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Summary

Virtual environments inhabited by virtual humans are now commonplace in many
applications, particularly in (serious) games. These virtual humans interact with
other (virtual) humans and their surroundings. For such interactions, detailed con-
trol over their behavior is crucial. The control requirements for virtual humans
range from providing physical interaction with the environment to providing tight
coordination with a human interaction partner. Furthermore, the behavior of virtual
humans should look realistic. Throughout this thesis the term naturalness is used
for such perceived realism.

Many techniques achieve real-time animation. These techniques differ in the
trade-off they offer between the control that can be exerted over the motion, the
motion naturalness, and the required calculation time. Choosing the right tech-
nique depends on the requirements of the application it is used in. Motion (capture)
editing techniques employ the detail of captured motion or the talent of skilled an-
imators, but they allow little deviation from the captured examples and can lack
physical realism. Procedural motion offers detailed and precise control using a large
number of parameters, but lacks naturalness. Physical simulation provides integra-
tion with the physical environment and physical realism. However, physical realism
alone is not enough for naturalness and physical simulation offers poor precision in
both movement timing and limb placement. Hybrid animation techniques combine
and concatenate motion generated by different animation paradigms to enhance
both naturalness and control.

This thesis contributes one such hybrid technique: mixed dynamics. It combines
the physical naturalness provided by physically realistic animation with the control
provided by procedural animation. It builds on the notion that the requirements
of physical integrity and tight temporal synchronization are often of different im-
portance for different body parts. For example, for a gesturing virtual human, tight
synchronization with speech is primarily important for arm and head movement.
At the same time, a physically valid balancing motion of the whole body could be
achieved by moving only the lower body, where precise timing is less important.
Mixed dynamics allows one to mix procedural arm and head gestures with physical
simulation of the rest of the body. The forces generated by the gesturing body parts
are transferred to the physically simulated body parts, thus creating whole body an-
imation that appears to respect the laws of physics in a believable manner and that
is internally coherent (that is: the movement of the physically steered body parts is
affected by the movement of the procedurally steered ones).

Traditionally, interaction with virtual humans was designed using ‘transmitter/
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receiver’ interaction paradigms, in which the user and the virtual human take turns
to transmit (encode) and receive (decode) messages carrying meaning that travel
across channels between them. Such an interaction model is insufficient to capture
the richness of human-human interaction (including conversation). Natural inter-
action requires a continuous interaction paradigm, where actors perceive acts and
speech of others continuously, and where actors can act continuously, simultane-
ously and therefore overlapping in time. Such continuous interaction requires that
the perception capabilities of the virtual human are fast and provide incremental
interpretation of another agent’s behavior. These interpretations are possibly ex-
tended and revised over time. To be able to deal with such continuously updated
interpretations and rapid observations, the multimodal output generation modules
of the virtual humans should be capable of flexible production of behavior. This in-
cludes adding or removing behavior elements at a late time, coordinating behavior
with predicted interlocutor events and adapting behavior elements that have already
been scheduled or are currently playing. This thesis deals with the specification and
execution of such flexible multimodal output.

The Behavior Markup Language (BML) has become the de facto standard for
the specification of the synchronized motor behavior (including speech and ges-
ture) of virtual humans. BML is interpreted by a BML Realizer, that executes the
specified behavior through the virtual human it controls. Continuous interaction
applications with virtual humans pose several generic requirements on the specifi-
cation of behavior execution, beyond that of multimodal internal (that is, within the
virtual human) synchronization and form descriptions provided by BML. Continu-
ous interaction requires specification mechanisms for the interruption of ongoing
behavior, the change of the shape of ongoing behavior (e.g. speak louder) and the
synchronization of behavior with predicted external time events (e.g. originating
from the interlocutor). This thesis contributes BML Twente (BML'), a language that
extends BML by providing the specification of the continuous interaction capabilities
discussed above. It thus provides a generic interface to a Realizer through which
continuous interaction can be realized.

“Elckerlyc” is designed as a BML Realizer for generating multimodal verbal and
nonverbal behavior for virtual humansE] The main design characteristics of Elckerlyc
are that (1) it is designed specifically for continuous interaction with tight coordina-
tion between the behavior of a virtual human and that of its interaction partner;
(2) it provides an adjustable trade-off between the control and naturalness offered by
different animation paradigms (e.g. procedural body animation and physical body
animation; MPEG-4 facial animation and morph-based facial animation), allowing
the execution of the paradigms simultaneously; and (3) it is designed to be highly
modular and extensible and allows adaptations and extensions of the capabilities of
the virtual human, without having to make invasive modifications to Elckerlyc itself.

A BML Realizer is responsible for executing the behaviors specified in the BML
blocks sent to it, in such a way that the time constraints specified in the BML blocks

1“Elckerlyc” is the protagonist of a Dutch morality play with the same name, written at the end
of the Middle Ages. The name translates as “Everyman”; the protagonist represents every person, as
they make the journey towards the end of their life.
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are satisfied. Realizer implementations, including Elckerlyc, handle this by sepa-
rating the BML scheduling process from the behavior execution process. The sche-
duling process is responsible for creating a multimodal behavior plan that is in a
suitable form for execution.

In most BML Realizers the scheduling of BML results in a rigid multimodal real-
ization plan in which the timing of all behaviors is fixed. In Elckerlyc however, con-
tinuous interaction requirements dictate a multimodal behavior plan that is modi-
fied continually at execution time. Such modifications should not invalidate the time
constraints between, for example, speech and gesture that are specified in BML or
result in biologically infeasible behavior. Elckerlyc contributes a flexible multimodal
plan representation that allows plan modification, while retaining timing and natu-
ralness constraints.

Elckerlyc is the first BML Realizer specifically designed for continuous interac-
tion. It contributes flexible formalisms for both the specification and the modifica-
tion of running behavior. It pioneers the use of physical simulation and mixed dy-
namics in a real-time multimodal virtual human platform. This provides physically
coherent whole body involvement, a naturalness feature that is lacking in virtual
human platforms that solely use procedural animation. Furthermore, Elckerlyc pro-
vides a more extensible and more thoroughly tested architecture than existing BML
Realizers. Other Realizers have implemented alternative and more elaborate sche-
duling algorithms, or provide motor control on modalities that are not present in
Elckerlyc (e.g. blushing), or provide specialized behavior elements (e.g. walking).
Elckerlyc’s extensibility allows one to easily implement such specialized behaviors
on existing modalities or new modalities into Elckerlyc. Elckerlyc was also designed
to allow the use of new scheduling algorithms; the feasibility of this design feature
is yet to be proven.

Elckerlyc is employed in several virtual human applications. Several of its design
features were motivated, fine-tuned and finally demonstrated by this ‘field’ experi-
ence of Elckerlyc.

Xi
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Samenvatting

Virtuele omgevingen, bevolkt door virtuele mensen, worden gebruikt in verschei-
dene applicaties, waaronder (serious) games. Deze virtuele mensen interacteren
met andere (virtuele) mensen en met hun omgeving. Voor deze interacties is het
van cruciaal belang dat virtuele mensen op gedetailleerd niveau controle te kunnen
uitoefenen op hun gedrag. Het gedrag van deze virtuele mensen moet kunnen wor-
den geregeld op verschillende niveaus, van fysische interactie met de omgeving tot
strakke cordinatie met het gedrag van een (menselijke) gesprekspartner. Bovendien
moet het gedrag van virtuele mensen er realistisch uitzien. In deze samenvatting
gebruik ik de term natuurlijkheid voor zulk waargenomen realisme.

Een groot aantal technieken kan gebruikt worden voor real-time animatie. Deze
technieken bieden verschillende trade-offs tussen de controle die kan worden uit-
geoefend over de beweging, de natuurlijkheid van de beweging en de benodigde
rekentijd. Een passende animatie techniek wordt gekozen aan de hand van de
vereisten van de applicatie waarin hij nodig is. Motion capture bewerkings tech-
nieken gebruiken het detail van opgenomen beweging, of het talent van animatie
artiesten. Motion capture bewerkingstechnieken laten slechts weinig afwijking van
de opgenomen beweging toe en fysisch realisme wordt niet altijd bereikt. Proce-
durele animatie biedt gedetailleerde en precieze controle over beweging, waarbij
een groot aantal parameters gebruikt kan worden om deze te specificeren. Deze
controle gaat ten koste van de natuurlijkheid van de animatie. Fysische simulatie
biedt integratie met de fysische omgeving en fysisch realisme. Echter, fysisch rea-
lisme alleen is niet afdoende voor natuurlijkheid en fysische simulatie biedt slechte
precisie in zowel bewegingstiming als in positionering van ledematen. Hybride tech-
nieken combineren en concateneren beweging die gegenereerd is door verschillende
animatie paradigmas, op zo'n manier dat zowel de natuurlijkheid en de controle
verbeterd wordt.

Dit proefschrift introduceert zo'n hybride techniek: mixed dynamics. Mixed dy-
namics combineert de fysische natuurlijkheid van fysische simulatie met de con-
trole van procedurele animatie. Het maakt gebruik van de notie dat het belang van
fysische integriteit en strakke temporele synchronisatie vaak verschillend is voor
verschillende lichaamsdelen. Bijvoorbeeld, voor een gesticulerend virtueel mens is
temporele precisie is vooral belangrijk bij de synchronisatie tussen spraak en arm-
en hoofdbeweging. Voor een gebalanceerde onderlichaamsbeweging is zulke pre-
cieze timing minder belangrijk; hier kan een fysisch realistisch balans controller
gebruikt worden om een natuurlijke beweging te bereiken. Met mixed dynamics
kan animatie uitgevoerd worden als een combinatie van procedurele gebaren en
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fysische simulatie op verschillende lichaamsdelen. Hierbij worden de krachten die
uitgeoefend worden door de procedureel aangestuurde lichaamsdelen terug gekop-
peld op de fysisch aangestuurde lichaamsdelen. Hiermee wordt een animatie van
het hele lichaam bereikt die op een natuurlijke manier aan de fysische wetten lijkt
te voldoen en die intern coherent is (de beweging van de fysisch aangestuurde
lichaamsdelen wordt beinvloed door de beweging van de procedureel aangestuurde
lichaamsdelen).

In traditionele dialoog systeem die gebruikt worden voor virtuele mensen werd
interactie ontworpen met een ‘zender/ontvanger’ paradigma, waarin de gebruiker
en de virtuele mens om de beurt informatie verzenden (encoderen) en ontvangen
(decoderen). Zo'n interactie paradigma is niet afdoende om de rijkheid van mens-
mens interactie (bijvoorbeeld in een conversatie) te vatten. Natuurlijke interactie
vereist een continu interactie paradigma waarin de deelnemers de spraak en bewe-
ging van anderen continu observeren en continu, simultaan en derhalve overlap-
pend in tijd handelen (spreken, gesticuleren). Zulke continue interactie vereist dat
de perceptie van de virtuele mens snel is en dat de interpretatie van het gedrag
van zijn gesprekspartner incrementeel uitgebreid en mogelijk aangepast kan wor-
den. Om snelle observaties en continue aanpassing van de gedragsinterpretaties
aan te kunnen moeten de multimodale output generatie modules van de virtuele
mens op een flexibele manier gedrag kunnen genereren. Zulke flexibele generatie
moet gedragselementen op een laat moment kunnen toevoegen, gedrag kunnen
coordineren met voorspelde events in het gedrag van de gesprekspartner en moet
gedrag kunnen aanpassen als het al gepland of aan het afspelen is. Dit proefschrift
gaat over de specificatie en executie van zulk flexibel, multimodaal gedrag.

De Behavior Markup Language (BML) is de de facto standaard voor de synchro-
nisatie van motor gedrag (inclusief spraak en gebaar) van virtuele mensen. BML
wordt geinterpreteerd door een BML Realizer. De BML Realizer voert het gespeci-
ficeerde gedrag uit op een virtueel mens. Applicaties waarin continue interactie met
virtuele mensen nodig is hebben een aantal generieke specificatie vereisten. Aan een
aantal van deze specificatie vereisten wordt door BML voldaan: BML specificeert de
interne (dus binnen de virtuele mens) synchronisatie van gedrag en beschrijft de
vorm van gedrag. Naast deze specificatie mechanismes vereist continue interactie
specificatie mechanismes voor de interruptie van lopend gedrag, het aanpassen van
de vorm van lopend gedrag (bijvoorbeeld: spreek luider) en de synchronisatie van
gedrag aan voorspelde externe tijJdsmomenten (bijvoorbeeld van de gesprekspart-
ner). Dit proefschrift introduceert BML Twente (BMLT), een taal die BML uitbreidt
met de hierboven beschreven specificatie eigenschappen voor continue interactie.
BML! biedt dus een generieke interface voor een Realizer, waardoor continue inter-
actie kan worden gerealiseerd.

“Elckerlyc” is ontworpen als een BML Realizer voor de generatie van multi-
modaal verbaal en non-verbaal gedrag voor virtuele mensenE] De belangrijkste
ontwerp eigenschappen van Elckerlyc zijn dat (1) het specifiek is ontworpen voor

1“Elckerlyc” is de protagonist van het Nederlandse moraliteit spel met dezelfde naam, geschreven
aan het einde van de middeleeuwen. The protagonist staat voor elk mens/iedereen, en beschrijft de
tocht die gemaakt wordt aan het einde van het leven.
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continue interactie, met strakke cordinatie tussen het gedrag van de virtuele mens
en zijn gesprekspartner; (2) het een aanpasbare trade-off biedt tussen de con-
trole en natuurlijkheid van verschillende animatie technieken (bijvoorbeeld proce-
durele lichaamsanimatie en fysische simulatie; MPEG-4 gezichtsanimatie en morph-
gebaseerde gezichtsanimatie); en (3) het is ontworpen als een modulair en uitbreid-
baar systeem, dat kan worden uitbreid en aangepast zonder dat er invasieve modi-
ficaties in Elckerlyc zelf gemaakt hoeven worden.

Een BML Realizer is verantwoordelijk voor het uitvoeren van gedrag gespeci-
ficeerd in de BML blokken die er naartoe gestuurd worden, op zo'n manier dat er
aan de tijdsconstraints die gespecificeerd worden in de BML blokken wordt voldaan.
Realizer implementaties, waaronder Elckerlyc, gebruiken twee processen om dit
voor elkaar te krijgen. Een planning proces is verantwoordelijk voor het creéren
van een multimodaal gedragsplan. Een executie proces voert dit plan uit.

In de meeste BML Realizers resulteert de planning van BML in een rigide multi-
modaal realisatieplan, waarin de timing van het gedrag vast ligt. In Elckerlyc daar-
entegen, dicteren de continue interactie vereisten dat het multimodale gedragsplan
regelmatig moet kunnen worden aangepast gedurende de executie van dit plan.
Deze aanpassingen moeten op zo'n manier toegepast worden dat de tijdsconstraints
de gespecificeerd waren in BML geldig blijven, en dat het resulterende gedrag biol-
ogisch uitvoerbaar is. Elckerlyc introduceert een flexibele multimodale plan repre-
sentatie die plan aanpassingen toelaat, maar timing en natuurlijkheids constraints
intact houdt.

Elckerlyc is de eerste BML Realizer die specifiek is ontworpen voor continue
interactie. Het introduceert flexibele formalismen voor zowel de specificatie als
de modificatie van lopend gedrag. Elckerlyc is het eerste multimodale virtuele
mens systeem dat gebruik maat van real-time fysische simulatie en mixed dynamics.
Hiermee wordt fysische coherente beweging over het hele lichaam gegenereerd.
Deze natuurlijkheidseigenschap mist in virtuele mens systemen die alleen gebruik
maken van procedurele animatie. Daarnaast biedt Elckerlyc een meer uitbreidbare
en grondiger geteste architectuur dan bestaande BML Realizers. Andere Realizers
implementeren alternatieve en uitgebreidere planning algoritmes, bieden motor
gedrag op modaliteiten die niet aanwezig zijn in Elckerlyc (bijvoorbeeld blozen),
of bieden gespecialiseerde gedragselementen (bijvoorbeeld lopen). Elckerlyc’s uit-
breidbaarheid zorgt ervoor dat zulk gespecialiseerd gedrag op nieuwe of bestaande
modaliteiten op een gemakkelijke manier toegevoegd kan worden. Elckerlyc is ook
ontworpen om het gebruik van nieuwe scheduling algoritmes toe te laten; de haal-
baarheid van deze ontwerpeigenschap is nog niet bewezen.

Elckerlyc wordt gebruikt in een aantal virtuele mens-applicaties. De ontwerp-
eigenschappen van Elckerlyc zijn gemotiveerd, afgeregeld en gedemonstreerd door
ervaringen van het gebruik van Elckerlyc in het ‘veld’.
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Chapter 1

Introduction

Researchers have always been fascinated with the application of the state-of-the-art
technologies of their time to create artificial life, or, in particular, artificial humans
[238]]. Some of the first known examples of such artificial life designs are found in
the Hellenistic world. Hero of Alexandria (10-70 AD) designed several automata
or self operating machines, including a programmable cart and an owl-and-birds
device featuring artificial birds that stop whistling as soon as an artificial owl looks
at them. These automata were used for entertainment and to illustrate basic sci-
entific principles, such as those of mechanics and pneumatics. In fifteenth-century
Italy, automata made their appearance in theater plays and pageants. A famous
example is Giovanni Fontana’s she-devil, a mechanical devil that could move her
facial features, tail, arms and wings and could shoot fire from her ears and mouth.
Jacques de Vaucanson (1709-1782) pioneered the creation of what he called ‘mov-
ing anatomies’: machines that could simulate internal processes in living creatures
such as digestion, respiration and blood circulation. His creations included a hu-
manoid that was able to play the German flute using a simulated respiration system
and the appropriate tongue and finger movements, and a mechanical duck contain-
ing over 400 moving parts, that could flap its wings, drink water, digest grain, and
defecate[l| Vaucanson commended his automata as appropriate instruments for in-
struction. He referred to the impression his three-dimensional mechanical objects
could make on viewers, and to their anatomical accuracy and their unique ability to
demonstrate life processes in real time [238].

The first virtual characters appeared in cartoons. Winsor McCay was one of the
pioneers of cartoons. His ‘Gertie the Dinosaur’ cartoon (1914) features not only
one of the first cartoons in which the character has an appealing personality, but
also one of the first (staged) interactions of a human with a virtual character. Mc-
Cay’s interaction with Gertie consisted of him instructing her to do various tricks,
throwing an apple to her (with Gertie catching an animated copy of it), and so
on. The introduction of the computer allowed automation of the animation pro-
cess and interaction with and between virtual humans. Early use of automation
included automatic generation of the motion of virtual crash test dummies [306],

!The duck’s digestive system was later found to be fake: the food was collected in one inner
container, and the pre-stored feces was ‘produced’ from a second container [238].
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automatic generation of locomotion [319] and ‘programming’ of animation using
higher level descriptions (for instance by generating it from Labanotation [302]).
Computer games often feature virtual humans that interact with each other and
that can be interacted with. However, conversational interaction with and between
game characters is typically completely scripted. Cassell et al. [50] pioneered auto-
matic conversational interaction between autonomous virtual humans. Their virtual
humans make use of automatically generated (using a dialog generation program)
utterances. These utterances featured synchronized speech, facial expressions and
hand gestures. Thoérisson [282] contributed an architecture (Ymir) that was used to
create Gandalf, one of the first virtual humans that could interact with a real human
using speech and gesture. Gandalf not only generated speech and gesture, but could
also perceive these communicative signals in humans. People talking with Gandalf
wore a suit that tracked their upper body movement, an eye tracker that tracked
their gaze, and a microphone that allowed Gandalf to hear their words and intona-
tion. Gandalf’s animation was displayed on a cartoon face and a disembodied hand.
Ymir was one of the first architectures taking some aspects of continuous interaction
into account, and, as such, its design remains influential in current virtual human
platforms. A striking early example of the use of an interactive virtual human in a
training application is Steve [235]. Steve is capable of teaching complex real-world
tasks, that might be impractical to train on real equipment. His embodiment allows
him to demonstrate actions, to use gaze and gesture to communicate and to guide
the student in a virtual naval ship. Steve can also be used as a virtual team member
to help a student practice his team tasks.

Nowadays, virtual humans have become very complex pieces of software. Build-
ing a state-of-the-art virtual human entails re-implementing several pieces of exist-
ing work. One of the current research directions in the interactive virtual human
field deals with enabling more easy cooperation between research groups. To this
end, the SAIBA initiative (consisting of several leading researchers in the interactive
virtual human field) designed a framework that allows researchers to share com-
ponents of virtual humans more easily [152]]. Another current research direction
deals with achieving the richness of human-human communication in communica-
tion with virtual humans. This entails designing virtual humans that allow continu-
ous interpersonal coordination with their interlocutors [151].

1.1 Research Context

The research of this thesis was carried out within the Game research for Training and
Entertainment (GATE) projeclﬂ funded by the Netherlands Organization for Scien-
tific Research (NWO) and the Netherlands ICT Research and Innovation Authority
(ICT Regie). The GATE project aims to advance the state of the art in (serious) gam-
ing, and to facilitate knowledge transfer to the industry. The work in this thesis was
specifically done in the context of Work Package 2.1, which deals with the modeling
and generation of motor behavior for virtual humans.

’http://gate.gameresearch.nl/
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Some of the work in this thesis was done in the context of the Knowledge Trans-
fer Project ‘Computer Animation for Social Signals and Interactive Behaviors’, within
the GATE project mentioned above. The goal of this project is to transfer the knowl-
edge of the Human Media Interaction group on multi modal virtual human behavior
generation to our industry partner Re-lion.

The focus of my work within those projects is on the output generation and speci-
fication of the behavior (including speech, body motion, facial motion) of interactive
virtual humans Pl

1.2 Relevance

Interactive virtual humans are used in many educational and entertainment set-
tings: serious gaming, interactive information kiosks, kinetic and social training,
tour guides, storytelling entertainment, tutoring, interactive virtual dancers, enter-
taining games, motivational coaches, and so on. Virtual humans have an embod-
iment that inhabits a virtual environment. This gives a virtual human interactive
capabilities that go beyond written text or video: a virtual human can guide a hu-
man through the virtual world and is able to demonstrate actions in this world.

In addition to their use in education and entertainment, virtual humans provide
valuable research tools. Social psychologists can study theories of communication
by systematically modifying the behavior of a virtual human. Using virtual humans
and virtual environments rather than human actors and custom built mock-up en-
vironments in social psychology experiments allows more experimental control and
better reproducibility [32]. Interactive virtual humans can also be used to simulate
formal models of, for example, human conversation. Through such simulations,
our understanding of human conversation can be improved [47]. They highlight
gaps in these formal models and thus show where further modeling or refinement
is required.

1.3 Research Goals and Contributions

1.3.1 Enabling Collaboration and Competition in Virtual Human
Design

Designing a virtual human is a multi-disciplinary effort, requiring expertise in many
research areas, including computer animation, perception, cognitive modeling, emo-
tions and personality, natural language processing, speech recognition, speech syn-
thesis, nonverbal communication [98]]. Research groups have realized that ‘the
scope of building a complete virtual human is too vast for any one research group’

31 use the term interactive virtual humans instead of Embodied Conversational Agents [51] in this
thesis, because the virtual characters this thesis deals with are human-like and the interaction with
them is not necessarily in the form of a conversation.
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[141]. Modular architectures and interface standards will allow researchers in dif-
ferent areas to reuse each other’s work and thus allow easier collaboration between
researchers in different research groups [98]]. Interface standards also promote
healthy competition between research groups who create modules that implement
them, since they allow an easy comparison between such modules. The SAIBA
initiative proposes an architecture for virtual humans [152] that provides such a
modular design with standardized interfaces. The Human Media Interaction group
has joined the SAIBA initiative and contributed towards the interface (the Behavior
Markup Language, BML) for one of its modules: the Behavior Realizer. Such a Be-
havior Realizer provides an interface to steer the coordinated motor behavior of a
virtual human (e.g. speech, gesture).

This thesis contributes an implementation of such a Behavior Realizer. I aim to
promote, measure, test and maintain the SAIBA compliance of Behavior Realizers.
To this end, I contribute the automatic testing framework RealizerTester that can
test adherence to the SAIBA interface for any Behavior Realizer. The modular de-
sign of my Realizer enables collaboration opportunities beyond those offered by
implementing the SAIBA interface. It makes it possible for other research groups
to easily connect it to their own rendering environment or virtual human and to
add specific modularities (e.g. to control a robot), without having to make invasive
modifications to the Realizer itself.

1.3.2 Designing a Virtual Human that Allows Continuous Inter-
action

Traditionally, interaction with virtual humans was designed using ‘transmitter/re-
ceiver’ interaction paradigms, in which the virtual human and the human interact-
ing with it take turns to transmit (encode) and receive (decode) meaning carrying
messages that travel across channels between them. Such an interaction model is
not sufficient to capture the richness of human-human interaction (including con-
versation). Natural interaction requires a continuous interaction paradigm, where
actors perceive acts and speech of others continuously, and where actors can act
continuously, simultaneously and therefore overlapping in time. I aim to design a
virtual human that allows such continuous interaction. A design for continuous in-
teraction should however not come at the cost of the modularity provided by the
SAIBA framework.

This thesis describes a view of the SAIBA framework that allows continuous
interaction. I describe the requirements of continuous interaction and contribute
the interface language elements — in BML Twente (BMLT), an extension of BML
— that allow it. I also contribute the Behavior Realizer “Elckerlyc”, specifically
designed to allow the execution of behavior of a virtual human in applications that
require continuous interaction with a human interlocutor.
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1.3.3 Leveraging Computer Animation Knowledge for Interac-
tive Virtual Human Applications

In typical interactive virtual human applications, the movement of the virtual hu-
man consists solely of animations on the head and arms, synchronized with speech.
Gesture movement is typically generated by intricate procedural models that im-
plement biological rules for arm movement [155], or provide emotional parame-
terization [104, [111] and provide tight synchronization to speech. However, the
movement of the rest of the body is either completely omitted, provided by noise
uncorrelated to the arm and head movement, or set by some predefined idle ani-
mation [[104, 111}, (155} 235] 282]. Treating gesture as a movement that is localized
in the limbs results in motions that lack impact and are perceived as being robotic
[58]. Many state-of-the-art computer animation techniques achieve more natural
movement, often at the cost of movement control. I aim to leverage the knowledge
of computer animation for researchers in interactive virtual human applications.

To this end, this thesis contributes a thorough overview of real-time animations
techniques that can be used for the generation of natural human motion, with a
focus on the different trade-offs between naturalness and movement control offered
by these techniques. It also contributes mixed dynamics: a novel hybrid anima-
tion technique that can combine different kinds of animation paradigms, allowing
the combination of traditional procedural gesture animation or keyframe animation
with physical simulation, both in sequence and in parallel on different body parts.
This allows one to combine the control of procedural (gesture) animation, with the
naturalness of physical simulation.

1.4 Outline of this Thesis

Figure provides a graphical outline of the work in this thesis in relation to the
SAIBA architecture. The SAIBA architecture models behavior generation in three
planning processes: Intent Planning, resulting in a script in the Functional Markup
Language (FML); Behavior Planning, resulting in a script in the Behavior Markup
Language (BML) and Behavior Realization of the BML script. In this thesis, I split
Behavior Realization into scheduling, resulting in a Motor Plan; and the execution of
this Motor Plan, resulting in control primitives (e.g. joint rotations, audio) that are
used to steer embodiment of a virtual human. To allow continuous interaction, it is
important that an ongoing Motor Plan is flexible and can be modified on the fly. The
Multimodal Behavior Plan provides an abstraction of the Motor Plan that is used to
apply such modifications.

Chapter [2| provides an overview of computer animation techniques that can be
used to execute Animation Plans (Motor Plans for animation) and provides an over-
view of the naturalness and control tradeoffs made by these different techniques.
Chapter [3] discusses mixed dynamics: a system to simultaneously execute animation
expressed in kinematic PlanUnits and PlanUnits that make use of physical simula-
tion. Chapter 4| discusses the Motor Plan. It provides a brief overview of the coor-
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dination between the PlanUnits of the Motor Plan, provides an interface for flexible
PlanUnits, and discusses the implementation of several PlanUnits used for anima-
tion. Chapter |5|discusses the interpersonal coordination of the behavior of humans,
why it is important to model this in virtual humans, and how interpersonal coordi-
nation can be achieved at several levels in the SAIBA architecture. Chapter [f] deals
with the specification of multimodal behavior for virtual humans. It describes how
coordination between PlanUnits in the Motor Plan is specified through BML and
provides a BML extension (BML") that allows the specification of the behavior of a
virtual human in applications that require continuous interaction. Chapter (7| deals
with the scheduling of BML into a Motor Plan. It introduces a flexible multimodal
plan representation that allows one to modify an ongoing Motor Plan on the fly,
while maintaining the constraints posed upon it in the BML script(s) that created it.
Chapter [§|introduces Elckerlyc, a modular and flexible BML Realizer that can sched-
ule and execute behavior plans specified in BML™. Chapter|[9]discusses some of my
efforts towards measuring, testing and promoting the compliance of BML Realizers
to the BML standard. It contributes RealizerTester, a generic framework to test any
BML Realizer. Chapter [10]demonstrates how Elckerlyc’s design features worked out
in practice and shows how one can build virtual human applications using Elckerlyc.
I wrap up this thesis in Chapter |11{ and end it (in Chapter by discussing how
Elckerlyc’s contributions on the coordination of the form and timing of the behav-
ior with an interlocutor could be combined with both work on the coordination of
content and form and work on continuous and incremental input processing.
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Chapter 2

Real-Time Computer Animation: a
Review!]

Virtual environments inhabited by virtual humans are now commonplace in many
applications, particularly in (serious) games. The animation of such virtual humans
should operate in real-time to allow interaction with the surroundings and other
(virtual) humans. For such interactions, detailed control over motion is crucial.
Furthermore, the motion of virtual humans should look realistic. I use the term
naturalness for such perceived realism.

Many techniques achieve real-time animation. These techniques differ in the
trade-off they offer between the control that can be exerted over the motion, the
motion naturalness, and the required calculation time. Choosing the right technique
depends on the requirements of the application it is used in. This chapter provides
an overview of real-time animation techniques that can potentially be used in inter-
active virtual human applications. It provides a short summary of each technique,
and focuses on the trade-offs made.

First, I discuss models of the virtual human’s body that are steered by anima-
tion (Section [2.1). In Section I classify animation techniques that are used to
generate motion primitives and discuss their strengths and weaknesses. Section
discusses how to parameterize, combine (on different body parts) and concatenate
motion generated by these techniques to gain control. In Section[2.4} I elaborate on
several aspects of naturalness and I discuss how the naturalness of the motion of a
virtual human can be evaluated. I conclude (in Section[2.5)) by discussing the power
of combinations of animation paradigms to enhance both naturalness and control.

"This chapter is largely based upon the article:
H. van Welbergen, B.J.H. van Basten, A. Egges, Z.M. Ruttkay and M.H. Overmars. Real Time Anima-
tion of Virtual Humans: A Trade-off Between Naturalness and Control, Computer Graphics Forum,
29(8):2530-2554, 2010
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2.1 Modeling the Virtual Human

Animation steers the body of a virtual human. In this section it will be shown how
the body of a virtual human is modeled as a skeleton, an articulated set of rigid
bodies and a biological system.

2.1.1 Skeletal Model of the virtual human

Virtual humans are visually mostly represented by polyhedral models or meshes. An-
imating all these polygons individually can be very tedious, therefore it is common
to work with the underlying skeleton instead. A skeleton is an articulated structure:
a hierarchy of segments connected by joints. A pose of a virtual human is set by
rotating the joints of the skeleton. How the skeleton deforms the mesh is beyond
the scope of this thesis, I refer the interested reader to [[184].

Every joint has several degrees of freedom or DoFs. The DoFs are the parameters
that define a configuration of a joint. For example, the knee joint has only one DoF,
while a shoulder joint has three. The global translation of the skeleton is represented
by the translation of the root joint. The pose of a skeleton with n rotational DoFs
can therefore be described by an n + 3 dimensional vector q. For an overview of
rotation representations I refer the reader to the work of Lee [167].

Standardizing the skeleton topology improves re-usability of motions. Motions
created for one virtual human can be transfered to another virtual human more
easily. The H-anim standard [119] provides a complete set of standardized joint
names and their topology, that specifies their resting position and how they are
connected.

2.1.2 Physical Model of the Virtual Human

In physical simulation, the body of the virtual human is typically modeled as a sys-
tem of rigid bodies, connected by joints. Each of these rigid bodies has its own mass
and an inertia tensor that describes the mass distribution. Movement is generated
by manipulating joint torques.

Most physical animation systems assume a uniform density for each rigid body.
Given such an uniform density, the mass, center of mass and inertia tensor can
be calculated via the volume of the mesh that corresponds to the rigid body (see
[[195]]). Realistic values for the density of the rigid bodies can be obtained from the
biomechanics literature [[307].

To allow for collision detection and collision response, a geometric representa-
tion of the rigid bodies is needed. The mesh of the virtual human can be used
for this representation. However, collision detection between arbitrary polygonal
shapes is time consuming. Computational efficiency can be gained at the cost of
some physical realism by approximating the collision shape of rigid bodies by basic
shapes such as capsules, boxes or cylinders.
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2.1.3 Biomechanical/Neurophysical Models of the Virtual Hu-
man

Our movements are coordinated by the central nervous system (CNS). It uses input
from sensors to steer our muscles. These sensors, muscles and the motor control
exerted by the CNS have, to some extent, been modeled in computer animation.

2.1.3.1 Sensors

Motor control needs information on the state of the virtual human. This informa-
tion is readily available from the representation of the virtual world. Sensors used
in computer animation therefore do not necessarily need to correspond to the sen-
sors found in humans, but merely represent a convenient higher level presentation
of virtual human state information that can be shared between different motion
controllers [[73]. Examples of information obtained by such sensors are the center
of mass (CoM) of the virtual human, contact (are the feet or other body parts in
contact with the ground?), the location of the support polygon (the convex hull of
body parts touching the ground), and the zero moment point (ZMP). The ZMP is
the point on the ground plane where the moment of the ground reaction forces is
zero. In all physically realistic motion with ground contact, the ZMP is inside the
support polygon. If the ZMP is outside the support polygon, the virtual human is
perceived as being out of balance [265].

2.1.3.2 Modeling Muscles

Over 600 muscles can apply forces to our bones by contracting. One muscle can
cover multiple joints (e.g. in the hamstring and muscles in the fingers). In real-time
physical simulation methods, muscles are typically modeled in a simpler manner:
as motors that apply torques at the joints in an articulated rigid body system (as
set up by the physical model of the human, see Section [2.1.2)). Such a model pro-
vides control in real-time and has a biomechanical basis: it is hypothesized that the
CNS exerts control at a joint and joint synergy level [307]. To determine the torque
applied by these motors, muscles are often modeled as a system of springs (repre-
senting elastic tendons) and dampers that cause viscous friction [307]. In real-time
animation, such spring and damper systems are often designed using Proportional
Derivative(PD) controllers or variants thereof (see Section [2.2.3.2/2.2.3.2). Joint
rotation limits and maximum joint strength can be obtained from the human factors
literature (see for example: [145,310]).

2.1.3.3 Models for Motor Control

Motor control is the process that steers the muscles in such a way that desired
movement results. In many cases robotic systems can rely on control based directly
on internal feedback (e.g. using joint angle sensors). Feedback delays in humans are
large (150-250 ms for visual feedback on arm movement), so they cannot achieve

11
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accurate fast movement using solely feedback control [132]. According to Schmidt
[254] people construct parameterized General Motor Programs (GMPs) that govern
specific classes of movement. Different movements within each class are produced
by varying the parameter values. Humans learn the relation between parameter
values and movement ‘outcome’ by practicing a task in a great variety of situations.

According to the equilibrium point hypothesis, joint torque paths are not explicitly
programmed, but emerge from the dynamic properties of the biomechanical system.
In this model, the spring-like properties of muscles in, for example the arm, are used
to automatically guide the hand to an equilibrium point. Movement is achieved
by a succession of equilibrium points along a trajectory [76]]. Feedback control
(see Section [2.2.3.2), GMPs (explicitly in [155, 3191, implicitly in Sections
2.2.1.2)) and equilibrium point control (see Section[2.2.3.2) are all used in computer
animation.

The GMP theory is supported by invariant features that are observed in motion.
Gibet et al. [[86] give an overview of some of such invariant features, including Fitts’
law, the two-third power law and the general smoothness of arm movement. Fitts’
law states that the movement time for rapid aimed movement is a logarithmic func-
tion of the movement distance divided by the target size [77]. The two-third power
law [299] models the relation between the angular velocity and the curvature of a
hand trajectory. Movement smoothness has been modeled as a minimization of the
mean square of hand jerk (derivative of acceleration) [78]] or the minimization of
the change of torque on the joints executing the motion [295]. Harris and Wolpert
[103]] provide a generalized principle that explains these invariants by considering
noise in neural control. The motor neurons that control muscles are noisy. The
variability in muscle output increases with the strength of the command. For maxi-
mum accuracy it is therefore desirable to keep the strength of motor commands low
during the whole movement trajectory, thus producing smooth movement. Faster
movement requires stronger motor commands, thus higher variability which leads
to reduced precision. In computer animation, movement invariants have been used
both in motion synthesis models (for example: [87, [155]) and as evaluation cri-
teria for the naturalness of animation (see Section [2.4.5.2). The notion of signal
dependent noise has been exploited in the generation of motion variability (see

Section [2.4.4.3)).

2.2 Animation Techniques

A motion primitive is a continuous function that maps time to the DoF of a skele-
ton. Animation techniques create motion primitives from motion spaces on the basis
of animation parameter values (see Figure [2.1). A motion space is a (continuous)
collection of motions that can be produced by a technique. A motion primitive is
an element of such a motion space. Motion primitives can define motion for the
full body of a virtual human or on a subset of the joints of the virtual human. The
motion primitives in a specific motion space typically have a certain semantic func-
tion (for example: walk cycles, beat gestures, left hand uppercuts). The animation
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parameters needed to create motion primitives differ per technique. Note that an-
imation parameters are not necessarily intuitive parameters to control motion, but
merely the parameters a specific animation technique requires to create a motion
primitive. I discuss how to map more intuitive control parameters into animation
parameters in Section

Motion Editing Simulation

example motion primitives

procedural or
® physical

pre-processing

simulation model

motion space

n animation
— parameters
animation =
paraTeterS simulation
= parameters
selection/
combination

parameters desired ¥
motion primitive

desired
motion primitive

Figure 2.1: Motion primitives, motion spaces and animation parameters in motion editing and in
simulation.

In this thesis, animation techniques are classified by the mechanism they use to
create motion spaces (see Figures and 2.2). Motion editing techniques generate
motion primitives within a motion space spanned by one or more specific example
motion primitives. In simulation techniques, the motion space contains all motion
primitives that can be created using a parameterized physical or procedural model.
Animation parameters in simulation techniques are the parameters used in the sim-
ulation model. In Sections|2.2.1} [2.2.2/and [2.2.3] I briefly discuss the inner working
of each technique and discuss the nature of its animation parameters and motion
spaces produced by the technique. Figure provides a summary of the latter.
Section discusses the strengths and weaknesses of each technique in terms of
naturalness and control and gives an overview of application domains in which each
of the techniques is typically used.

2.2.1 Motion Editing

Motion editing techniques generate motion primitives within a motion space span-
ned by one or more specific example motion primitives. Often, this motion space
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Figure 2.2: Classification of animation techniques and an overview of their animation parameters
and motion spaces.

is explicitly constructed in a pre-processing stage. The example primitives originate
from motion captured movement of actors, or are created by hand by an animator.
I define motion modification methods as methods that generate new motion primi-
tives by applying modifications to a single example motion primitive. Combination
techniques create motion primitives using a database of multiple example primitives.

2.2.1.1 Motion Modification

Since a motion primitive is a continuous function that maps time to the DoF of
a skeleton, this value of a DoF over time can be considered as a signal. There-
fore many techniques from the field of signal processing can be applied to create
a motion space around an example motion primitive. Bruderlin and Williams [41]
consider some motion editing problems as signal processing problems. One of the
signal processing techniques they use is displacement mapping. With this technique
it is possible to make local modifications to the signal while maintaining continu-
ity and preserving the global shape of the signal. This is done by specifying some
additional keyframes, or having them determined by inverse kinematics (IK, see
Appendix [A for an overview of techniques), within an example motion primitive.
From these keyframes, a displacement map can be calculated that encapsulates the
desired displacement (offset) of the signal. Splines can be used to calculate the inbe-
tween displacements. The displacement map then yields a displacement for every
frame, which is automatically added to the original signal. Satisfying constraints
at key frames does not guarantee constraint enforcement at the ‘inbetweens’ (the
frames between the keyframes). Alternatively, a constraint can be enforced at every
frame on which it is desired, as proposed by Lee and Shin [170]. To make sure the
resulting motion is smooth and propagated through non-constrained frames, it is
‘filtered’ using a hierarchy of B-splines. Gleicher [91]] calls the family of solutions
that uses such an approach ‘Per Frame Inverse Kinematics + Filtering’ (PFIK+F).
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An alternative approach by Gleicher [90] is to pose the constraint specification as
a numerical constraint optimization problem: an objective function measuring the
distance between the example motion primitive and the resulting motion is mini-
mized subject to any constraint that can be specified as a function of the vector of
DoF q. To allow real-time execution of this optimization, an efficient objective func-
tion is chosen and the constraints are only enforced at key frames. The geometric
constraints that can be solved with PFIK+F are a subset of those that can be solved
using the optimization approach. Optimization can add (among many other things)
constraints for a region an end effector must stay in, fixed distances between end-
effectors or inter-frame constraints. This flexibility comes at a cost: it is not ensured
that the constraints are met at the inbetweens and the solution time of the optimiza-
tion process is less predictable than that of a PFIK+F approach. I refer the reader to
[91]] for a more thorough comparison of the two methods.

2.2.1.2 Blending

Blending [305]] creates a motion primitive by interpolating a family of similar exam-
ple motion primitives (for example: a family of reaching motion primitives, walking
motion primitives, etc.). The animation parameters are interpolation weights and
a selection of the example motion primitives to interpolate. The interpolation does
not need to take place in the Euler space, but can also be done in, for example,
the principal component [120] or Fourier [296] domain. In general, one can only
interpolate between poses that “resemble” each other. When this is not the case,
visual artifacts such as foot skating may appear. A distance metric quantifies the
resemblance between poses. Van Basten and Egges [18]] present an overview and
comparison of various distance metrics.

The blend motion space is created by pre-processing “similar” example motion
primitives, typically such that they correspond in time (especially at key events such
as foot plants) and space (e.g. root rotation and position). The process of time-
aligning corresponding phases in motion primitives, is called time warping [41].
Kovar and Gleicher [156] present an integrated method called registration curves
to automatically determine the time, space and constraint correspondences between
a set of motion primitives and provide a literature overview of earlier methods used
for this.

2.2.1.3 Statistical models

Statistical methods create a motion space using statistical models learned from the
statistical variation of example motion primitives. Several statistical models can
be used, including Hidden Markov Models (HMM) [38]], Linear Dynamic Systems
[[1731, Scaled Gaussian Process Latent Variable Models (SGPLMVM) [100]], Principle
Component Analysis (PCA) [69]], or variogram functions [[199].
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2.2.2 Procedural Simulation

Procedural simulation uses parameterized mathematical formulas to create motion
primitives. The parameters of such formulas are the animation parameters. The
formulas can describe joint rotation directly (as done in [217]), or describe the mo-
vement path of end effectors (such as hands) through space. The latter is typically
used to design procedural models that create gesture motion primitives (see for
example [58] (104, [155] 207]).

2.2.3 Physical Simulation

A physical simulation model applies torques on the joints of the virtual human,
on the basis of animation parameters. The resulting motion primitive is calculated
using forward dynamics (see Appendix [A).

2.2.3.1 Constraint Control Methods

Constraint Control Methods use (geometric) constraints as animation parameters.
There are typically many possible muscle torque paths that achieve the constraints.
An objective function can be introduced to specify a certain preference for solutions.
Typically, the objective functions are biomechanically based: minimize the expended
energy, minimize end effector jerk, or use a weighted combination of those two.
The constraint control problem can be stated as a non-linear optimization problem
[308]. Several techniques have been proposed to speed up the calculation process
of the optimization (for example: [74,174]), typically at the cost of some physical
realism. Even with those speedups, constraint based control methods are currently
not a feasible option for real-time animation.

2.2.3.2 Physical Simulation using Controllers

A physical controller and the physical system it controls (the physical body of a
virtual human) together form a control system [149]. The input to the controller is
the desired value of the system’s state. This desired state is part of the animation
parameter set. The output is a set of joint torques that, when applied to the system,
guides its variables towards their desired values. The controller can make use of
static physical properties (such as mass, or inertia) of the physical body performing
the motion. Such a control system can, to a certain extent, cope with external
perturbation, in the form of impulses, forces or torques exerted on the body. The
goal of the controller is to minimize the discrepancy between the actual and desired
state. In addition to the forces and torques set by the controller, gravity and ground
contact forces, and forces and torques caused by external perturbations are also
applied to the physical body. The body is then moved using forward dynamics. The
new state of the body is fed back into the controller.
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Proportional Derivative (PD) Control is an easy to implement and frequently
used control method (for example in [6, 73, [115] 312], [323]]). The output torque of
the PD-controller is proportional to the difference in position and velocity between
the desired state and the actual state:

T = kp<$d — iL’) -+ kd((f'd — {K) (21)

in which z, is the desired state, z is the actual state and k, and k, are the pro-
portional and derivative gains. Note that the system reacts similarly to a springer-
damper system, with spring gain k, and damper gain k,;. Typically z, is a desired
DoF value, but other state variables are used in more complex PD-controllers (such
as CoM position in balancing [312]]). The animation parameters that have to be
used to create a motion primitive are k,, k4, x4 and 2. Finding appropriate values
for k, and k, that result in achieving x, and 2, is a manual trial-and-error process.
They depend on characteristics of both the system and the motion.

Antagonist Control Neff and Fiume [202] use a slightly different formulation of
the PD-control equation, that has more intuitive animation parameters, but the same
error response. It is based on agonist and antagonist muscle groups around joints,
that are modeled as springs:

7=k, (0, —0) + ky,, (0 — ) — kqb (2.2)

in which animation parameters ¢; and 6y are the spring set points, which serve
respectively as desired lower and upper limits for the joint rotation #. 7 is the
output torque. k,, and k,, are the spring gains. Equilibrium point control (see
Section is used to calculate k,, and k,,, given the provided stiffness and
external forces (typically gravity). Movement is achieved by gradually moving the
equilibrium position.

Local Optimization PD-controllers typically do not generalize well beyond the
specific physical body, environment and contact conditions they were designed for.
Controllers using local quadratic optimization provide better generalization. They
optimize the control objectives for the current frame, subject to certain constraints
(e.g. the physical equations of motion). Unlike constraint control methods (see Sec-
tion[2.2.3.1)), these controllers cannot anticipate the long term minimization of their
objective, given constraints at certain time frames, but do allow real-time execution.
The computation cost of local optimization is far higher than the computation cost
of PD or similar controllers.

Stewart and Cremer [277] introduce a custom physics simulator that can opti-
mize objectives (which are required to be second order derivatives of system vari-
ables), subject to the physical equations of motion and optionally specific constraints
that can be added on the fly. Abe et al. [2]] extend this work by designing controllers
that optimize objectives, subject not only to the physical equations of motion, but
also to contact and friction dynamics and maximum joint strengths. Their system is
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designed to work with any physics simulator. The objectives regulate the values of
certain kinematic quantities f(q), by minimizing the difference between the desired
acceleration of f and its current acceleration. Abe et al. [2] show some strategies to
find the desired acceleration of f(q) for balancing controllers and controllers that
track a prescribed joint rotation trajectory.

Automatic Controller Generation Searching techniques or evolution-based ma-
chine learning techniques have been employed to automatically generate controllers
that map sensor inputs (joint angles, ground touch) to joint torques, in such a way
that an animation parameter (distance traveled, energy expended, distance from
stylized reference pose) is optimized (see for example [263],[270]). Using such tech-
niques, locomotion controllers for simple creatures with few DoFs can be created.
However, so far automatic controller generation techniques have not scaled up to
provide natural motion for full-sized virtual humans.

Physical Controllers Toolkits The Dynamic Animation and Control Environment
[260] provides researchers with an open, common platform to test out and design
physical controllers using scripting. NaturalMotion’s Endorphin [200] is a com-
mercial animation system that provides a predefined set of controllers. It offers
animation authoring through controller parameterization, controller combination,
physical constraint handling (e.g. lock hands to a bar for a ’hang on bar’ motion)
and several ways to integrate motion capture with physical simulation. NaturalMo-
tion offers the Euphoria toolkit to handle such functionality in real time so that it
integrates with a game engine. Details on how Naturalmotion software handles this
functionality (as far as disclosed) are discussed in the appropriate sections.

2.2.4 Strengths and Weaknesses of Different Animation Tech-
niques

Motion editing techniques retain the naturalness and detail of recorded example
motion primitives or motion primitives generated by skilled artists. However, mo-
tion editing techniques produce natural motion only when the modifications to the
example motion primitives are small. Techniques that make use of multiple exam-
ple motion primitives retain naturalness over larger modifications than techniques
that use a single example motion primitive [96]. However, both blending and sta-
tistical techniques suffer from the curse of dimensionality: in practice the number
of required example motion primitives grows exponentially with the number of an-
imation parameters [92]]. Furthermore, motion editing techniques do not provide
physical interaction with the environment and motion editing can invalidate the
physical correctness of motion (see Section [2.4.1]). Motion editing is useful for cre-
ating animation in advance for non-interactive applications (such as films). For
other domains, such as games, naturalness and controllability can only be assured
by using a huge database of example motion primitives.
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Physical simulation provides physically realistic motion and (physical) interac-
tion with the environment. Physical controllers can robustly retain or achieve an-
imation parameters under the influence of external perturbation. This robustness
comes with a disadvantage: precise timing and limb positioning using physical con-
trollers is an open problem (see Section[2.3.1.5)). While physical simulation provides
physically correct motion, this alone is often not enough for motion to be natural.
Therefore, physical simulation is mainly used to generate human motion that is
physically constrained and in which interaction with the environment is important,
such as motion by athletes (for example in [115,[313]), stunts by stuntmen [[73], or
falling motions (for example [[187,1262, 312]).

Procedural animation offers precise timing and limb positioning and can easily
make use of a large number of parameters. However, it is hard to incorporate move-
ment details such as those found in example motion primitives into the mathemat-
ical formulas that create motion. Furthermore, to maintain physical naturalness,
it has to be explicitly authored in the procedural model for all possible parame-
ter instances. Expressive motion, as used in talking and gesturing virtual humans,
requires many control parameters and precise timing to other modalities, such as
speech. It is therefore typically the domain of procedural animation techniques such
as [58, 104, 155] 1207, 1217, 1218].

The qualities of motion editing and motion simulation techniques can potentially
be combined by taking into account which of the qualities is needed in a certain
situation, or by determining which quality is needed on which body part. For exam-
ple, a virtual human can be steered by motion editing until a physical interaction
with the environment is needed, which will then be handled by physical simulation,
or the flexibility and precision of procedural motion can be used to generate arm
gestures on a virtual human which retains balance in a physically realistic manner
using a balance controller on the lower body. Throughout the remaining sections, I
will show several examples of such combinations that enhance naturalness and/or
control, as I discuss the control and naturalness provided by different animation
techniques.

2.3 Control

Animation involves the creation of animation plans that typically span multiple mo-
tion spaces and are executed by multiple motion primitives. To be able to deal
with interactive and changing environments, such plans need to be constructed and
adapted in real time. Control enables the expression and adaptation of such plans
by means of parameterization, combination and concatenation.

Parameterization (see Figure [2.3)) is the process of selecting animation parame-
ter values (such as blend weights, stiffness gains, Principal Component values, etc.)
that, when provided to an animation technique, create a motion primitive that sat-
isfies some control parameters (for example: create a gesture motion primitive that
exhibits a certain tension and amplitude).

Concatenation (see Figure deals with the generation of a sequences of mo-
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tion primitives, to form a natural motion that satisfies certain control parameters.
The motion primitives can be generated by different techniques (or the same tech-
nique that is initialized differently). For example: using a walk controller and a
blending technique that uses preprocessed sit down motion primitives as its input, a
sequence of motion primitives can be generated to achieve a ‘walk to the chair and
sit on it’ motion.

Rather than explicitly constructing new motion primitives for each combination
of motions acting on a separate body part, different motion primitives, possibly
constructed by different animation techniques, can be combined (see Figure in
such a way that a coherent whole body motion results. For example: a walk cycle
motion primitive and a gaze motion primitive can be combined to allow a virtual
human to walk and gaze at the same time.

Controllability is determined by various aspects. Responsiveness determines how
fast a desired change in the motion plan is achieved. For example, how fast does an
animated soccer player respond to a gamer pressing the shoot button? Precision is
the accuracy with which control parameters (such as end effector position or timing
constraints) are achieved. Coverage deals with how much of the control parameter
space is covered (for example: what positions can be kicked within a kick motion
space). I define expressiveness as the number of control parameters that can be used
in the motion plan. Intuitiveness deals with how intuitive the control parameters that
can be used in the specification of the motion plan are for human motion authors.

2.3.1 Parameterization

Parameterization deals with selecting the animation parameters, that, when pro-
vided to an animation technique, create a motion primitive with some desired con-
trol parameter values. One common control parameter is a pose constraint (for
example: requiring the hand to be at a certain location) at a desired time. Other
more abstract parameterizations deal with control parameters such as emotion or
physical state (such as tiredness). Some animation techniques provide intuitive an-
imation parameters that can be expressed directly as control parameters (for exam-
ple: geometric constraints in motion modification). Other techniques (for example
blending) do not provide intuitive animation parameters. For such techniques and
for the more abstract parameterizations mentioned above, some mapping of control
parameters to animation parameters is needed (see Figure [2.3). If multiple desired
control parameter values are specified, it might not be possible to satisfy them all.
Several parameterization methods therefore include strategies to deal with conflict-
ing control parameter values.

2.3.1.1 Parameterization in Procedural Motion

In procedural animation, the control parameters can directly be expressed in terms
of parameters of the motion functions (and thus animation parameters). Pose con-
straints are typically satisfied by setting animation parameters that specify end ef-
fector positions or joint rotations. Authoring procedural motions requires specifying
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Figure 2.3: Parameterization maps control parameters to animation parameters to create a motion
primitive that satisfies control parameter values.

how each parameter influences the motion. For control parameters such as emotion
or physical state, this is not a very intuitive process. Therefore, such control pa-
rameters are typically mapped to animation parameters instead. This mapping can
result in parameter conflicts if control parameter values select different values for
the same animation parameter.

Neff and Fiume [203], design a hierarchical framework for procedural motion
and provide a generic parameter mapping framework. Lower level control parame-
ters specify the motion on a single joint or group of joints (called an action in [203]]).
Higher level control parameters are mapped to animation parameters through a
script created by an animator. Motion primitives are created using various, pos-
sibly conflicting, low level and high level control parameters. Therefore, several
mechanisms are in place to handle conflict resolution: low level control parameters
(placed on a single DoF, rather than on the whole body) take precedence over high
level control parameters, which take precedence over the default values defined in
a ‘Sketch’ (a model of the virtual human’s style in [203]; see Section [2.4.3.2).

Chi et al. [58] claim that Effort and Shape parameters from Laban Movement
Analysis (LMA) not only provide means to parameterize gesture, but are essential
features of a gesture. Shape involves the changing forms that the body makes in
space. Effort describes dynamic qualities of movement, such as weight (light, for
example dabbing paint on a canvas vs. strong, for example punching someone
in the face in a boxing match) and flow (uncontrolled, for example shaking off
water vs. controlled, for example carefully carrying a cup of hot tea). Their work
provides a computational framework that maps Effort and Shape control parameters
to animation parameters that guide arm and torso movement. The arm movement
is specified by end effector key locations. Shape parameters influence the position
of the hand in space on those key locations. Effort parameters influence the path
and timing of the movement toward the end effector location. In later work, Badler
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et al. [13] achieve emotional parameterization by mapping emotion to LMA control
parameters.

Hartmann et al. [104], use a smaller but quite similar set of control parame-
ters. From a literature review they conclude that six control parameters (activation,
spatial extent, temporality, fluidity, power and repetition) are sufficient to specify
gesture expressivity. The control parameter selection is based on what humans can
observe and reliably recognize. In their system, gestures are generated by Kochanek-
Bartels splines [146] defining the trajectory of the hands. The six control param-
eters are mapped to animation parameters that modify the timing and position of
the control points in the spline or set the tension, bias and continuity of the spline.
Their control parameters are intuitive, but not independent, specifically they men-
tion an unresolved conceptual interdependence between the power and temporal
extent (roughly duration) control parameters.

2.3.1.2 Parameterization using Constraint Editing

Recorded motion primitives can be modified to adhere to a pose constraint, using
a motion modification technique (see Section [2.2.1.1). In this case, the animation
parameters are used directly as control parameters. Le Callennec et al. [44] provide
a PFIK+F framework that can handle multiple pose constraints. It resolves possible
conflicts in constraints by satisfying those with the highest priority first.

Amaya et al. [8] state that emotion is observed in motion timing and spatial am-
plitude. An emotion transform is applied on neutral motion using non-linear time-
warping and a spatial amplitude transform technique based on signal amplifying
methods. The required time warp and amplification for such an emotion transform
is obtained by determining the emotional transforms needed to get from recorded
neutral movement to the same movement executed in an emotional style. Hsu et
al. [117] describe a similar method for emotion transform, using a Linear Time
Invariant model rather than signal amplification for the spatial transform.

2.3.1.3 Parameterization using Blending

To achieve a desired pose at a desired time, a set of motion primitives to interpolate
and their interpolation weights have to be found. Many parameterization methods
have been developed to solve a subset of the pose constraint problem: position-
ing an end effector at a desired position s, specified by three control parameters.
Unfortunately, blending does not yield a linear parameterization of this control pa-
rameter space [242]]. That is, if s, is exactly in between s; and s,, this does not
mean that a blend with interpolation weights of 0.5 of the joint rotation vectors q;
and q3, placing the end effector at s; and s,, will end up placing the end effector at
Sqes- Several methods have been developed to solve this discrepancy.

Rose et al. [240] use a scattered data interpolation method to approximate
control parameter values. This method calculates the resulting motion primitive
using a linear map between blend weights and control parameters combined with
radial basis functions centered on each example motion primitive. For desired poses
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that are far from the examples, the motion primitives calculated using this approach
are based purely at the linear approximation and hence are effectively arbitrary
[157]. Grassia [[96] uses a linear approximation of the blend weights in an initial
positioning step and then exactly positions the end effector at the goal position
using a constraint based method (see Section [2.2.1.1)). Van Basten et al. [20]
linearize part of the posture representation and interpolate positions of joints instead
of rotations. This will result in end effectors that are exactly on the desired position.

Many other techniques make use of pseudo example motion primitives. Wiley
and Hahn [305] resample the examples to a dense regular grid in a precomputing
step that exhaustively searches through interpolation weights and recorded motion
primitives. The grid can then be used to efficiently select the pseudo examples to be
interpolated. Note that, compared to Rose et al. [240], only a subset of the exam-
ple motion primitives are blended. Also, the number of required example motion
primitives is O(2¢), where d is the dimensionality of the parameter space, whereas
Rose et al. [240] only require O(d) samples. Rose et al. [242] use the smoothness
of the function that maps blend weights to end effector position values to create
pseudo examples online at selected positions, iteratively improving the accuracy of
the parameterization. Kovar and Gleicher [[157] randomly create random pseudo
examples online. By using k-nearest neighbor interpolation rather than interpo-
lating from all samples, the run-time cost of their algorithm is independent of the
number of recorded and pseudo example motion primitives.

Using blending methods, the intensity of an emotion or physical state can be
adapted. For example: by blending a happy walk with a normal walk, a slightly
happy walk can be obtained [[120}, [240]. Unuma et al. [296] introduces blending in
the Fourier domain for cyclic motions (such as walking and running). Such a Fourier
domain blend ensures that the motions that are to be blended are automatically
time-aligned, so time warping is not needed in the preprocessing steps. For walking
and running, the Fourier description provides parameters to control the step size,
speed, duration of the flight stage and maximum height during the flight stage. Sim-
ilar motions with different emotional or physiological aspects (brisk, tired, happy,
etc) can be blended in the Fourier domain, so that these aspects can be used as mo-
tion parameters. Fourier descriptions can also be used to transfer motion aspects:
by applying the Fourier description of briskness from a brisk walk onto a normal
run, a brisk run is created. Because the parameters are qualitative, strict accuracy
cannot be attained by the blending methods described above.

Torresani et al. [288]] provide parameterization of three of the LMA Effort control
parameters (see Section [2.3.1.1)). Recorded motion primitives are annotated by an
LMA expert. These annotations are translated into numerical values. By annotating
the Effort of blends of motion primitives with known Effort values, a function that
maps blend weights, input joint angle data and input Effort values to the output
Effort values is learned. A motion primitive with unknown Effort values can then be
adapted to have desired Effort values by blending. This entails finding its k-nearest
neighbors in the database of annotated motion primitives and finding the motion
primitive pair that, with the optimal blend weight (found by uniform sampling),
approximates the desired Effort values the best. At the cost of computation time
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and annotation effort (by an LMA-expert), this method achieves a more accurate
Effort parameterization than simple linear blending.

2.3.1.4 Parameterization in Statistical Models

Satisfying control parameters using statistical models requires specialized methods
for each statistical model. Grochow et al. [100] search their SGPLMVM model
representation of the motion space using optimization to create motion primitives
that satisfy pose constraints. Li et al.’s [173]] motion texton representation of the
motion space allows the creation of motion primitives by directly specifying poses
at selected frames. Mukai and Kuriyama [199]], create a geostatistical model of a
set of recorded motion primitives. Geostatistical interpolation is used to create the
motion primitive with desired pose constraints. This method is more accurate in
achieving the desired pose constraints than blending methods that use radial basis
functions. It is more efficient (in terms of calculation time and memory usage)
than blending methods that use pseudo examples. Carvalho et al. [46] introduce
a constraint based editing method that uses the same prioritized IK solver as [44]
(see also Section on a low-dimensional statistical motion model, generated
using PCA or probabilistic PCA. Their system is computationally more efficient, and
is, according to the authors, in some cases more natural than the PFIK+F approach
used in [44].

In human motion, there are many correlations between joint actions. Statistical
methods [69] and machine learning [38]] have been employed to find orthogonal
control parameters in a set of recorded motion primitives. Because the parameters
are independent, it is not necessary to resolve parameter conflicts. However, the
control parameters learned in such approaches are not very intuitive to use and are
highly dependent on the training data.

2.3.1.5 Parameterization using Physical Simulation

The desired state of a controller can be used directly as a control parameter. An-
imation parameters such as desired joint rotation, pelvis height or CoM position
provide intuitive control. However, satisfying pose constraints precisely and timely
using a physical controller is still an open problem, since in general it is unknown
if and when a controller achieves such a pose constraint. Some recent efforts have
attempted to address this issue. Neff et al. [207] use empirically determined offsets
on the pose time and angular span multipliers on the pose itself, so that their system
achieved poses on time, for certain classes of movement (e.g. gesture). Other sys-
tems rely on critically damped controllers to achieve precisely and timely arm poses
[6, [149]. These controllers can only generate movement in which the ‘muscles’ are
critically damped and impose limited or no movement of the trunk.

Abe and Popovi¢ [1] show how to set up a physical controller that satisfies con-
trol parameter values in order of their priority. They report that prioritization of
balance control interferes with posture control, which makes it difficult to combine
these two control objectives in a natural manner. In later work, Abe et al. [2] use a
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weighted combination of control objectives to achieve a compromise between their
control parameter values. The weights can be used to move smoothly from one ob-
jective to the next. Some techniques have been devised to map control parameters
to animation parameters used in controllers.

Chao et al. [56] provide a mapping from LMA-Effort parameters to animation
parameters for a PD-controller, such as damping, stiffness and desired joint rota-
tion. Yin et al. [[316] apply an optimized learning strategy to adapt the animation
parameters w of a physical walking controller to a new situation parameterized by
the control variable v (for example: step over an obstacle of height ~, push a piece
of furniture with weight -, walk on slippery terrain with friction coefficient v). The
animation parameter space is searched for valid values of w (as in, those that do not
make the virtual human fall) that achieve ~. There may be many viable solutions of
w that achieve 7. A hand-authored objective function evaluates w to help select a
unique optimal solution that achieves 7. It can be designed to prefer solutions that
have a minimal deviation from the original animation parameters, a certain walk-
ing speed or step size, and so on. The learning process is off-line, but the learned
animation parameter values can be interpolated to achieve real-time control. It is
yet to be seen wether and how this method generalizes to more than one control
parameter.

2.3.2 Concatenating

Concatenation (see Figure deals with the generation of a sequences of mo-
tion primitives, to form a natural motion that satisfies certain control parameters
and assures the naturalness and smoothness of the resulting motion. The motion
primitives can be generated by different techniques (or the same technique that is
initialized differently).

2.3.2.1 Concatenation using Motion Editing

Ease-in ease-out interpolation between two motion primitives can be used to con-
catenate them. The first motion primitive is faded out as the second one is faded
in. Displacement maps (see Section|2.2.1.1)) can also be used to transition from one
motion primitive to another, as is done in [[168]. Transitions between different pairs
of motion primitives concatenated in this manner differ in naturalness. Ikemoto et
al. [[121]] generate transitions by cached multi-way blends. They cluster recorded
motion primitives using the distance metric by Kovar et al. [158]]. All mediods (cen-
tral item of cluster) are representatives for the motion primitives belonging to that
cluster. During preprocessing, the naturalness of all possible 2, 3 or 4 multi-way
blends between representatives is evaluated (using footskate and ZMP position as
evaluation criteria) and the best blend recipe (containing a weight function and rep-
resentatives) is stored. A transition is generated at runtime by matching the current
and next motion primitives to mediods and applying the stored blend recipe.
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Figure 2.4: Concatenation generates a sequence of motion primitives using (possibly different)
animation techniques. The resulting motion satisfies the control parameter values.

Motion Graphs In many applications, one requires multiple concatenated motion
primitives to satisfy a longer term control parameter (for example: walk to a certain
position). A very common technique is to encode the possible transitions between
motion primitives in a graph-like structure: a motion graph. A motion graph is a
directed graph where all edges correspond to motion primitives and nodes corre-
spond to poses. Interpolations between poses from different (or the same) motion
primitives that are ‘similar enough’ are added as new edges. In the game indus-
try such graphs, move trees, were originally created manually [196]]. Kovar et al.
[158] present an algorithm that automatically creates motion graphs. Good transi-
tion points are automatically detected using Cartesian joint distance as a distance
metric. After the graph is created, the graph can then be searched to find a sequence
of motion primitives that adheres to control parameter values (for example: walking
along a specified path). Many variations of motion graphs exist, which can be dis-
tinguished in off-line methods where the desired control parameters are known in
advance and the motion is generated off-line (for example: [10,/158]), and methods
that work at interactive speed (for example: [19, 93], [168| [169]). These techniques
mainly differ in the graph structure or the search strategy. Here I mainly discuss the
inherent naturalness-control-calculation time trade-offs in motion graphs. For an
exhaustive literature overview I refer the reader to a recent article featuring motion
graphs (e.g. [322]]) or Forsyth et al.’s survey ([[79], p184-194). Throughout this
chapter, I make use of the terminology for naturalness, control and calculation time
aspects of motion graphs introduced in [79].

At interactive speed, a global search on the graph is infeasible [[79]. Local search
evaluates only the values of control parameters in a path through a limited number
of nodes when choosing the next sequence of motion primitives. Even if a path on
the graph that satisfies control parameter values is available, a local search method
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might not find it, because it cannot look far enough ahead. This is called the horizon
problem in [[79].

Reinforcement learning (first proposed by Lee and Lee [169]) can be used to
learn (near) optimal long-term plans for specific control parameter values that are
specified as a reward function. The learning process is off-line. For each global state
(=world state x virtual human state) a (near) optimal path on the motion graph is
learned that achieves specific selected control parameter values. Some flexibility can
be gained by a smart selection of state and objective function. For example: if the
state is set as the angle between the current walk direction and the goal direction,
walking in any goal direction can be learned by learning how to walk forward.
Walking to a desired 2D location can be learned in a similar manner. One can
also learn a grid of control parameter values [169]. Because of its discretization of
control parameter values, reinforcement learning sacrifices some accuracy for long-
term goal satisfaction. Furthermore, it can be hard to coordinate multiple control
parameter values and is typically very memory intensive [169]. Recent approaches
using reinforcement learning aim to address the latter [172} 175][292].

Control and motion planning is limited by the available paths on the graph. As
more control parameters are added, less paths will become available that satisfy
all their desired values. It is possible to extend the graph (and hence, gain more
control) by adding more transitions. Unfortunately, at some point the added transi-
tions become unnatural [18]]. This is a typical trade-off when using motion graphs.
More transitions will result in more control but also more visual artifacts such as
footskate. Another disadvantage is that motion graphs are, in general, not able to
generate motions that require tight coupling to the environment unless exactly those
motions are in the database.

Several techniques have been developed that are able to automatically identify
natural transitions between motion spaces. Shin and Oh [266] present fat graphs.
In these fat graphs, blend spaces are constructed using edges that start and end at a
common pose (or hub) of a motion graph. These blend spaces allow more flexible
parameterization than traditional motion graphs. However, in order to transition
from one motion to another, the virtual human must always first move through
one of the common poses. Heck and Gleicher [107] introduce parametric motion
graphs. A parametric motion graph encodes an edge as a mapping from a control
parameter in the source motion space (creating a source motion primitive) to a
subspace of the control parameter values in a target motion space. This subspace of
parameter values in target space is selected so that they create a target motion prim-
itives that connects it to the source motion primitive (that is, the start of the target
primitive and the end of the source primitive are ‘similar enough’). Transitions are
selected by specifying the current motion space and control parameter values and
the target motion space and desired target control parameters values. If a natural
transition satisfying the target control parameters exists, they are achieved precisely.
If not, a transition that provides the closest match to the target control parameter
values can be selected. This either sacrifices accuracy for naturalness (for example,
for a punch motion space with target punch position as a control parameter), or it
can sacrifice responsiveness for naturalness if control parameter values are achie-
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ved by subsequent transitions (for example for a walk motion space with a direction
control parameter).

Concatenation using Statistical Methods Lietal. [173]] model a motion space as
a linear dynamic system (LDS). They define a distance metric for LDSs and construct
a motion graph-like structure to support concatenation of similar LDSs. By setting
the first two poses of the next LDS in the path to the last two poses of the current
LDS (see Section[2.3.1.4)), a fluent connection is achieved.

2.3.2.2 Concatenation of Physically Controlled Motion

In physical simulation using controllers, concatenation implies a switch to a differ-
ent controller. If the exit state of one controller leaves the simulation in a valid entry
state for the next controller, valid transitions can easily be attained [311]]. Prede-
fined transitions between controllers that satisfy this condition can be encoded in a
state machine. For example, [115]] shows a state machine that uses different phases
(and thus, controllers) for the flight, loading, heel contact, heel and toe contact, toe
contact and unloading phases of a running motion.

A transitional controller can be designed to facilitate transitions between con-
trollers with incompatible exit and entry states. Wooten and Hodgins [311]] demon-
strates this, by using a landing controller to take a virtual human from a flight state
to a state suitable for balancing on the ground. Faloutsos et al. [73] facilitates
transitions between controllers by describing preconditions and post-conditions for
each controller. The preconditions define the sensor values (see Section [2.1.3.1])
that lead to a successful execution of the controller. Specifying valid preconditions
for controllers is not always a trivial task (for example: what are valid preconditions
for balancing?). Support vector machine (SVM) classifiers are trained to predict the
success or failure of a controller given sensor values. The preconditions for a con-
troller are then determined by what a trained SVM for that controller classifies as
successful.

Coros et al. [61] show how to create control policies that satisfy longer term
goals. The policy selects a near optimal sequence of locomotion controllers given a
certain control parameter value offline. Each controller executes one locomotion cy-
cle. After each walk cycle, the control policy selects the controller that will achieve a
new global state (=world state x virtual human state) that maximizes the reward.
Rewards are explored for ‘trusted’ global states (those close to states achieved ‘nor-
mally’ in the controllers), using off-line reinforcement learning, in a similar manner
as discussed earlier for motion graphs (Section [2.3.2.1)).

2.3.2.3 Concatenation of Procedural Motion

Zeltzer [319] models the different phases of a procedural walking motion by differ-
ent procedural models and concatenates them using a state machine. Some frame-
works for the generation of procedural arm gestures concatenate the gestures using
procedural techniques that allow a flexible start pose of the arm [105, [155]. The
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end pose of the previous gesture is then used as the start pose of the current ges-
ture. Other procedural animation systems use interpolation to generate a transition
motion primitive between two procedural motions [[131, [218].

2.3.2.4 Concatenating Physical Simulation and Motion Editing

Motion editing techniques provide natural motion, but it is hard to set them up to
interact with the physical world. Physical simulation provides world interaction,
but less naturalness. Several methods have been developed to take advantage of
the strength of both techniques by switching between them depending on the type
of interaction needed.

Shapiro et al. [262] switch control from kinematics to physics on contact with
physical objects in the environment. A transition from physical simulation to mo-
tion editing (in their system a motion graph) can be made if the pose of the virtual
human is similar to a pose in a motion primitive of one of the motion editing motion
spaces. It is not stated how such a suitable motion primitive is found. Presumably
the number of motion primitives in the graph is low, so that an exhaustive search
can be performed on all their poses. Mandel [[187] makes the transition from mo-
tion editing to PD-control, whenever some physical event occurs that makes the
virtual human fall over. A PD-control system is then started in the pose last set by
the motion editing motion primitive. A fall controller lets the virtual human fall,
while trying to break this fall with the hands. As soon as the hands hit the floor,
the system attempts to return control to motion editing. To find a suitable motion
primitive, the motion capture database is searched for a motion primitive that has
a similar pose to the pose the virtual human is in. This is done using the Approxi-
mate Nearest Neighbor Search algorithm. An intermediate physical controller then
moves the virtual human to this pose. Once the virtual human is close enough to
that pose, control is returned to motion editing. NaturalMotion’s [200] Euporia and
Endorphin animation systems allow transitions between motion editing and physical
simulation. Selecting a suitable motion primitive to play after physical simulation is
left to the motion author.

Rather than using recovery controllers, Zordan et al. [326] search a motion
capture database to find a suitable recovery motion primitive to play after a physical
impact. During the physical impact, a physical rag doll motion is played for a short
period of time (0.1-0.2s), then motion is steered by a physical tracking controller
(see Section [2.4.1.3), that tracks a blend of the motion primitive before the impact
and the selected motion primitive after the impact. In later work, Zordan et al.
[325] contribute an automatic, real-time, motion primitive search algorithm. Re-
entry motion primitive candidates are classified off-line, using machine learning.
This significantly reduces the number of candidates to select from.

2.3.3 Combination

A virtual human can execute multiple tasks that each require motion at the same
time, possibly with different parts of the body. Rather than explicitly setting up new
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motion primitives for each combination of motion acting on a separate body part,
different motion primitives, possibly created by different animation techniques, can
be combined in such a way that a coherent whole body motion results (see Fig-

ure 2.5).

Animation Animation
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Figure 2.5: Different motion primitives, each acting on a subset of the joints of the virtual human
can be combined to form full body motion.

2.3.3.1 Combination using Motion Editing

A simple way to combine motion primitives is by using a direct ‘ease-in ease-out’
interpolation of the motion primitives (as done in [131}, 217]). The interpolation
weights of the motion primitives to be combined is set per joint, so that certain mo-
tion primitives can be set up to affect certain joints more than others. This method
can produce unrealistic results because it ignores both physical and stylistic correla-
tions between the motion of various joints in the body [[108].

Heck et al. [108], aim to combine (splice) one motion primitive on the upper
body with one acting on the lower body. Both motion primitives contain a walk
cycle. Temporal relations between the upper and the lower body are maintained by
making use of the rhythmic nature of walking to time warp and align the motion
primitives. The pelvis is rotated in such a way that the upper and lower body are
aligned, while retaining the desired upper body posture. Ha and Han [101] gen-
eralize Heck’s splicing method. They construct a time warp between upper body
and lower body motion spaces off-line. This time warp can then be used to splice
motion primitives of the two spaces online. Note that these two splicing methods
only enforce coherence of the upper and lower body in the temporal domain.

2.3.3.2 Combination of Physical Controllers

Physical controllers can be combined by adding up the forces and torques applied by
them on each joint (as done in [[312]). Such a combination automatically provides
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physically coherent whole body motion, because an articulated rigid body system
models the force transference through the joints.

2.3.3.3 Combination of Procedural Motion

Many procedural animation systems combine procedural motion on different body
parts, by employing a procedural motion technique for each body part [105, [155].
Procedural motion from different procedural models, acting on the same body part
can be combined using interpolation (see Section [218]). Thiebaux et al.
[280] employ specialized blend mechanisms to combine motion primitives gener-
ated by different procedural animation techniques.

2.3.3.4 Combination of Kinematic Motion and Physical Simulation

The requirements of physical integrity and accuracy are often of different impor-
tance for different body parts. For example, for a gesturing virtual human, posi-
tional and timing accuracy is primarily important on movement of a gesturing arm
or head. At the same time, a physically valid balancing motion of the whole body
could be achieved by moving only the lower body, where precise timing is less im-
portant. Combining kinematic motion with physical simulation on different body
parts allows one to combine the accuracy of motion generated by procedural an-
imation or motion editing with the physical realism of physical simulation. Oore
et al. [211]] present a system that mixes physical simulation, acting on the knee
and ankle joints, with kinematical upper body motion. The physical model is cou-
pled with the upper body through its mass displacement. The joint torques of the
kinematically moved parts in the upper body are not taken into account in the phys-
ical movement of the lower body. Isaacs and Cohen [[123] show how inverse and
forward dynamics (see Appendix [A) can be combined in a custom designed physi-
cal simulation system, given that either the joint accelerations or the joint torques
are known for each joint, at each frame. This way, if kinematic motion is known
at every frame for some joints, the forces those joints exert on the other joints is
taken into account when the remaining joints are moved using physical simulation.
In Chapter (3| I present my extension on this work that provides a simplification of
the simulation model. My system allows the use of efficient iterative techniques to
calculate the torques exerted by the kinematically steered joints and provides easy
integration with existing physics engines.

2.3.3.5 Combining Procedural Motion and Motion Editing

By augmenting motion editing with procedural motion, expressiveness can be en-
hanced without requiring a prohibitive amount of motion primitive examples. Some
examples: a biomechanical model of eye movement (which is hard to motion cap-
ture) can be combined with a motion editing technique for neck and trunk mo-
vement [165]. Heck [[109] employs a biologically and psychologically inspired
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model for gaze that is layered on top of motion primitives created by motion edit-
ing. Shapiro et al. [261]] combine lower-body motion capture with arm movement
determined by planning techniques from robotics.

2.3.4 Aspects of Control

In the previous subsections I have looked at ways to parameterize, concatenate and
combine motion spaces using various techniques. Here I discuss how much control
can be gained using such techniques, by looking at the various aspects of control.

2.3.4.1 Responsiveness

Responsiveness determines how fast a desired change in the motion plan is achie-
ved. Responsiveness is a major theme in the design of motion graphs, it might take
a while to traverse the graph to reach the desired node, especially if the graph is
sparse. Forsyth et al. [79] introduce the diameter: the average path length of the
shortest path connecting two nodes on a motion graph as a measure for responsive-
ness. A denser graph (with a smaller diameter) can be created by sacrificing some
naturalness (see Section [2.3.2.T)). Physical simulation has high responsiveness to
physical events (for example, being hit by a falling anvil), but lower responsive-
ness to control parameter changes that effect the desired state of the virtual human.
Procedural animation and motion editing techniques have higher responsiveness to
parameters that change the desired state of the virtual human, but direct reaction
to physical events that occur in the world is not built-in.

2.3.4.2 Precision

Precision is the accuracy with which control parameters (such as end effector posi-
tion or timing constraints) are achieved. Procedural motion is very precise. Motion
editing techniques can provide precision at the cost of calculation time. Physical
simulation is imprecise, it is unknown whether and when desired pose and time
constraints have been met. Some precision can be gained by sacrificing natural-
ness and creating only motions in which the ‘muscles’ are critically damped (see

Section|2.3.1.5)).

2.3.4.3 Coverage

Coverage deals with how much of the control parameter space is covered. Motion
graphs can suffer from bad coverage. For example: some parts in an environment
cannot be reached from certain nodes in a motion graph because no path starting
in this nodes will go there. Reitsma and Pollard [233]] present an algorithm to de-
termine the environment coverage of a given motion graph. Note that the coverage
of a motion graph is also greatly influenced by the search algorithm it uses. Even
if a path on the graph that satisfies control parameter values is available, a local
search method might not find it. Physical simulation can suffer from bad coverage
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whenever control parameter values create motion primitives that put the virtual hu-
man on the edge of balance. The coverage of physical simulation can be increased
by sacrificing some balancing naturalness (see [313]) or by using better balance
methods that require more calculation time (see [268]]). While most motion editing
techniques can cover a wide range of control parameter values, only the control
parameters that result in a motion primitive near an example motion primitive will
yield natural motion. Procedural motion has good coverage, but again not all con-
trol parameter values will provide natural motion.

2.3.4.4 Expressiveness

I have defined expressiveness as the number of control parameters that can be used
in the motion plan. Procedural and physical simulation techniques have high expres-
siveness. The number of parameters that can effectively be used in motion editing
is low.

2.3.4.5 Intuitiveness

Intuitiveness deals with how intuitive the control parameters that can be used in
the specification of the motion plan are. All techniques allow the use of control pa-
rameters that can set pose constraints. Other control parameters (such as emotion,
physical state) can often be mapped to animation parameters. An intuitive set of
control parameters might cause conflicts between animation parameters, but an or-
thogonal set of control parameters is typically not intuitive (see Section[2.3.1.4). For
example, [38] reports having a parameter that sets both the speed and the global
pose. Therefore, orthogonal control parameters are typically used solely to create
small variations on existing motion (see Section |2.4.4.2).

2.3.4.6 Control Enhancement with Multiple Animation Paradigms

By combining and concatenating motion primitives created by different animation
techniques, several aspects of control can be enhanced. For example, a concatena-
tion of a motion primitive created by motion editing with one created using physical
simulation enhances the responsiveness to physical events (see[2.3.2.4). Another ex-
ample is the enhancement of expressiveness by combining procedural motion and

motion editing (see Section |2.3.3.5).

2.4 Naturalness

For many animation systems, plausibility or naturalness rather than full realism is
acceptable. I define naturalness as perceived realism of a virtual human’s move-
ment. Naturalness therefore partly depends on properties of human observation.
Physical realism is one property of natural animation (see also the Appendix [A)),
but physical realism alone is not enough for motion to be perceived as natural. In-
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volvement of the whole body is crucial to make an animation natural [58]. Further-
more, movement should be consistent with static (such as age, gender) properties
of the virtual human that is being animated [98) 246]]. Variability is a concern if a
motion is to be repeated. In this section I will elaborate on these different aspects
of naturalness and show how naturalness can be enhanced and evaluated. Natu-
ralness effects related to animation planning, such as the plausibility of the motion
with respect to the cognitive and emotional state of the moving virtual human [9§]],
are beyond the scope of this thesis.

2.4.1 Physical and Biological Realism

Motion primitives created by physical simulation techniques are physically realis-
tic by design. It is relatively easy to consider muscle strength in these methods.
Motion captured animation is also physically realistic, since it originates from real
humans moving. However, motion editing might invalidate its physical correctness,
introducing artifacts such as foot skate, unnatural balance, or momentum changes
in flight. I outline some methods to correct or prevent these artifacts and enhance
physical and biological realism.

2.4.1.1 Physical filters

The physical naturalness of motion primitives can be improved by post processing
motion primitives with a physical filter.

For instance, Pollard and Reitsma [222] propose to filter motion primitives to
obtain physically correct ground contact. A friction model is used to make the foot
slide when appropriate. Their filter makes use of the fact that a (virtual) human
cannot apply a force or torque at its root joint. Each frame of motion is cast on
a physical model of the virtual human. Then, per frame, the net root forces and
torques are eliminated by modifying the rotational acceleration on all actuated joints
and the rotational and transitional acceleration on the root.

Shin et al. [265]] employ a constraint based motion editing method (see Sec-
tion to enhance the physical and biomechanical correctness of edited mo-
tion. During flight stages, the angular momentum is conserved and the center of
mass is constrained to follow a parabolic path. During ground contact, the ZMP is
constrained to fall into the support polygon. The corrections are applied to a user-
selected set of joints during the flight stage, ZMP correction is applied on one user
selected joint.

Footskate is a typical artifact caused by motion editing. The virtual human’s foot
slides on the floor after the virtual human plants it, rather than remaining tightly in
place [122]. If it is known when a foot is planted, then a constraint based motion
editing method (see Section [2.2.1.1)) can be used as a motion filter, to constrain the
movement of the planted foot [[159]. Fully automatic reliable detection of footskate
in real time is still an open problem. Existing methods have to be trained for each
motion [122]] or refine motion type (e.g. run, walk) specific estimations of con-
tact times and durations [89]. Alternatively, foot contact can be annotated in the
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recorded motion primitives, and motion editing techniques can be set up to retain
these annotations [156].

2.4.1.2 Retaining Physical Correctness in Interpolation

Because of the difficulties and large computation time associated with physical fil-
ters, some interpolation techniques deal with physical realism during the interpola-
tion stage, rather than using a post-processing method. A number of simple modi-
fications can be used to improve the physical correctness of interpolation of motion
primitives that are physically correct on their own [250]. By interpolating the center
of mass, rather than the root and clever selection of the interpolation duration, the
net force during flight is equal to gravity. If, during ground contact, the center of
mass, the foot positions, knee-swivel angles and all joints angles except the legs are
interpolated, rather than directly interpolating joint rotations, the feet will not pen-
etrate the ground, balance will be retained and the ground friction will be within
the same friction cones as the source motion primitives.

Ménardais et al. [192] use a simple technique to avoid or reduce footskate. Mo-
tion primitives are annotated with support phase information (left foot, right foot,
double support, no support). A time warp then synchronizes the support phases of
motion primitives so that they are compatible during the interpolation. Treuille et
al. [292] prevent footskate in support phases where only one foot is on the ground
by first aligning the support foot of the second motion with the support foot of
the first and then interpolating the motion primitives with the support feet as the
root. Oshita [212]] contributes a method to generate transitions between two mo-
tion primitives based on their support phase that does not require re-aligning them
and can handle a wider range of support phase combinations. It uses Treuille et al.’s
method for the connection of motion primitives in which the same foot is moved.
Flying motions are connected by aligning their pelvis directions and interpolating
some frames of the start of the second motion with some frames of the end of the
first. A transition from a motion primitive with single support to one with double
support is created by interpolating from some frames of the end of the first motion
primitive with the start pose of the second motion primitive. Transition between
double support motion primitives are created by modifying the lower body of the
second motion primitive, so that its feet positions match the first motion primitive.
The upper bodies are then interpolated. As soon as a foot is lifted in the second
motion primitive, the lower body is interpolated with the second motion primitive
too.

2.4.1.3 Improving Physical Correctness using Tracking

Tracking is used to enhance existing kinematic motion to allow physical interaction
with the environment. A physical tracking controller tracks the joint rotation path
specified in a motion primitive. This is done by setting this path as the desired
state for the controller. Physical tracking recently became a component of some
commercial high level animation toolkits [11}, 106].
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A tracking PD-controller necessarily has very high PD-gains, which result in stiff
reactions to the environment. The PD-gains can be reduced on impact, to decrease
such undesired stiffness (as done in [313, [324]]). More sophisticated controllers
use a predictive model that determines joint torques and typically corrects small
perturbations using a low gain feedback PD-controller (for example: [198| 269,
315, 3171).

Motion capture noise, retargetting errors, tracking errors and environmental
changes can easily disturb the balance of a virtual human that is controlled by track-
ing. For early tracking methods such as [149, [323] this was not an issue because
they only track the upper body. Other tracking methods enforce balance by con-
straining the root to the translation specified in the motion primitive [200, [315].
Zordan and Hodgins [324] use a balance controller specialized for standing with
double support contact. Wrotek et al. [313] use a less realistic balancing method
that does allow locomotion: a weak root spring connects the root of the virtual
human to the world. This spring can ‘break’ if too much force is exerted on it,
causing the virtual human to lose balance. Yin et al. [[317] use a custom balance
controller for locomotion. Da Silva et al. [268] use a linear time varying system
that learns (in an off line process) a balance strategy from reference motions, which
allows them to track both cyclic and non-cyclic motions. Muico et al. [198]] do not
make use of a balance controller, but make use of a more precise torque prediction
model instead. Their non-linear predictive model takes contact forces into account
and tracks the input motion precisely. It allows the creation of controllers for agile
motions, including running and sharply turning.

Using off line learning from a given motion primitive to construct a balance strat-
egy (as in [268]) or a forward model (as in [198, 317]]) enhances the naturalness
of the resulting motion generated by a controller. However, by using such off line
strategies some control is lost, since they no longer allow the tracking of unknown
(for instance: generated by a motion editing technique) motion primitives.

2.4.1.4 Physical Correctness in Procedural Techniques

Physical simulation can greatly enhance expressive procedural motion. It can help
to model important nuances of virtual human motion, such as realistic balance,
force transference between limbs and momentum effects such as overshoot [201].
Physical controllers can explicitly address muscle strength and comfort. Some of
these effects have, to some extent, been reproduced by procedural models.

Inverse kinetics [37] is a kinematic technique that can be used to position the
CoM of a virtual human. This does help in creating balanced poses, but to generated
realistically balanced movement, these methods need to be augmented with a model
that provides a path of the CoM over time. Neff and Fiume [204] devise a feedback-
based procedural balance system based on the physical controller of [312]. Unlike
this physical balance controller, the procedural system works only on a single sup-
porting foot and takes just the position of the CoM and velocity of the CoM, but not
the forces generated by upper body movement into account.

Inverse dynamics can be used to analyze the muscle power used in procedural
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motion. The motion can then be adapted to adhere to muscle strength limits (as
done in [145, [171]).

2.4.2 Whole Body Involvement

Procedural gesture animation techniques typically steer the head and the arms and
leave the rest of the body relatively stiff. Naturalness can be enhanced by providing
automatic, coherent movement of the rest of the body. Some of the techniques used
to enhance physical realism also help to engage the whole body. For example, a
physically based balance model can be used to automatically generate lower body
movement (see Section and [201]). In Chapter [3]I show how to combine
procedural animation with physically controlled balancing to achieve involvement
of the lower body.

Egges and Magnenat-Thalmann [68] propose a statistical model to enhance the
naturalness of procedurally generated gesture movement on the arms. PCA is per-
formed on a motion capture (mocap) database of gesture animation. Using this
PCA analysis, the procedural animation is filtered in PCA-space, in such a way that
only movement similar to that in the database (and thus assumed natural) remains.
Because the PCA components involve multiple joints, this automatically engages the
full body. This method sacrifices some control —exact limb positioning is no longer
guaranteed— for a more natural full body motion.

Both Chi et al. [58] and Neff et al. [206] aim to involve the torso automati-
cally in gesture movement. The Effort and Shape parameters used to enhance the
expressiveness of procedural gesture in [58] (see Section [2.3.1.1) are also used to
enhance their procedurally generated torso movement. Neff et al. [206] show that
‘drives’, such as hand position and gaze direction can be used to automatically gen-
erate torso movement. This is done by defining a mapping between the drives and
movement parameters of a procedural torso movement model.

2.4.3 Style

Style denotes the particular way in which a motion is performed. Stylistic differ-
ences of motion with the same function are caused by certain more or less static per-
sonal characteristics of the subject, such as age, gender and personality [98] 1246].
It is important to endow virtual humans with style. Style contributes to naturalness,
and, even more importantly, expresses information about the virtual human such as
cultural identity, as well as his relationship to other (virtual) humans, such as role
and power relationship. Style is reflected by the motions a virtual human performs
and the manner in which these motions are performed [207, 209]. In this chapter
I focus solely on the latter. I discuss techniques that achieve a certain style in real
time. This can be done by post-processing generated motion primitives or by find-
ing the control or animation parameter values that create a motion primitive in the
desired style through an animation technique.
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2.4.3.1 Style using Motion Editing

Motion capture also automatically captures the style of the motion captured actor.
Ideally, this style could be isolated and be used to replace or define the style of other
recorded or generated motions primitives. Here I focus on techniques that aim to
do this automatically (in contrast to methods that require the animator to select the
style component to transfer, e.g. [259]) and in real time.

Urtasun et al. [297]] employ blending from recorded motion primitives from
different subjects (and thus with different styles) in PCA space for style transition.
A motion capture database is constructed, containing recorded motion primitives
of several subjects, with different values for one control parameter (for example:
jumping with different heights). A motion in the style of a new subject is created
from a single recorded motion primitive of this subject. First, the recorded motion
primitive is modeled as a blend of motion primitives from the different subjects
in the database that have the same parameter value. The weights of this blend
are then used to construct motion primitives with a new parameter values using a
blend of motions in the database with these new parameter values. This system can
create motion in the style of a user in an online application, by tracking the users
movement using a cheap computer vision system.

Egges et al. [69] generate different styles of idle motion using recorded motion
primitives of different individuals. On top of the posture shift motions, variation
of movement is generated by applying a noise function on principal components
derived from recorded motion primitives. This noise function is defined by a prob-
abilistic model of recorded variations in motion. Individualized variations can be
synthesized by determining the parameters of the probabilistic model for a given
individual.

2.4.3.2 Style in Physical/Procedural Simulation

Procedural animation applies style by mapping style characteristics to lower level
animation parameters, using parameterization. Perlin [217] models personality and
emotion using noise functions on top of motion generated by an existing procedural
model. Ruttkay and Pelachaud [246]] model style as a mapping from static charac-
teristics, such as age or sex to gesture animation parameters in a procedural ani-
mation system. Neff and Fiume [203]] model style using a Character Sketch. Such
a sketch defines modifications to be made to control parameters, can be designed
to automatically insert new actions to an animation script and provides a default
stance.

2.4.4 Variability

Variability is a measure of the differences in a motion which is repeated many times
by the same person [33]. If the same motion primitive occurs several times in a
motion performance, the performance will look unnatural. Several methods can be
used to avoid this invalidation of naturalness.
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2.4.4.1 Procedural Generation of Variability

Perlin [217] simulates variability by adding noise to the rotation of some of the
joints in the skeleton of a virtual human. This method is not scalable on all joints,
because relations exist between rotation of one joint and rotation of another. If these
relations are not captured, the resulting animation will look unrealistic [69]. Bo-
denheimer et al. [33] apply variability by using a biomechanically inspired method.
Since the amount of variability is usually correlated to the amplitude of the move-
ments of the body (see Section [2.1.3.3), the noise has its largest amplitude at the
extrema of a DoF of a moving joint. The noise is scaled with the distance the joint
travels, thus obeying Fitts’ Law. Since the shape of the noise is based upon the move-
ment of the joints, this approach somewhat implicitly models inter-joint variability
relations. However, reciprocally covarying movement variability between joints (for
example an elbow movement to compensate shoulder variability on an aiming task)
is not captured by this approach.

2.4.4.2 Generating Variability using Statistical Models

Statistical methods that capture orthogonal components of motion (such as [38|
69]) also capture the relation between joint movements. Since these components
are independent, they can be modified separately. Small posture variations are
generated by adjusting the components using Perlin noise [[217]. In Li et al.’s [173]
LDS model, variability is generated by sampling noise. Lau et al. [166] learn a
motion space for the specific purpose of generating spatial and temporal variations
of similar motion primitives, using a Dynamic Bayesian Network.

2.4.4.3 Generating Variability in Physical Simulation

Motion generated by physical simulation often looks ‘sterile’, because variation
caused by small details is not taken into account [17]. Such details, for example
small bumps on a floor, or the non-rigidness of human body parts are not simulated
because it would not be possible to do so in real time or because simulation meth-
ods for this are yet unknown. Barzel et al. [[17] propose some techniques to model
some of these details in physically plausible (but not physically realistic) ways. For
example: the inherent variability and instability of a physical simulation system can
be exploited to generate motion variability by slight variations in its starting state,
or a physical form of bump mapping can be used to create slight variations in the
normal of a physically modeled flat floor.

Another, biological cause of variability in human movement is noise in the con-
trol signals that steer our limbs [[103]. The variability of the noise increases with
the torque to be exerted. Bodenheimer et al. [33]] model this type of variability by
adding noise to joint torques in a physical simulation in a similar way as described
above for kinematic motion.
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2.4.5 Evaluation of Naturalness

Measuring naturalness is a daunting task. It depends both on the properties of mo-
tion and on properties of human observation. Often, some control can be sacrificed
to gain more naturalness, or some naturalness can be sacrificed to gain some needed
control. I discuss how this naturalness-control trade-off can be quantified, provide
some motion invariants and metrics that can be used to measure certain aspects of
naturalness and discuss the setup of user tests that can measure naturalness as a
whole.

2.4.5.1 Exploring the Naturalness-Coverage Trade-off

The naturalness of motion primitives created from the same motion space can vary
with the control parameters that were used to create them. The relation between
the size of the parameter space (coverage, see Section and naturalness can
be explored by having subjects directly set and evaluate parameter values, as done
in [33]. Such an evaluation provides direct insight into the naturalness cost of a
certain parameterization, or the control lost (specifically: reduction of coverage) if
a certain level of naturalness is enforced. Clearly, having the subject determine the
natural control parameter set is only feasible with a limited set of parameters.

2.4.5.2 Comparing with Motion Invariants

Some comparisons have been made by comparing motion invariants (see Section
2.1.3.3) of recorded motion with those of generated motion. End effector speed,
end effector square jerk, end effector position and motion curvature can be used
to compare human motion to generated motion, to evaluate how well invariants
such as the bell shaped velocity profile, minimum jerk, Fitts’ law and the two-third
power law are modeled in the generated motion. So far such comparisons have
been solely qualitative and were applied only in arm gesture domains; graphs of
invariants in recorded motion were put side by side with graphs of generated motion
(see [87,1155]).

2.4.5.3 Automatic Evaluation of Naturalness

Intuitively, physical correctness can be measured directly from the animation. Re-
itsma and Pollard [232] evaluate physical correctness by checking and evaluating
perceptual metrics for allowable errors in horizontal and vertical velocities and the
effective gravity constant for ballistic movement.

Metrics such as the average amount of footskate [4] and the number of frames in
which the ZMP is outside the support polygon [124] address the physical anomalies
in motion editing and can be used to compare the naturalness of different motion
editing techniques.

Some attempts have been made to evaluate naturalness automatically. Ren et al.
[234] argue that evaluation of the naturalness of human motion is not intrinsically
subjective, but instead, an objective measure is imposed by the data as a whole. In
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other words, movements that we have often seen are judged as natural, and move-
ments that occur rarely are not. They make use of machine learning techniques,
trained with statistical properties of human motion to classify new animations as
natural or unnatural, and to point out the parts that invalidate natural movement.
The system is still outperformed by human observers in recognizing natural or un-
natural movement.

2.4.5.4 User Evaluation

One can (semi-)automatically evaluate certain naturalness properties of motion us-
ing automatic testing or motion invariant checking. However, most evaluation met-
rics check for a single naturalness artifact that only occurs within a specific anima-
tion technique. They can therefore not be used to compare different techniques.
For example: it does not make much sense to evaluate the naturalness of physically
simulated motion using a foot gliding metric, or to measure the naturalness of a
procedural model that is specifically designed keeping a certain motion invariant in
mind for adherence to that same motion invariant. Most naturalness metrics do not
take human observation properties into account. User evaluation is invaluable for
measuring naturalness as a whole and for providing between-technique naturalness
comparisons.

Virtual humans do not usually have a photo-realistic embodiment. Therefore,
if the naturalness of animation of a virtual human is evaluated by directly compar-
ing moving humans with a moving virtual human, the embodiment could bias the
judgment. A motion captured human movement can be projected onto the same
embodiment as the virtual human. This projection is then compared with generated
animation. Typically this is done in an informal way. A motion Turing Test is used
to do this more formally (see [18, 55, [70, 115} [125]).

In a motion Turing test, subjects are shown generated movement and similar
motion captured movement, displayed on the same virtual human. Then they are
asked to judge whether this was a ‘machine’ moving or a real human. Methods from
Signal Detection Theory [183] provide a bias-independent sensitivity metric d’ that
can be compared between different test setups, observers and motions. This metric
indicates how well two motions can be discriminated. The d’ found by comparing
motion captured motion with the generated motion is used as a naturalness measure
for the model based motion. This approach is followed in [55, 231, 232]. I refer the
interested reader to [125] for an overview of test paradigms for the evaluation of
naturalness of animation that can be used with Signal Detection Theory and their
advantages and disadvantages.

Even if a certain movement is judged as natural, an invalidation of naturalness
that is not noticed consciously can still have a social impact [227]]. Unnaturally
moving virtual humans can be evaluated as less interesting, less pleasant, less influ-
ential, more agitated and less successful in their delivery. So, while a virtual human
Turing test is a good first measure of naturalness (at least it looked human-like),
further evaluation should determine if certain intended aspects of the motion are
being delivered. Such aspects could include showing emotion, enhancement of the

41



42 | Chapter 2 — Real-Time Computer Animation: a Review

clearness of a spoken message using gesture, showing personality, and so on.

2.5 Discussion

I have discussed a variety of techniques that can all contribute to an ‘ultimate’
fully-controllable animation system producing natural motions in real time. Cur-
rent techniques offer trade-offs between control, naturalness and calculation time.
The selected trade-off depends on the application domain. Motion editing tech-
niques employ the detail of captured motion or the talent of skilled animators, but
they allow little deviation from the captured examples and can lack physical real-
ism. Procedural motion offers detailed and precise control using a large number of
parameters, but lacks naturalness. Physical simulation provides integration with the
physical environment and physical realism. However, physical realism alone is not
enough for naturalness and physical simulation offers poor precision in both timing
and limb placement.
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Figure 2.6: Control and naturalness of methods used in this chapter. Black dots indicate the
animation techniques discussed in Section Grey dots indicate hybrid methods.

A big challenge in the animation domain is finding an integrated way of gen-
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erating natural motions that interact with the environment and provide detailed
control. I have shown that hybrid systems that combine and concatenate motion
generated by different paradigms can enhance both naturalness and control. These
systems could provide a starting point for such an integration. In Figure I pro-
vide a qualitative indication of the control and naturalness of the different hybrid
systems discussed in this chapter. Note that the control provided by a hybrid sys-
tem is typically not better than the best control of the two techniques it combines]|
Similarly, the naturalness of a hybrid system is typically not greater than the natu-
ralness of its most natural technique. The intersection of two dotted lines starting
in an animation technique in Figure |2.6|indicates this best control and naturalness.
Theoretically, very good naturalness and control could be achieved by combining
techniques with high naturalness with those with great control. However, since
techniques with great control also have low naturalness, it is hard to combine such
techniques in a consistent manner.

I have shown different methods that execute animation plans generated by some
higher level planning process. Such plans could be constructed by higher-level be-
havior generation mechanisms.

One domain of applicability of a flexible motion generation system is crowd
simulation. Here physical characteristics of the environment (obstacles, quality of
the ground) as well as physical and social behavior rules (e.g. strategy to avoid
collision with objects and other people) serve as a basis for generating the animation
plan.

This thesis focuses on another application domain: that of interactive virtual
humans (see Chapter [10|for example applications). In this domain, the animation
plan is typically constructed from intentions (such as greet the partner, indicate a
location) and states (emotional, physical, cognitive). Typically the animation plan is
embedded in a multimodal behavior script, describing the synchronization between
speech and gesture. Recent efforts aim to unify the multimodal behavior scripts
designed by different research groups into the Behavior Markup Language [152],
discussed further in Chapter [6| In Chapter 3|1 discuss the naturalness and control
requirements for interactive virtual humans and introduce a hybrid method to com-
bine the control of procedural (gesture) animation with the naturalness of physical
simulation. Chapter 8] discusses Elckerlyc, an architecture that can schedule and
execute an multimodal plan specified in BML and can make us of and combine the
animation paradigms discussed in this chapter.

In theory this is possible if the two techniques that are good in non-overlapping control aspects.
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Chapter 3

Mixing Physical Simulation and
Kinematic Motion

Synthesis of expressive motion, such as conducting or gesturing for virtual humans
in interactive, real-time applications is a challenging task. Such motion is often
tightly synchronized with other internal output modalities, such as speech, or exter-
nal output modalities such as user input or music. Motion (capture) editingﬂ methods
are not flexible enough to deal with the many control parameters and the tight syn-
chronization with other modalities, that is needed for such expressive motion (see
[92] 278] and Chapter [2). Physically simulated animation steers the body of a vir-
tual human using muscle forces, taking gravity and inertia into account. While such
motion is physically realistic, precise timing and limb positioning is still an open
problem in real-time physical simulation (see Chapter [2.3.1.5). Therefore, timed
expressive motion, as used in talking and gesturing virtual humans, is typically the
domain of procedural motion techniques [58], (104} 207, 217, 304]].

However, such procedural animation does not explicitly model physical integrity.
As a result, the generated motion can look unnatural, as it does not seem to respond
to gravity or inertia [185]. I refer the interested reader to Chapter |2|for background
information on the animation techniques used throughout this chapter and a more
elaborate discussion on the trade-offs between naturalness, control and calculation
time of different animation techniques.

My system builds on the notion that the requirements of physical integrity and
tight synchronization are often of different importance for different body parts. For
example, for a gesturing virtual human, tight synchronization with speech is pri-
marily important on the arm and head movement. At the same time, a physically
valid balancing motion of the whole body could be achieved by moving only the
lower body, where precise timing is less important.

My mixed dynamics system can apply kinematic motion (including procedural
motion) on certain selected body parts, and combine this with physical simulation

"This chapter is largely based upon the article:
H. van Welbergen, J. Zwiers and Zs.M. Ruttkay. Real-Time Animation Using a Mix of Physical Simu-
lation and Kinematics, Journal of Graphics, GPU and Game Tools, 14(4):1-21, 2009
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on the remaining body parts. Isaacs and Cohen [[123]] show how a combination of
inverse and forward dynamics can be used to animate an articulated body in a phys-
ically coherent manner, if either the joint acceleration or the joint torque is known
for each joint in the body, at each time frame. A similar approach is commonly used
in biomechanics to visualize the biomechanical movement model of interest on some
body parts (using joint torques), enhanced with known motion on other body parts
(using kinematic motion) [213]. My system builds upon the ideas in [123] in an
interactive application, using physical motion controllers and procedural kinematic
motion. Implementing the system described in [123]] entails implementing a full
physical simulator. Implementing such a new physical simulator from the ground
up is a daunting task. Nowadays, many physical simulators are available that handle
the movement of articulated bodies, collision detection and friction (among others:
(62, [106, 210, 264, [273]). I introduce a simplification in Isaac’s simulation model,
which allows the use of efficient iterative techniques to calculate the torques exerted
by the kinematically steered joints. Using this simplification, my system can be used
as plug-in for existing physical simulators.

In this chapter, the mixed dynamics technique is demonstrated on a virtual hu-
man by combining a physical controller for lower body balancing with kinematic
animation for the upper body movements. I show how my algorithm is used with
different types of kinematic arm and head animations, including parameterized pro-
cedural animation (for example, conducting motions or speech-accompanying ges-
tures) and motion captured animation. This chapter will discuss the implementation
of my system in detail, providing enough information for a robust implementation.
Chapter [8.7] shows how this system is implemented in Elckerlyc.

Throughout this chapter I make use of Featherstone’s concise notation of the
equations of motion using ‘spatial’ 6-vectors. The transformation from such spatial
vectors to the traditional 3-vectors is shown in Appendix [B. For a more thorough
overview of spatial algebra, I refer to [[75].

3.1 Mixed Dynamics

In a mixed dynamics system (see Figure [3.1)), motion is executed by a kinematic
model (which can consist of motion editing method(s) and/or procedural motion
model(s)) and by physical controller(s). The motion can be adapted in real time by
changing the parameters and timing of the kinematic motion or the desired state of
the physical controller. The kinematic model directly rotates the joints in the virtual
human. I use inverse dynamics to calculate the torque applied by the kinematically
steered body parts onto the physically steered body part, based on their rotations,
angular velocities and angular accelerations. The physical controller calculates the
joint torques that reduce the discrepancy between a desired physical state and the
current physical state. An existing physical simulation engine is then used to calcu-
late the joint rotations on the physically steered joints.

The body of the virtual human is divided in one physically steered part and one
or more kinematically steered parts. Each part consists of joints, connected by rigid



Section 3.1 — Mixed Dynamics

Online motion

specification
litiming, motion parameters desired state——
Kinematic joint rotations Inverse
] — joint velocities —P»| .
MOtIOﬂ mOdeI joint accelerations DynamlCS connector
/[\ | velocity,
joint rotations connectzr torque ag?:zlr:;gtt(i)orn v
v R
“ Physical < lont _ Physical
Simulation torques | Controller

\—current stateJ

joint rotations

Virtual Human

Figure 3.1: Mixed dynamics system.

bodies. I denote the set of joints on the physically steered part by P. In my example,
these joints are located on the lower body. Groups of kinematically steered joints
are denoted by K71, ..., K,,. The joints in each K need to be connected to each other
in a tree. P and all K,’s are mutually disjoint, that is, if a joint is steered, it is either
steered by the kinematic model or by a physical controller. The groups are set up
in such a way that each K connects to P at a single connector location C;. C; is
located on the position of the root joint of K, in the rigid body in P that connects
to this joint. See Figure for an example structure.

To realistically model the effect that kinematic motion has on the physically
steered body, the force exerted by each Kj is transfered to P via C;. This force
is calculated using inverse dynamics. The inverse dynamics algorithm needs the po-
sition, velocity and acceleration of each joint in K; and the velocity and acceleration
of C;.

The velocity and acceleration of C; is dependent on the movement of all joints
in the body, and can only be calculated accurately by an algorithm that takes the
accelerations qy (of all joints in K7, ..., K,,) and torques 7, (of all joints in P) into
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Khead

Chead CIeftarm

Crightarm
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Figure 3.2: A body divided into kinematic parts that steer the arms and head and a physical part
that steers the lower body and trunk.

account simultaneously. The equation of motion then has the form

m =H(q) M +C(a,q.£9), 3.1
Tp qp

where q, q and { are vectors of generalized joint position, velocity and acceleration,
f* is a vector of external forces (including gravity), H is the joint-space inertia matrix
and C is the joint-space bias force. q, q, f*, H and C are considered inputs for the
algorithm. Intuitively, g, and 7, can be calculated if gy and 7, are known.

Currently there is no real-time physics engine that solves the equation of motion
for such a hybrid specification of joint torque and acceleration. Furthermore, solving
the equation of motion given both forces and accelerations cannot be done using
efficient iterative approaches such as the recursive Newton Euler approach [213].
The recursive Newton Euler approach has a complexity of O(n), where n denotes
the number of joints. Typically, in a hybrid system, the equations of motion are
solved using a Lagrangian approach, which has a complexity of O(n?).

Because of this, I opted to sacrifice a slight amount of accuracy to gain calcula-
tion efficiency and allow my hybrid method to be used with current real-time physics
engines. Rather than calculating the acceleration ac; of C}, at the current frame, I
use ac’;, the acceleration of Cj at the previous frame to calculate the forces that each
K exerts on P. Using this simplification, the movement of the K’s can be modeled
as movement of isolated systems, connected to a moving base C;, that moves with



Section 3.1 — Mixed Dynamics

Table 3.1: Terms used in the Featherstone recursive Newton Euler approach

(i) set of children of body ¢
A(7)  parent of body i

Np number of rigid bodies

a, spatial gravitational acceleration

ve, spatial velocity of connector j

ac’; spatial acceleration of connector ; at the previous frame
\z spatial velocity of body i

a; spatial acceleration of body i

qdi generalized DoF value vector of joint ¢

Si(q;) matrix that maps generalized
joint velocities on the DoF to spatial joint velocity

I; spatial inertia tensor of body i

5 spatial net force on body i

fr spatial external force on body i

f; spatial force transmitted across joint ¢
Ti torque exerted on joint ¢

acceleration ac’j. The torque of each joint in each K can then be efficiently calcu-
lated using the recursive Newton Euler approach. The reactive torque of the parent
joint in K is then applied to the rigid body in P that is connected to this parent
joint. I make use of Featherstone’s formulation of recursive Newton Euler approach,
using ‘spatial’ 6-vectors [75]]. The transformation from such spatial vectors to the
traditional 3-vectors is shown in Appendix [B| Table summarizes the terms used
in Featherstone’s formulation of the recursive Newton Euler approach.

For the sake of clarity I model each K as a chain of joints. This is not a limi-
tation of the system, as the recursive Newton Euler approach can easily deal with
a branching tree of joints. K contains a chain of Ny rigid bodies, connected by
Np — 1 joints. An additional joint (joint 1) connects the chain to P at its connector
location. The bodies are sequentially numbered 1..Np, starting with body 1, which
is connected at the connector location C; by means of joint 1. The remaining joints
connect the rigid bodies in the chain: joint ¢ € 2.. Ng connects body i — 1 with body
i. Figure illustrates the numbering convention used.

joint1 body 1 joint2 body 2 joint3 body 3

@_OL_C

Figure 3.3: Numbering convention for joints and rigid bodies.

The spatial velocity of body i can be calculated as the sum of the spatial velocity
of its parent and the spatial velocity across the joint connecting it to its parent:

Vi = Vxa) +S:Q; (Vo = vg,), 3.2)
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where \(i) denotes the number of the parent of joint i. ¢, is the n-dimensional
vector of generalized joint velocity, in which n is the number of degrees of freedom
of the joint. S; is a 6xn matrix that maps ¢; to spatial joint velocity. The spatial
acceleration of body i can be calculated by differentiating equation [3.2}

a; = ay;) + Sill + Sidy (ap = ap, +ay) (3.3)
The net force acting on body i is given by the equation of motion
fZ»B = Iiai + Vi x* Iivi (34)

in which I, is the 6 x 6 spatial inertia tensor. x* is the spatial cross product of
force and velocity operator (see equation in Appendix [B)). Successive iteration
of equations (3.2} [3.3| and [3.4] with 7 ranging from 1 to Ny provides the net forces
acting on all bodies in the chain.

The spatial force transmitted from body A(i) to body i, across joint i is given by:

f; =% — " + £, (3.5)
(@)

in which pu(7) is the set of children of a body. For a chain of bodies

N if i = N
W)_{{Hl} if i < Np (3.6

fr is the net external spatial force acting on body i. The values of such external

forces are assumed to be known. For instance, gravity can be modeled as an external
spatial force | Figure illustrates equation for a chain of rigid bodies.

f1 f‘l 5 f2

[ 1O

fi

A\ 4

Figure 3.4: Spatial forces acting on rigid body 1. ff = f; + ff — f5, in which —f; is the reactive
force of joint 2 on body 1.

Successive iterations of equation with 7 ranging from Nz down to 1 will
calculate the spatial forces acting on all joints in the chain.

2However, it is more efficient to model a uniform gravitational field as a fictitious spatial acceler-
ation of C}, as I did using the gravitational acceleration vector a, in equation
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Finally, the torque at joint i is given by:
Ty = Sinu 3.7

The reactive torque —7; is the torque exerted by K; on a physical body consisting
of P and K. I assume that the inertia of K is small compared to the inertia of P
and apply a reactive torque —kr; directly to the rigid body from P that is connected
to K;. Alternatively, one can augment the inertia of P with the current combined
inertia of the rigid bodies in K;, by modifying the inertia tensor of rigid body from P
that is connected to K; on each simulation frame if the physical simulator allows one
to do this. If this is not the case, one could use the articulated body method ([75],
chapter 7) to calculate the spatial acceleration of a physical body P augmented with
K resulting from applying —7;. The torque to be applied on a physical body con-
sisting solely of P (as used in the simulator) can then be calculated to achieve this
desired spatial acceleration. In practice the assumption holds for kinematic gesture
motion on the arms and neck combined with physical motion on the lower body and
physically convincing motion is generated without requiring such computations.

For a value of & = 1, the exact torque generated by the kinematic chain is applied
to the rigid body in P. Values of & in the range 0 < k£ < 1 can be used to increase
the stability of the physical simulation. This can be seen as a crude way to model
an increase in muscle tension to dampen the effect of large movements. Values of
k > 1 can be used to exaggerated the effect of the joint torques of the kinematic
motion.

3.2 Mixed Dynamics In Practice

I illustrate the use of my mixed kinematic/physical simulation system by combin-
ing a physical balancing model for the lower body with kinematic motion: a pro-
cedural arm swing, conducting arm gesture, a speech-accompanying gesture or
a motion capture recording. Videos of these animations are available at http:
//thesis.herwinvanwelbergen.nl/.

3.2.1 Constructing a Physical Model of the Virtual Human

The physical model of the virtual human used in the examples in this chapter con-
sists of 15 rigid bodies, connected by 14 joints (see Figure [3.5). Meshes of these
rigid bodies were constructed by segmenting the mesh of the original virtual hu-
man, adapting it to be skintight, and closing the gaps in the resulting segments. I
assume that the rigid bodies have a uniform density p. This density can be mea-
sured directly, from cadavers for instance, or using scanning systems that produce
the cross-sectional image at many intervals across the segments [[307]. I use the
density table from [307]], which provides densities for all segments but the sacroil-
iac, where I use the density given in [[67]. Given the uniform density of each body
and its closed polyhedral shape, its mass, its center of mass and its inertia tensor
can be determined using [195]]. The results are shown in Figure 3.5
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body part | p mass center of mass
kg/l | kg (x,y,z) in m

1 | head&neck | 1.11 | 4.80 0.00 1.63 0.01
2 | upper-body | 1.03 | 25.20 | 0.00 1.28 0.02
3 |upperarm | 1.07 | 2.95| £0.31 1.44 -0.01
4 | lowerarm | 1.13| 1.59 | £0.32 1.17 -0.03
5 | hand 1.16 | 0.70 | £0.27 0.88 -0.01
6 | sacroiliac 1.03 | 10.56 0.00 1.00 0.01
7 | upper leg 1.05| 8.79 | £0.09 0.77 0.01
8 | lower leg 1.09 | 3.73 | £0.10 0.34 -0.03
9 | foot 1.10 | 1.41 | £0.10 0.04 0.02
Total 94.21

Figure 3.5: Segmentation of the virtual human into rigid bodies and the inertial properties of the
bodies

I base the joint rotation limits for the physically steered joints on data from male
US air force personal [310] (see table [3.2)).

Precise collision shapes are typically not crucial in Elckerlyc’s applications, and
collision detection is fast when simple bounding shapes, such as boxes, capsules
and spheres are used. In the examples in this chapter, I set the collision shape of the
rigid bodies to the bounding box of their mesh. If more precise collision detection
is needed, the actual mesh of the rigid body can be used as a collision shape, or the
collision shape can be approximated with a combination of simple bounding shapes.

3.2.2 Obtaining Joint Velocity and Acceleration

The joint velocities and accelerations for each joint are calculated from their rotation
data at time ¢, t — h and t + h. I define p(¢) as the rotation of a joint at time ¢. If
the simulation rate is set to step size h, it is possible to reuse the p(¢ + i) and p(¢)
values from the previous simulation step, so that in each step only p(¢ + /) needs to
be calculated. In the examples, h is 3 ms.

3.2.2.1 Reparameterization

The rotation of the joints is represented by quaternions. The quaternions p and
—p represent the same rotation. For a sequence of quaternions, representing the
rotation of a joint, switches between these alternate representations causes large
differences between the quaternion components of quaternions that actually rep-
resent (nearly) the same rotation. This is undesired for signal analysis techniques
that work on quaternion components, such as filtering and numerical differentia-
tion. Therefore I reparameterize p(¢) and p(¢ + h) so that the distance between
the quaternion components of p(t — h) and p(¢) and between p(¢) and p(t + h) is
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Table 3.2: Joint rotation limits, in degrees, in a right-handed coordinate system, with the y-axis
pointing up and the virtual human facing the positive z direction. Rotation limits for
the shoulder around the y-axis are not provided in [310].

jOint Lmin Tmaz | Ymin Ymaz | “min Zmax
left wrist -27 47 - -1 -90 81
right wrist -27 47 - -| -81 90
left forearm - -1 -103 | 113 - -
right forearm - -|-113 | 103 - -
left elbow -142 0 - - - -
right elbow -142 0 - - -

left shoulder -188 61 ? ? 1 -48 | 134
right shoulder | -188 61 ? ?-134| 48

neck -60 61| -79 79 | -41 41
left ankle -38 35 - -| 24| 23
right ankle -38 35 - - 23] 24
left lower leg - -1 -43| 35 - -
right lower leg - -| -35 43 - -
left knee 0| 113 - - - -
right knee 0| 113 - - - -
left hip -113 0| -31 30 | -31 53
right hip -113 0 30| 31| -53| 31
minimized:
B(t) = { —p(t) if p(t—h)-pt) <0 (3.8)

p(t) otherwise

Blt+h) = { —p(t+h) if pi)-pt+h)<0

p(t+h) otherwise (3.9)

where p(t) is a reparameterized quaternion rotation at time ¢ and p(¢) is the original
rotation at time ¢.

3.2.2.2 Filtering

Motion capture data contains high frequency noise. This noise gets amplified with
time differentiation [307]. Noise will dominate the signal after double differentia-
tion. To prevent this, I make use of the 2-pass Butterworth low pass filter proposed
in [307] to cut off high frequency noise before differentiating. The filter is described
by:

x, if <2

aoTi + a1 i1 + T + b1 + boZ;_» otherwise (3.10)

where Z; is the filtered data at frame ¢ and z; is the raw data at frame 7. In a
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Butterworth filter, the filter coefficients ag, a;, as, by and b, are calculated as follows:

L _ tan(nfe/f)
¢ C
aozL, with K; = v2w., K,=w?
1+ K, + K, ¢
a1 = 2ag (3.11)
g = ag
. 2aq
by = —2a9 + K3, with K3;=—
Ko

b2:1—2a0—K3

where f. is the desired cutoff frequency, f, is the sample frequency. The digital filter
introduces a phase shift in the output signal relative to the input signal. To cancel
out this phase shift, the once-filtered data is filtered again in the reverse direction
of time [307]. C is a correction factor for each additional pass of the Butterworth
filter:

C=(2n —1)"% (3.12)

qn is the number of filter passes. In my case, C' = 0.802. The exact value of f. is not
very critical, values of around 15-25 Hz work well in practice. I filter the s, z, y and
z components of the quaternions in the keyframe data separately and re-normalize
the quaternions after filtering. If the quaternions are reparameterized according to
equation the renormalization only slightly adjusts the filtered quaternions in
my mocap recordings. Procedural motion is typically already smooth by design and
does not need filtering.

3.2.2.3 Calculating Angular Velocity and Angular Acceleration

For ease of calculation, I model all joints driven by kinematic motion as ball joints,
that is: with three rotational degrees of freedom. If I choose a joint’s angular velocity
vector w in the joint’s own coordinate system as its velocity variable q;, S reduces to

100
010
00 1

S=10 0 0 (3.13)
000
0 0 0]

[75]. w and & can be determined from the quaternion rotation p(¢) and its deriva-
tives:

w

H =2p(t)p(t) " (3.14)

H = 2p(t)p(t)”! (3.15)
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p(t) and p(t) are determined using numerical differentiation of the reparame-
terized and optionally filtered joint rotations p(¢ — k), p(t) and p(¢ + h):
_p(t+h) —plt-h)

p(t) = A (3.16)

() = 2N =20 T RUZD (3.17)

3.2.3 Simulation Details

The Open Dynamics Engine (ODE) [273] is used to generate the motion of the lower
body, based on the joint torques provided by the balance controller and the torques
calculated by inverse dynamics. It also handles the collision detection and contact
of the physical model of the lower body with the floor. Friction of the feet with
the floor is handled using ODE’s simplification of Coulomb friction. In very long
simulations (longer than 1 hour), small foot-lifts and accumulated simulation errors
can slightly move the feet over time. If extra stability or calculation speed is needed,
friction handling can be omitted by setting foot constraints that effectively ‘glue’ the
feet to the floor, preventing them from moving completely. To take advantage of
multi-processor systems, the physical simulation runs in a separate thread.

3.2.4 Balancing Controller

I use the balancing controller described in [312]]. This controller dampens the ve-
locity of the center of mass and steers it toward its desired position, specified by a
predefined hip height and a horizontal balance location which lies in between the
feet. The output of the controller are the torques, to be applied to hips, knees and
ankles. To adapt to a body with different inertial properties, a single stiffness multi-
plier is used on all spring gains in the PD-controllers used in the balance controller.
An estimation of the value of this stiffness multiplier can be calculated (see [[114]),
but in practice it’s easier to tweak it manually. A video of the balance controller, us-
ing virtual humans with different physical properties (fat vs thin and tall) is shown
athttp://thesis.herwinvanwelbergen.nl/.

3.2.5 Results

Figure shows a series of captured frames of animation generated with my sys-
tem, using a combination of my physical balance model with a procedurally gener-
ated large arm swing. The motion enhancement created by my system is subtle for
smaller kinematic motions and therefore hard to capture on a series of images. I re-
fer the interested viewer to the videos at http://thesis.herwinvanwelbergen.nl/
to see the system in action with more subtle kinematic motions, including several
procedural conducting and other gestures and motion captured arm and head move-
ments. I also reproduce one of the motions described in [[123]]: a physical swing is
put into motion with a kinematically moving body.
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[ . ) -

Figure 3.6: Mixing a kinematic arm swing with physical balancing. The blue virtual human is
animated with physical simulation and kinematic arm motion, the red virtual human
is animated solely with kinematic motion. The wireframe on the right side of each
picture shows the visualization of the physical model of the lower body of the virtual
human.
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3.2.6 Performance

In a performance test, my system animated up to 30 conducting virtual humans in
real time on a desktop computer (2.83 GHz, Quad core, 4Gb ram, Nvidia GeForce
8800 GTS video card). Each conductor is animated by its own procedural animation
model and physical balance model. The physical simulation frame rate is set to 200
fps and the visual frame rate is around 50 fps. Roughly half of the simulation time is
spent on the procedural animation, the other half on physical simulation. The video
of this performance test is shown at http://thesis.herwinvanwelbergen.nl/.

Like my method, motion tracking can be used with any existing physics engine.
Motion tracking (see Chapter for an overview of techniques) uses physi-
cal simulation on the whole body. A tracking controller is used to compute the
torque on each joint. The desired state of this controller is the desired rotation of
the joint, as specified in motion capture or other kinematic data. Motion capture
noise, tracking errors and environmental changes can easily disturb the balance of a
character whose body is animated using a tracking controller. Therefore an explicit
physical balance controller is still needed. Because tracking makes use of physical
controllers, the motion generated by tracking has a time-lag relative to the kinemat-
ically specified motion and it is not guaranteed that the joint rotations specified in
the mocap data are actually achieved. This makes tracking unsuitable for applica-
tions where precise timing and limb placement is needed.

My method potentially preserves the characteristics of the kinematic motion bet-
ter than tracking methods. Furthermore, my method is far more efficient than track-
ing methods, not only because solving the equations of motion in my hybrid system
is more efficient ( O((n — k)* + k) vs O(n?®) using ODE), but also because it avoids
the expensive double integration of acceleration for the kinematically steered joints
and does not need to do collision detection on those joints. A tracking method
would be preferred over my method if realistic collision detection and response on
kinematically steered joints is needed and precise timing and limb placement is less
crucial.

Unlike methods that model the physical balancing solely through the displace-
ment and velocity of the center of mass [[201,[211]], my method also models the force
transference from the arms to the trunk. This results in a more natural ‘sharper’,
less smooth movement of the lower body when large accelerations occur in arm and
head movement. The videos at http://thesis.herwinvanwelbergen.nl/ illustrate
this with a clapping motion and several conducting motions.

3.3 Discussion

I have developed a system that can combine kinematic motion with physical simu-
lation in a physically coherent manner. The balance controller used in my system
is relatively simple. What I did not model yet is the fact that human balancing is
not a purely reactive process. The balance controller therefore lacks the notion of
anticipation. For example, it does not move backward in advance to anticipate a
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large arm swing forward, as a real human might do. This is not a limitation of the
mixed dynamics system itself, another more elaborate balance controller could be
designed that takes this into account.

The inverse dynamics analysis of kinematic movement does not only yield the
reactive torque, but also the torque on all other kinematically steered joints. This
type of information can potentially be used in the motion planning stage, for exam-
ple to drop a load if it is too heavy, or to show an angry facial expression when some
motion costs more effort than anticipated.

Other hybrid physical simulation/kinematic systems [262, [325, 1326] have been
designed to switch between full-body kinematic motion and full-body physical simu-
lation, depending on the current situation’s needs. Such systems can show realistic
interaction with the environment (e.g. falling) when needed. Rather than doing
full-body switches, I allow switching to a different mix of physically and kinemat-
ically steered joints in real time. One of the usage scenarios for this is the virtual
conductor (see also Chapter [8). A conductor typically conducts with his right hand
and uses the left hand only for expressive cues. If the left hand is not needed, it
should hang down loosely. I modeled this loose movement using a simple PD pose
controller (see the movie on the web page of this thesis). The desired state for the
controller is the desired rotation of the shoulder and elbow joints. The animation
needed to create the expressive left hand cues require tight synchronization to the
music and is therefore generated by procedural motion. Switching from loosely
hanging arm movement to expressive left hand conducting gesture and back oc-
curs in real time and requires switching between different mixes of physically and
kinematically steered joints. A switch from kinematical to physical control on K is
implemented by augmenting P with the rigid body representation of K; and apply-
ing the current joint velocity and rotation to the matching joints in the new physical
representation. This will obviously result a similar torque being executed on P.
Therefore such a switch results in smooth movement. A switch from the physical to
kinematic control removes the physical representation of a body part from P and
inserts a new kinematic chain K. To ensure that no sudden torques occur on the
new physical body, the movement on K directly after the switch must be similar
to the movement in its former physical representation. Chapter discusses the
animation plan requirements for such switching and its setup in Elckerlyc in more
detail.



Chapter 4

The Motor Plan

The motor plan of a virtual human describes how it achieves some intentional goal
(e.g. walk to a door and open it, inform a student that he needs to work harder)
using a set of coordinated PlanUnits. In addition to that, it may contain PlanUnits
that reflect the virtual human’s unconscious behavior (blinking, breathing, etc.).

MotionUnits are a specific category of such PlanUnits that execute computer ani-
mation. In the previous chapters, I have discussed how several animation techniques
can be employed to generate the motion for virtual humans. Here I show how sev-
eral state-of-the-art animation techniques are implemented in the MotionUnits of
my virtual human platform Elckerlyc.

The PlanUnits in a motor plan are tightly coupled to each other in both timing
and shape. In the previous chapter I have described the mechanical coupling be-
tween PlanUnits; this chapter shows that, in addition to this mechanical coupling,
PlanUnits are also tightly coordinated through neurological coupling processes.

The coordination of the PlanUnits in the motor plan thus reflects the ordering of
PlanUnits needed to achieve some intentional goal or execute some reactive behav-
ior and the constraints that satisfy the neurological coupling between the PlanUnits.
This chapter illustrates several such neurological couplings. In Chapter |5, I show
that the constraints that describe the coordination between PlanUnits within one’s
own body are very similar to the constraints that describe our coordination with
others. In virtual human applications, the motor plan is typically described by a
multimodal specification language. Such languages (see Chapter [6.1]for a historical
overview) describe the coordination between PlanUnits as constraints between their
key time moments (keys).

4.1 PlanUnits: Elements of Motor Movement

I model the execution of motor movement (including speech) as the coordinated
execution of PlanUnits that form a multimodal motor plan. A similar modular or-
ganization of motion plans is found in neuroscience [31}, 276] and most computer
animation approaches (among many others: [96, (104, [152] 203} 218}, 312]).

Each PlanUnit has a predefined semantic function (for instance: a three-beat
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conducting gesture, a speech clause, an eyeblink). It has at least a certain start time
and may contain several other key time moments (further called keys) that are rele-
vant for its coordination with other PlanUnits or events in the (virtual) world. Some
PlanUnits represent discrete actions that have a clear end (for example: a speech
clause, a gesture). Others represent ongoing behaviors (for example: standing in a
balanced pose, letting an arm hang down loosely). PlanUnits can represent behavior
that is executed ballistically, or behavior that is continuously adapted on the basis of
perceptual or other feedback. To allow the latter, the timing and parameterization
of ongoing PlanUnits can be updated continuously. Thus, PlanUnits can be seen as
a mapping f from current time ¢ and a set of parameter values a to a set of control
primitives (for example: a pose in animation) c.

f(t,a) =c (4.1)

To allow parameters to be used over different embodiments of a virtual human,
they can be defined in units relative to the embodiment. For example, a pelvis
height parameter in a balance controller is better defined as a percentage of leg
length than in an absolute value in meters. The MPEG-4 Facial Animation standard
[215] achieves face independent parameterization of animation in this manner: its
animation is specified in specific measurement units, called Facial Animation Pa-
rameter Units, which represent fractions of key facial distances (e.g. the distance
between the eyes, the mouth width, etc.).

Furthermore, parameters should be independent of execution channel. For ex-
ample, speech volume can be defined in percentage rather than decibel so that it can
be used in both text synthesis (mapping to font size) and speech synthesis (mapping
to audio volume).

4.2 MotionUnits: the PlanUnits of Animation

MotionUnitd!| form the specific category of PlanUnits that steer the motion of a vir-
tual human. Elckerlyc uses two types of MotionUnits: kinematical MotionUnits
steer the virtual human through rotations and translation of joints in its skeleton,
and physical MotionUnits that use torques and forces to steer the physical represen-
tation of the virtual human. Each MotionUnit acts on a selected set of joints.

In Chapter [2.2]I defined a motion primitive as the mapping of time to the DoF
values of a skeleton. A motion space was defined as the collection of motion primi-
tives with the same semantic function. A MotionUnit is a continuous mapping from
both time and parameter values to the DoF of a skeleton and has a specific semantic
function. Unlike a motion primitive which has a fixed path of DoF values it follows
while being executed, a MotionUnit has the inherent ability to change its motion on
the basis of parameter value changes or timing changes while it is being executed.

!Motion structures that have a function and granularity that is similar to Elckerlyc’s MotionUnit
have been called gestures [104} 2091, controllers [280, [312]], verbs [240], motion units [241]], local
motor programs [[155,[319]], atomic animated actions [218]], clips [96]], action units [267]], or actions
[107, 203} [217] in some other literature on virtual humans or computer animation.
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Once the MotionUnit is fully executed, the path of DoF values it created can be
seen as a motion primitive. The different motion primitives that can be created by
a MotionUnit thus form a motion space whose size is dependent on the number of
parameters the MotionUnit supports and their range.

Like the clips defined by Grassia [96]], MotionUnits are executed on the basis
of a canonical time value «, rather than directly on absolute time. Grassia mea-
sures canonical time in integer key frame numbers. Because most of Elckerlyc’s
MotionUnits are constructed using procedural motion models rather than keyframe
animation, canonical time « is represented using a value between 0 and 1 instead
(o = 0 refers to the start of the motion, o = 1 to its end).

MotionUnits contain one or more motion phases, separated by keys. Each key is
assigned a predefined canonical time value 0 < «; < 1 that indicates where it is
located within the MotionUnit (See Figure for some typical phases and keys for
a gesture MotionUnit).

B & &)

|
Start Ready Stroke Relax End

Stroke-start Stroke-end
Preparation Pre-stroke In-stroke Qut-stroke P"St Stmke Retraction
hold

Figure 4.1: Typical typical phases and keys for a gesture MotionUnit (picture from http://wiki.
mindmakers.org/projects:bml:main).

Given the current set of parameter values a and a canonical time 0 < a < 1, a
MotionUnit can be executed, typically by rotating some joints of the virtual human.
I employ a time warping technique to set up the mapping from absolute time to «
(see also Chapter|8.7.5).

4.2.1 Procedural MotionUnits

Procedural MotionUnits rotate joints over time as specified by mathematical expres-
sions that take « as well as a vector a € R" as parameters. These expressions can
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be used to steer joint rotation directly, to position the skeletal root or to position
the wrists and ankles using analytical inverse kinematics [287]. The procedural
MotionUnits support the specification of wrist/ankle positions as continuous math-
ematical formulas in both global (world) and local (shoulder) coordinate systems.
For example, the expression

<EndEffector local="false" target="r_wrist"
translation="0; (1-alpha)*starty+alpha*endy;0.3"/>

describes how the global position of the right wrist should trace a vertical path, with
starty and endy position parameters as specified.

Joint rotations can be specified as continuous mathematical functions of o and
a, or as global or local rotation values defined procedurally (as a function of a) at
key times (in a similar manner as in [104, [111]]).

The parameter values a can be changed in real time, changing the motion shape
or timing. All mathematical expressions are evaluated using the Java Math Expres-
sion Parserf| Custom function macros can be designed. I have defined such macros
for Hermite splines, TCB splines [146] and Perlin noise. Additional examples of
XML-specifications of procedural MotionUnits can be found on the web page of this
thesis.

This design — allowing arbitrary mathematical formulas and parameter sets to
be used for motion specification — is more flexible than traditional procedural an-
imation models that define motion in terms of splines or other predefined motion
formulas and use fixed parameter sets [58], [104, [111]]. Since it is compatible with
these traditional methods, Elckerlyc can make use of such existing procedural ani-
mations. I have semi-automatically converted several MotionUnits from Greta [[104]
into the XML description for procedural animation. Motion capture animation is also
incorporated as a procedural MotionUnit.

4.2.2 Custom Programmed Procedural MotionUnits.

While this generic procedural motion definition in XML is very flexible, it is some-
times more convenient to author procedural MotionUnits by programming them
directly. By doing this, the motion author gains direct access to functionality within
Elckerlyc’s AnimationPlayer. This functionality includes the prediction of a pose at a
given time (see Section [4.2.4)) and provision of the current joint pose of the virtual
human, which makes it very easy to author a MotionUnit with a flexible start and/or
end pose. Several such Custom MotionUnits have been implemented in Elckerlyc.

The Gaze MotionUnit The Gaze MotionUnit that steers the head and eyes is im-
plemented on the basis of Tweed’s biological model of gaze [293]. This model
provides a comfortable rotation of the head given a certain gaze direction. Because
the head usually moves more horizontally than vertically, the model scales horizon-
tal and vertical components of the desired head rotation differently. The torsional
component of the head rotation is scaled to fit Donders’ law of the head [225]]. The

2Singular Systems, http://sourceforge.net/projects/jep/
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desired eye rotation is recalculated for each frame, given the current head rotation.
This models the eye overshoot that is observed in gaze. That is, the eye can lock
onto the gaze target before the head does and then glide ‘back’ to achieve its final
position as the head catches up.

Tweed’s model also provides head and eye velocity profiles, which are currently
not implemented in the Gaze MotionUnit. Instead, the Gaze MotionUnit uses a
simple bell shaped velocity profile.

The rotation axis of the head during gaze movements is approximately constant
throughout the movement [294]]. The gaze MotionUnit limits the eye gaze rotation
to be within the biologically motivated rotation limits (obtained from [293]).

Saccades Saccades are quick, simultaneous movements of both eyes in the same
direction, used (among other things) to shift gaze. The duration of a saccade is
linearly dependent on its amplitude (in radian) [45]]. Saccades have a symmetric
velocity profile. The peak velocity of the saccade is linearly dependent on its ampli-
tude (with a plateau velocity of around 8.7 radian / s) [45]].

Elckerlyc’s eye-only gaze MotionUnit adheres to the duration rule specified in
[45]]. Its velocity is currently set as a constant rather than the more biomechanically
correct symmetric peak described above. Again, the eye rotations are limited to be
within biologically motivated rotation limits.

The Pointing MotionUnit Pointing gestures are implemented using a custom Mo-
tionUnit that moves the pointing arm from its start pose to a pointing target, keeps
it there during the stroke phase, and then moves it back to the starting pose. The
pointing gesture has a symmetric retraction and preparation movement, motivated
by similar symmetry in pointing observed in humans [140, [303].

Many studies have shown that the hand trajectory for reaching and pointing
movements has a bell-shaped velocity profile [320]. A clear acceleratory and de-
celeratory phase can be recognized. This bell is usually asymmetric, that is, the
length of the acceleratory phase can be different from that of the deceleratory
phase. The Pointing MotionUnit provides a custom, configurable sigmoid function
that describes the relative position-time diagram of the arm position. This sigmoid
allows one to adjust its steepness and the length of the acceleratory and decelera-
tory phases. It thus achieves an adjustable bell shaped velocity profile. The exact
implementation is detailed in [303].

4.2.3 Physical MotionUnits

Physical MotionUnits are executed by physical controllers. Physical controllers use
techniques from control theory to steer the virtual human’s ‘muscles’ in real time
using Newtonian physics, taking friction, gravity, and collisions into account. The
input to such a controller is the desired value of the virtual human’s state, for ex-
ample desired joint rotations or the desired position of the virtual human’s center
of mass. The output is a torque applied to one or more joints. To a certain extent,
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such controllers can cope with, and recover from, external perturbations. I have
implemented several physical controllers.

Pose Controllers Simple proportional derivative controllers are used as pose con-
trollers that loosely keep a body part in its desired position, while still being affected
by forces acting on the body. The pose controller acts upon a selected hinge or ball
joint.

Balance Controller Ihave implemented the balance controller described in [[312].
This controller dampens the velocity of the center of mass and steers it toward
its desired position, specified by a predefined hip height and a horizontal balance
location which lies in between the feet. The output of the controller are the torques,
to be applied to hips, knees and ankles.

Rag doll Controller The rag doll controller is a controller that acts upon all joints
of the physical body of the virtual human it steers. It applies no torques to any of
these joints. This controller makes the virtual human collapse like a rag doll, an
effect that can be used to simulate movement during heavy collisions (e.g. being hit
by a car) or to simulate death animations.

Compound Controllers A compound controller combines several controllers into
a single controller. This combination is described in an XML specification file. Fig-
ure shows an example of such a compound controller: a controller to let the
left arm hang down loosely is composed of three PD controllers controlling the left
shoulder, left elbow and left wrist joint respectively. Compound controllers are com-
posed of a set of required controllers that are essential for their functioning and a
set of desired controllers that should be enabled if the physical representation of the
virtual human allows it (e.g. it contains the joints steered by the desired controller).
For example, the loosely hanging left arm controller of Figure [4.2| only dampens the
movement of the left wrist if it is available in the physical body.

4.2.4 Transition MotionUnits

Transition MotionUnits are used to create transitions between other MotionUnit
types. They interpolate between the final state (position and velocity) of one Mo-
tionUnit and the predicted initial state of another motion unit. Transition Motion-
Units are specified solely by their start and end times and the set of joints they act
upon. At animation time, the start pose is taken from the current joint configura-
tion of the virtual human at the moment that the transition MotionUnit starts. The
end pose is determined by an Animation Predictor. The Animation Predictor uses a
copy of the motor plan containing only the predictable MotionUnits of the original
plan. Predictable MotionUnits are those MotionUnits that deterministically define
the pose they set at any given time (for now, only procedural MotionUnits).



Section 4.3 — Intrapersonal Multimodal Synchrony | 65

<CompoundController xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt">
<required>
<Controller class="hmi.physics.controller.BallJointController"
id="shoulder">
<bmlt:parameter name="joint" value="1l_shoulder"/>
</Controller>
<Controller class="hmi.physics.controller.HingeJointController"
id="elbow">
<bmlt:parameter name="joint" value="1l_elbow"/>
</Controller>
</required>
<desired>
<Controller class="hmi.physics.controller.HingeJointController"
id="wristx">
<bmlt:parameter name="joint" value="1l_wrist"/>
<bmlt:parameter name="axis" value="0"/>
</Controller>
<Controller class="hmi.physics.controller.HingeJointController"
id="wristz">
<bmlt:parameter name="joint" value="1l_wrist"/>
<bmlt:parameter name="axis" value="2"/>
</Controller>
</desired>
</CompoundController>

Figure 4.2: A compound controller specification for a loosely hanging left arm.

I have designed a transition MotionUnit based upon a slerp transition on each
joint and one that creates a C? continuous rotation curve between joint rotations
[143].

4.3 Intrapersonal Multimodal Synchrony

The movement of the body should not be seen as a process of executing a set of
completely independent PlanUnits steering separate body parts. The PlanUnits are
tightly coupled. In Chapters[2]and [3] I discuss models for coordination in the form of
mechanical coupling between limbs (e.g. through force transference between body
segments). This section discusses the coordination between PlanUnits (including
the coordination of motion with speech) at a neurological level.

4.3.1 Inter and Intra-limb Synchronization

Periodic bimanual movements are often the focus of studies on basic organization
of human actions [102] 133}, 134, 191 237]. A common finding in all these stud-
ies is that only two patterns of rhythmic bimanual coordination can be achieved
without training: a stable ‘in-phase’ pattern and a less stable ‘anti-phase’ pattern.
At higher movement frequencies, the stability of the anti-phase patterns decreases,
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eventually resulting in a loss of stability, typically followed by an involuntary tran-
sition to the in-phase pattern [133]. When the frequency is then reduced again,
the movement does not automatically return to an anti-phase pattern [[102]. Simi-
lar coordination is observed in the organization of the movement of the elbow and
wrist joints within a single limb [[135]] and between synchronized movement of the
knee and elbow [136]. The spatial orientation of the body also determines which
pattern is stable (and thus called in-phase). The synchronized flexing/extending of
homologous muscles may be an in-phase pattern in one body pose and the anti-
phase pattern in another [135] (136} [191]]. When the two coupled components are
not equivalent (e.g. in mass), absolute phase and frequency synchronization may
no longer be observed; only tendencies for in-phase and anti-phase coordination
are present, interspersed with desynchronization and phase wandering [[136]]. Typ-
ically, two stable states still exists that are close to (but not exactly at) either a 0°
or 180° phase difference between the components. Again, the anti-phase pattern
is less stable. At higher movement frequencies its stability decreases and involun-
tary transitions to the in-phase pattern occur. In such asymmetric systems, fixed
point drifts (of the stable phase) are observed with frequency changes. Treffner
and Turvey [291]] show that, even when the coupled components are equivalent,
slight differences in phase can occur between, for example, the left and the right
hand. Right-handed individuals typically ‘lead’ the movement with their right hand
and left-handers with their left. This phase difference between hands increases with
movement frequency.

Haken, Kelso and Bunz [[102] propose a model of two coupled oscillators that fit
the observations of symmetric limb coordination (the HKB-model). This model was
later extended to fit the synchronization observations of inequivalent limbs [[136].
Treffner and Turvey [291]] provide an asymmetric extension of the HKB model which
provides a small anisotropic coupling element to fit the observations on handedness.
The exact channel of the coupling between the oscillators is not given in these mod-
els. Ridderikhoff et al. [237] show that a combination of several interlimb inter-
actions underlie the stability characteristics of rhythmic interlimb coordination: the
integrated timing of feed-forward control signals, phase entrainment through con-
tralateral afference (=reception of sensory signals) and timing corrections based on
the perceived error of relative phase.

Tight synchronization also occurs between discrete (rather than rhythmic) ac-
tions: Kelso [[137] shows that when subjects have to point at an easy and a hard
target simultaneously with two hands, the movement of the hands is tightly coordi-
nated. That is, the timing and the velocity profile of the hand movement of the easy
task adjusts to that of the hard task.

Adamovich et al. [3] show some interaction effects between rhythmic and dis-
crete arm movements of the same arm. Subjects perform a rhythmic elbow move-
ment around a target and are instructed to move it to another target upon a trigger.
The initiation of the discrete movement to the new target resets the phase of the
rhythmic movement. The onset of the discrete movement was confined to a limited
phase window in the rhythmic cycle. Sternad et al. [276] replicated these findings
and show that the movement duration of the discrete movement was influenced by
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the period of the oscillation.

4.3.2 Speech-Gesture Synchronization

Treffner and Peter [290] argue that since English speech seems rhythmical at the
level of stressed syllables, it could potentially be coordinated with rhythmic move-
ment. In an experiment they let subjects tap their index finger to the rhythm of a
metronome, while saying /ba/. The subjects were asked to move either in-phase
(synchronize jaw maximum down with finger maximum down) or in anti-phase
(synchronize jaw closed with finger maximum down). The subjects were able to
maintain both the in-phase and anti-phase coordination for all frequencies. The
anti-phase coordination was less stable, and relations between frequency and phase
were shown to match the asymmetric extension of the HKB model.

Others have looked at speech/gesture coordination in more natural settings.
Condon and Ogston [60] observed —using micro-analysis of video images and
speech— that the morpheme, syllable and word boundaries of speech are in align-
ment with the points in which the movement of limbs, head, eyes, eyebrows and
mouth changes direction.

Later research provided further insights into the exact nature of this synchro-
nization and revealed synchronization between speech and gesture at higher (e.g.
locution, locution group and discourse) levels [[139, 176, [189]. Gestures are hier-
archically organized in a way similar to the organization of speech [139]. Kendon
[139] observed that the elements of a similar ‘level’ within these two hierarchies are
strongly synchronized (see Figure [4.3).

I provide a brief overview of some of these synchronizations here, the reader
is referred to [[176] for an extensive overview of both the synchronizations and
synchronization mechanisms.

The left side of Figure shows the organization of gesture used in this thesis.
A gesture unit is defined as the period of time between successive rests of the limbs.
A gesture unit begins when a limb starts to move, and ends when it has reached
its resting position again. A gesture unit can contain several gesture phrases. The
gesture phrase consists of one or more movement phases:

* preparation (optional), in which the limb moves away from the resting posi-
tion to a position in gesture space where the stroke begins.

— pre-stroke hold (optional) is the position and hand posture reached at the
end of the preparation itself. This may be held until the stroke itself be-
gins. Pre-stroke holds occur if for some reason the stroke onset is delayed
[189].

* the stroke (obligatory) is the peak of effort in a gesture. In this phase, the
meaning of the gesture is expressed.

— post-stroke hold (optional) is the final position and posture the hand
reaches after a stroke. This may be held until the retraction begins. Post-
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stroke holds occur if, for some reason, the co-expressive spoken utterance
is delayed [189].

* retraction (optional) is the return of the hand to a rest position.

Gestural units can be grouped by a common feature, typically a consistent head
movement pattern, that occurs in all of them. At the highest level, Kendon noted
consistencies in arm use (left, right, both) and body posture.

A speech stream can be segmented into intonation tune units or tone units. A
tone unit is a group of syllables over which there is a complete intonation tune
(e.g. rise-fall, so roughly a clause or a sentence). The gestural stroke typically
occurs at or slightly before the stressed syllable in such a tone unit ([82, (139, 1891,
but challenged by [243]). Loehr [176] provides a more detailed account of this
synchrony. He observed that the apex of the stroke of a gesture tends to align with
a pitch accent in speech.

Tone units contain intermediate phrases. An intermediate phrase is defined by
an intonation contour with one or more pitch accents and a phrase accent, but no
(final) boundary tone. Gesture phrases align with intermediate phrases [176]. The
gesture phrase typically starts and ends slightly before the intermediate phrase (on
average with 100ms). Typically there is a one to one alignment, but often multiple
gesture phrases align with one intermediate phase. The reverse (the occurrence of
multiple intermediate phrases within one gesture phase) occurs seldom.

Tone units combine into groups called locutions. Locutions are usually complete
sentences. Kendon observed that all locutions have their own gesture unit. That
is: the boundaries of the locution are associated with the gesticulatory limb either
being in the rest position or returning to the rest position.

Locutions combine into locution groups; that is, locutions sharing a common
intonational feature apart from other groups of locutions, for example they might
all end with low-rise. Consistent head movement patterns are typically observed
over all locutions within a locution group. Locution groups combine into locution
clusters.

Locution clusters can be seen as discourse paragraphs. They are separated by
a pause or a marked change in voice quality, loudness or pitch range. During a
locution cluster, speakers often consistently gesture with the left, right or both hands
[139,[190].

Locution clusters combine into a discourse, which is equivalent with a speaker’s
turn. Kendon observed that speakers sustain a certain body posture that contrasts
with the posture before or after the discourse.

Cassell et al. [49] show that posture shifts occur frequently at both locution
cluster (which they call discourse segments) boundaries and discourse boundaries.

Loehr [176] notes that eye blinking synchronizes with gesture and speech as
well:

I found that eye blinks typically happen on the rhythmic pulse. A casual
viewing of my video data (or of anyone speaking) will confirm this. Eye
blinks co-occur not only with stressed syllables, but with bodily pikes
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Figure 4.3: The coordination between gesture and speech.

[Loehr’s ‘bodily pikes’ refer to head movement apexes and gesture stroke
apexes] as well. Even more intriguingly, upon close examination, eye
blinks don’t typically happen on the rhythmic pulse, but just prior to it,
so that the eyelids are re-opening on the rhythmic pulse. It’s as if eye
blinks are a syncopated note, slightly anticipating the rhythmic pulse.

[...]

As can be seen, each eye blink is timed so that it ends (i.e. the eyes are
re-opened) with other pikes (including a waveform burst), on a rhythmic
pulse. This is very common in my data, and three out of four subjects
timed most of their eye blinks thus. It’s almost as if the speaker were
holding the eyes closed until the rhythmic moment, and then opening
them, just as manual gestures hold their position, and then perform the
stroke at the appropriate moment. In terms of manual gestures, then,
the closing of the eyelids would be the preparation, the period of closure
would be the hold, and the re-opening would be the stroke. Its inter-
esting that most eye blinks in my data took longer than the minimum
apparently needed to moisten the eye. The minimum eye blink in my
data lasted three frames (100 ms), yet the average was six (200 ms).
The extra time could be used for the hold, to wait for the appropriate
moment to re-open.

So, in summary, speech and movement are highly coordinated at different levels.
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This coordination is not without trouble, and some mechanisms (e.g. hold phases)
allow one to repair it in ongoing utterances. The amount of synchrony that can
be achieved between speech and gesture is still an open question. De Ruiter [243]
argues that speech and gesture are two ballistic processes that have few alignment
possibilities. Furuyama et al. [82] however claim that the alignment of speech and
gesture is interactive throughout their entire performance. The motor plan repre-
sentation and execution in Elckerlyc allows for the latter, so that gesture/speech
synchronization predicted by both accounts can be achieved (and be compared in
synthesis).

4.4 Specifying and Executing The Motor Plan

In this chapter, I have introduced PlanUnits as elements of the motor control plan.
To allow flexible coordination between PlanUnits and to allow them to interact with
the world, they were designed to allow continuous timing and shape updates. 1
have shown that tight coordination exists between ‘PlanUnits’ of human motor mo-
vement, not only through mechanical connections between them, but also through
neurological coupling processes.

The motor control plan consists of a coordinated combination of PlanUnits. This
coordination of PlanUnits is defined by the time relations between relevant keys in
PlanUnits. Such time relations can, for example, specify that a key in one PlanUnit
must occur at the same time as a key in another, or that one key must occur after
another. The Behavior Markup Language (BML), discussed in Chapter [6] provides
the means for the specification of PlanUnits and the time constraints between them.

The next Chapter illustrates that the coordination of PlanUnits is not limited to
one’s own body; tight coordination is observed between the ‘PlanUnits’ of interact-
ing humans. I show that the synchronization of modalities that is observed within a
single person is very similar to the synchronization observed between modalities of
two (or more) interacting persons and that similar models (e.g. the HKB model and
its extensions discussed in Section have been used to describe this synchro-
nization. In Chapter [6] I propose an extension of BML that allows the specification
of such interpersonal coordination. Chapter[7]deals with the construction and main-
tenance of a flexible motor plan; its execution is described in Chapter [8]



Chapter 5

Continuous Multimodal Interaction

Traditionally, interaction with virtual humans was designed using ‘sender-receiver{]]
interaction paradigms, in which the user and the virtual human take turns to send
(encode) and receive (decode) meaning carrying messages that travel across chan-
nels between them [151]]. Such an interaction model is insufficient to capture the
richness of human-human interaction (including conversation): interactions be-
tween humans are characterized by continuous interpersonal coordination. Kopp
[151] classifies this coordination in:

1. Behavior coordination: which lets interactants assimilate their behaviors in
form, content or timing;

2. Belief coordination: which leads to compatible knowledge about specific topics,
tasks or each other;

3. Attitude coordination: which regulates the individual’s stance toward each
other or external objects.

This thesis deals with behavior coordination (here called interpersonal coordina-
tion), and specifically with the coordination of form (‘shape’ in this thesis) and tim-
ing. In terms of the PlanUnits defined in Chapter 4] content deals with the selection
of a PlanUnit, shape deals with the parameter value selection and change within a
PlanUnit, and timing deals with the placement of its keys. This chapter presents a
literature overview on interpersonal coordination in interactions between humans,
shows why it is useful to model interpersonal coordination for virtual humans and
motivates the design of Elckerlyc and its behavior specification language BML'.
Some forms of interpersonal coordination have already been implemented in exist-
ing virtual human applications or frameworks. This chapter gives a brief overview
of them, focusing on their architecture. The SAIBA framework provides an architec-
ture setup for a fully functional virtual human with different layers of abstraction.
I discuss how the SAIBA framework fits into virtual human applications that allow
continuous interaction and which additional requirements are posed upon its be-
havior specification language BML to allow it to specify behavior that can be used
in such continuous interaction applications.

lor walkie-talkie, ping-pong, vending machine [282]
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5.1 Interpersonal Coordination

Interpersonal coordination [28]] (coordinating our motor behavior with others) plays
a large role in our social lives. Bernieri et al. [28] define interpersonal coordination
as the degree to which behaviors in an interaction are non random, patterned or
synchronized in both timing and shape. They categorize interpersonal coordination
in behavior matching or similarity and interactional synchrony. Behavior matching
includes mimicry such as interlocutors adapting similar poses. Interactional syn-
chrony includes alignment of movement rhythm (staccato-like vs slow and fluid),
synchronization of behavior (down beats at which two people change movements
simultaneously) and smooth meshing/intertwining of behavior (for example smooth
turn-taking and listener responses in conversation).

5.1.1 Behavior Matching

Behavior matching involves the alignment of the shape and content of the behavior
of interlocutors. One important form of behavior matching is unconscious mimicry.
Individuals mimic many different aspects of their interaction partners, including
their postures, facial expressions, rate of speech and syntax of speech [57,[164].

Bavelas et al. [22] show how motor mimicry (in their case, responding with a
winced facial expression to a person in pain) is not just a simple reflex, but forms
a communicative act. The shape and timing of this facial expression is affected by
whether there is eye contact with that person. If there is eye contact, an initial wince
increases in intensity. If not, an initial wince might appear, but it quickly fades out.

Boker et al. [36] show that shape alignment can occur over different modali-
ties: they attenuated the facial expressions of one of the interlocutors in a video-
conferencing setup. This attenuation of facial expressions led to increased velocity
of the head nods in his interlocutor?

5.1.2 Interactional Synchrony

According to Clark [59], joint actions (such as conversation) can be coordinated be-
cause they divide into phases. Each phase has a unified function and identifiable en-
try and exit times. For example, in a handshake phases include extending the hands,
shake, and withdraw. Phases can be hierarchical (the shake can be subdivided again
into grasping, pumping and releasing). Synchrony requires the coordination of en-
try and exit times of each phase. This requires that participants can anticipate and
project these entry/exit times. This entails making moment by moment timing and
other (e.g. where will the ball drop in a game of catch, what will my interlocutor be
pointing at) estimates.

Schmidt et al. [255] are interested in figuring out whether certain entrainment
phenomena found in within-person coordination also hold for between-persons co-

2In another experiment they attenuated head movement, which (perhaps not surprisingly) led
attenuated head movement in the interlocutor.
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ordination, and whether the same very general dynamical principles govern both.
They perform an experiment in which two seated participants were asked to syn-
chronize their leg movement to be in-phase or in anti-phase while oscillating them
at a tempo given by a metronome. At higher frequencies, the stability of the anti-
phase pattern decreased, and involuntary transitions to the in-phase pattern oc-
curred. Schmidt et al. demonstrate that the HKB-model, used among other things
to describe intra-personal synchronization (see Chapter [134]), can also de-
scribe the inter-personal coordination in these experiments.

In many everyday interactions, the synchronization between interlocutors is not
consciously achieved. Schmidt et al. [256] provide an overview of laboratory ex-
periments on such (unconscious) inter-personal synchronization processes. A first
experiment showed that when swinging pendulums in a comfortable tempo, two
subjects that can see each other unintentionally align their swinging to achieve ei-
ther in-phase or anti-phase (that is, relative phase is 180 degrees) movement. The
coordination was not one of absolute phase locking, but a ‘non-steady state coor-
dination behavior produced by dynamical systems with weak attractor basins and
intrinsic noise’. Later experiments describe increasingly natural conditions. For
example, coordinated rocking movement was observed between two participants
sitting in a rocking chair and entrainment of postural sway occurs when partici-
pants interact verbally with each other in a puzzle task, even if they do not see each
other. Schmidt et al. argue that the HKB-model can also describe the inter-personal
coordination in these experiments.

In Chapter I illustrate how the movement of our body is rhythmically or-
ganized with our speech. In dialogue, a similar rhythmic organization also occurs
between interlocutors: the flow of the movements of the listener becomes rhyth-
mically coordinated with the movement and speech of the speaker and vice-versa
60, 138]]. When such interactional synchrony occurs, ‘boundary’ points of both
speech and movement of a speaker become aligned with boundary points in the
movement of a listener. In dialogue synchrony can occur on the phonic, syllable and
word level of speech. In body movement the boundaries are defined by an initiation,
a termination or a change in the direction of the motion in certain body parts. The
listener is not just mimicking/mirroring; he aligns movement of various body parts
to the speech or movement patterns of the speaker. Such alignment does not only
occur with head nods, posture shift or gestures but also ‘pours’ into actions that are
not related to the conversation (in one example in [138], the listener leans over,
tamps ash off of a cigarette into an ash tray and leans back again, exactly in the
rhythm of the speaker’s speech). The precision of this synchrony indicates that the
listener is in some way able to anticipate what the speaker is going to sayf]|

Furuyama [81] provides some interesting examples of synchronization between
the gestures of a listener and the speech and gesture of a speaker. In an origami
learning task (without paper) a learner synchronizes his ‘origami-construction’ ges-
tures tightly with the speech and gestures of a teacher. The synchronization follows
similar ‘rules’ to those of speech-gesture synchronization within one person for, for

3Condon proposes that the listener uses rhythmic entrainment for this; according to Kendon the
prediction mechanism is of a tracking (or ’speaking while listening’) nature [|85]].
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example, stroke-alignment (see also Chapter [4.3.2). The gestures of the listener do
not mimic those of the speaker, but are creative in their own right. The listener
gestures sometimes even precede those of the teacher. Similar synchronization be-
tween listener gestures with speaker speech and gesture was observed (but is far
less common) in a cartoon narration task. In a telephone conversation, the head
nods of a listener were observed to align precisely with the head nods of a speaker.

Cassell et al. [49] show that listeners, like speakers, perform posture shifts at
the boundary of a locution cluster of the utterance of the speaker.

So, in summary, the very same synchronization of modalities that is observed
within a single person is also observed between modalities of two (or more) in-
teracting persons. Such synchronization requires a prediction of the actions of the
interlocutor and the alignment of one’s own motor behavior to these predictions.

5.1.3 Turn-Taking

During a conversation, overwhelmingly one party talks at a time. Speaker turns are
not preallocated. Interactants ‘locally manage’, that is on a turn by turn basis, who
will be the next speaker [59] [249].

Humans are capable of very rapid turn-taking in conversation. Typically, one
interaction participant starts speaking immediately after (or even before) the previ-
ous speaker finishes his turn [84}, 249]. A turn switch requires the speaker to stop
speaking at the right moment and the listener to take the turn immediately after this
moment, producing an utterance that is relevant to both the conversation at hand
in general and specifically to the utterance uttered by the previous speaker. A com-
bination of several mechanisms has been proposed that allows humans to achieve
this.

Sacks et al. [249] propose a model for turn-taking in conversation (the SSJ
turn-taking model). In their model, speech is produced in turn-constructional com-
ponents (TCCs, in English roughly corresponding with a sentence, clause, phrase,
lexical construction). The first possible completion of the TCC constitutes a transi-
tion relevant place (TRP). The TCCs are produced in such a way that their endings
are projected by the speaker during their execution.

Listeners can predict when TRPs will occur and may use their predictions to take
the turn instantly at TRPs. De Ruiter et al. [244] demonstrate that the syntax of
an utterance is a necessary (and possibly sufficient) cue for the prediction of TRP
and shows that the intonational contour of a TRP is neither necessary nor suffi-
cient for human TRP prediction. Barkhuysen et al. [16] show that subjects achieve
better end-of-utterance classification when presented a combination of verbal and
nonverbal cues instead of verbal only or nonverbal only cues. Recent work [[110]
has empirically shown that the timing of turn-taking is not as precise as suggested
by the SSJ model. Heldner and Edlund show that in their corpora the overlap time
between turns widely varies. 41-45% of all turn shifts they observed occur after a
minimal perceivable pause (200ms). These turn shifts did not require the listener to
predict the turn’s end. The other turn shifts have overlapping speech or occur with
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a non-perceivable pause. This suggests that some prediction mechanism is at work
for these turn shifts.

5.1.3.1 Negotiating the Turn

Schegloff [251]] introduces an ‘overlap resolution device’ as a mechanism to handle
simultaneous talk by multiple participants in a conversation within the SSJ turn-
taking model described above. In several cases such speech overlap is not problem-
atic: if prior speaker is about to finish his turn, if the overlap consists of a continuer
(e.g. uh huh, mm hm, yes), if the speaker allows conditional access to the turn (e.g.
if he is searching for a word), or if the speech is ‘choral’ in nature (e.g. laughter,
collective greeting). If the overlapping talk is problematic, all but one of the conver-
sation partners should stop speaking. To display that the overlapping talk was the
ground for stopping, they should do so before the end of their TCC. Schegloff lists
several shape and timing adjustments of ongoing speech that are employed to keep
the turn:

 Stretch the uttered sound until a TRP of the overlapping speaker, then try to
say your sentence again.

* Increase volume and pitch of ongoing speech.

* Increase speech rate (when predicting an interruption by the new speaker, as
if to allow no room for a new speaker to begin).

* Decrease speech rate (this is typically used when already within overlap).
e Re-utter the turn so far.
* Completely ignore the interruption and continue to speak in ‘solo’ mode.

These adjustments can also be used based on predicted (on the basis of gesture de-
ployment, posture alignment, audible drawing of breath, or other preturn beginning
behavior) interruptions. The adjustments are employed at beat (roughly syllable)
granularity. When the beats of two speakers overlap, one or both of the speakers
can shift to a competitive mode for the next beat (by using one of the mechanisms
described above). Once the turn is secured, speech is restored to normal. Speakers
are able to interrupt their speech within a beat.

5.1.3.2 Opportunistic Planning

The SSJ turn-taking model explains how a listener is capable to take the turn imme-
diately after a speaker releases it. However, it does not explain how we are able to
produce meaningful sentences on the spot, a problem called opportunistic planning
by Garrod and Pickering [84].

Conversation is a joint activity in which the participants have a common goal
[59]. This helps in solving the opportunistic planning problem, because the contri-
butions of the speaker are more predictable [84].
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A common mechanism to work around the need for opportunistic planning is the
use of apositional beginnings, such as “well..” , “but ..”, “and ..”, “oh god..”, etcetera
[59] 249]. Such an apositional beginning allows an interlocutor to take the turn
without having a plan at hand.

Routines form another mechanism that allows humans to rapidly produce speech.
A routine is an expression that is fixed to a great extent. Often it has a flat intona-
tion. Examples are: “How do you do”, “thank you very much”, “spill the beans”,
etcetera. Routines occur frequently in dialogue [219]. Routines are in general eas-
ier to produce than non-routines. The flat intonation of routines suggests that no
choices are made on stress placement. Extreme examples of the use of routines
are heard in the speech of radio horse racing commenters and auctioneers. These
speakers have to produce rapid and time-locked monologue. They achieve this by
using highly routinized language and expressions with empty slots that have to be
filled (e.g. X is in the lead) [161].

Garrod and Pickering [84]] argue that listening primes certain linguistic represen-
tations. Because the same representations are used in producing and understand-
ing, these representations are activated once the listener starts to speak and he will
have a tendency to use them. This process causes the internal representations of
interlocutors to be aligned. This alignment applies at all linguistic levels (choice
of words, sounds, grammatical forms, meanings, etc.). Interactive alignment leads
to the use of routine or semi-fixed expressions by the interlocutors. According to
Garrod and Pickering, such ‘dialogue routines’ greatly simplify language production
and comprehension by short-circuiting the decision making processes.

5.1.4 Listener Responses

Listener responses [80] are short utterances (for example: yeah, mhm, uhu), vo-
calizations and/or (facial) gestures which are interjected into the speaker’s account
without causing an interruption, or being perceived as competitive of the turn. Such
feedback is mostly expressed simultaneously by vocal/verbal and gestural means
[[7]. The occurrence of listener responses has been modeled in turn-taking mod-
els by hypothesizing that they occur on a different channel than the utterance of a
speaker and thus do not interfere with his turn [59]. Yngve calls this channel the
backchannel [318].

Bavelas et al. [23] divide listener responses into generic responses and specific
responses. Generic responses include nodding and vocalizations such as “mhm”.
Specific responses such as wincing or exclaiming are tightly connected to the content
of the speech of a speaker.

Specific responses require interpretation of the speaker’s utterance and gener-
ating them is cognitively more demanding than generating generic responses [23].
Jonsdottir et al. [128] suggest that humans can generate appropriate generic feed-
back without attending to the content of the speech. Acoustic, prosodic and lexical
cues can be employed to detect a relevant position to give feedback [99, 301]].

The timing of listener responses is often modulated by mutual gaze [24]. Lis-
teners typically look more at speakers than vice-versa. If a speaker seeks a listener
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response (e.g. a conformation of understanding), he looks at the listener, creating a
brief period of mutual gaze. The listener is likely to respond (for example with an
uhhuh, nod, etc). after which the speaker looks away. The speaker’s gaze is often
accompanied by pauses, changing intonation contours (e.g. rising pitch), gestures
or facial displays (e.g. rising eyebrows). Quoting Bavelas et al. [24]:

...the timing of the listener response, is collaborative process accom-
plished by joint action: Speaker gaze creates the opportunity for a lis-
tener response, and the response then terminates that gaze.

In Goodwin’s [95]] observations, a speaker does not change the content of what
he says based on the responses from the listener. Rather, the timing of his speech
is influenced by the listener’s responses. Listener responses are frequently found
in complete overlap but also occur in partial overlap and silence. Goodwin states
that the overlap strategy employed by the speaker depends on whether the listener
feedback was a continuer or an assessment. Continuers are generic responses that
simply acknowledge the receipt of the talk just heard and signal the speaker to con-
tinue speaking. Assessments are specific responses in which the listener produces
an action that is responsive to the particulars of the talk. Such responses require
an analysis of the content of the speaker’s talk by the listener. If the speaker rec-
ognizes an assessment and is about to start a new unit, he delays this unit (e.g. by
an inhalation or production of a filler) until the listener has completed his assess-
ment. However, the speaker may deal with continuers by resuming speech before
the listener response is actually finished, in effect letting continuers occur in par-
tial overlap with the speech resumption. The importance of this is suggested by
Goodwin as follows:

... moving to a new turn-constructional unit while the recipient’s “uh-
huh” is still in progress is a proper and appropriate thing for a speaker
to do. Indeed this is perhaps the clearest structural way for a speaker
to demonstrate that recipient’s action has been understood precisely as
a continuer, and to act upon that understanding.

5.2 Why use Continuous Interaction in Virtual Hu-
mans?

People tend to respond to computers and other media as they do to people. They
behave as if these were social actors [227]. Thus, it is likely that an interaction
with a virtual human that employs continuous interaction is more pleasant and
effective for humans than an interaction with one that uses a turn-based interaction
paradigm, since their (social) expectations about these virtual humans are met by
the former. This section gives a short literature overview of some of the social effects
of interactional coordination in human-human interaction and discusses whether
and to what degree these social effects were also observed in human-virtual human
interaction.
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Throughout the section, I show that the exact execution (e.g. the timing, the
shape and the amount) of interaction coordination can influence the perceived per-
sonality and emotional state of a (virtual) human in subtle, context dependent ways.
To achieve natural interaction, one should therefore not aim for a virtual human that
exhibits as much coordination with its interaction partner as possible, but rather for
coordinative behavior that matches the virtual human’s personality, its emotional
state and the current interaction context. This thesis deals with providing mech-
anisms that allow the exact specification of the timing and shape of coordinative
behavior and with the execution of such behavior. The selection of appropriate co-
ordinative behavior on the basis of the virtual human’s personality, emotional state,
etcetera is beyond its scope.

5.2.1 Behavior Matching

Chartrand and Bargh [57]] show that mimicking confederates are liked more than
those that are not mimicking, and that interactions with mimicking confederates
were rated as being more smooth. Bailenson and Yee [[14] show that these effects
generalize to interaction with virtual humans. A virtual human that mimics head
movement of a listener (at a 4 second delay) is more liked and more persuasive
than one that uses prerecorded head movement. This is an unconscious effect, the
listeners were not aware that the virtual human was mimicking their movement.

Branigan et al. [[39] provide a literature survey on linguistic alignment (at differ-
ent levels) between people and computers. They show that people do align to com-
puters in a similar way as they align to other people. The alignment is even stronger
with computers. The authors argue that people communicating with computers use
‘extra’ alignment because it is unknown how well the computer will understand
them. The same strategy is used when talking to non-native speakers.

Lakin et al. [164] provide a review on the social effects of unconscious mimicry.
Not only does mimicry affect rapport, but this relation works in the other direction
as well: rapport and interpersonal closeness can cause a person to mimic more. Peo-
ple mimic more when situational factors activate a desire to affiliate. The amount
of mimicry is further modulated by a number of personality aspects, including em-
pathy and self-monitoring (sensitivity to factors in the environment that may be
useful; for example awareness of differences in power with the interlocutor).

5.2.2 Synchrony

When human observers perceive movement synchrony in a group of humans, they
perceive this group as having rapport and being part of the same social unit [27,
163]]. The degree to which individuals are perceived as a social unit is called entita-
tivity.

The attribution of high entitativity to humans moving in (near) synchrony gen-
eralizes to observations of virtual humans, even if the type of the movement of in-
dividuals in the group is different (but still in phase) [162]. Miles et al. [194] show
that the amount of attributed rapport depends not only on synchrony itself, but also
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on its phase: the attributed rapport of two virtual humans (stick figures) that walk
in synchrony is highest when their strides are either in phase or in anti-phase.

One of the interactional synchronization experiments discussed by Schmidt et
al. [256] shows that two subjects with homogeneous social competence have less
synchronous movement on a pendulum swinging task than two subjects with mixed
social competence. The author explains this by noting that the measure of social
competence used is correlated with social control (or dominance). The individual
with the high social competence leads the individual with low social competence in
the mixed pairs.

5.2.3 Turn Taking

Interruption of a speaker’s turn has been associated with the display of power as-
sertiveness, but also with the display of active and continued listening [94, 239].
Speakers that are interrupted are perceived as less assertive, more traditional and
more emotionally vulnerable [239].

Ter Maat et al. show that the turn-taking strategy (e.g. the length of the pause
between turns/overlap between turns) employed by a virtual human influences its
perceived agreeableness, assertiveness, conversational skill and rapport [181].

5.2.4 Listener Responses

In task oriented dialog, listener responses increase the encoding efficiency. That
is: fewer words are required to transmit a task-defined unit of information [[160].
Kraus et al. argue that when listener responses are not available, the speaker does
not have any assurance of the understanding of the listener and is therefore less
likely to shorten her task descriptions.

Listener behavior has also been shown to influence the quality of a narrative of a
speaker [23]. If the listener is distracted, (by making the listener count the number
of days from now until Christmas) from a story told by a speaker, this reduces the
number of responses, especially specific responses. Narrators telling their close-
call stories to distracted listeners told them less well (they circled around, retold
the ending more than once, ended abruptly, added unnecessary explanations, etc.),
especially the dramatic endings.

Several virtual human systems have employed automatic analysis of surface fea-
tures of speech (such as prosody) and gesture to generate generic feedback. Cassell
and Thorisson show that the use of generic feedback increases the perceived lan-
guage understanding and lifelikeness of a virtual human [52]. Gratch et al. [97]
show that a virtual listener that uses both generic feedback and mimicry enhances
the fluency of the speech of a speaker and the speaker’s overall impression of the
communication.
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5.3 Continuous Interaction Architectures for Virtual
Humans

Several virtual human applications have provided conversational interaction capa-
bilities that go beyond a purely turn-based interaction paradigm. Here I give a brief
overview, highlighting the design implications of introducing such a more continu-
ous interaction paradigm.

5.3.1 Ymir

Ymir [283] provides an integrated framework for a virtual human, that covers both
its multimodal behavior perception/interpretation and its multimodal generation on
abstraction levels ranging from dialogue planning to motor behavior. It models mul-
timodal interaction using a layered feedback-loop model (see Figure[5.1)). Each of

CONTENT-RE-

MONITOR , 2
' - LATED “BACK-
CHANNEL"™

MONITOR :
PROCESS- E;?SEESSL

4 RECONSTRUCT
8 DIALOGUE
#STRUCTUR
PROCESS-
RELATED
BACK-

CHANNEL!

¢ CONTROL
.| PROCESS

BROAD-STROKE
FUNCTIONAL
ANALYSIS

BROAD-STROK
FUNCTIONAL
ANALYSIS

 REACTIVE
'BEHAVIORS'

SPEAKER I LISTENER

Figure 5.1: Ymir’s layered feedback model, figure from [283].

these layers acts on a different update frequency and level of awareness. The Reac-
tive Layer makes use of relatively shallow (and quick) input processing to generate
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reactive behaviors (for example: look where the interlocutor is pointing, generate a
generic listener feedback). The Process Control Layer deals with global aspects of
dialog, dealing with issues such as when a question should be answered, what to
do when information is missing, and so on. The Content Layer makes sense of the
content of input and generates acceptable behavior on its basis, for example specific
listener responses (e.g. indicating agreement) or executing a command issued by
the interlocutor (e.g. move the blue box there).

Each layer makes semi-independent decisions, and an action scheduler arbitrates
between them. Its arbitration process prioritizes reactive behavior over deliberative
behavior. The action scheduler is also responsible for scheduling and executing the
virtual human’s behavior.

The action scheduler can execute a stream of behavior incrementally. The be-
haviors in this stream need to be interruptible and one should be able to change
the stream to allow for relevant new events to influence it in a natural way. To
achieve this, it is essential that the action scheduler keeps track of which behaviors
are currently being planned, and which behaviors are executing.

5.3.2 The Listener Feedback Architecture in Max

Kopp et al. [153] propose a layered feedback-loop model that is specifically de-
signed for the generation of listener feedback in their virtual human Max. New in
this work is the use of specific feedback, on the basis of interpreted input. The feed-
back system in Max is part of a larger dialog management system,; it is automatically
activated whenever the virtual human is in a listening state. It uses a two-layered
architecture.

Its planning layer consists of dedicated processes that are running to keep track
of the contact, perception, and understanding listener states of the virtual human
and, based on this information, decide which feedback behavior to generate and
when. A reactive layer provides direct connections from input to output. These
connections allow for incorporating feedback behaviors that function independently
of awareness and intentional control of the sender, for example blushing, as well
as behaviors that are only potentially amenable to awareness and control, such as
smiles or emotional prosody.

The system uses an incremental interpretation of the input of the interlocutor.
This input incrementally results in knowledge on different levels that is achieved
at different time rates. These levels include perception, understanding, acceptance
and emotion/attitude. In the planning layer, feedback resulting from these different
levels of knowledge is selected such that feedback from the ‘higher’ knowledge levels
is given priority. Since low level knowledge is faster than high level knowledge, this
results in interesting ways to resolve conflicts between the knowledge levels:

Max would at first look certain and nod due to a positive perception
evaluation, but would then start to look confused once a negative un-
derstanding evaluation barged in, eventually leading to a corresponding
verbal request for repetition or elaboration such as “Pardon me?”.
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Figure 5.2: Incremental speech recognition in Jindigo, Figure from [271]].

5.3.3 Jindigo

Skantze and Hjalmarsson [271] designed Jindigo, an incremental speech recogni-
tion and generation architecture that facilitates opportunistic speech planning (see
Section [5.1.3.2)). Jindigo is based upon a conceptual framework for incremental
processing in dialog systems, proposed earlier by Schlangen and Skantze [253].
This conceptual framework describes an incremental dialogue processing system as
a network of connected processing modules, where information (packaged in incre-
mental units, or IUs) is passed along the connections. Each module has a Left Buffer,
a Processor and a Right Buffer. The Processor consumes IUs from its Left Buffer and
posts IUs in its Right Buffer. Each IU corresponds with a certain hypothesis. By using
modules in parallel, the dialog system can manage several alternative hypotheses at
the same time. Modules can be connected to each other by connecting the Right
Buffer of one module to the Left Buffer of another module.

Each Processor has three basic operations. The update operation integrates new
Left Buffer IUs into the module’s internal state and eventually produces Right Buffer
IUs. The purge operation purges a Left Buffer IUs from the internal state of the Pro-
cessor. All later hypotheses build on this Left Buffer IU (represented in the internal
state of other modules) must be purged as well. The commit operation commits
to a certain hypothesis, marking it as unchangeable. For example, an input parser
may commit all IUs of a sentence if its structure is complete, or a BML Realizer may
commit a IU if it is completely executed.

Jindigo makes use of incremental speech detection and adapts its generation
with each increment. It implements a graph-like structure to keep track of the cur-
rent hypothesis of the recognized speech (Figure[5.2). Prune and purge operations
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are efficiently implemented by amending to the graph without actually removing
edges or vertices, even if revision occurs. At each time step, a new update message
is sent to the modules that require the current/last committed hypothesis. This up-
date message contains a pair of pointers [C, A]: (C) the vertex from which the last
committed hypothesis can be constructed, and (A) the vertex from which the cur-
rent hypothesis can be constructed. Speech generation in Jindigo uses SpeechPlans,
which are directed graphs of SpeechUnits. The SpeechPlan is generated on the fly
and captures multiple different realization options. A path on this graph is selected
at run-time by an ActionManager.

In a dialog system that uses incremental processing, input hypotheses might be
revised, which could lead to revisions in the ongoing SpeechPlan. To allow this,
the Jindigo supports self-repairs. These repairs may be covert (they are achieved
by changing planned behavior without the interlocutor noticing the plan change) or
overt (involving an explicit correction). Overt revisions may include an apositional
beginning (e.g. sorry, that’s wrong, etc.), for example if the ActionManager decides
that a correction is in order, but it does not have a plan at hand for this correction
yet.

5.4 The SAIBA Framework

Over 20 years of research on virtual humans has generated increasingly sophisti-
cated models, directed to different aspects of their behavior (using emotional mod-
eling, computer animation, speech synthesis, etc.). Building a state-of-the-art virtual
human entails re-implementing all these models. Research groups have now real-
ized that ‘the scope of building a complete virtual human is too vast for any one
research group’ [141]].

The SAIBA initiative [152],[298] is motivated by the need to enable collaboration
in building communicative virtual humans. It provides, among other things, a view
on the architectural issues of building a fully functional virtual human with differ-
ent layers of abstraction. It proposes a modular ‘planning pipelineff for real-time
multimodal motor behavior of virtual humans, with a standardized interface (using
representation languages) between the modules in the pipeline.

SAIBA proposes two modular splits, well explained by Thérisson and Vilhjalmsson
[286]:

The first [split] is between a representation language that describes an
action/set of actions and the engine/mechanism that realizes these, ac-
cording to a specification written in this language. Another split or set of
splits proposed by SAIBA is between lowest-level behaviors (‘animation
level’), a medium-level representation typically called ‘behavior’ level,
and a higher level called the ‘functional’ level. These levels correspond
roughly to what have sometimes been called the primitive/servo level, e-
move level and task level, respectively, in the robotics community[112].

*including feedback loops
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The idea behind the split between representation language and realiza-
tion engine is to enable those researchers who desire to focus on a par-
ticular level of planning to stick to a certain level of detail. The language
describing the desired outcome at a particular detail level can be repre-
sented in a common way between researchers, making easier the collab-
oration on and competition between proposed mechanisms. This allows
construction of alternative planning mechanisms at particular levels of
abstraction, and thus exploration of different ways of producing certain
behavior phenomena, without having to solve the mechanism for the
whole field, as the representational languages provide an API that al-
lows modular sharing of solutions for different parts of the architecture.
This also enables the comparison between realization mechanisms from
different research labs.

The SAIBA Intent Planner module generates a plan representation on the func-
tional level, specified in the Functional Markup Language (FML). The SAIBA Behav-
ior Planner generates a plan representation that is incrementally specified through
blocks written in the Behavior Markup Language (BML) (see Figure[5.3)).

SAIBA | - » SAIBA | sw_» Behavior
Intent Behavior Realizer
Planner «feedvack—  Plgnner [« feedback— (E|ckerlyc)

Figure 5.3: The SAIBA architecture.

A BML block (see Figure for a short example) describes the occurrence of
certain types of behavior (facial expressions, gestures, speech, and other types) as
well as their relative timing. This relative timing is described by constraints between
synchronization points (see Figure for the standard synchronization points in
each behavior).
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<bml id=f’bml M
<gaze type="AT” id=["gazel™"
target="AUDIENCE" />

<speech |start="gazel:ready”|id4"speechl"]
<text>Welcome lxydies and gentlemen!

</text>
</speech>
</bml>
. behavior id «
Synchronization .
L b Benaviors ML Block T constraint BML block id «—

Figure 5.4: An example of a BML request containing a gaze and a speech behavior. A synchro-
nization constraint ensures that the speech starts as soon as the gaze is aimed at the
audience.

start ready stroke_start stroke

Figure 5.5: Standard BML synchronization points

FML will represent what an virtual human wants to achieve: its intentions, goals
and plans [113]. The exact syntactical representation for this is still under discus-
sion. Heylen et al. [113]] indicate that (among other things) context, communicative
actions, content, mental state and social-relational goals could be elements in FML.

5.5 Continuous Interaction in the SAIBA Framework

At first glance, SAIBAs pipelined architecture seems to conflict with the layered
feedback architectures proposed by other integrated virtual human frameworks (see
Section [5.3.1 and Section [5.3.2). However, one does not necessarily need to inter-
pret the SAIBA architecture as a pipeline in which behavior is only generated on
the basis of intent from the SAIBA Intent Planner and then transformed by a SAIBA
Behavior Planner ‘function’ into a behavior suitable for a Realizer. Instead, Intent
Planning and Behavior Planning can be regarded as processes that run at different
update frequencies and that can each generate behavior descriptions, at different
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levels of abstraction. This view (illustrated in Figure allows several feedback
loops to exist in the SAIBA framework.

In the outer feedback loop (indicated with the black arrows) the SAIBA Intent
Planner makes use of interpreted user behavior to decide on the Intent of actions
that are to be executed by the virtual human.

Bevacqua et al. [29] argue for a feedback loop (indicated with the gray arrows),
that generates sensor-activated unconscious and unintentional (so not originating
from the Intent Planner) behavior in the SAIBA Behavior Planner. One example
of such behavior is mimicry, which they propose to implement by incrementally
submitting BML blocks to the Realizer.
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A |
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Planner « Planner < ¢——time peg update————

Figure 5.6: SAIBA as a layered feedback architecture.

5.5.1 A Feedback Loop at Realization Level

A novel aspect in Elckerlyc is that it contains a feedback loop at realization level
which elegantly allows the specification and realization of synchronization to pre-
dicted and incrementally updated behavior events of the virtual human’s interlocu-
tor. Such a feedback loop achieves the tight synchronization needed for, for exam-
ple, interactional synchrony.

In Section I showed that the synchrony between behavior of different hu-
mans relies on the very same synchronization mechanisms that exist between mo-
dalities (e.g. speech, gesture) within one’s own body. Therefore, it makes sense to
allow the specification of synchronization to behavior of an interlocutor in the same
fashion as synchronization of modalities within one’s own body. The BML descrip-
tion of behavior would thus become a specification of a part of a joint action, rather
than the specification of completely autonomous behavior (see BML Example [I)).

In BML, synchronization between behaviors of a virtual human on different mo-
dalities (e.g. speech, gesture) is specified as the alignment of the synchronization
points of these behaviors. The SAIBA Behavior Planner specifies only the existence
of such time constraints, the exact timing of the constraints is determined in the
Realizer. If synchronization to an interlocutor is to be specified in an analog fash-
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ion, synchronization points that represent (predicted) synchronization points of the
behavior of an interlocutor are required. The SAIBA Behavior Planner should then
only be required to specify the existence of the constraints between interlocutor
synchronization points and behavior synchronization points, their exact timing is
determined at Realization level. I have introduced the Anticipator as generic mod-
uleP] to predict the timing of such external (e.g. interlocutor) synchronization points
and provide a BML extension that can specify their alignment to the behavior of a
virtual human.

BML Example 1 Specifying taking the turn as an autonomous action and as part of
a joint action.

(a) Specifying a speech behavior that takes the turn as an autonomous action. The start of
the turn is defined by the SAIBA Behavior Planner.

<bml id="bmli">
<speech id="speechl" start="3">
<text>Bla bla</text>
</speech>
</bml>

(b) Specifying a speech behavior that takes the turn as part of a joint action. The start of
the turn is determined by the (predicted) end of the turn of the interlocutor.
<bml id="bml1l">
<speech id="speechl" start="anticipators:speechStopAnticipator:stop+0.5">
<text>Bla bla</text>

</speech>
</bml>

An Anticipator typically predicts time events on the basis of observed interlocu-
tor behavior. These predictions are often incremental, and increase in precision over
time. Elckerlyc provides automatic adaptation of the behavior plan it manages in
reaction to updated time predictions of an Anticipator. This incremental update of
synchronization constraint timing introduces another feedback loop (indicated with
the white arrows), which is located within the Realization process. This feedback
loop allows small modifications based on user observations to be made to ongo-
ing behaviors directly. Such adaptivity is not only useful for updating the behavior
plan in reaction to an interlocutor, it is also potentially useful to allow minor tim-
ing updates to maintain consistent timing with ‘internal’ modalities that provide an
incremental prediction of the timing of their sync points (that is, those that have a
poor initial idea of what their timing will be like, for example the behavior of some
robots).

>Implementations of these modules could include an end-of-turn Anticipator (see Chapter|12.2.2
for possible implementations), or a gaze-end Anticipator.
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5.6 Discussion

In this chapter, I have illustrated the interpersonal coordination that occurs in hu-
mans and shown that it is beneficial to implement virtual humans that are capable
of such interpersonal coordination. Implementing such continuous interaction has
several consequences for intent planning, behavior planning and behavior realiza-
tion. Most of this thesis deals with continuous interaction for behavior realization.
In this section I briefly discuss the consequences of continuous interaction on intent
and behavior planning and the specification requirements for behavior realization
of continuous interaction, all within the SAIBA framework.

5.6.1 Consequences of Continuous Interaction for SAIBA Intent
and Behavior Planning

I propose that to achieve continuous interaction, one should think of the SAIBA
planning processes as processes that construct a multimodal behavior plan on the
fly. This multimodal behavior plan serves as a joint information structure shared
by the SAIBA Intent Planner, SAIBA Behavior Planner and the Realizer. At first one
might think that a behavior plan is merely an implementation aspect, internal to
SAIBA components such as the Behavior Realizer. This is in line with the idea that
languages such as FML and BML are declarative languages, so a stream of BML
behaviors would carry no explicit state information. But for certain continuous in-
teraction mechanisms this in an untenable position. An important example of why
this is the case is that of interruption of speech: a SAIBA Behavior Planner sending
a speech behavior for a single sentence to the Behavior Realizer cannot prevent the
environment, including humans, to interrupt that sentence at a later time. When
that happens, continuous interaction demands that there is an instantaneous reac-
tion, for instance by means of sending an interrupt behavior that partially cancels
the speech behavior and removes it from the behavior plan, possibly replacing it
with some alternative behavior. The important observation here is that all this im-
plies that SAIBA Behavior Planners, and ultimately also SAIBA Intent Planners, must
be aware of the state (in the form of a behavior plan or otherwise) of the Realizer.
An Intent Planner, for instance, can use feedback concerning behavior progress and
interrupt information to decide whether some message can be considered to have
actually ‘arrived’ at the (human) receiver, or not, and then act accordingly. Based on
similar information the dialogue management functionality inside the Intent Plan-
ner and the Behavior Planner can make inferences about who has the floor at any
moment. (Although ‘owning the floor’ is clearly a higher level concept, it is affected
nevertheless by lower level events such as interruption, gaze behaviors, etc.). Note
that interruptions are considered less of a problem in more traditional turn-based
dialogue systems, where the (unrealistic) assumption is made that utterances from
interlocutors will alternate. In that case, an interruption would only be noticed at
a higher level, say at the Intent Planning level. This has the undesirable effect that
interruptions at a lower level are handled in an unnatural manner: a virtual hu-
man that is interrupted in a turn-based dialog system would simply keep talking as
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if nothing has happened, unaware of the interruption until the next ‘round’ in the
dialogue.

Continuous interaction therefore requires that planning and execution informa-
tion is shared between the planning processes (see also Section for a similar
argument in the Ymir architecture, and Chapter|[6.5.2.3|for a scenario that illustrates
this in detail). In the SAIBA framework, plan sharing is achieved by implementing
the feedback channels that communicate progress information between the SAIBA
Planning processes.

5.6.2 Requirements for the Specification of Continuous Interac-
tion in BML

Continuous interaction, involving (among other things) behavior matching, inter-
personal behavior synchrony, rhythmic alignment, fluent turn-taking, turn overlap
management and listener responses requires an interface with a BML Realizer that
provides capabilities that go beyond what can be expressed in BML. BML can specify
the internal (within the virtual human) synchronization constraints between behav-
iors (e.g. speech, gesture) and provides a static description of the form of each
behavior.
In addition to this, continuous interaction requires the specification of:

1. the synchronization of (ongoing) behavior to predicted events originating from
the environment or the virtual human’s interlocutor. The timing of such events
is incrementally updated.

2. instant interruption and fluent continuation of ongoing behavior.
3. modifications in the shape of ongoing behavior (e.g. speak louder).
4. immediate execution of behavior, allowing apparent opportunistic planning.

Table shows what capabilities are required for different aspects of interac-
tional coordination. The next chapter demonstrates how I have specified these ca-
pabilities in HMI's BML extension BML.
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! For speakers and listeners.

2 For speakers.

3 In current virtual human platforms that support mimicking and align-
ment, these are achieved incrementally using subsequent behaviors.
However, some forms of mimicking (see e.g. [22]]) might require shape
adjustments within ongoing behaviors.

4 For most behavior types, it is unlikely that the timing can be modified
completely independent of its shape.

> In restarts.

® Generic listener responses could rapidly be generated using routinized

speech.

Table 5.1: Specification requirements of some aspects of interpersonal coordination.



Chapter 6

On the Specification of Multimodal
Continuous Behavior for Virtual
Humans

The Behavior Markup Language (BML) has become the de facto standard for the
specification of the synchronized motor behavior (including speech and gesture) of
virtual humans. BML is interpreted by a BML Realizer, that executes the specified
behavior through the virtual human it controls.

This chapter first discusses the historical roots of BML, its behavior and synchro-
nization description features and the underlying design considerations. Continuous
interaction applications with virtual humans pose several generic requirements on
the specification of behavior execution, beyond that of multimodal internal (that is,
within the virtual human) synchronization and form descriptions provided by BML.
I outline the need for the detailed specification of interruption of ongoing behav-
ior, the change of parameter values in ongoing behavior (e.g. speak louder) and
the need for synchronization with predicted external time events (e.g. originating
from the interlocutor). Several usage scenarios further illustrate these needs. BML
Twente (BML') extends BML by providing the specification of the continuous inter-
action capabilities discussed above. It thus provides a SAIBA Behavior Planner with
a generic interface to a Realizer through which continuous interaction can be real-
ized. I conclude the chapter by discussing the consequences that the use of BMLT
poses on a SAIBA Behavior Planner that constructs it and highlights the additional
requirements posed upon a BML Realizer that is able to execute BML'.

6.1 Specifying Multimodal Behavior for Virtual Hu-
mans: A Brief History

There are many languages to specify the motor behavior of virtual humans on
multiple modalities. One of the key aspects in designing these specifications is
the description of the (time) alignment between behaviors on the different mo-
dalities. In classic multimodal systems that generate behavior for virtual humans
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50, 53, (105} 1209, 279], the speech and gesture modalities are aligned by timing
the gestures to speech timing events generated by a speech synthesizer. Speech
then guides the timing of the gestures; speech is the leading modality [[304]. This
is reflected by the behavior specification used in these systems: they typically con-
sist of the text to be spoken annotated in-line with nonverbal behavior elements
[53] 65, 209, 279] (see also Example

Example 1 An example of a script, taken from [279]. Note how the gestures are
specified in-line with the text to be spoken.

you go <g type=iconic>UP</g> the <g type=deictic>STAIRS</g>
<g type=iconic>turn SHARPLY to the RIGHT</g>
and go through the <g type=beat>FIRST</g> door

However, speech/gesture timing in humans shows more complex coordination.
For example: speech output can be delayed so that a complex gesture can be finished
or a gesture’s hold phase can be used to correct the timing of a gesture that was
started too early ([154], see also Chapter [4.3.2). MURML [150] (see Example
is the first gesture and speech synthesis specification that does not require speech
as a leading modality. It defines the speech and gesture in separate channels and
uses symbolic synchronization points to define their alignment. The multimodal

Example 2 An example of a MURML script, taken from [[150]. Note how the speech
and gestures are specified in separated channels and how the synchronization is
achieved through symbolical synchronization points ¢1, ¢2, t3 and t4.

<definition>
<utterance>
<specification>
And now take <time id="t1"/> this <time id="t2"/> bar
<time id="t3" chunkborder="true"/> and make it <time id="t4"/> this
big. <time id="t5"/>
</specification>
<focus onset="t1" end="t2" accent="Hx"/>
<behaviorspec id="gesture_1">
<gesture id="pointing_to">
<affiliate onset="t1" end="t3"/>
<param name="refloc" value="$Loc-Bar_1"/>
</gesture>
</behaviorspec>
<behaviorspec id="gesture_2">

</behaviorspec>
</utterance>
</definition>

IRRL [220] is a notable exception. While the behavior planning pipeline used in NECA implies
that speech timing is enforced by gesture timing, gestures are specified in a separate channel.
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behavior specified in MURML is scheduled as a concatenation of chunks, based on
McNeill’s [189] segmentation hypothesis. The chunks contain a segment of speech
and/or one gesture, which are synchronized using symbolic synchronization points.
If only arm gestures and speech are to be coordinated, such an approach works
fine. However, in many multimodal generation applications the behavior of virtual
humans is not confined to just gesture and speech: virtual humans could operate
and explain the working of complex machinery [126], behave naturally in a war
zone [236]], comment on an ongoing soccer match [9], or simply walk through an
environment while conversing. To support the specification of the coordination of
such a wider range of modalities, I designed MultiModalSync during my master’s
studies [303, [304]. MultiModalSync implicitly defines a leading modality, but this
leading modality can change over time (see Example [3). Such a change does not
emerge from the behavior generation itself, it has to be specified beforehand.

Example 3 An example of a MultiModalSync script, taken from [303]]. Note how
the speech, presentation sheet changes and gestures are specified in separated chan-
nels and how their synchronization is achieved through symbolical synchronization
points ¢1, ¢2 and ¢3. Channels can both set synchronization points, using DefineSyn-
chronisationPoint and make use of synchronization points defined by other chan-
nels. This allows an explicit specification of the leading modality over time.

<MultimodalSync>
<Segment>
<Channel name="sheetcontrol">
<UseSynchronisationPoint value="t1"/>
<ChangeSheet name="sheetl">
<DefineSynchronisationPoint id="t2"/>
</Channel>
<Channel name="verbal">
<UseSynchronisationPoint value="t2"/>
So, the <DefineSynchronisationPoint id="t3"/> bookshelf
right now is sitting here.
</Channel>
<Channel name="deictic">
<Point target="bookshelf" stroke="t3">
</Channel>
</Segment>
</MultimodalSync>

In the Behavior Markup Languagef| (BML) [152, 298] (see Figure[6.2), research-
ers working on virtual humans (including those who designed the systems and spec-
ification mentioned above), collaborate to provide a behavior specification language
that allows the specification of conversational (such as speech, gesture) and other
(such as locomotion and posture) behaviors of virtual humans. BML allows very
flexible time synchronization mechanisms that do not require the notion of a lead-
ing modality.

Zhttp://www.mindmakers.org/projects/BML
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This chapter discusses the design choices the SAIBA initiative (including myself)
has made in BML, and how I have extended BML to support the specification of
multimodal virtual human behavior in applications that require continuous interac-
tion.

6.2 BML

The SAIBA Framework (discussed in detail in Chapter [5.4), describes a generic ar-
chitecture for virtual human applications. It contains a three-stage process: com-
municative intent planning, multimodal behavior planning, and behavior realization
(see Figure [6.1). BML provides an interface between the SAIBA Behavior Planner
and a Realizer.

SAIBA | . SAIBA | sw_» Behavior
Intent Behavior Realizer
Planner «feedvack—  Plgnner [« feedback— (E|ckerlyc)

Figure 6.1: The SAIBA framework.

Initially, BML was designed to provide a general, Realizer-independent descrip-
tion of multimodal behavior that can be used to control a virtual human. This de-
scription ranged from the mere occurrence and the relative timing of the involved
behavior, to the detailed (yet Realizer-independent) definition of the behavior’s form
[152]. Realizer independence requires that the BML specification cannot rely on
such things as the existence of certain joints in the skeleton of the virtual human,
the availability of a specific speech synthesis system, the availability of animation
files, and so on. Instead, BML uses body parts, lexicalized locations and common
verbs (for example: speech, face, gesture, center, left) as terms in its specification.

At a later stage (see [298]), the requirement for detailed form descriptions was
dropped for various reasons:

1. It is hard to unify all the different detailed form descriptions by all research
groups into a single behavior description.

2. Even if this were to succeed, such a description would require a new Realizer
to implement an unwieldy amount of behavior variation.

3. Many more or less standard representation languages already exist that pro-
vide detailed form descriptions for a single modality (for example: SSML,
MaryTTS, or Microsoft SAPI for speech).

Therefore the SAIBA initiative opted to design a simple ‘Core’ BML description that
describes the behavior’s form in a coarse manner and to provide extension mecha-
nisms to allow BML authors to specify the form of their behaviors in greater detail
whenever desired.
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A BML stream contains BML blocks with behaviors (such as speech, gesture,
head movement, etc.) and specifies how these behaviors are synchronized (see also
Figure [6.2). Synchronization of the behaviors to each other is done through BML
constraints that link synchronization points in one behavior (start, end, stroke, etc;
see also Figure to synchronization points in another behavior. Each behavior
and each BML block is identified by its id.

<bml id=["bml1"]
<gaze type="AT” id="gazel"
target="AUDIENCE" />

<speech |start="gazel:ready”|id="speechl"}
<text>Welcome lxdies and gentlemen!

</text>
</speech>
</bml>
* Synchr:nization behavior id <+
—» Behaviors BML block constraint BML block id «—

Figure 6.2: An example of a BML request containing a gaze and a speech behavior. A synchro-
nization constraint ensures that the speech starts as soon as the gaze is aimed at the
audience.

start ready stroke_start stroke

Figure 6.3: Standard BML synchronization points

The BML specification does not prescribe a semantic meaning for the BML block.
The BML block merely provides a convenient mechanism to cluster and stream be-
haviors. This allows users of BML to specify short spurts of behavior (for example:
using speech clauses or individual gaze shifts) and generate performances incre-
mentally, or, if they prefer, to construct elaborate performances as a whole and send
them in a single block (for example as entire monologues).
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6.2.1 Scheduling BML

A BML Realizer receives a continuous stream of BML blocks. These blocks are to
be scheduled in order of their arrival. This scheduling of a sequence of BML blocks
results in a multimodal behavior planE] BML Scheduling thus updates the current
multimodal behavior plan on the basis of a provided BML block (see Figure [6.4).

finished playing  scheduled }Rﬂl ki finished playing  scheduled
behaviors behaviors  behaviors R ocK behaviors behaviors  behaviors
\ append \
[ 0 EE ' (O D-I
] I— ] | — | — Scheduler —[ 1| — \; |
— 9!!!9!1[?%*,‘,@)!!9[9'9[‘,,,,,,,,1 L,,,,,,,,D?‘,’Y,E‘?,'??Y!Q(R'?,’? ,,,,,,,,,,,, 3
- . finished playing scheduled
| A ‘ .
bf(;r;::c;(:s bglr?g:/ri]grs St')cerl]_;%lijcl)?g L,,JQQK,,J behaviors  behaviors behaviors
N ! I i
[yt it | ”””””‘::,’,’ ,,,,,,,,,, + }
| ] [ R W R ——
| I

J % Scheduler > ‘%; L

Figure 6.4: The scheduling process. The white bar indicates the current time. The new BML block
defines how the currently playing and planned behaviors are updated and which new
behaviors are inserted, using a scheduling attribute. append (top) indicates that the
behaviors in the BML block are to be inserted after all behaviors in the current plan.
merge (bottom) specifies that the behaviors in the BML block are to be started at the
current time.

The SAIBA Behavior Planner can indicate how a BML block is to be combined
with the current behavior plan using the scheduling attribute in the bml element.
A BML Realizer should implement the following mandatory scheduling attributes;

1. replace: completely replaces the current behavior plan by the behaviors speci-
fied in the new BML block; interrupts all running behavior.

2. append: schedules the behaviors specified in the new BML block to play after
all BML blocks in the current behavior plan have finished.

3. merge: merges the behavior specified in the new block with the current behav-
ior plan. That is, behaviors in the new block are added to the current plan and
do not have to wait for any behaviors from the previous blocks. An exception
arises when some new behavior would conflict with some behavior already
present in the current plan; in that case the newer one will be ignored, and a

3The multimodal behavior plan is an abstract representation of the Motor Plan discussed Chap-
ter|4, A behavior might be represented by multiple PlanUnits in the Motor Plan.
see also http://wiki.mindmakers.org/projects:bml:multipleblockissue
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notification is sent back to the SAIBA Behavior Planner. Behavior descriptions
in a merge block are not allowed to refer to the timing of behaviors outside
the BML block.

If no scheduling attribute is specified, the block is scheduled using the merge at-
tribute.

6.2.2 Behaviors

Core BML supports the following set of behaviors:

* locomotion: move the body of the virtual human from one location to another.
Can be specified by target in the world or by movement velocity for continuous
movement.

* posture: put the body in an ‘overall physical configuration’, specified mainly
by a stance (standing, sitting, lying, ...) and a shape (crossed, open, stretched,

2.

* speech: generate both speech audio (or text) and lip/mouth movement, for
example using a speech synthesizer and viseme morphing. Specified by the
text that is to be spoken.

* gesture: coordinated movement of the arms and hands. Specified mainly
by a type (e.g. point, beat, conduit, lexicalized, ...). Lexicalized gestures
are linked to a certain animation or controller by specifying a lexeme (for
example: the filename of the animation, the id of the controller).

* head: head movement, to be interpreted as an offset from posture and gaze
direction. Includes head shakes, head nods and generic head rotations.

* face: movement of the facial muscles to form certain expressions. The exact
specification format is under discussion at the time of writing. It has been
proposed to use Action Units from Ekman and Friesen’s Facial Action Coding
System [[71]] and/or to use lexicalized face expressions in a similar way to
lexicalized gesture.

* gaze: Coordinated multi-joint movement, indicating where the character is
looking. Specified mainly by a gaze target, and a set of gaze modalities (eyes,
head, neck, torso, legs).

* emit, wait: the wait behavior serves both as a simple ‘performance pause’
behavior, typically used to delay the execution of other behaviors and as one
of the elements of an event/message based synchronization system that is
to be used to synchronize inter-virtual human behavior. The semantics and
syntax of the latter are still under discussion at the time of writing.
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6.2.3 Synchronization

Every behavior is broken down into six phases of realization, inspired by the phases
of gesture (see [189]). Each phase is bounded by a sync point (See Figure [6.3)).
Behavior may also define custom sync points (for example using sync in speech, see
BML Example [2)). These custom sync points must always occur after the start and
before the end sync point of the behavior|

BML Example 2 A speech behavior that defines the custom sync point syncl to
occur directly after the word custom.

<speech id="speechl">
<text>This speech behavior defines a custom <sync id="syncl"> sync point.
</text>

</speech>

Synchronization constraints are used to specify the timing relation between two
or more sync references. A sync reference consists of either an offset (in seconds)
from the start of the BML block, or a triple of a behavior, a sync point and an offset
time from the sync point in the behavior (in seconds).

The constraint element provides the general mechanism to specify time con-
straints between sync references. In core BML one can specify that:

1. Two or more sync references should occur at the same time (See BML Exam-

ples|3al3c).

2. One or more sync references should occur at a fixed time after the start of the
BML block (See BML Example [3b).

3. One or more sync references should occur before or after a specified sync point
(See BML Example [3d)).

A shorthand is provided to specify the synchronization of a standard sync point
of a behavior to a sync reference within the behavior specification itself (see the
synchronization constraint in Figure BML Example [3ajshows the generic way to
specify the same constraint). All synchronization constraints are interpreted as bi-
directional constraints. That is: the synchronization constraint in Figure states
that the start synchronization point of speechl must occur at the same time as the
ready synchronization point of gazel, but allows that the timing of either or both
behaviors is modified to satisfy the time constraint.

SBML does currently not define where custom sync points are positioned in relation to the other
five standard sync points.
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BML Example 3 Several BML blocks illustrating BML’s general synchronization
mechanisms.

(a) The start sync of speechl is synchronized with the ready sync of gazel. This bml script
is equivalent to that used in Figure|6.2

<bml id="bmli">
<gaze type="AT" id="gazel" target="AUDIENCE"/>
<speech id="speechl">
<text>Welcome ladies and gentlemen!</text>
</speech>
<constraint id="c1">
<synchronize ref="speechl:start">
<sync ref="gazel:ready"/>
</synchronize>
</constraint>
</bml>

(b) sync points ready of gazel and start of speechl should occur 4s after the start of the
BML block.

<constraint id="c1">
<synchronize ref="4">
<sync ref="gazel:ready"/>
<sync ref="speechl:start"/>
</synchronize>
</constraint>

(c) speechl:sync4 should occur at the same time as beat1:stroke and 0.5s after nod1:stroke.

<constraint id="synchronize_example">
<synchronize ref="speechl:sync4">
<sync ref="beatl:stroke"/>
<sync ref="nodl:stroke+0.5"/>
</synchronize>
</constraint>

(d) This constraint requires that the ready sync of gazel occurs before the start sync of
speechl.

<constraint id="before_example">
<before ref="speechl:start">
<sync ref="gazel:ready"/>
</before>
</constraint>
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6.2.4 Feedback

A Realizer should inform the SAIBA Behavior Planner of any errors that occur when
realizing the BML blocks that are sent to it. If required (that is, a failure would
otherwise occur), a Realizer may decide to drop some constraints, or to execute
behaviors in a slightly different form than requested by the SAIBA Behavior Plan-
ner. The SAIBA Behavior Planner is informed of this using a warning message. The
SAIBA Behavior Planner needs to monitor the progress of the multimodal plan it
composed for various reasons. For example, it might need to know when it would
be an appropriate time to merge some new behaviors, or when exactly certain infor-
mation has been delivered to a user. For Realizers that support the interruption of
ongoing behaviors, monitoring behavior progress is crucial to set up the appropriate
interruption strategy (see also the scenario in Section|[6.5.2.3).

A Realizer is expected to provide a SAIBA Behavior Planner with feedback on
the current state of any BML block, and to notify it of execution warnings and
exceptions. BML does not specify a specific format for feedback, exception and
warning messages, but does specify the minimum content of such messages. A
Realizer must at least provide the following feedback:

1. Performance start feedback Indicates that the Realizer has started executing the
BML block. Must include the BML block id of the started block.

2. For each sync point in each behavior in the BML block: Sync-Point Progress
Feedback. Indicates that a sync point in one of the behaviors of the BML block
has passed. Must provide the sync points BML block id, behavior id and sync
id.

3. Performance stop feedback Indicates that the Realizer has finished executing a
BML block. Must provide the BML block id and the reason for stopping (for
example: successful completion, error).

4. Warning feedback is used to notify the SAIBA Behavior Planner that requested
behaviors and/or synchronization constraints were modified during realiza-
tion. Warning feedback must contain the BML block id of the block in which
the warning occurred and the list of behavior ids and synchronization con-
straints that were modified to facilitate synchronizationﬁ

5. Exception feedback is used to notify the SAIBA Behavior Planner that requested
behaviors and/or synchronization constraints have failed to be realized. The
exception feedback must include the BML block id in which the exception oc-
curred, and whether the BML block was completely canceled. If the block is
not completely canceled, it must also provide the list of behavior ids and syn-
chronization constraints that failed. If the BML block failed entirely, a reason

%In the current version of Elckerlyc, behaviors are dropped if constraints on them cannot be
satisfied. Elckerlyc does not have mechanisms in place to drop constraints rather than behaviors, or
to modify the form of a behavior to satisfy constraints. Therefore, Elckerlyc does not make use of
warning feedback.
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for this failure must be provided (for example: BML parsing error, non-existing
gaze target, synchronization constraints could not be achieved, etc.).

6.2.5 Mechanisms to Extend BML

Allowing Realizer specific extension of BML is crucial for wide acceptance of the
language. However, this conflicts with the desired Realizer-independence of the
language. BML resolves this conflict by proposing a simple, small set of core BML
behaviors, and allowing additional descriptions to describe these behaviors in more
detail. Such additional descriptions can make use of existing unimodal behavior de-
scription languages, so that they still might be shared by different Realizers. For ex-
ample, Realizers from several research groups might allow the description of speech
in SSML.

The set of BML behavior elements is by no means comprehensive, as much of
the ongoing work behind BML involves identifying and defining a broad and flex-
ible library of behaviors. Implementors are encouraged to explore new behavior
elements. In summary: BML extension is handled in the following ways (see also

Figure|[6.5)):

1. Additional behaviors should be designed as new XML elements using custom
XML namespaces (see BML Example [4)).

2. Specialized attributes can be used to extend core BML behaviors. Such at-
tributes should be identified as non-standard BML by utilizing XML names-
paces (see BML Example |4)).

3. Behavior Description Extensions provide a principled way of specifying core
BML behaviors in a more detailed manner, typically employing an existing
XML language (see BML Example [5)).

BML Example 4 A customized animation behavior (sbm:animation) and a cus-
tomized joint-speeds attribute (sbm:joint-speeds). The latter specifies the BML gaze
behavior in a more detailed manner. Both extensions are from the SmartBody
project[280].

<bml xmlns:sbm="http://www.smartbody-anim.org/sbm">
<gaze id="gazel" target="AUDIENCE" sbm:joint-speeds="100 100 100 300 600"/>
<sbm:animation name="CrossedArms_RArm_beat"/>

</bml>

Behavior Descriptions Extensions go beyond the core BML behavior specification
in describing the form of a behavior. They allow a BML author to describe the behav-
ior in more detail for a Realizer that supports the extensions, while still providing
the core behavior as a fallback for Realizers that do not. The additional descriptions
are embedded within the element of the behavior they extend as children elements.
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Figure 6.5: Extending BML. Description levels provide more detail on existing BML behaviors,
additional behaviors are created as new XML elements (picture from http://wiki.
mindmakers.org/projects:bml:bmll.0-proposal).

The type attribute of the description element should identify the type of content,
indicating how it should be interpreted.

Description elements in BML can include existing representation languages such
as SSMII’, MARY TTSF] etcetera. or new languages can be created that make use of
advanced realization capabilities. Each description element is a self-contained de-
scription of a behavior. It is also required that each description provides exactly the
same synchronization points as its core BML description. It is however allowed to
time the synchronization points in the description level at slightly different positions
than those in the core BML. This can be used, for example, to provide synchroniza-
tion at syllable level rather than at word level in a description extension of a speech
behavior (see BML Example [6).

If a Realizer does not know how to interpret the available description types, it
should default to the core behavior. If multiple description elements are given, and
a Realizer is capable of interpreting more than one, the Realizer should use the
highest priority description.

"http://www.w3.org/TR/speech-synthesis/
8http://mary.dfki.de/
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BML Example 5 Use an audio file to play back this speech behavior. If that is not
supported, use SSML. As a last resort, fall back to the core behavior. Note that the
descriptions specify the same sync points as the core behavior.

<speech id="s1">
<text>This is a BML <sync id="tml"/> extended speech specification.</text>
<description priority="1" type="application/ssml+xml">
<speak xmlns="http://www.w3.org/2001/10/synthesis">
This is a <emphasis>BML</emphasis> <mark name="tml"/> extended speech
specification. </speak>
</description>
<description priority="3" type="audio/x-wav">
<sound xmlns="http://www.ouraudiodesc.com/">
<file ref="bml.wav"/>
<sync id="tml" time="2.3" />
</sound>
</description>
</speech>

BML Example 6 In the Mary TTS description of speech behavior s1, the synchro-
nization point syncl is defined to occur after the first syllable of “Hello”. Since I
cannot define sync points at syllable level in core BML, but the core BML does re-
quire the same sync points as the description, I define it to occur before “Hello” in
the core description.

<speech id="s1">
<text><sync id="syncl"/>Hello world!</text>
<description priority="1" type="maryallophones">
<maryxml xmlns="http://mary.dfki.de/2002/MaryXML">
<p><s><phrase>
<t accent="H*" g2p_method="lexicon" ph="h @ - > 1 QU" pos="UH"> Hello
<syllable ph="h @">
<ph p="h"/><ph p="@"/>
</syllable>
<mark name="syncl"/>
<syllable accent="H*" ph="1l QU" stress="1">
<Ph p=u1n/><ph p=ll@Ull/>
</syllable>
</t>
<t accent="H*" g2p_method="lexicon" ph="’ w r= 1 4" pos="NN"> world
<syllable accent="H*" ph="w r= 1 d" stress="1">
<ph p="w"/><ph p="r="/><ph p="1"/><ph p="4"/>
</syllable>
</t>
<t pos=".">I</t>
<boundary breakindex="5" tone="L-L}"/>
</phrase></s></p>
</maryxml>
</description>
</speech>
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6.3 Recommendations

BML is a language that is still in development. Currently some of the behavior
form specifications are unfinished (e.g. those of face) and the form description
abstractions and parameters are not consistent over different behaviors. Behaviors
can be synchronized using seven sync points of gesture, but the semantic meaning
of these sync points is not specified clearly for other behaviors.

More importantly, several issues with behavior persistence and mutually exclu-
sive behaviors are unresolved. Here I propose some solutions for these issues.

6.3.1 Persistent Behavior

The BML specification of a behavior does not need to include a specification of its
end time. For most behaviors the BML Realizer automatically finds an appropriate
end time. For some behaviors (currently posture and certain forms of locomotion)
it makes sense to keep them running persistently if no end time is specified. This is
used to makes a virtual human stay in a prescribed pose or keep him walking with a
certain velocity. I recommend that gaze should be defined as persistent too, so that
it can be used to keep the gaze on a target.

6.3.2 Behavior Persistence and the BML Block End

The notion of a BML block being finished is needed when sending its end feedback
and when appending other BML blocks to it. If a BML block contains persistent be-
haviors, it is never finished. This means that once a BML block containing persistent
behavior is sent to a Realizer, the append scheduling attribute is no longer mean-
ingful. I recommend the inclusion of the BML'/SmartBody append-after scheduling
attribute (See Section to the core BML standard to circumvent this issue.

Alternativelyﬂ behavior persistence could be replaced by behavior state and state
transition descriptions. For example, rather than having a persistent posture behav-
ior that retains the posture, a posture behavior could define the posture change and
model the desired final posture state. This introduces state management as a re-
sponsibility of the Realizer. States could include the posture, the walking velocity,
the gaze target, and so on. The execution of the behavior itself would then entail
the state change (e.g. the change of gaze target, the change of walking velocity, the
posture change); its end indicates that the state change was completed.

6.3.3 Mutually Exclusive Behaviors

For some behaviors it is impossible to have more instances of the same behavior
active at the same time (for example: one cannot gaze at two objects at the same
time, speak two sentences at the same time or stand in two poses at the same time).
I define these behaviors as mutually exclusive behaviors.

As suggested to me by Stefan Kopp.



Section 6.4 — Continuous Interaction

For mutually exclusive behaviors that also allow behavior persistence, it makes
sense to allow the latest behavior to overwrite previous behavior. This allows the
virtual human to, for example, temporarily divert gaze to a new target and then
return gaze to an earlier specified target. Such behavior suspension is currently
proposed only for the posture behavior in core BML. I propose to extend this to
the gaze behavior and to specify the exact overwriting rule as follows: the running
behavior in a set of mutually exclusive behaviors is the behavior with the latest
start time (earlier than the current time). If the same latest start time is shared by
multiple behaviors, the active behavior is that with the earliest end time. If two or
more mutually exclusive behaviors share the latest start and the earliest end time,
all but one of them are dropped and the SAIBA Behavior Planner is informed of the
dropped behaviors. Figure illustrates this mutually exclusive behavior handling
algorithm.

beh1

beh2
time >

beh1

beh2

time g
beh1
beh2

time >

Figure 6.6: In all figures, behaviors beh1 and beh2 are two mutually exclusive behaviors. Top:
beh1 and beh2 overlap during some interval of time. Since beh1 has the latest start
time, it will be selected to play during the overlapping time interval. Middle: beh1
and beh2 share the same start time. Since behl has the earliest end time, it will
be selected during the time interval on which the behaviors overlap. Bottom: beh1
and beh2 share the same start and end time, one of them is dropped and the SAIBA
Behavior Planner is informed of this.

6.4 Continuous Interaction

The basic requirements for a specification language for multimodal behavior of a vir-
tual human are clear. One should be able to specify short monologues of behavior
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using different modalities (speech, face expression, gestures) and to specify the rel-
ative synchronization constraints between single behavior elements. Furthermore,
one should be able to add additional behaviors, either to be performed immediately,
in parallel with the earlier specified behavior, or to be appended after the other
behavior is finished. BML satisfies such requirements.

In order to achieve the continuous interaction described in Chapter [5, there
are four additional core requirements to such a markup language. It should allow
the synchronization of ongoing behavior to predicted interlocutor events, flexible
interruptibility, shape modification of ongoing behavior, and high responsiveness.
In this section I will go into more detail on these four requirements.

Virtual humans should be able to synchronize their behavior with the behavior
of an interlocutor or allow it to be aligned with predicted interlocutor events (such
as the end of their speaking turns). This requires the specification of behavior align-
ment to predicted interlocutor events['] The time predictions of these events are
updated incrementally, typically providing more detailed prediction accuracy at a
later time. The multimodal behavior plan should be updated automatically, reflect-
ing such an updated prediction.

Virtual humans should be capable of dealing with interruptions. Utterances may
need to be (gracefully) broken off halfway through the sentence because the user
interrupts the virtual human. A gesture that was already initiated may have to be
be abandoned (retracted) directly after the preparation or hold phase because it is
suddenly no longer relevant (e.g., the object to be pointed at has disappeared, or
the user is no longer looking at the virtual human). However, state-of-the-art virtual
human systems do not yet allow one to specify exactly where to interrupt ongoing
behavior. Furthermore, one also needs to specify alternative continuations for the
interrupted behavior: the abandoned gesture needs to be retracted; the last word in
the interrupted sentence may have to be pronounced in a ‘fade-out’ manner (e.g.,
with a falling intonation and softer voice); et cetera. In this section, I present a
mechanism to specify graceful interruptions of ongoing behavior (speech, gestures)
that allows one to specify exactly where the behavior needs to be interrupted, and,
in addition, to specify how to alternatively and immediately continue after the in-
terruption.

Virtual humans need mechanisms to slightly modify the shape of ongoing behav-
ior (e.g., increase gesture amplitude or speech loudness). Such shape modifications
typically occur in reaction to interlocutor events (for example, the interlocutor try-
ing to take the speaking turn).

Virtual humans should exhibit quick and immediate responsiveness to the user.
In human-human interaction, some responses are delivered with a short (500 mil-
liseconds) to near-zero delay. The coordination between humans in synchrony and
alignment behavior occurs on a similar timescale. For a virtual human this means
that, given a certain action from the user, specification of new behavior and changes
to the ongoing behavior must be done with virtually no delay at all (see also Chap-
ter [5). Given the fact that behavior scheduling takes a non-negligible amount of

10See also Chapter for a more detailed explanation of why this should be in the specification
itself rather than be handled through the Behavior Planner.
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time, it should be possible to specify potential responses by the virtual human ahead
of time, to be activated with near-zero delay at the appropriate moment. This also
argues for rapid handling of the requirements of shape modification and alignment
to predicted interlocutor events, preferably in such a manner that time-consuming
rescheduling is avoided.

This thesis contributes the BML extension BML Twente that augments BML to
satisfy the four fundamental requirements for the specification of continuous inter-
action mentioned above.

6.5 Scenarios for Continuous Interaction

Continuous interaction is often observed in fluent turn-taking or when humans ex-
ercise the same behavior together. This section provides some typical scenarios of
continuous interaction and demonstrates how they can be specified in BML.

6.5.1 Interpersonal Behavior Synchronization

A Virtual Trainer is exercising together with a user. The Virtual Trainer infers from
sensor data that the exercise is too easy for the user. She decides to increase the
difficulty of the exercise. One way of doing this is by increasing the exercise tempo.
A subtle technique to make the user move faster is to move in the same tempo as
the user but slightly ahead of him, so he constantly has the feeling of being ‘too
late’ in his movements. The movements of the user are observed with a sensor.
An Anticipator has been designed that can perceive the tempo a user is exercising
in using this sensor, and from this information extrapolates future exercise time
events (see also Chapter [10.3.6). By making use of the time predictions from this
exerciseAnticipator, one can specify the trainer’s movement to be slightly ahead
of them.

BML Example [7| illustrates this virtual trainer scenario. Based on sensor data,
the exercise Anticipator provides synchronization points for predicted events in
the exercise (e.g. when will the next jumpstart or squatdown occur). This in-
formation can be used as synchronization constraints in a BML block. The BML
block in BML Example [7| describes how synchronization points of a procedural ex-
ercise animation (exercisel) are synchronized to be slightly ahead (0.5 seconds)
of the anticipated synchronization points in the exercise as executed by the user.
exercisel:squatdown and exercisel:jumpstart refer to the squat down posi-
tion and the start of the jump in the squat-jump exercise animation respectively.
exerciseAnticipator:squatdown and exerciseAnticipator: jumpstart refer to
the anticipated timing of squatdown and jumpstart as predicted by movement of
the user. As the sync points used here are custom sync points (rather than the stan-
dard sync points listed in Figure |6.3]) in both the animation and the Anticipator, the
synchronize element is used to define a time constraint between them.
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BML Example 7 Using an exercise Anticipator to synchronize the movement of the
Virtual Trainer with that of a user.

User
A A A
Sensors + i
Interpretation Sensor
Virtual
Trainer
exercise is
too easy
movement & speech
Behavior . .
Intent | inorease | o ;| exercise Behavior predicted Excercise
Planner difficulty fincrease tempo] description Realizer tempo Anticipator

<bmlt:procanimation id="exercisel" name="squat-jump"/>
<constraint id="c1">
<synchronize ref="exercisel:squatdown">
<sync ref="anticipators:exerciseAnticipator:squatdown-0.5"/>
</synchronize>
<synchronize ref="exercisel:jumpstart">
<sync ref="anticipators:exerciseAnticipator: jumpstart-0.5"/>
</synchronize>

</constraint>

6.5.2 Turn-Taking

The following examples show how conversational turn-taking strategies can be em-
bedded in the SAIBA framework and how Anticipators and BML"’s interrupt and
parametervaluechange behaviors allow their elegant specification.

6.5.2.1 Taking the Turn

Humans can take the turn at different moments, for example, slightly before their
interaction partner stops speaking, at exactly the moment their interaction partner
stops speaking, or slightly after their interaction partner stops speaking. The turn-
taking strategy used can modulate the impression of assertiveness, agreeableness,
conversational skill, politeness, friendliness and arousal of the virtual human (see
[179, 181]], Chapter[5.1.3). I assume that one can design an Anticipator that can
predict the end of speech of a user (see Chapter for possible implementa-
tions), called the speechStopAnticipator.

In BML Example |8, the SAIBA Intent Planner decides to take the turn and per-
form a communicative act. The SAIBA Behavior Planner selects a turn taking strat-
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egy, based on, for example, the politeness, arousal and friendliness of the virtual
human. In the illustrated case, it waits for the user to stop speaking and starts
speaking after a certain delay x (note that x could be negative to start speaking
slightly before the user stops speaking). The SAIBA Behavior Planner therefore only
specifies that the virtual human starts speaking after the user stops speaking, and
the exact and precisely timed execution of this behavior is handled by the Behavior
Realizer, using the speechStopAnticipator.

BML Example 8 Taking the turn.

vitual | » U -»  Sensor
Human ser
take turn movement & speech
SAIBA and perform SAIBA speech with ‘ Y
icat . .
Intent 7COmm:2tlca |ve» Bpelgsr\::.r | startsync Behavior predicted SpeechStop
Planner (politeness, [wait for turn then l":.k ed tto Realizer stop time Anticipator
arousal, speak] anticipator

friendliness)

<bml id="bmli">
<speech id="speechl" start="anticipators:speechStopAnticipator:stop+x">
<text>Bla bla</text>
</speech>
</bml>

Turn-taking using Anticipator timing offers several improvements over having a
the SAIBA Behavior Planner send the BML block that takes the turn to the Realizer
at the moment the turn should be taken: 1) if the BML block is sent ‘early enough’,
turn-taking using an Anticipator avoids or at least decreases scheduling delays and
allows the block to be executed exactly at its desired time, 2) as long as speechl is
not started, its desired starting time can be changed, providing behavior execution
that can make use of incrementally improving turn start timing predictions, 3) by
providing alignment to Anticipators as a general Realizer mechanism, the design of
SAIBA Behavior Planners is simplified []

6.5.2.2 Keeping the Turn

In BML Example [9] the SAIBA Intent Planner is informed by an interpretation of
sensor values that the user would like to get the turn. The SAIBA Intent Planner
decides that the virtual human would like to keep the turn. Based on the provided
politeness, arousal and friendliness values, the SAIBA Behavior Planner decides to
realize this in intent by increasing the volume of behavior speech1 (from its starting

1This of course means that the Realizer becomes more complex. However, one typically builds
only one Realizer, but several application/experiment specific SAIBA Behavior Planners that require
such functionality (see also Chapter|[8.1]and Chapter [10).
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value to target value 90 along a linear trajectory, the target value is to be reached 1
second after the custom sync synchronization point in speech1).

This is achieved by sending a new BML block to the BML Realizer that contains
a parametervaluechange behavior targeting the volume of speechi. The parame-
tervaluechange is synchronized with the speech1 behavior of BML block bm11. Nor-
mally BML does not allow such synchronization with behaviors in an external BML
block. BMLT provides the allowexternalrefs attribute to indicate that, within a
BML block, external time references are allowed.

BML Example 9 Keeping the turn.

Sensor + Virtual

Interpretation b User < Human

\
user wants turn

movement & speech

v |
SAIBA keep turn SAIBA orease |
(politeness, Behavior Behavior
Intent — arousal, b ——volume of Realizer
Planner friendliness) anner speech1
[keep turn]

<bml id="speechchange" bmlt:allowexternalrefs="true">
<bmlt:parametervaluechange target="bmll:speechl" paramId="volume"
start="bmll:speechl:syncl" stroke="bmll:speechl:syncl+1">
<bmlt:trajectory type="linear" targetValue="90"/>
</bmlt:parametervaluechange>
</bml>

6.5.2.3 Turn Yielding

In BML Example 10| the SAIBA Intent Planner is informed by an interpretation of
sensor values that the user would like to get the turn. The SAIBA Intent Planner
decides that the virtual human should yield its turn. The current utterance is spec-
ified in bm11 and contains behaviors speechl and gesturel. Depending on where
the Realizer is in executing bml1, the SAIBA Behavior Planner employs different
interruption strategies:

1. If gesturel has not been started, all behavior in bml1 is interrupted using the
BML block in BML Example

2. If gesturel is already in its retraction phase, or has already finished, there is
no need to interrupt it, and, using the BML block in BML Example only
speechl is interrupted.
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BML Example 10 Yielding the turn.

Sensor+ | Virtual
Interpretation User| - Human
‘ s
userwants movement & speech
SAIBA SAIBA |
Intent ——yield turn—p Behavior ——interrupt bml1— Beha.wor
Planner Planner Realizer
[yield turn]

() Yield the turn by interrupting all behavior in bm11.

<bml id="yieldturn">
<bmlt:interrupt id="il" target="bml1l"/>
</bml>

(b) Yield the turn by interrupting all behavior in bm11 excluding gesturel.

<bml id="yieldturn">
<bmlt:interrupt id="il" target="bmll" exclude="gesturel"/>
</bml>

(c) Yield the turn by interrupting all behavior in bm11. Insert a behavior (relaxArm) that
gracefully moves the gesturing arm back to its rest position.
<bml id="yieldturn">

<bmlt:interrupt id="il" target="bmll"/>

<bmlt:controller id="relaxArm" class="CompoundController" name="leftarmhang"/>
</bml>

3. If gesturel has started, but is not yet in its retraction phase, interrupt all
behavior in bml1 and insert a behavior (relaxArm) that gracefully moves the
gesturing arm back to its rest position. This is achieved using the BML block
in BML Example [10d

Note that this example requires that the SAIBA Behavior Planner keep track of the
behavior sent to the Realizer and monitors its execution progress. The latter is achie-
ved using the feedback messages that are sent to the SAIBA Behavior Planner by the
Realizer (see also Section[6.2.4). A generic module within the SAIBA Behavior Plan-
ner could be designed this often occurring scenario of gracefully interrupting a piece
of speech with an aligned gesture.

6.5.3 Incremental Interpretation and Generation

Skantze and Hjalmarsson [271]] designed Jindigo, an incremental speech recog-
nition and generation architecture that facilitates opportunistic speech planning
(see also Chapter |5.1.3.2), using incremental speech recognition and generation.
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Their speech generation is specified using SpeechPlans, which is a directed graph
of SpeechUnits. The SpeechPlan is generated on the fly. It can capture multiple
different realization options. A path on the graph is selected at run time by an
ActionManager. This ActionManager could be seen as a SAIBA Behavior Planner,
and the SpeechPlan could be expressed in BML'. This allows such an incremental
generation paradigm to be used within the SAIBA framework. The scenario of BML
Example taken from [271] illustrates this.

The BML' pre-planning and activation capabilities allow the construction of a
directed graph of SpeechUnits in the multimodal plan of the BML Realizer. The
SpeechPlan is built incrementally in BML. It is extended as more input from an
automatic speech recognizer becomes available. First, two alternative apositional
turn beginnings are created using bm11 and bm12. These apositional turn beginnings
can be executed as soon as the virtual human would like to take the turn, even
without having a plan for the rest of its sentence at hand. As soon as the partial
sentence “how much” is recognized, the Action Manager adds some alternatives
describing cost to the plan using bml13, bm14 and bml5. When the sentence “how
much is the doll” is fully parsed, the ActionPlanner can add a sentence describing
the cost, using bm16. Figure[I11cland [11d|show how the paths “eh, it costs 40 crowns”
and “let’s say 40 crowns” are selected respectively, using BML'. The selection of a
node on the graph involves sending a BML block that activates its pre-planned BML
block and interrupts (removes) all alternative nodes.

Feedback on the progress of the BML scheduling process is essential in such in-
cremental generation. Elckerlyc provides feedback indicating when a BML block is
scheduled (see Section [6.7.1). This feedback may be used by the Action Manager to
select a path on the graph. For example, if Elckerlyc has not yet finished scheduling
bml13, bm14 and bml5, the Action Manager can select an apositional beginning (e.g.
bml1l or bml2) to take the turn while not having a SpeechPlan at hand right away.
Alternatively, if bm13, bm14 and bml5 are scheduled, the apositional beginning of the
SpeechPlan (containing either bm11 or bm12) may be omitted. The Action Manager
might be forced to select a node when not all alternatives have been scheduled. It
can then simply select one that is scheduled, removing all scheduled alternatives
and canceling scheduling of the unscheduled ones.

In a dialog system that uses incremental processing, input hypotheses might be
revised, which could lead to revisions in the ongoing SpeechPlan. To allow this,
the Realizer must support self-repairs (see Figure[6.7)). These repairs may be covert
(they are achieved by changing planned behavior without the interlocutor noticing
the plan change) or overt (involving an explicit correction). Overt revisions may
include an apositional beginning (e.g. sorry, that’s wrong). To decide whether to
use an overt or covert correction and exactly which one, the ActionManager needs
to know which SpeechUnits have been executed already. As in the scenario of Sec-
tion this requires that the ActionManager keeps track of the behavior sent
to the Realizer and monitors its execution progress. The latter is achieved using
the feedback messages that are sent to the dialog manager by the Realizer (see also
Section [6.2.4). Thus, these self-repair mechanisms can be specified using BMLT.

Self-repair requires the interruption of ongoing speech, using a similar BML!
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BML Example 11 Setting up and executing an incremental SpeechPlan.

(a) Top: recognition from an automatic speech recognizer, bottom: the produced Speech-
Plan. Vertex sl is associated with w1, s3 with w3, and so on. (Figure based upon Figure 4
in [271]], bml ids are mine).

o vow v e | e |

bmi3
it costs

bml4
let's say

you can have it for

bml6é
40 crowns

(b) Incrementally setting up the SpeechPlan, using BMLT

After wl:
<bml id="bmll" bmlt:preplan="true">

<speech id="sl1"><text>eh</text></speech>
</bml>
<bml id="bml2" bmlt:preplan="true">

<speech id="s1"><text>well</text></speech>
</bml>

After w3:

<bml id="bml3" scheduling="append-after(bmll,bml2)" bmlt:preplan="true">
<speech id="s1"><text>it costs</text></speech>

</bml>

<bml id="bml4" scheduling="append-after(bmll,bml2)" bmlt:preplan="true">
<speech id="sl1"><text>let’s say</text></speech>

</bml>

<bml id="bml5" scheduling="append-after(bmll,bml2)" bmlt:preplan="true">
<speech id="s1"><text>you can have it for</text></speech>

</bml>

After wé:

<bml id="bml6" scheduling="append-after(bml3,bml4,bml5)" bmlt:preplan="true">
<speech id="s1"><text>40 crowns</text></speech>

</bml>

(c) Realizing the path “eh, it costs 40 crowns”
<bml id="bml7" bmlt:interrupt="bml2,bml4,bml5" bmlt:onStart="bmll,bml3,bml6"/>

Or, incrementally:

<bml id="bml7" bmlt:interrupt="bml2" bmlt:onStart="bmll"/>

<bml id="bml8" bmlt:interrupt="bml4,bml5" bmlt:onStart="bml3"/>
<bml id="bml9" bmlt:onStart="bml6"/>

(d) Realizing the path “let’s say 40 crowns”

<bml id="bml7" bmlt:interrupt="bmll,bml2,bml3,bml5" bmlt:onStart="bml4"/>
<bml id="bml8" bmlt:onStart="bml6"/>
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Figure 6.7: Different types of self-repairs. The shaded boxes show which SpeechUnits have been
realized, or are about to be realized, at the point of revision. Figure from [271]].

specification as in the scenario in Section [6.5.2.3| The construction of new paths
on SpeechPlan, including optional apositional beginnings is illustrated in the BML

Example
6.6 BMLT

I developed the BML extension BML! (BML Twente) specifically to accommodate the
specification requirements of continuous interaction. In addition to that, it provides
several behaviors and description extensions that are specific to Elckerlyc. In this
thesis, the prefix bm1t is used for all BMLT specific elements[

12For clarity purposes I omit the BMLT namespace declaration in all examples in this chapter.
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6.6.1 Pre-planning and Activation

Scheduling a BML block typically takes a non-negligible amount of time, especially
if the timing of speech is to be obtained through speech synthesis softwareE] This
is problematic for developing highly responsive virtual humans. BML! provides pre-
planning as a mechanism to construct a behavior plan that can be activated later on.
In a typical usage scenario of pre-planning, the SAIBA Behavior Planner already
knows what behavior to execute, and wants to have it ready for (near) instant
execution, for example in reaction to some event such as an incoming response from
the user. Pre-planning is set up for a BML block, using the BML! pre-plan attribute in
that block. Pre-planned BML blocks can be activated using a BML! activate behavior.
The pre-planned BML block is activated as soon the activate behavior starts. BML
Example (12| illustrates the BML used for pre-planning.

BML Example 12 Several BML blocks illustrating the pre-planning and activation
of pre-planned behavior.

(a) Pre-plan bml1.
<bml id="bmll" bmlt:preplan="true">

</bml>

(b) Activate pre-planned behavior bml1.

<bml id="bmlX">
<bmlt:activate id="al" target="bml1"/>
</bml>

(c) Activate pre-planned behavior bm12 after nod1 is finished.

<bml id="bml1">
<head id="nod1" action="ROTATION" rotation="SHAKE"/>
<bmlt:activate start="nodl:end" target="bml2"/>

</bml>

Pre-planning on its own is not new. Kopp and Wachsmuth [155] make use of
incremental (pre)planning mechanisms for the purpose of late planning of transi-
tions between segments of gesture and speech, which are highly context dependent
(depending on current gesture and the next gesture), but for which some parts
can be pre-constructed (e.g. the speech synthesis). The Sensitive Artificial Listener
(SAL) system [258] can pre-plan behavior and activate pre-planned behavior at
will, like Elckerlyc’s Scheduler. The SAL system does this by providing a separate
pre-planning scheduler and a preplan activation trigger which are both outside the
normal BML stream. Unlike the BML based pre-planning mechanisms used within

13Providing timing information on a short (11 word) sentence takes 110-220ms on the TTS systems
used in Elckerlyc; a within one video frame scheduling delay will not be achieved for the next 8 years
with current TTS systems (given Moore’s law).
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Elckerlyc’s Scheduler, their setup does not allow a direct specification of the (timing)
relations between the normally planned and pre-planned behavior. Example il-
lustrates one such relation that BML! allows: the pre-planned BML blocks bml1 is
started after nod1 is finished. In Section I show how a specification of timing
relations between normally planned and pre-planned blocks can be used to achieve
a gracious interruption with an immediate alternative continuation.

6.6.2 BML Procedures

Several applications, including routinized speech and apositional turn beginnings
(see Chapter[5.1.3), can profit from the instant use of already scheduled behaviors.
Pre-planning allows one to use an already scheduled BML block only once, after it
is activated the block cannot be reused. It would be beneficial to allow the reuse
(that is: use it more than once) of, for example, an already scheduled apositional
beginning in a dialogue.

Such reuse could be facilitated by BML procedures. Here I illustrate the con-
cept™| of BML procedures with a possible specification for them. A defineproc XML
block defines a BML procedure: a set of behaviors and their constraints. This proce-
dure can be called using callproc. Conceptually, callproc constructs a new BML
block on the basis of a proc id, bml id and scheduling attribute and sends this to
the Realizer (See BML Example [13). Because the behaviors in the BML block were
already fully scheduled with their procedure definition, their execution is started
instantly.

BML Example 13 Defining and using BML procedures.

(a) Defining procl.

<bmlt:defineproc id="procl">
<gaze type="AT" id="gazel" target="AUDIENCE"/>
<speech start="gazel:ready" id="speechl">
<text>Welcome ladies and gentlemen!</text>
</speech>
</bmlt:defineproc>

(b) Using procl as bml1.
<bmlt:useproc procid="procl" bmlid="bmll" scheduling="append"/>

(c) The resulting BML block.

<bml id="bmll" scheduling="append">
<gaze type="AT" id="gazel" target="AUDIENCE"/>
<speech start="gazel:ready" id="speechl">
<text>Welcome ladies and gentlemen!</text>
</speech>
</bml>

14The functionality discussed here is not implemented in Elckerlyc yet.
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Note that in this specification, the procedure definition and calling is not a part of
BML itself. Rather, it forms a convenient shorthand for the SAIBA Behavior Planner
to ensure that a BML block is executed without a scheduling delay. This shorthand
requires an additional communication channel between the Realizer and the SAIBA
Behavior Planner to define and call procedures. Alternatively, the procedure call-
ing could be integrated into BML, thus allowing a BML block to ‘call a procedure’.
Such procedure calling could then potentially replace BML"’s pre-planning and acti-
vation functionality. However, pre-planning and procedure definition / calling offer
different performance trade-offs. Procedures avoid the additional scheduling time
of scheduling a behavior more than once. Pre-planning however avoids the mem-
ory footprint of procedures that are used only once. It might thus be worth the
(Realizer) implementation effort to allow both.

6.6.3 The Interrupt Behavior

The BML! interrupt behavior provides the capability of specifying precisely when
specific running or scheduled behaviors should be interrupted. A simple example
would be to start a “look-at” behavior by the virtual human, while it is speaking (in
the example through BML block bm11), and to interrupt the speech behavior as soon
as the “look-at” behavior has finished (see BML Example .

BML Example 14 Interrupt bml1 as soon as gazel:ready is reached

<bmlt:interrupt id="il" start="gazel:ready" target="bml1l"/>

As soon as the BML! interrupt behavior executes 