebra reference genome
(SI Appendix, Fig. S2A). Such standing genetic variation has been
recruited for rapid adaptation in sticklebacks and other cichlid fish
species (8, 15). We used odds ratios (ORs) from a Fisher’s exact
test comparing SNP-level allele counts to infer whether pit digging
and castle building associated preferentially with ancestral or de-
rived alleles (SI Appendix, Fig. S2B). We found that among more
genetically diverged SNPs, castle-building species tended to have
derived alleles (P < 0.0001), while pit-digging species were enriched
for ancestral alleles (P < 0.0001) (Fig. 2C). Indeed, increasing FST
was related to greater divergence in ORs between derived and
ancestral alleles (SI Appendix, Fig. S2C). Furthermore, when
comparing the overall distribution of FST measures, 9% of all SNPs
were ancient, but in high-FST variants (FST ≥0.2) this proportion
was elevated to 20% (χ2 test, P value < 2.2e-16) (SI Appendix, Fig.
S3). These data suggest that both standing genetic variation and
derived alleles shared by castle-building species contribute to the
overall genetic architecture of bower behavior.

Fig. 1. Bower building. (A) Characteristic behavioral patterns associated with pit digging (Upper) and castle bower building (Lower). (B) Average locations of

scoops (gray) and spits (red) during bower-building trials in the pit-digging species C. virginalis and the castle-building species M. conophoros. Consensus

locations of the bowers are indicated by dashed black circles. (C) Results of a Student’s t test (two-tailed, P = 0.006) comparing difference score (in millimeters;

mm) between C. virginalis (pit digging; yellow) and M. conophoros (castle building; green). (**P < 0.01.) (D) Maximum-likelihood phylogeny from genome-

wide variants of the species sequenced in this study. Numbers at nodes are bootstrap support values.
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Allele Sharing Among Bower-Building Species May Be Due to Introgression.
The above observations, along with low bootstrap support values
for some nodes on the whole-genome maximum-likelihood phy-
logeny (Fig. 1D), suggest that sand-dweller genomes may have
been subject to evolutionary processes leading to species tree
contraventions, such as incomplete lineage sorting and introgres-
sion. To test this, we constructed maximum-likelihood phylogenies
from nonoverlapping windows of 10,000 SNPs (1,927 in total) (16).
The resulting local phylogenies demonstrate the presence of a va-
riety of tree topologies (Fig. 3A). Using TWISST (17), a method

that measures the “weights” of various tree topologies genome-
wide, we found moderate to strong support for a variety of trees,
including several that group species by bower phenotype (Fig. 3B
and SI Appendix, Fig. S4 A and B). Furthermore, support for trees
that group by bower phenotype varied across LGs with an extremely
strong increase in weights on LGs 2 and 11, reflecting the strong
genetic divergence seen via FST in these regions (Fig. 3 C andD and
SI Appendix, Fig. S4C).
We next tested for signals of admixture by comparing the

observed similarity in allele frequencies among species pairs with

Fig. 2. Genome-wide divergence associated with bower building. (A) Manhattan plot of genome-wide ZFST for SNPs and indels between pit-digging and

castle-building species. (B) Semantic similarity of GO biological process terms enriched for high-FST variants. (C) Bar plot of SNP proportions per FST cutoff for

ancestral and derived SNPs. SNPs in which castle-building species possess the alternate allele are colored red; those in which pit-digging species possess the al-

ternate allele are colored blue. ***P < 0.001, Fisher’s exact test.
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those expected given their phylogenetic relatedness (as estab-
lished by comparisons with pairs of outgroup species) (18). We
found many species pairs with signals of gene flow that were
stronger than expected by chance, as evidenced by significantly
negative admixture statistics (Methods and Fig. 3E). Similarly,
using TreeMix (19), we found that analyses of admixture scenarios
incorporating all species in our dataset also supported multiple
admixture events, although the predicted number and specifics
of these events could not be confidently estimated (SI Appen-
dix, Fig. S5). We also observed that signals of admixture varied
by genomic location and in many cases recapitulated regions of
high divergence (SI Appendix, Fig. S6) (20). Given these spe-
cies’ high degrees of relatedness and the potential of natural
selection acting on standing genetic variation, it is difficult to
ascertain the importance of introgression in the evolution of
bower building. Nonetheless, taken together these patterns sug-
gest that gene flow has occurred across the sand-dwelling clade
and may have impacted variants important for bower building.
Our observations of complex evolutionary histories reflecting both
segregation of ancestral polymorphism and gene flow between

species are consistent with findings from other recent studies of
African cichlid genome-wide divergence (8, 20). Specific hypoth-
eses of gene flow between bower-building species could be tested
by additional population and geographic sampling (21).

Bower Building Is Associated with Context-Dependent, Allele-Specific

Expression. Behavioral traits can be associated with rapid tran-
scriptional changes and distinct neurogenomic states (22), so we
next asked how gene expression was activated in the brains of
pit-digging vs. castle-building cichlids. To do this, we assayed
whole-brain gene expression by RNA-sequencing (RNA-seq) in
interspecific hybrid males to measure allele-specific expression
(ASE), an approach that can identify cis-regulatory diver-
gence between closely related species (23, 24). We crossed the pit-
digging Copadichromis virginalis (CV; sire) with the castle-builder
Mchenga conophoros (MC; dam) based on previous laboratory
observations confirming the viability of this cross. Remarkably,
CV × MC F1 hybrids produced an unusual intermediate “pit-
castle” bower by carrying out parental behaviors in sequence:
First, a pit is excavated for several days to weeks followed by a

Fig. 3. Complex phylogenetic relationships among sand-dwelling Malawi cichlids. (A) We plotted 1,927 phylogenies resulting from nonoverlapping 10,000

SNP windows using DensiTree. The consensus phylogeny produced by DensiTree is colored black. (B) Bar plot of mean genome-wide weightings for the 15 tree

topologies tested with Twisst. Trees grouping clades by bower phenotype (topologies 15, 10, and 3) are highlighted. See SI Appendix, Fig. S4 for visualizations

of all 15 topologies. (C) An example of a stacked plot of topology weightings along a region of LG11 with strong support for groupings by phenotype. (D) An

example of a stacked plot of a mixed-weight region on LG10. (E) Heatmap of the most significant f4 values. Species in the x and y axes were either B or C in the

form f4(A,B;C, A. calliptera). Names of pit-digging and castle-building species are in blue and red font, respectively. A darker red square indicates more signal

of gene flow between the species pairs in the respective row and column.

E11084 | www.pnas.org/cgi/doi/10.1073/pnas.1810140115 York et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810140115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810140115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810140115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1810140115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1810140115


transition to the construction of a castle (SI Appendix, Fig. S7).
This observation suggests that both pit-digging and castle-building
behavioral control circuits are functional in the F1 male brain. We
took advantage of this sequential bower construction to compare
brain RNA-seq data from CV ×MC F1 hybrid males during three
behavioral contexts: pit digging (n = 2), castle building (n = 2), or
in isolation without conspecifics or sand (control; n = 2) (Fig. 4A).
Given that the terminology for behaviors observed in the hybrids
overlaps with that used for the pure-species genomic comparisons
above, we hereafter denote F1 hybrid behavior with the suffix
“-phase.” Sequences were aligned using the M. zebra reference
genome, and ASE was measured from gene-level read counts.
We found the presence of ASE in the brain transcriptomes of fish

in all three behavioral contexts. We identified 621 genes with sig-
nificant ASE across replicates in at least one behavioral context
(Bonferroni-corrected P < 0.05) (Dataset S2). Because many of
these genes may be unrelated to bower building, we reasoned that
differential ASE (diffASE) across contexts—e.g., cases in which one
allele is more highly expressed than the other only during the pit-
phase or castle-phase—would enrich for those involved in the

behavior. We found robust variation in the number of CV- andMC-
biased genes between behavioral contexts that, surprisingly, reflected
a pattern of species bias (Fig. 4B). Specifically, significantly more
genes are MC-biased during the castle-phase than during the
pit-phase (counts: 196 MC-biased genes, 40 CV-biased genes;
Fisher’s exact P < 7.45 × 10−19) or than in isolation (counts: 125
MC-biased genes, 48 CV-biased genes; Fisher’s exact P= 1.37 × 10−7),
while significantly more genes are CV-biased during the pit-
phase than during the castle-phase (counts: 13 MC-biased genes, 88
CV-biased genes; Fisher’s exact P = 3.03 × 10−11) and during the
pit-phase compared with isolation (counts: 48MC-biased genes, 129
CV-biased genes; Fisher’s exact P = 2.58 × 10−8). Furthermore, we
identified a number of individual genes with “discordant ASE”
because their direction of allelic bias switched between behavioral
contexts (SI Appendix, Fig. S8 A and B). Notable examples of this
phenomenon include the genes atp1b4, an ion pump with brain-
specific expression in fish (25) (digging: CV allele 2.98-fold higher
expression; building: MC allele 10.83-fold higher expression) and
dgcr8, a core component in microRNA biogenesis that is required
for inhibitory synaptic function (26) (digging: CV allele 2.55-fold

Fig. 4. Behaviorally dependent allele-specific expression. (A) Cartoon representation of allele-specific expression under different contexts. In context 1, the

sequence in the transcription factor binding site (TFBS1) is identical in the two alleles, leading to an expected ∼50:50 allelic ratio in the F1 hybrid. In context 2,

there is a variant between the species in TFBS2 leading to ASE in the F1 hybrid. (B) Bar plots indicating the distribution of significantly differentially biased genes

across building and digging contexts. Significance was calculated using a Fisher’s exact test; ***P < 5 × 10−5. (C) Semantic similarity of GO biological process terms

enriched for genes with diffASE. Node size is the log of the size of the category represented. Nodes are colored by the log10 P value of the enrichment. (D) An

example of a result from a sign test comparing context-dependent allele-specific expression (signal transduction; Reactome pathway R-HSA-162582).
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higher; building: MC allele 2.75-fold higher) (SI Appendix, Fig. S8 C
and D; full results are given in Dataset S2).
These patterns of differential allelic expression in F1 animals

indicate an unexpected amount of dynamic genomic regulation
associated with behavior. Notably we observed that, within the
same brain containing alleles from both parental genomes, castle-
building cis-regulatory elements are specifically activated during
the castle-phase, and vice versa for the pit-phase. These results
add to a growing body of literature illustrating context-dependent
transcriptional response with experience or changes in behavior
(27, 28) and further suggest that evolutionary differences between
species in relation to brain function and behavior may arise from
variation in such context-dependent regulation of gene expression.

Context- and Lineage-Specific Induction Identifies Behavior-Dependent

Genes and Pathways. We reasoned that if the context-dependent
ASE observed above is biologically relevant, then genes with shared
patterns of allelic induction across contexts should be enriched for
similar functional roles. To this end we first identified genes with
significant diffASE—varying ratios between CV and MC alleles
dependent on context—between at least two of the three behavioral
contexts (435 genes) (Methods). We performed gene-set enrich-
ment analysis using all other genes detected in at least one of the
three contexts (9,703 genes) as background. This analysis identified
a number of enriched categories spanning various aspects of neural
structure and function (Dataset S3). For example, genes with dif-
fASE were significantly enriched in a number of neural-specific
Reactome pathways such as transmission across chemical synapses
(R-HSA-888590; q-value = 8.13 × 10−6) and GABA synthesis, re-
lease, reuptake and degradation (R-HSA-112315; q-value = 5.38 ×

10−7). Enriched gene ontology (GO) biological processes categories
were predominately related to synaptic function, neurotransmitter
regulation and signaling, and ion transport and binding (Fig. 4C and
Dataset S3), while cellular component sets included structures and
loci important for neuronal function such as clathrin-sculpted vesi-
cles (GO:0060198; q-value = 1.06 × 10−5) and postsynaptic densities
(GO:0014069; q-value = 3.46 × 10−5).
We further refined these tests by identifying genes that displayed

significant differential induction of one or both alleles during
building or digging behaviors (building up-regulated genes, n = 171;
digging up-regulated genes, n = 174) (Methods). These genes differ
from those with diffASE in that the comparison of interest is the
expression of individual alleles across rather than within contexts.
While diffASE is ascertained by identifying different ratios be-
tween alleles, differential induction is more similar to traditional
differential expression tests in that it is concerned with the expression

of individual alleles across contexts. Analyzing these genes might then
provide insight into the divergence of context-dependent regulation
of alleles between CV and MC. To assay the roles of genes with
differential induction, we performed gene-set enrichment tests as
above. Genes up-regulated during building were enriched for neuro-
transmitter release (R-HSA-112310; q-value = 4.70 × 10−2) and ion
channel transport (R-HSA-983712; q-value = 1.97 × 10−7). Similarly,
digging-induced genes were associated with ion homeostasis (R-HSA-
5578775; q-value = 2.90 × 10−2) and chemical synaptic transmission
(GO:0007268; q-value= 3.20 × 10−2). These results indicate that genes
with differential ASE and induction are coherently enriched for spe-
cific neural processes in comparison with the rest of the transcriptome,
adding evidence in support of the idea that context-dependent gene
regulation may support distinct neural states related to behavior.
We extended this analysis to explore the role of lineage-specific

differences in gene regulation via consideration of independent
regulation of CV and MC alleles across behavior states. To do so,
we applied a sign test to the directionality of CV and MC alleles
between the pit- and castle-phases (Dataset S2) (24, 29). We
compared the allelic counts of individual genes across phases (pit vs.
castle), avoiding a bias for the sampled tissue as opposed to a typical
GO enrichment test which would compare the complete focal gene
list with a background. We found several hierarchically organized
gene sets that matched a pattern of significant differential induction
of CV and MC alleles between digging and building (Dataset S3).
The identified gene sets were largely involved in cell signaling and
communication (an example is plotted in Fig. 4D). These observa-
tions suggest that lineage-specific selection may have played a role
in producing differential regulation of neural-signaling genes in CV
and MC related to their species-specific bower behavior.

Bower-Associated SNPs and cis-Regulatory Variation. Finally, we
asked the extent to which genomic divergence among bower-
building species is associated with cis-regulatory changes inferred
from the CV × MC intercross. If natural selection had acted on
regulatory variants associated with pit digging and castle building, it
would result in enrichment of highly differentiated SNPs proximal
to genes that display ASE. Indeed, we found that ASE genes were
significantly enriched near high-FST SNPs (48 of 621 ASE genes vs.
332 of 1,0221 non-ASE genes; Fisher’s exact test, P = 2.07 × 10−7)
(Fig. 5A). Furthermore, this enrichment increases when considering
those genes displaying diffASE (Fig. 5A). We also detected over
30 pathways that showed significant overlap between ASE and
high-FST gene lists (Bonferroni-corrected P < 0.05; hyper-
geometric test) (Fig. 5B). As in previous analyses of ASE and FST

alone, many of these pathways are involved in neurodevelopment,

Fig. 5. Intersection of genome-wide SNPs and ASE. (A) Bar plot comparing the number of ASE, non-ASE, and diffASE (across all contexts) genes associated with highly

divergent SNPs between pit-digging and castle-building species. ***P < 1 × 10−4, Fisher’s exact test comparing genes overlapping SNPs and genes not overlapping SNPs. (B)

Categories in which the observed amount of overlap (blue) between genes associatedwith highly divergent SNPs andwith ASE is significantly greater than expected (gray).
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neuroplasticity, and behavioral regulation, suggesting concordance
between patterns of genetic and regulatory divergence among
bower-building species.

Discussion

By combining genome sequencing across many closely related
species with analysis of ASE in the brains of behaving hybrid
animals, we provide a genome-wide view of how a complex be-
havior has evolved. Our results suggest that the evolution of bower
building was associated with polygenic selection on ancient and
new genetic variants that regulate genes involved in neural activity
and synaptic plasticity in specific behavioral contexts. The obser-
vation of context-dependent ASE associated with sequential pit-
digging and castle-building behavior in F1 males suggests how cis-
regulatory divergence across many genes may combine to produce
the evolutionary divergence of a complex behavior.
The elevated FST values at thousands of variants among the

20 diverse bower-building species examined revealed that bower
building is associated with a complex but phylogenetically consistent
genetic architecture. The observation that these sites are both an-
cestral (polymorphisms shared with species outside of Lake Malawi)
and derived parallels similar findings from studies of Malawi cichlids
(6, 8, 20) and other recently evolved species flocks such as stickle-
backs (15) and finches (5). Notably, we found that castle-building
species tended to possess derived variants at more genetically di-
verged sites, suggesting that, at least from a genomic perspective,
castle building is the younger, derived behavior. The observation
that the species believed to be similar to the common ancestor of
Malawi cichlids, Astatotilapia calliptera, digs pits and is positioned at
the base of the Lake Malawi phylogeny lends credence to this idea
(Fig. 1A). The phylogenetic distribution of bower building suggests
that repeated instances of selection, be it on standing variation or
introgressed alleles, may have acted to differentially fix the genetic
architecture associated with castle bowers in a number of sand-
dwelling species. That we detect potential genomic signatures of
gene flow supports the notion that introgression may have played a
role in the propagation of the derived castle-building behavior
among sand-dwelling cichlid species. The importance of gene flow
across species boundaries has been highlighted before in cichlid fish
adaptive evolution (8, 30), but bower building represents a special
case of this general phenomenon, as the behavior is sex specific and
unlikely to increase male survival. It will be interesting to test spe-
cific hypotheses of gene flow between particular bower-building
species using more targeted sampling and genetic methods.
Given the large regions of increased genetic divergence identified

on LGs 2 and 11, it is intriguing to consider the possibility that there
may be “supergene”-like elements underlying bower building sim-
ilar to those that have been found to be associated with other
animal behaviors such as male reproductive morphs in the ruff (31,
32) or insect social organization (33). Our observation that F1 hy-
brids of a cross between pit-digging and castle-building species can
build both structures and do so in a mutually exclusive, sequential
fashion may further support the notion that the varying bower types
require genomic regions working in a modular and independent
fashion. Such a finding would not be without precedent among the
cichlids of Lake Malawi. The orange-blotch (OB) coloration phe-
notype found among >20 rock-dwelling species is associated with a
tightly linked genomic locus resembling a supergene in its size and
inheritance and has arisen independently at least three times (34).
Our approach to sequence the genomes of individuals from pit-

digging vs. castle-building species has identified numerous genetic
variants associated with bower behavior, not unlike the genetic
architecture of other complex traits, including human neurological
disorders (35). Integrating genome sequencing with RNA-seq
from F1 hybrid brains pairs our strategy with the complexity of
the bower trait. Our results fit the general pattern observed in
other complex traits: numerous genetic associations with the
phenotype (36) and an expectation that many of these variants
exert their effects via context-dependent cis regulation of gene
expression (37, 38). Models like Malawi cichlids may thus occupy a
“sweet spot” in complexity, combining a rich genetic, evolutionary,

and phenotypic profile with tractable biology that could yield in-
sights into the origins of behavioral diversity. Of utmost impor-
tance will be continued efforts toward correct phenotypic
categorization of such complex traits. In this study, we decided to
characterize bower building into two qualitative categories and
used this definition to perform genome-wide tests across 20 di-
verse species. However, our species cohort may share other traits
correlated with bower type, adding noise to our measures of ge-
netic association, or may represent more than two behavioral
strategies (although this scenario seems unlikely, given the be-
havioral and genetic findings presented here). In general, the use
of bower building as a model complex trait will benefit from
careful work on the roles of ontogeny, intraspecific variation, and
behavioral variability in the regulation of this behavior.
The extensive, context-dependent transcriptomic divergence as-

sociated with bower building in F1 hybrids provides intriguing in-
sights into the regulatory basis of behavioral evolution. For
example, it appears that bower building is defined by modularity at
multiple levels of biological organization. The transition in CV ×

MC F1 hybrids from pit to castle bowers may be considered as a
shift between distinct behavioral modules associated with distinct
behavioral patterns reflective of the respective parental species. The
finding that these phases are associated with distinct transcriptomic
states suggests that the pit and castle alleles function modularly
based on behavioral context, best reflected by the significant
number of genes displaying discordant ASE across these behavioral
modules. This is in opposition to other scenarios in which regula-
tory divergence might be static across behavioral conditions or
minimal in the context of brain function and behavior. Instead, the
transcriptomic states associated with the pit- and castle-phases in F1

hybrids appear to be more similar to those found between tissues in
an organism, arising from potentially distinct regulatory or epi-
genomic cellular environments. In this case, given the genomic and
evolutionary signatures identified by the whole-genome analyses, it
appears that these differences in regulation are at least partly due to
extensive sequence-level variation in a number of functionally re-
lated regulatory elements associated with behavior. Notably, this
may suggest that the genome harbors regulatory loci specifically
involved in the dynamic coordination of behavior and brain func-
tion analogous to well-known genetic modulators of morphology
and that these loci underlie the evolution of behavioral diversity.

Methods
Bower Behavioral Measurements. Individual adult, reproductive subjectmales (C.

virginalis, n = 4 andM. conophoros, n = 4) were each housed with one to three

adult, reproductive stimulus females of the same species in 43.2 × 91.4 × 40.6 cm

(160-L) glass aquariums maintained on a 12-h:12-h light:dark cycle., A tray

(Newbury Black Poly Saucer, SA1412BK; Dynamic Design) 5.1 cm deep and

35.6 cm in diameter was placed in each tank and was filled with sand (Sahara

Sand, 00254; CaribSea, Inc.). All animal experiments were approved by the

Georgia Tech Institutional Animal Care and Use Committee (protocol no.

A11034) and by the Stanford University Animal Care and Use Committee (pro-

tocol no. APLAC-28757). For each subject, 90- to 120-min videos were recorded

between 3–8 h after lights-on during periods of high bower-building activity

using a GoPro camera (Hero4 Silver, CHDHY-401; GoPro) housed in a waterproof

compartment (Clear Standard Housing, AHSRH401; GoPro) and placed top-

down directly above the sand-filled tray. The behavior of male subjects was

scored using The Observer XT 12 software (Noldus) according to the following

definitions: “scooping” was defined as opening the mouth and collecting sand,

and “spitting” was defined as expulsion of sand from the mouth. For each in-

dividual, screenshots were captured at the precise moment of every scoop and

spit event, and these screenshots were exported to Paint (Microsoft) to extract

spatial coordinates of the mouth for every scoop and spit event.

Bower-building difference scores were calculated to measure the spatial

dispersion of scoops compared with the spatial dispersion of spits for each

subject male. To calculate the difference score for each subject, we first de-

termined the coordinates for each subject’s average scoop location and average

spit location. Using these coordinates, we calculated the absolute distance from

the average spit location to each individual spit location and from the average

scoop location to each individual scoop location. To generate a quantitative

metric of spatial dispersion, these distances were then averaged, yielding two

distance scores for each subject, one for scoops, and one for spits. To compare

the spatial dispersion of scoops vs. spits, the difference between these distance
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scores (scoop distance score minus spit distance score) was calculated for each

subject, thus providing an estimate of differences in spatial patterns of

scooping and spitting sand for each animal. A two-tailed Student’s t test was

used to compare these difference scores between species.

Genome Sequencing, Alignment, and Variant Identification. We chose diverse

representative species of pit-digging and castle-building groups, selected

from multiple genera across the phylogenetic tree of sand-dwellers (2).

Genomic DNA was extracted from fin clips of 20 individuals collected in Lake

Malawi (11 pit diggers and 9 castle builders) (SI Appendix, Table S1) using

the Qiagen DNeasy kit (catalog no. 69504; Qiagen).

Libraries were constructed following the Illumina TruSeq DNA library-

preparation protocol. Paired-end sequencing (2 × 100) was performed on

the Illumina Hi-Seq 2500 system at the Georgia Institute of Technology. Raw

sequence reads were quality controlled using the NGS QC Toolkit (39).

Quality control was performed as follows: First, raw reads with an average

PHRED quality score below 20 were removed. The remaining reads were

further trimmed of low-quality bases at the 3′ end. Quality-control reads for

each of the genomes were aligned to the new M. zebra reference genome

(4) using bwa-mem (version 0.7.4) and default parameters (40). We used

Picard Tools (https://broadinstitute.github.io/picard/) to mark PCR duplicates.

Sequences were mapped to 87% of the reference genome on average, with

mean coverage of 24.31×. Variant discovery and filtering were performed

using HaplotypeCaller within the Genome Analysis Toolkit (GATK) program

according to GATK best-practices recommendations (41–43).

Deletions were identified using modifications to a previously published ap-

proach (44). Candidate deletions were first identified using chimeric reads as

identified by Burrows–Wheeler Aligner (40) (i.e., reads that included the SA tag)

in which each alignment mapped to the same contig and the same strand. These

reads were used to infer the breakpoints and insertion sequence of a candi-

date deletion. Candidate deletions that were also present in the sequencing of

M. zebra were excluded as likely errors in the reference sequence. Each candi-

date deletion was then genotyped in each of the pit-digging and castle-building

species by collecting all the reads with primary alignments that fell within

10 bp of the candidate deletion and with a mapping-quality score greater

than 10. These reads were realigned to both the reference and the candidate

deletion sequence using a striped Smith–Waterman alignment from the scikit-

bio Python library. Reads were classified as reference, mutant, or undetermined

based on their mapping score to the two alleles. Deletions were categorized as

homozygous mutant if 80% or more of the reads were categorized as mutant,

as homozygous reference if 80% or more of the reads were identified as ref-

erence, and as heterozygote if they fell in between. Candidate deletions that

were reference homozygous in all species were filtered from the dataset.

Tests of Genetic Divergence and Enrichment.We excluded sites with more than

50% missing genotypes from the whole-genome sequencing data. We cal-

culated FST per variant and in 10-kb windows using the –weir-fst-pop pa-

rameter from the VCFtools program (45) with the flags -fst-window-size 0 for

individual sites and -fst-window-size 10,000 for 10-kb windows. Nucleotide

divergence was calculated using VCFtools with the -window-pi 10,000 flag.

Thresholds were estimated using R-package fdr-tool (46). FST values were

converted to a normalized scale for visualizing these data on LGs (Fig. 2A)

using Fisher’s Z-transformation. To compare FST with a population-structure–

controlled genome-wide association analysis, we employed GEMMA v0.96

(47). We first computed a kinship matrix using the filtered sites from which FST
was calculated and then performed the association test on bower type using a

linear mixed model (-lmm flag) factoring in relatedness via the kinship matrix.

SNP and indel variantswere annotated using the SnpEff (4.3i) program (48)

and were analyzed for functional enrichment using GeneAnalytics (geneanalytics.

genecards.org) (14). Using the binomial distribution, this algorithm tests the

null hypothesis that there is no functional overrepresentation. A resulting

score is presented for each match in the form of a −log2 transformed

P value corrected for multiple comparisons via the FDR method. Scores are

arranged into three significance categories: high (Padj <0.0001), medium

(Padj <0.05), and low (Padj >0.05). Semantic similarity plots for significantly

enriched categories were produced with REVIGO (49).

Identifying Structural Variants. To predict structural variants on a genome-

wide basis, we used breakdancer-max (1.1) (12) with default parameters.

As read-pair mismatches in size (pairs are farther away than expected) and

direction (pairs in the same orientation) can be used to identify inversions, we

also used the Integrated Genome Browser (13) to manually validate predicted

structural variants from breakdancer-max, particularly those on LGs 2 and 11.

Thousands of structural variants were predicted for each species, but none

consistently associated with the broad FST peaks on LGs 2 and 11.

Improved Genome Annotation. In the original National Center for Bio-

technology Information (NCBI) release of the latest M. zebra reference ge-

nome (4), 15,361 of 26,490 predicted protein-coding genes were annotated

as hypothetical or without orthologs. To improve this annotation, we

identified orthologs for genes in two additional ways: (i) using a phyloge-

netic method using TreeFam, a curated database of phylogenetic trees of

animal genes, and (ii) via reciprocal blast against the human genome and

five fish genomes (50). The final annotation merged orthologous genes

identified by both methods; 1,900 hypothetical genes remain.

Assigning SNPs and Genome Contigs to Linkage Maps. We used Chromonomer

(1.03) (51) to anchor the gap-filled “M_zebra_UMD1” assembly (4) to LGs

using two different genetic maps, both generated via traditional F2 crosses

and genotyped with restriction site-associated DNA sequencing (RAD-seq).

First, a genetic map from 160 F2 individuals from an M. zebra × M. mbenjii

cross resulting in 834 markers in 22 LGs and spanning 1,933 cM (52) was used

to anchor the M_zebra_UMD1 assembly. This initial anchored assembly was

subsequently reanchored with Chromonomer using a second genetic map.

The second genetic map was generated by genotyping 268 F2 individuals from

a Labeotropheus fuelleborni × Pseudotropheus tropheops “red cheek” cross,

resulting in 946 markers in 24 LGs and spanning 1,453.3 cM (53). BWA mem

(version 0.7.12-r1044) (54) was used in both Chromonomer runs to create the

input SAM file by aligning respective map-marker sequences to the appro-

priate assembly or intermediate assembly. A minimum of two markers was

required to anchor a contig to a particular LG. The resulting FASTA file of the

anchored M_zebra_UMD1 assembly was used for subsequent analysis.

Phylogenetic Analysis. A maximum-likelihood phylogeny was constructed

with the variant data using the SNPhylo pipeline (55). Default parameters

were used with an additional flag -M 0.5.

Ancestral Allele Reconstruction. Pairwise whole-genome alignments of Neo-

lamprologus brichardi (a species belonging to an older radiation from Lake

Tanganyika), A. burtoni (a riverine species found in East Africa around Lake

Tanganyika), and Pundamilia nyererei (a species from a recent radiation in

Lake Victoria) were each constructed against the latest Lake Malawi cichlid

genome, M. zebra, using the last alignment algorithm (A. burtoni against M.

zebra, P. nyererei against M. zebra, N. brichardi against M. zebra) (56). The

generated .maf files from the alignment were converted to sam format using

the maf-convert script within the last alignment package. Resulting sam files

were converted to bam format via SAMtools (57) and were used to add an-

cestral allele information into the vcf file obtained from variant discovery.

Detection of Ancient/Derived Allele Enrichment Among Pit-Digging and Castle-

Building Species. To assess biases in the presence of ancient (polymorphic

within and outside of Lake Malawi) and derived (polymorphic only among

sand-dwelling species) alleles among pit-digging and castle-building species,

we first intersected our SNP-level FST measurements with the lists of ancient

and derived SNPs as identified through the ancestral allele reconstruction

methods outlined above. We then calculated a P value and OR on allele

counts at each SNP using a Fisher exact test. We assessed both the degree of

divergence at each SNP via FST values and the direction of divergence through

the ORs from the Fisher’s exact test. For example, at derived SNPs, an

OR <1 indicated that the castle-building species tended to possess the derived

allele, while an OR >1 indicated a bias toward the derived allele for the pit-

diggers. For ancient SNPs, an OR <1 indicated that the castle-building species

tended to possess the non-M. zebra allele (recall that variants were called in

relation to the M. zebra reference genome), while an OR >1 indicated that

pit-digging species tended to possess the non-M. zebra allele.

To assess systematic differences in the possession of derived or ancient

variants between pit-digging and castle-building species, we performed

Fisher’s exact tests at various FST thresholds. These tests were applied to both

the proportion of SNPs with an OR >1 and OR <1 for the derived and ancient

lists (as seen in Fig. 2C) in addition to comparing the mean ORs at various P

value thresholds (as seen in SI Appendix, Fig. S2C).

Analyses of Gene Flow and Incomplete Lineage Sorting. Maximum-likelihood

phylogenies were produced for 10-kb genomic bins using the python func-

tion phyml_sliding_windows.py created by SimonMartin (available at https://

github.com/simonhmartin/genomics_general). This resulted in 1,927 trees

that were subsequently visualized using DensiTree v2.2.5 (16).

We used TWISST (17) to analyze the distribution of phylogenetic topol-

ogies across genomic windows. To do so the .vcf file containing genotype

information for the pit-digging and castle-building species was filtered to

include only biallelic sites in which all species possessed genotypes. Indels
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were also removed. The function phyml_sliding_windows.py was then used

to create maximum-likelihood phylogenies from these variants in windows

containing 50 informative SNPs. TWISST was then run on these trees, testing

for variation in the tree topologies in the following five clades:

Clade 1 (pit diggers): Trematrocranus placodon, Dimidiochromis kiwinge,

Dimidiochromis compressiceps, Tramitichromis intermedius, Mylochromis

sphaerodon, Mylochromis lateristriga

Clade 2 (C. virginalis): C. virginalis

Clade 3 (Copadichromis castle builders): Copadichromis sp. “mloto gold-

crest,” Copadichromis likomae

Clade 4 (castle builders): Mylochromis anaphrymus, Ctenopharynx nitidus,

Otopharynx argyrosoma, M. conophoros, Nyassachromis sp. “otter”

Clade 5 (A. calliptera): A. calliptera

Four Population Tests. TreeMixwas run on genotype counts using the settings –k

2000 and –m 1,2,4,6,8,10 to assess support for admixture events among

bower-building species. We extended this analysis by computing the f4

statistic for every possible four-population combination using the fourpop

function in TreeMix with the setting –k 500. P values were calculated for every

four-population comparison from the reported z-scores and adjusted using

Bonferroni correction. To use A. calliptera as an outgroup in the detection of

possible gene flow among sand-dwellers, results for just the combination (A,B;

C, A. calliptera) were extracted. This led to 14,536 comparisons, of which

3,706 had significant (Bonferroni-corrected P < 0.05) f4 statistics (Fig. 3E and

Dataset S4). The most significant comparisons for each species pair in which

the species were (A,B;C,D) and (A,B;C,D) were then collected.

We used the fd statistic to identify patterns of possible introgression across

the genome. The fd statistic function is similar to f4 in that it compares

genotype frequencies between four populations; however, whereas f4 is a

genome-wide measure, fd can be calculated locally within genomic windows

and therefore allows the detection of genomic regions with particularly

strong signals of introgression19. We calculated fd using the python function

ABBABABAwindows.py created by Simon Martin (available at https://github.

com/simonhmartin/genomics_general) over 10-kb windows containing at

least 50 informative SNPs for the four population groups identified as most

significant from analyses of the f4 statistic.

RNA-Seq Library Construction. To assess the allele-specific expression, whole

brains were obtained from the following animals:

One CV male; digging (sire of all analyzed F1 hybrids)

Two CV × M. conophoros (MC) F1 hybrids; digging

Two CV × MC F1 hybrids; building

Two CV × MC F1 hybrids; isolated

For these experiments individual males were housed with three to five

conspecific females and were allowed to develop territories and initiate bower

construction. We confirmed that bower behavior was being performed reliably

(i.e., was consistent for >24 h), and on the evening before the experiment we

separated focal males from females using a transparent divider and flattened

the bower. At lights-on the next morning the barrier was removed, and the

males’ behavior was observed. Males were killed via decapitation 30 min after

the initiation of consistent behavior and, to prevent mRNA degradation, brains

were dissected into RNAlater (catalog no. AM7020; Thermo Fisher) less than

10 min after the animal was killed. Whole brains were homogenized in TRIzol

(catalog no. 12183555; Thermo Fisher) using a pestle. RNA was isolated using a

Qiagen RNeasy mini kit (catalog no. 74104; Qiagen). RNA-seq libraries were

constructed using Illumina TruSeq kits following the manufacturer’s protocols.

All libraries were sequenced as multiplexed samples in one lane of an Illumina

HiSeq 2000 system. Two biological replicates per context were chosen for an-

alyzing ASE following previously published methods (24) that found a similar

sample size was sufficient for reliably detecting allelic biases from RNA-seq data.

RNA-Seq Alignments and SNP Calling. RNA-seq read quality was assessed

using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

Illumina adapters were removed using SeqPrep (https://github.com/jstjohn/

SeqPrep). We obtained the M. zebra genome assembly and annotations

from NCBI RefSeq (assembly accession: GCF_000238955.2; Assembly name:

M_zebra_UMD1). RNA-seq reads were aligned to the M. zebra genome using

STAR 2.4 (58) with the options –SortedByCoordinate, –outSAMattributes MD

NH NM, and –clip5pNbases 6.

Read groups were added with AddOrReplaceReadGroups.jar in Picard Tools

1.92 (https://github.com/broadinstitute/picard). The resulting bam files were

sorted using SAMtools (57). Duplicate reads were marked using MarkDupli-

cates.jar in Picard Tools. We then applied GATK 3.3 indel realignment and

duplicate removal and performed SNP and indel discovery using Uni-

fiedGenotyper following the suggested GATK best practices (41–43).

We filtered the resulting .vcf files to identify all heterozygous sites in the F1
hybrid samples with quality scores >30. We also produced a list of all ho-

mozygous sites in the CV parental sample with quality scores >30. To allow

proper phasing of heterozygous sites, we filtered the F1 hybrid list to include

only sites that intersected with the CV homozygous SNPs.

Detection and Quantification of ASE. The M. zebra reference genome was

masked at high-confidence heterozygous sites using the perl script MaskRe-

ferencefromBED.pl (https://github.com/TheFraserLab/ASErhttp://github.com/

TheFraserLab/ASEr). To control for reference bias, all hybrid samples were then

realigned to this masked reference using the same STAR options as above.

Duplicates were marked using MarkDuplicates.jar in Picard Tools, and the bam

files were sorted using Sam Tools. The SNP-level ASE was then calculated with

the python script CountSNPASE.py (https://github.com/TheFraserLab/ASEr).

All downstream ASE analyses were conducted using R version 3.2.3 (59).

After SNP-level ASE was calculated, we filtered for more than five counts per

allele for every gene within each sample. To conduct gene-level analyses, the

subset of SNPs that met this expression cutoff were then summed without

normalization into gene-level counts using the gene coordinates in the

ref_M_zebra_UMD1_top_level.gff3 annotation (NCBI M. zebra annotation

release 102). For all genes in each sample, ASE was calculated by taking the

log2 ratio of the gene-level CV allele counts over the gene-level MC allele

counts. After alleles were filtered and summed into genes, we investigated

the distribution of ASE ratios across all genes for each sample. Distributions

consistently skewed toward either allele could be potentially indicative of

biases in read alignment or other technical artifacts. Analysis of ASE ratio

distributions showed each to be roughly normal and centered around a log2

ratio of zero, indicating a lack of evidence for strong bias toward either

species’ allele across samples (SI Appendix, Fig. S9).

We next calculated the significance of ASE per gene. Since allelic counts

from RNA-seq data are prone to overdispersion, we identified significant ASE

using a beta-binomial test comparing the CV and MC counts at each gene

with the R package MBASED (60) (1- sample analysis; default parameters; run

for 1,000,000 simulations). The resulting P values were adjusted for multiple

tests using Bonferroni correction. For a gene to be considered significant

within a context, we required that both replicates possess Bonferroni All P

values <0.05 and that the direction of ASE (either CV biased or MC biased)

was the same between replicates.

Identifying diffASE. DiffASE and differential allelic induction were identified

using the two-sample analysis in MBASED (60) (default parameters; run for

1,000,000 simulations) which, as in the one-sample analysis used to assay

ASE, employs a beta-binomial model of read counts to control for over

dispersion. MBASED was used to compare all possible pairings of the three

behavioral contexts (digging, building, and isolated). This produced the

pairings: digging × building, digging × isolated, and building × isolated.

Furthermore, since MBASED tests for significance in only one of the two

contexts at a time, we also ran all three comparisons in their reciprocal di-

rections (building × digging, isolated × digging, and isolated × building). To

identify diffASE, the expression of the CV and MC alleles within each context

were compared (i.e., CV allelecontext1 vs. MC allelecontext1 compared with CV

allelecontext2 vs. MC allelecontext2). Significant cases represent scenarios in

which the ratios between the alleles diverge between contexts (as repre-

sented in Fig. 4A). Differential induction was assayed by testing for signifi-

cant variation between CV and MC alleles across contexts, using the ratio of

each allele to itself for the test of significance (i.e., CV allelecontext1 vs. CV

allelecontext2 compared with MC allelecontext1 vs. MC allelecontext2).

The resulting P values for each pairing were combined across replicates

using Fisher’s method and were adjusted with Bonferroni correction. We

then compared these combined and adjusted P values across the reciprocal

contexts (e.g., digging × isolated vs. isolated × digging) and selected the

lowest P value for downstream analyses.

Gene Set Enrichment Tests. For the enrichment analyses of diffASE genes and

geneswith allelic induction in building and digging, the corresponding listswere

produced as well as background sets corresponding to all other genes detected

in one of the three behavioral contexts. Gene enrichments were calculated with

PANTHER (61) and filtered for a q-value <0.05. The allelic induction lists were

produced in amethod similar to those for diffASE by usingMBASED, but instead
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of comparing alleles within contexts the analysis was run on alleles across

contexts (e.g., comparing CV allele expression in digging vs. building). The

resulting P values would then reflect the differential induction of each allele

across pairs of contexts. For the gene set enrichment tests, only genes that had

significant induction (Bonferroni-corrected P value <0.05) of at least one allele in

either the building or digging contexts alone were selected. Semantic similarity

plots for significantly enriched categories were produced with REVIGO (45).

Lineage-specific variation was assayed by comparing the number of genes

enriched within gene sets that possessed differential allelic induction of either

the CV or MC alleles during building or digging. To do so a .gmt file containing

gene sets from the human Kyoto Encyclopedia of Genes and Genomes, GO,

Molecular Signatures Database, National Cancer Institute, Institute of

Bioinformatics, NetPath, HumanCyc, Reactome, and Panther databases was

downloaded from the Bader laboratory website (download.baderlab.org/

EM_Genesets/) in April 2018. Genes were then assigned to categories, and a

Fisher’s exact test was performed on a 2 × 2 contingency table in which the

rows represented digging and building and the columns were the CV and MC

alleles. To limit the number of tests performed, we ran the Fisher’s exact test on

each ontology independently and required each gene set to have 20 genes

represented. The resulting P values were then adjusted for multiple tests using

Bonferroni correction.
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