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Summary

Virtual environments inhabited by virtual humans are now commonplace in many

applications, particularly in (serious) games. These virtual humans interact with

other (virtual) humans and their surroundings. For such interactions, detailed con-

trol over their behavior is crucial. The control requirements for virtual humans

range from providing physical interaction with the environment to providing tight

coordination with a human interaction partner. Furthermore, the behavior of virtual

humans should look realistic. Throughout this thesis the term naturalness is used

for such perceived realism.

Many techniques achieve real-time animation. These techniques differ in the

trade-off they offer between the control that can be exerted over the motion, the

motion naturalness, and the required calculation time. Choosing the right tech-

nique depends on the requirements of the application it is used in. Motion (capture)

editing techniques employ the detail of captured motion or the talent of skilled an-

imators, but they allow little deviation from the captured examples and can lack

physical realism. Procedural motion offers detailed and precise control using a large

number of parameters, but lacks naturalness. Physical simulation provides integra-

tion with the physical environment and physical realism. However, physical realism

alone is not enough for naturalness and physical simulation offers poor precision in

both movement timing and limb placement. Hybrid animation techniques combine

and concatenate motion generated by different animation paradigms to enhance

both naturalness and control.

This thesis contributes one such hybrid technique: mixed dynamics. It combines

the physical naturalness provided by physically realistic animation with the control

provided by procedural animation. It builds on the notion that the requirements

of physical integrity and tight temporal synchronization are often of different im-

portance for different body parts. For example, for a gesturing virtual human, tight

synchronization with speech is primarily important for arm and head movement.

At the same time, a physically valid balancing motion of the whole body could be

achieved by moving only the lower body, where precise timing is less important.

Mixed dynamics allows one to mix procedural arm and head gestures with physical

simulation of the rest of the body. The forces generated by the gesturing body parts

are transferred to the physically simulated body parts, thus creating whole body an-

imation that appears to respect the laws of physics in a believable manner and that

is internally coherent (that is: the movement of the physically steered body parts is

affected by the movement of the procedurally steered ones).

Traditionally, interaction with virtual humans was designed using ‘transmitter/
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receiver’ interaction paradigms, in which the user and the virtual human take turns

to transmit (encode) and receive (decode) messages carrying meaning that travel

across channels between them. Such an interaction model is insufficient to capture

the richness of human-human interaction (including conversation). Natural inter-

action requires a continuous interaction paradigm, where actors perceive acts and

speech of others continuously, and where actors can act continuously, simultane-

ously and therefore overlapping in time. Such continuous interaction requires that

the perception capabilities of the virtual human are fast and provide incremental

interpretation of another agent’s behavior. These interpretations are possibly ex-

tended and revised over time. To be able to deal with such continuously updated

interpretations and rapid observations, the multimodal output generation modules

of the virtual humans should be capable of flexible production of behavior. This in-

cludes adding or removing behavior elements at a late time, coordinating behavior

with predicted interlocutor events and adapting behavior elements that have already

been scheduled or are currently playing. This thesis deals with the specification and

execution of such flexible multimodal output.

The Behavior Markup Language (BML) has become the de facto standard for

the specification of the synchronized motor behavior (including speech and ges-

ture) of virtual humans. BML is interpreted by a BML Realizer, that executes the

specified behavior through the virtual human it controls. Continuous interaction

applications with virtual humans pose several generic requirements on the specifi-

cation of behavior execution, beyond that of multimodal internal (that is, within the

virtual human) synchronization and form descriptions provided by BML. Continu-

ous interaction requires specification mechanisms for the interruption of ongoing

behavior, the change of the shape of ongoing behavior (e.g. speak louder) and the

synchronization of behavior with predicted external time events (e.g. originating

from the interlocutor). This thesis contributes BML Twente (BMLT), a language that

extends BML by providing the specification of the continuous interaction capabilities

discussed above. It thus provides a generic interface to a Realizer through which

continuous interaction can be realized.

“Elckerlyc” is designed as a BML Realizer for generating multimodal verbal and

nonverbal behavior for virtual humans.1 The main design characteristics of Elckerlyc

are that (1) it is designed specifically for continuous interaction with tight coordina-

tion between the behavior of a virtual human and that of its interaction partner;

(2) it provides an adjustable trade-off between the control and naturalness offered by

different animation paradigms (e.g. procedural body animation and physical body

animation; MPEG-4 facial animation and morph-based facial animation), allowing

the execution of the paradigms simultaneously; and (3) it is designed to be highly

modular and extensible and allows adaptations and extensions of the capabilities of

the virtual human, without having to make invasive modifications to Elckerlyc itself.

A BML Realizer is responsible for executing the behaviors specified in the BML

blocks sent to it, in such a way that the time constraints specified in the BML blocks

1“Elckerlyc” is the protagonist of a Dutch morality play with the same name, written at the end
of the Middle Ages. The name translates as “Everyman”; the protagonist represents every person, as
they make the journey towards the end of their life.
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are satisfied. Realizer implementations, including Elckerlyc, handle this by sepa-

rating the BML scheduling process from the behavior execution process. The sche-

duling process is responsible for creating a multimodal behavior plan that is in a

suitable form for execution.

In most BML Realizers the scheduling of BML results in a rigid multimodal real-

ization plan in which the timing of all behaviors is fixed. In Elckerlyc however, con-

tinuous interaction requirements dictate a multimodal behavior plan that is modi-

fied continually at execution time. Such modifications should not invalidate the time

constraints between, for example, speech and gesture that are specified in BML or

result in biologically infeasible behavior. Elckerlyc contributes a flexible multimodal

plan representation that allows plan modification, while retaining timing and natu-

ralness constraints.

Elckerlyc is the first BML Realizer specifically designed for continuous interac-

tion. It contributes flexible formalisms for both the specification and the modifica-

tion of running behavior. It pioneers the use of physical simulation and mixed dy-

namics in a real-time multimodal virtual human platform. This provides physically

coherent whole body involvement, a naturalness feature that is lacking in virtual

human platforms that solely use procedural animation. Furthermore, Elckerlyc pro-

vides a more extensible and more thoroughly tested architecture than existing BML

Realizers. Other Realizers have implemented alternative and more elaborate sche-

duling algorithms, or provide motor control on modalities that are not present in

Elckerlyc (e.g. blushing), or provide specialized behavior elements (e.g. walking).

Elckerlyc’s extensibility allows one to easily implement such specialized behaviors

on existing modalities or new modalities into Elckerlyc. Elckerlyc was also designed

to allow the use of new scheduling algorithms; the feasibility of this design feature

is yet to be proven.

Elckerlyc is employed in several virtual human applications. Several of its design

features were motivated, fine-tuned and finally demonstrated by this ‘field’ experi-

ence of Elckerlyc.
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Samenvatting

Virtuele omgevingen, bevolkt door virtuele mensen, worden gebruikt in verschei-

dene applicaties, waaronder (serious) games. Deze virtuele mensen interacteren

met andere (virtuele) mensen en met hun omgeving. Voor deze interacties is het

van cruciaal belang dat virtuele mensen op gedetailleerd niveau controle te kunnen

uitoefenen op hun gedrag. Het gedrag van deze virtuele mensen moet kunnen wor-

den geregeld op verschillende niveaus, van fysische interactie met de omgeving tot

strakke cordinatie met het gedrag van een (menselijke) gesprekspartner. Bovendien

moet het gedrag van virtuele mensen er realistisch uitzien. In deze samenvatting

gebruik ik de term natuurlijkheid voor zulk waargenomen realisme.

Een groot aantal technieken kan gebruikt worden voor real-time animatie. Deze

technieken bieden verschillende trade-offs tussen de controle die kan worden uit-

geoefend over de beweging, de natuurlijkheid van de beweging en de benodigde

rekentijd. Een passende animatie techniek wordt gekozen aan de hand van de

vereisten van de applicatie waarin hij nodig is. Motion capture bewerkings tech-

nieken gebruiken het detail van opgenomen beweging, of het talent van animatie

artiesten. Motion capture bewerkingstechnieken laten slechts weinig afwijking van

de opgenomen beweging toe en fysisch realisme wordt niet altijd bereikt. Proce-

durele animatie biedt gedetailleerde en precieze controle over beweging, waarbij

een groot aantal parameters gebruikt kan worden om deze te specificeren. Deze

controle gaat ten koste van de natuurlijkheid van de animatie. Fysische simulatie

biedt integratie met de fysische omgeving en fysisch realisme. Echter, fysisch rea-

lisme alleen is niet afdoende voor natuurlijkheid en fysische simulatie biedt slechte

precisie in zowel bewegingstiming als in positionering van ledematen. Hybride tech-

nieken combineren en concateneren beweging die gegenereerd is door verschillende

animatie paradigmas, op zo’n manier dat zowel de natuurlijkheid en de controle

verbeterd wordt.

Dit proefschrift introduceert zo’n hybride techniek: mixed dynamics. Mixed dy-

namics combineert de fysische natuurlijkheid van fysische simulatie met de con-

trole van procedurele animatie. Het maakt gebruik van de notie dat het belang van

fysische integriteit en strakke temporele synchronisatie vaak verschillend is voor

verschillende lichaamsdelen. Bijvoorbeeld, voor een gesticulerend virtueel mens is

temporele precisie is vooral belangrijk bij de synchronisatie tussen spraak en arm-

en hoofdbeweging. Voor een gebalanceerde onderlichaamsbeweging is zulke pre-

cieze timing minder belangrijk; hier kan een fysisch realistisch balans controller

gebruikt worden om een natuurlijke beweging te bereiken. Met mixed dynamics

kan animatie uitgevoerd worden als een combinatie van procedurele gebaren en
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fysische simulatie op verschillende lichaamsdelen. Hierbij worden de krachten die

uitgeoefend worden door de procedureel aangestuurde lichaamsdelen terug gekop-

peld op de fysisch aangestuurde lichaamsdelen. Hiermee wordt een animatie van

het hele lichaam bereikt die op een natuurlijke manier aan de fysische wetten lijkt

te voldoen en die intern coherent is (de beweging van de fysisch aangestuurde

lichaamsdelen wordt bëınvloed door de beweging van de procedureel aangestuurde

lichaamsdelen).

In traditionele dialoog systeem die gebruikt worden voor virtuele mensen werd

interactie ontworpen met een ‘zender/ontvanger’ paradigma, waarin de gebruiker

en de virtuele mens om de beurt informatie verzenden (encoderen) en ontvangen

(decoderen). Zo’n interactie paradigma is niet afdoende om de rijkheid van mens-

mens interactie (bijvoorbeeld in een conversatie) te vatten. Natuurlijke interactie

vereist een continu interactie paradigma waarin de deelnemers de spraak en bewe-

ging van anderen continu observeren en continu, simultaan en derhalve overlap-

pend in tijd handelen (spreken, gesticuleren). Zulke continue interactie vereist dat

de perceptie van de virtuele mens snel is en dat de interpretatie van het gedrag

van zijn gesprekspartner incrementeel uitgebreid en mogelijk aangepast kan wor-

den. Om snelle observaties en continue aanpassing van de gedragsinterpretaties

aan te kunnen moeten de multimodale output generatie modules van de virtuele

mens op een flexibele manier gedrag kunnen genereren. Zulke flexibele generatie

moet gedragselementen op een laat moment kunnen toevoegen, gedrag kunnen

coördineren met voorspelde events in het gedrag van de gesprekspartner en moet

gedrag kunnen aanpassen als het al gepland of aan het afspelen is. Dit proefschrift

gaat over de specificatie en executie van zulk flexibel, multimodaal gedrag.

De Behavior Markup Language (BML) is de de facto standaard voor de synchro-

nisatie van motor gedrag (inclusief spraak en gebaar) van virtuele mensen. BML

wordt gëınterpreteerd door een BML Realizer. De BML Realizer voert het gespeci-

ficeerde gedrag uit op een virtueel mens. Applicaties waarin continue interactie met

virtuele mensen nodig is hebben een aantal generieke specificatie vereisten. Aan een

aantal van deze specificatie vereisten wordt door BML voldaan: BML specificeert de

interne (dus binnen de virtuele mens) synchronisatie van gedrag en beschrijft de

vorm van gedrag. Naast deze specificatie mechanismes vereist continue interactie

specificatie mechanismes voor de interruptie van lopend gedrag, het aanpassen van

de vorm van lopend gedrag (bijvoorbeeld: spreek luider) en de synchronisatie van

gedrag aan voorspelde externe tijdsmomenten (bijvoorbeeld van de gesprekspart-

ner). Dit proefschrift introduceert BML Twente (BMLT), een taal die BML uitbreidt

met de hierboven beschreven specificatie eigenschappen voor continue interactie.

BMLT biedt dus een generieke interface voor een Realizer, waardoor continue inter-

actie kan worden gerealiseerd.

“Elckerlyc” is ontworpen als een BML Realizer voor de generatie van multi-

modaal verbaal en non-verbaal gedrag voor virtuele mensen.1 De belangrijkste

ontwerp eigenschappen van Elckerlyc zijn dat (1) het specifiek is ontworpen voor

1“Elckerlyc” is de protagonist van het Nederlandse moraliteit spel met dezelfde naam, geschreven
aan het einde van de middeleeuwen. The protagonist staat voor elk mens/iedereen, en beschrijft de
tocht die gemaakt wordt aan het einde van het leven.
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continue interactie, met strakke cordinatie tussen het gedrag van de virtuele mens

en zijn gesprekspartner; (2) het een aanpasbare trade-off biedt tussen de con-

trole en natuurlijkheid van verschillende animatie technieken (bijvoorbeeld proce-

durele lichaamsanimatie en fysische simulatie; MPEG-4 gezichtsanimatie en morph-

gebaseerde gezichtsanimatie); en (3) het is ontworpen als een modulair en uitbreid-

baar systeem, dat kan worden uitbreid en aangepast zonder dat er invasieve modi-

ficaties in Elckerlyc zelf gemaakt hoeven worden.

Een BML Realizer is verantwoordelijk voor het uitvoeren van gedrag gespeci-

ficeerd in de BML blokken die er naartoe gestuurd worden, op zo’n manier dat er

aan de tijdsconstraints die gespecificeerd worden in de BML blokken wordt voldaan.

Realizer implementaties, waaronder Elckerlyc, gebruiken twee processen om dit

voor elkaar te krijgen. Een planning proces is verantwoordelijk voor het creëren

van een multimodaal gedragsplan. Een executie proces voert dit plan uit.

In de meeste BML Realizers resulteert de planning van BML in een rigide multi-

modaal realisatieplan, waarin de timing van het gedrag vast ligt. In Elckerlyc daar-

entegen, dicteren de continue interactie vereisten dat het multimodale gedragsplan

regelmatig moet kunnen worden aangepast gedurende de executie van dit plan.

Deze aanpassingen moeten op zo’n manier toegepast worden dat de tijdsconstraints

de gespecificeerd waren in BML geldig blijven, en dat het resulterende gedrag biol-

ogisch uitvoerbaar is. Elckerlyc introduceert een flexibele multimodale plan repre-

sentatie die plan aanpassingen toelaat, maar timing en natuurlijkheids constraints

intact houdt.

Elckerlyc is de eerste BML Realizer die specifiek is ontworpen voor continue

interactie. Het introduceert flexibele formalismen voor zowel de specificatie als

de modificatie van lopend gedrag. Elckerlyc is het eerste multimodale virtuele

mens systeem dat gebruik maat van real-time fysische simulatie en mixed dynamics.

Hiermee wordt fysische coherente beweging over het hele lichaam gegenereerd.

Deze natuurlijkheidseigenschap mist in virtuele mens systemen die alleen gebruik

maken van procedurele animatie. Daarnaast biedt Elckerlyc een meer uitbreidbare

en grondiger geteste architectuur dan bestaande BML Realizers. Andere Realizers

implementeren alternatieve en uitgebreidere planning algoritmes, bieden motor

gedrag op modaliteiten die niet aanwezig zijn in Elckerlyc (bijvoorbeeld blozen),

of bieden gespecialiseerde gedragselementen (bijvoorbeeld lopen). Elckerlyc’s uit-

breidbaarheid zorgt ervoor dat zulk gespecialiseerd gedrag op nieuwe of bestaande

modaliteiten op een gemakkelijke manier toegevoegd kan worden. Elckerlyc is ook

ontworpen om het gebruik van nieuwe scheduling algoritmes toe te laten; de haal-

baarheid van deze ontwerpeigenschap is nog niet bewezen.

Elckerlyc wordt gebruikt in een aantal virtuele mens-applicaties. De ontwerp-

eigenschappen van Elckerlyc zijn gemotiveerd, afgeregeld en gedemonstreerd door

ervaringen van het gebruik van Elckerlyc in het ‘veld’.
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Chapter 1

Introduction

Researchers have always been fascinated with the application of the state-of-the-art

technologies of their time to create artificial life, or, in particular, artificial humans

[238]. Some of the first known examples of such artificial life designs are found in

the Hellenistic world. Hero of Alexandria (10-70 AD) designed several automata

or self operating machines, including a programmable cart and an owl-and-birds

device featuring artificial birds that stop whistling as soon as an artificial owl looks

at them. These automata were used for entertainment and to illustrate basic sci-

entific principles, such as those of mechanics and pneumatics. In fifteenth-century

Italy, automata made their appearance in theater plays and pageants. A famous

example is Giovanni Fontana’s she-devil, a mechanical devil that could move her

facial features, tail, arms and wings and could shoot fire from her ears and mouth.

Jacques de Vaucanson (1709-1782) pioneered the creation of what he called ‘mov-

ing anatomies’: machines that could simulate internal processes in living creatures

such as digestion, respiration and blood circulation. His creations included a hu-

manoid that was able to play the German flute using a simulated respiration system

and the appropriate tongue and finger movements, and a mechanical duck contain-

ing over 400 moving parts, that could flap its wings, drink water, digest grain, and

defecate.1 Vaucanson commended his automata as appropriate instruments for in-

struction. He referred to the impression his three-dimensional mechanical objects

could make on viewers, and to their anatomical accuracy and their unique ability to

demonstrate life processes in real time [238].

The first virtual characters appeared in cartoons. Winsor McCay was one of the

pioneers of cartoons. His ‘Gertie the Dinosaur’ cartoon (1914) features not only

one of the first cartoons in which the character has an appealing personality, but

also one of the first (staged) interactions of a human with a virtual character. Mc-

Cay’s interaction with Gertie consisted of him instructing her to do various tricks,

throwing an apple to her (with Gertie catching an animated copy of it), and so

on. The introduction of the computer allowed automation of the animation pro-

cess and interaction with and between virtual humans. Early use of automation

included automatic generation of the motion of virtual crash test dummies [306],

1The duck’s digestive system was later found to be fake: the food was collected in one inner
container, and the pre-stored feces was ‘produced’ from a second container [238].
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automatic generation of locomotion [319] and ‘programming’ of animation using

higher level descriptions (for instance by generating it from Labanotation [302]).

Computer games often feature virtual humans that interact with each other and

that can be interacted with. However, conversational interaction with and between

game characters is typically completely scripted. Cassell et al. [50] pioneered auto-

matic conversational interaction between autonomous virtual humans. Their virtual

humans make use of automatically generated (using a dialog generation program)

utterances. These utterances featured synchronized speech, facial expressions and

hand gestures. Thórisson [282] contributed an architecture (Ymir) that was used to

create Gandalf, one of the first virtual humans that could interact with a real human

using speech and gesture. Gandalf not only generated speech and gesture, but could

also perceive these communicative signals in humans. People talking with Gandalf

wore a suit that tracked their upper body movement, an eye tracker that tracked

their gaze, and a microphone that allowed Gandalf to hear their words and intona-

tion. Gandalf’s animation was displayed on a cartoon face and a disembodied hand.

Ymir was one of the first architectures taking some aspects of continuous interaction

into account, and, as such, its design remains influential in current virtual human

platforms. A striking early example of the use of an interactive virtual human in a

training application is Steve [235]. Steve is capable of teaching complex real-world

tasks, that might be impractical to train on real equipment. His embodiment allows

him to demonstrate actions, to use gaze and gesture to communicate and to guide

the student in a virtual naval ship. Steve can also be used as a virtual team member

to help a student practice his team tasks.

Nowadays, virtual humans have become very complex pieces of software. Build-

ing a state-of-the-art virtual human entails re-implementing several pieces of exist-

ing work. One of the current research directions in the interactive virtual human

field deals with enabling more easy cooperation between research groups. To this

end, the SAIBA initiative (consisting of several leading researchers in the interactive

virtual human field) designed a framework that allows researchers to share com-

ponents of virtual humans more easily [152]. Another current research direction

deals with achieving the richness of human-human communication in communica-

tion with virtual humans. This entails designing virtual humans that allow continu-

ous interpersonal coordination with their interlocutors [151].

1.1 Research Context

The research of this thesis was carried out within the Game research for Training and

Entertainment (GATE) project2, funded by the Netherlands Organization for Scien-

tific Research (NWO) and the Netherlands ICT Research and Innovation Authority

(ICT Regie). The GATE project aims to advance the state of the art in (serious) gam-

ing, and to facilitate knowledge transfer to the industry. The work in this thesis was

specifically done in the context of Work Package 2.1, which deals with the modeling

and generation of motor behavior for virtual humans.

2http://gate.gameresearch.nl/

http://gate.gameresearch.nl/
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Some of the work in this thesis was done in the context of the Knowledge Trans-

fer Project ‘Computer Animation for Social Signals and Interactive Behaviors’, within

the GATE project mentioned above. The goal of this project is to transfer the knowl-

edge of the Human Media Interaction group on multi modal virtual human behavior

generation to our industry partner Re-lion.

The focus of my work within those projects is on the output generation and speci-

fication of the behavior (including speech, body motion, facial motion) of interactive

virtual humans.3

1.2 Relevance

Interactive virtual humans are used in many educational and entertainment set-

tings: serious gaming, interactive information kiosks, kinetic and social training,

tour guides, storytelling entertainment, tutoring, interactive virtual dancers, enter-

taining games, motivational coaches, and so on. Virtual humans have an embod-

iment that inhabits a virtual environment. This gives a virtual human interactive

capabilities that go beyond written text or video: a virtual human can guide a hu-

man through the virtual world and is able to demonstrate actions in this world.

In addition to their use in education and entertainment, virtual humans provide

valuable research tools. Social psychologists can study theories of communication

by systematically modifying the behavior of a virtual human. Using virtual humans

and virtual environments rather than human actors and custom built mock-up en-

vironments in social psychology experiments allows more experimental control and

better reproducibility [32]. Interactive virtual humans can also be used to simulate

formal models of, for example, human conversation. Through such simulations,

our understanding of human conversation can be improved [47]. They highlight

gaps in these formal models and thus show where further modeling or refinement

is required.

1.3 Research Goals and Contributions

1.3.1 Enabling Collaboration and Competition in Virtual Human

Design

Designing a virtual human is a multi-disciplinary effort, requiring expertise in many

research areas, including computer animation, perception, cognitive modeling, emo-

tions and personality, natural language processing, speech recognition, speech syn-

thesis, nonverbal communication [98]. Research groups have realized that ‘the

scope of building a complete virtual human is too vast for any one research group’

3I use the term interactive virtual humans instead of Embodied Conversational Agents [51] in this
thesis, because the virtual characters this thesis deals with are human-like and the interaction with
them is not necessarily in the form of a conversation.
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[141]. Modular architectures and interface standards will allow researchers in dif-

ferent areas to reuse each other’s work and thus allow easier collaboration between

researchers in different research groups [98]. Interface standards also promote

healthy competition between research groups who create modules that implement

them, since they allow an easy comparison between such modules. The SAIBA

initiative proposes an architecture for virtual humans [152] that provides such a

modular design with standardized interfaces. The Human Media Interaction group

has joined the SAIBA initiative and contributed towards the interface (the Behavior

Markup Language, BML) for one of its modules: the Behavior Realizer. Such a Be-

havior Realizer provides an interface to steer the coordinated motor behavior of a

virtual human (e.g. speech, gesture).

This thesis contributes an implementation of such a Behavior Realizer. I aim to

promote, measure, test and maintain the SAIBA compliance of Behavior Realizers.

To this end, I contribute the automatic testing framework RealizerTester that can

test adherence to the SAIBA interface for any Behavior Realizer. The modular de-

sign of my Realizer enables collaboration opportunities beyond those offered by

implementing the SAIBA interface. It makes it possible for other research groups

to easily connect it to their own rendering environment or virtual human and to

add specific modularities (e.g. to control a robot), without having to make invasive

modifications to the Realizer itself.

1.3.2 Designing a Virtual Human that Allows Continuous Inter-

action

Traditionally, interaction with virtual humans was designed using ‘transmitter/re-

ceiver’ interaction paradigms, in which the virtual human and the human interact-

ing with it take turns to transmit (encode) and receive (decode) meaning carrying

messages that travel across channels between them. Such an interaction model is

not sufficient to capture the richness of human-human interaction (including con-

versation). Natural interaction requires a continuous interaction paradigm, where

actors perceive acts and speech of others continuously, and where actors can act

continuously, simultaneously and therefore overlapping in time. I aim to design a

virtual human that allows such continuous interaction. A design for continuous in-

teraction should however not come at the cost of the modularity provided by the

SAIBA framework.

This thesis describes a view of the SAIBA framework that allows continuous

interaction. I describe the requirements of continuous interaction and contribute

the interface language elements — in BML Twente (BMLT), an extension of BML

— that allow it. I also contribute the Behavior Realizer “Elckerlyc”, specifically

designed to allow the execution of behavior of a virtual human in applications that

require continuous interaction with a human interlocutor.
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1.3.3 Leveraging Computer Animation Knowledge for Interac-

tive Virtual Human Applications

In typical interactive virtual human applications, the movement of the virtual hu-

man consists solely of animations on the head and arms, synchronized with speech.

Gesture movement is typically generated by intricate procedural models that im-

plement biological rules for arm movement [155], or provide emotional parame-

terization [104, 111] and provide tight synchronization to speech. However, the

movement of the rest of the body is either completely omitted, provided by noise

uncorrelated to the arm and head movement, or set by some predefined idle ani-

mation [104, 111, 155, 235, 282]. Treating gesture as a movement that is localized

in the limbs results in motions that lack impact and are perceived as being robotic

[58]. Many state-of-the-art computer animation techniques achieve more natural

movement, often at the cost of movement control. I aim to leverage the knowledge

of computer animation for researchers in interactive virtual human applications.

To this end, this thesis contributes a thorough overview of real-time animations

techniques that can be used for the generation of natural human motion, with a

focus on the different trade-offs between naturalness and movement control offered

by these techniques. It also contributes mixed dynamics: a novel hybrid anima-

tion technique that can combine different kinds of animation paradigms, allowing

the combination of traditional procedural gesture animation or keyframe animation

with physical simulation, both in sequence and in parallel on different body parts.

This allows one to combine the control of procedural (gesture) animation, with the

naturalness of physical simulation.

1.4 Outline of this Thesis

Figure 1.1 provides a graphical outline of the work in this thesis in relation to the

SAIBA architecture. The SAIBA architecture models behavior generation in three

planning processes: Intent Planning, resulting in a script in the Functional Markup

Language (FML); Behavior Planning, resulting in a script in the Behavior Markup

Language (BML) and Behavior Realization of the BML script. In this thesis, I split

Behavior Realization into scheduling, resulting in a Motor Plan; and the execution of

this Motor Plan, resulting in control primitives (e.g. joint rotations, audio) that are

used to steer embodiment of a virtual human. To allow continuous interaction, it is

important that an ongoing Motor Plan is flexible and can be modified on the fly. The

Multimodal Behavior Plan provides an abstraction of the Motor Plan that is used to

apply such modifications.

Chapter 2 provides an overview of computer animation techniques that can be

used to execute Animation Plans (Motor Plans for animation) and provides an over-

view of the naturalness and control tradeoffs made by these different techniques.

Chapter 3 discusses mixed dynamics: a system to simultaneously execute animation

expressed in kinematic PlanUnits and PlanUnits that make use of physical simula-

tion. Chapter 4 discusses the Motor Plan. It provides a brief overview of the coor-
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dination between the PlanUnits of the Motor Plan, provides an interface for flexible

PlanUnits, and discusses the implementation of several PlanUnits used for anima-

tion. Chapter 5 discusses the interpersonal coordination of the behavior of humans,

why it is important to model this in virtual humans, and how interpersonal coordi-

nation can be achieved at several levels in the SAIBA architecture. Chapter 6 deals

with the specification of multimodal behavior for virtual humans. It describes how

coordination between PlanUnits in the Motor Plan is specified through BML and

provides a BML extension (BMLT) that allows the specification of the behavior of a

virtual human in applications that require continuous interaction. Chapter 7 deals

with the scheduling of BML into a Motor Plan. It introduces a flexible multimodal

plan representation that allows one to modify an ongoing Motor Plan on the fly,

while maintaining the constraints posed upon it in the BML script(s) that created it.

Chapter 8 introduces Elckerlyc, a modular and flexible BML Realizer that can sched-

ule and execute behavior plans specified in BML(T). Chapter 9 discusses some of my

efforts towards measuring, testing and promoting the compliance of BML Realizers

to the BML standard. It contributes RealizerTester, a generic framework to test any

BML Realizer. Chapter 10 demonstrates how Elckerlyc’s design features worked out

in practice and shows how one can build virtual human applications using Elckerlyc.

I wrap up this thesis in Chapter 11 and end it (in Chapter 12) by discussing how

Elckerlyc’s contributions on the coordination of the form and timing of the behav-

ior with an interlocutor could be combined with both work on the coordination of

content and form and work on continuous and incremental input processing.
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Chapter 2

Real-Time Computer Animation: a

Review†

Virtual environments inhabited by virtual humans are now commonplace in many

applications, particularly in (serious) games. The animation of such virtual humans

should operate in real-time to allow interaction with the surroundings and other

(virtual) humans. For such interactions, detailed control over motion is crucial.

Furthermore, the motion of virtual humans should look realistic. I use the term

naturalness for such perceived realism.

Many techniques achieve real-time animation. These techniques differ in the

trade-off they offer between the control that can be exerted over the motion, the

motion naturalness, and the required calculation time. Choosing the right technique

depends on the requirements of the application it is used in. This chapter provides

an overview of real-time animation techniques that can potentially be used in inter-

active virtual human applications. It provides a short summary of each technique,

and focuses on the trade-offs made.

First, I discuss models of the virtual human’s body that are steered by anima-

tion (Section 2.1). In Section 2.2, I classify animation techniques that are used to

generate motion primitives and discuss their strengths and weaknesses. Section 2.3

discusses how to parameterize, combine (on different body parts) and concatenate

motion generated by these techniques to gain control. In Section 2.4, I elaborate on

several aspects of naturalness and I discuss how the naturalness of the motion of a

virtual human can be evaluated. I conclude (in Section 2.5) by discussing the power

of combinations of animation paradigms to enhance both naturalness and control.

†This chapter is largely based upon the article:
H. van Welbergen, B.J.H. van Basten, A. Egges, Z.M. Ruttkay and M.H. Overmars. Real Time Anima-
tion of Virtual Humans: A Trade-off Between Naturalness and Control, Computer Graphics Forum,
29(8):2530-2554, 2010
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2.1 Modeling the Virtual Human

Animation steers the body of a virtual human. In this section it will be shown how

the body of a virtual human is modeled as a skeleton, an articulated set of rigid

bodies and a biological system.

2.1.1 Skeletal Model of the virtual human

Virtual humans are visually mostly represented by polyhedral models or meshes. An-

imating all these polygons individually can be very tedious, therefore it is common

to work with the underlying skeleton instead. A skeleton is an articulated structure:

a hierarchy of segments connected by joints. A pose of a virtual human is set by

rotating the joints of the skeleton. How the skeleton deforms the mesh is beyond

the scope of this thesis, I refer the interested reader to [184].

Every joint has several degrees of freedom or DoFs. The DoFs are the parameters

that define a configuration of a joint. For example, the knee joint has only one DoF,

while a shoulder joint has three. The global translation of the skeleton is represented

by the translation of the root joint. The pose of a skeleton with n rotational DoFs

can therefore be described by an n + 3 dimensional vector q. For an overview of

rotation representations I refer the reader to the work of Lee [167].

Standardizing the skeleton topology improves re-usability of motions. Motions

created for one virtual human can be transfered to another virtual human more

easily. The H-anim standard [119] provides a complete set of standardized joint

names and their topology, that specifies their resting position and how they are

connected.

2.1.2 Physical Model of the Virtual Human

In physical simulation, the body of the virtual human is typically modeled as a sys-

tem of rigid bodies, connected by joints. Each of these rigid bodies has its own mass

and an inertia tensor that describes the mass distribution. Movement is generated

by manipulating joint torques.

Most physical animation systems assume a uniform density for each rigid body.

Given such an uniform density, the mass, center of mass and inertia tensor can

be calculated via the volume of the mesh that corresponds to the rigid body (see

[195]). Realistic values for the density of the rigid bodies can be obtained from the

biomechanics literature [307].

To allow for collision detection and collision response, a geometric representa-

tion of the rigid bodies is needed. The mesh of the virtual human can be used

for this representation. However, collision detection between arbitrary polygonal

shapes is time consuming. Computational efficiency can be gained at the cost of

some physical realism by approximating the collision shape of rigid bodies by basic

shapes such as capsules, boxes or cylinders.
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2.1.3 Biomechanical/Neurophysical Models of the Virtual Hu-

man

Our movements are coordinated by the central nervous system (CNS). It uses input

from sensors to steer our muscles. These sensors, muscles and the motor control

exerted by the CNS have, to some extent, been modeled in computer animation.

2.1.3.1 Sensors

Motor control needs information on the state of the virtual human. This informa-

tion is readily available from the representation of the virtual world. Sensors used

in computer animation therefore do not necessarily need to correspond to the sen-

sors found in humans, but merely represent a convenient higher level presentation

of virtual human state information that can be shared between different motion

controllers [73]. Examples of information obtained by such sensors are the center

of mass (CoM) of the virtual human, contact (are the feet or other body parts in

contact with the ground?), the location of the support polygon (the convex hull of

body parts touching the ground), and the zero moment point (ZMP). The ZMP is

the point on the ground plane where the moment of the ground reaction forces is

zero. In all physically realistic motion with ground contact, the ZMP is inside the

support polygon. If the ZMP is outside the support polygon, the virtual human is

perceived as being out of balance [265].

2.1.3.2 Modeling Muscles

Over 600 muscles can apply forces to our bones by contracting. One muscle can

cover multiple joints (e.g. in the hamstring and muscles in the fingers). In real-time

physical simulation methods, muscles are typically modeled in a simpler manner:

as motors that apply torques at the joints in an articulated rigid body system (as

set up by the physical model of the human, see Section 2.1.2). Such a model pro-

vides control in real-time and has a biomechanical basis: it is hypothesized that the

CNS exerts control at a joint and joint synergy level [307]. To determine the torque

applied by these motors, muscles are often modeled as a system of springs (repre-

senting elastic tendons) and dampers that cause viscous friction [307]. In real-time

animation, such spring and damper systems are often designed using Proportional

Derivative(PD) controllers or variants thereof (see Section 2.2.3.2,2.2.3.2). Joint

rotation limits and maximum joint strength can be obtained from the human factors

literature (see for example: [145, 310]).

2.1.3.3 Models for Motor Control

Motor control is the process that steers the muscles in such a way that desired

movement results. In many cases robotic systems can rely on control based directly

on internal feedback (e.g. using joint angle sensors). Feedback delays in humans are

large (150-250 ms for visual feedback on arm movement), so they cannot achieve
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accurate fast movement using solely feedback control [132]. According to Schmidt

[254] people construct parameterized General Motor Programs (GMPs) that govern

specific classes of movement. Different movements within each class are produced

by varying the parameter values. Humans learn the relation between parameter

values and movement ‘outcome’ by practicing a task in a great variety of situations.

According to the equilibrium point hypothesis, joint torque paths are not explicitly

programmed, but emerge from the dynamic properties of the biomechanical system.

In this model, the spring-like properties of muscles in, for example the arm, are used

to automatically guide the hand to an equilibrium point. Movement is achieved

by a succession of equilibrium points along a trajectory [76]. Feedback control

(see Section 2.2.3.2), GMPs (explicitly in [155, 319], implicitly in Sections 2.2.2,

2.2.1.2) and equilibrium point control (see Section 2.2.3.2) are all used in computer

animation.

The GMP theory is supported by invariant features that are observed in motion.

Gibet et al. [86] give an overview of some of such invariant features, including Fitts’

law, the two-third power law and the general smoothness of arm movement. Fitts’

law states that the movement time for rapid aimed movement is a logarithmic func-

tion of the movement distance divided by the target size [77]. The two-third power

law [299] models the relation between the angular velocity and the curvature of a

hand trajectory. Movement smoothness has been modeled as a minimization of the

mean square of hand jerk (derivative of acceleration) [78] or the minimization of

the change of torque on the joints executing the motion [295]. Harris and Wolpert

[103] provide a generalized principle that explains these invariants by considering

noise in neural control. The motor neurons that control muscles are noisy. The

variability in muscle output increases with the strength of the command. For maxi-

mum accuracy it is therefore desirable to keep the strength of motor commands low

during the whole movement trajectory, thus producing smooth movement. Faster

movement requires stronger motor commands, thus higher variability which leads

to reduced precision. In computer animation, movement invariants have been used

both in motion synthesis models (for example: [87, 155]) and as evaluation cri-

teria for the naturalness of animation (see Section 2.4.5.2). The notion of signal

dependent noise has been exploited in the generation of motion variability (see

Section 2.4.4.3).

2.2 Animation Techniques

A motion primitive is a continuous function that maps time to the DoF of a skele-

ton. Animation techniques create motion primitives from motion spaces on the basis

of animation parameter values (see Figure 2.1). A motion space is a (continuous)

collection of motions that can be produced by a technique. A motion primitive is

an element of such a motion space. Motion primitives can define motion for the

full body of a virtual human or on a subset of the joints of the virtual human. The

motion primitives in a specific motion space typically have a certain semantic func-

tion (for example: walk cycles, beat gestures, left hand uppercuts). The animation
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parameters needed to create motion primitives differ per technique. Note that an-

imation parameters are not necessarily intuitive parameters to control motion, but

merely the parameters a specific animation technique requires to create a motion

primitive. I discuss how to map more intuitive control parameters into animation

parameters in Section 2.3.1.
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Figure 2.1: Motion primitives, motion spaces and animation parameters in motion editing and in
simulation.

In this thesis, animation techniques are classified by the mechanism they use to

create motion spaces (see Figures 2.1 and 2.2). Motion editing techniques generate

motion primitives within a motion space spanned by one or more specific example

motion primitives. In simulation techniques, the motion space contains all motion

primitives that can be created using a parameterized physical or procedural model.

Animation parameters in simulation techniques are the parameters used in the sim-

ulation model. In Sections 2.2.1, 2.2.2 and 2.2.3, I briefly discuss the inner working

of each technique and discuss the nature of its animation parameters and motion

spaces produced by the technique. Figure 2.2 provides a summary of the latter.

Section 2.2.4 discusses the strengths and weaknesses of each technique in terms of

naturalness and control and gives an overview of application domains in which each

of the techniques is typically used.

2.2.1 Motion Editing

Motion editing techniques generate motion primitives within a motion space span-

ned by one or more specific example motion primitives. Often, this motion space
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Figure 2.2: Classification of animation techniques and an overview of their animation parameters
and motion spaces.

is explicitly constructed in a pre-processing stage. The example primitives originate

from motion captured movement of actors, or are created by hand by an animator.

I define motion modification methods as methods that generate new motion primi-

tives by applying modifications to a single example motion primitive. Combination

techniques create motion primitives using a database of multiple example primitives.

2.2.1.1 Motion Modification

Since a motion primitive is a continuous function that maps time to the DoF of

a skeleton, this value of a DoF over time can be considered as a signal. There-

fore many techniques from the field of signal processing can be applied to create

a motion space around an example motion primitive. Bruderlin and Williams [41]

consider some motion editing problems as signal processing problems. One of the

signal processing techniques they use is displacement mapping. With this technique

it is possible to make local modifications to the signal while maintaining continu-

ity and preserving the global shape of the signal. This is done by specifying some

additional keyframes, or having them determined by inverse kinematics (IK, see

Appendix A for an overview of techniques), within an example motion primitive.

From these keyframes, a displacement map can be calculated that encapsulates the

desired displacement (offset) of the signal. Splines can be used to calculate the inbe-

tween displacements. The displacement map then yields a displacement for every

frame, which is automatically added to the original signal. Satisfying constraints

at key frames does not guarantee constraint enforcement at the ‘inbetweens’ (the

frames between the keyframes). Alternatively, a constraint can be enforced at every

frame on which it is desired, as proposed by Lee and Shin [170]. To make sure the

resulting motion is smooth and propagated through non-constrained frames, it is

‘filtered’ using a hierarchy of B-splines. Gleicher [91] calls the family of solutions

that uses such an approach ‘Per Frame Inverse Kinematics + Filtering’ (PFIK+F).
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An alternative approach by Gleicher [90] is to pose the constraint specification as

a numerical constraint optimization problem: an objective function measuring the

distance between the example motion primitive and the resulting motion is mini-

mized subject to any constraint that can be specified as a function of the vector of

DoF q. To allow real-time execution of this optimization, an efficient objective func-

tion is chosen and the constraints are only enforced at key frames. The geometric

constraints that can be solved with PFIK+F are a subset of those that can be solved

using the optimization approach. Optimization can add (among many other things)

constraints for a region an end effector must stay in, fixed distances between end-

effectors or inter-frame constraints. This flexibility comes at a cost: it is not ensured

that the constraints are met at the inbetweens and the solution time of the optimiza-

tion process is less predictable than that of a PFIK+F approach. I refer the reader to

[91] for a more thorough comparison of the two methods.

2.2.1.2 Blending

Blending [305] creates a motion primitive by interpolating a family of similar exam-

ple motion primitives (for example: a family of reaching motion primitives, walking

motion primitives, etc.). The animation parameters are interpolation weights and

a selection of the example motion primitives to interpolate. The interpolation does

not need to take place in the Euler space, but can also be done in, for example,

the principal component [120] or Fourier [296] domain. In general, one can only

interpolate between poses that “resemble” each other. When this is not the case,

visual artifacts such as foot skating may appear. A distance metric quantifies the

resemblance between poses. Van Basten and Egges [18] present an overview and

comparison of various distance metrics.

The blend motion space is created by pre-processing “similar” example motion

primitives, typically such that they correspond in time (especially at key events such

as foot plants) and space (e.g. root rotation and position). The process of time-

aligning corresponding phases in motion primitives, is called time warping [41].

Kovar and Gleicher [156] present an integrated method called registration curves

to automatically determine the time, space and constraint correspondences between

a set of motion primitives and provide a literature overview of earlier methods used

for this.

2.2.1.3 Statistical models

Statistical methods create a motion space using statistical models learned from the

statistical variation of example motion primitives. Several statistical models can

be used, including Hidden Markov Models (HMM)[38], Linear Dynamic Systems

[173], Scaled Gaussian Process Latent Variable Models (SGPLMVM) [100], Principle

Component Analysis (PCA) [69], or variogram functions [199].
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2.2.2 Procedural Simulation

Procedural simulation uses parameterized mathematical formulas to create motion

primitives. The parameters of such formulas are the animation parameters. The

formulas can describe joint rotation directly (as done in [217]), or describe the mo-

vement path of end effectors (such as hands) through space. The latter is typically

used to design procedural models that create gesture motion primitives (see for

example [58, 104, 155, 207]).

2.2.3 Physical Simulation

A physical simulation model applies torques on the joints of the virtual human,

on the basis of animation parameters. The resulting motion primitive is calculated

using forward dynamics (see Appendix A).

2.2.3.1 Constraint Control Methods

Constraint Control Methods use (geometric) constraints as animation parameters.

There are typically many possible muscle torque paths that achieve the constraints.

An objective function can be introduced to specify a certain preference for solutions.

Typically, the objective functions are biomechanically based: minimize the expended

energy, minimize end effector jerk, or use a weighted combination of those two.

The constraint control problem can be stated as a non-linear optimization problem

[308]. Several techniques have been proposed to speed up the calculation process

of the optimization (for example: [74, 174]), typically at the cost of some physical

realism. Even with those speedups, constraint based control methods are currently

not a feasible option for real-time animation.

2.2.3.2 Physical Simulation using Controllers

A physical controller and the physical system it controls (the physical body of a

virtual human) together form a control system [149]. The input to the controller is

the desired value of the system’s state. This desired state is part of the animation

parameter set. The output is a set of joint torques that, when applied to the system,

guides its variables towards their desired values. The controller can make use of

static physical properties (such as mass, or inertia) of the physical body performing

the motion. Such a control system can, to a certain extent, cope with external

perturbation, in the form of impulses, forces or torques exerted on the body. The

goal of the controller is to minimize the discrepancy between the actual and desired

state. In addition to the forces and torques set by the controller, gravity and ground

contact forces, and forces and torques caused by external perturbations are also

applied to the physical body. The body is then moved using forward dynamics. The

new state of the body is fed back into the controller.
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Proportional Derivative (PD) Control is an easy to implement and frequently

used control method (for example in [6, 73, 115, 312, 323]). The output torque of

the PD-controller is proportional to the difference in position and velocity between

the desired state and the actual state:

τ = kp(xd − x) + kd(ẋd − ẋ) (2.1)

in which xd is the desired state, x is the actual state and kp and kd are the pro-

portional and derivative gains. Note that the system reacts similarly to a springer-

damper system, with spring gain kp and damper gain kd. Typically xd is a desired

DoF value, but other state variables are used in more complex PD-controllers (such

as CoM position in balancing [312]). The animation parameters that have to be

used to create a motion primitive are kp, kd, xd and ẋd. Finding appropriate values

for kp and kd that result in achieving xd and ẋd is a manual trial-and-error process.

They depend on characteristics of both the system and the motion.

Antagonist Control Neff and Fiume [202] use a slightly different formulation of

the PD-control equation, that has more intuitive animation parameters, but the same

error response. It is based on agonist and antagonist muscle groups around joints,

that are modeled as springs:

τ = kpL(θL − θ) + kpH (θH − θ)− kdθ̇ (2.2)

in which animation parameters θL and θH are the spring set points, which serve

respectively as desired lower and upper limits for the joint rotation θ. τ is the

output torque. kpL and kpH are the spring gains. Equilibrium point control (see

Section 2.1.3.3) is used to calculate kpL and kpH , given the provided stiffness and

external forces (typically gravity). Movement is achieved by gradually moving the

equilibrium position.

Local Optimization PD-controllers typically do not generalize well beyond the

specific physical body, environment and contact conditions they were designed for.

Controllers using local quadratic optimization provide better generalization. They

optimize the control objectives for the current frame, subject to certain constraints

(e.g. the physical equations of motion). Unlike constraint control methods (see Sec-

tion 2.2.3.1), these controllers cannot anticipate the long term minimization of their

objective, given constraints at certain time frames, but do allow real-time execution.

The computation cost of local optimization is far higher than the computation cost

of PD or similar controllers.

Stewart and Cremer [277] introduce a custom physics simulator that can opti-

mize objectives (which are required to be second order derivatives of system vari-

ables), subject to the physical equations of motion and optionally specific constraints

that can be added on the fly. Abe et al. [2] extend this work by designing controllers

that optimize objectives, subject not only to the physical equations of motion, but

also to contact and friction dynamics and maximum joint strengths. Their system is
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designed to work with any physics simulator. The objectives regulate the values of

certain kinematic quantities f(q), by minimizing the difference between the desired

acceleration of f and its current acceleration. Abe et al. [2] show some strategies to

find the desired acceleration of f(q) for balancing controllers and controllers that

track a prescribed joint rotation trajectory.

Automatic Controller Generation Searching techniques or evolution-based ma-

chine learning techniques have been employed to automatically generate controllers

that map sensor inputs (joint angles, ground touch) to joint torques, in such a way

that an animation parameter (distance traveled, energy expended, distance from

stylized reference pose) is optimized (see for example [263, 270]). Using such tech-

niques, locomotion controllers for simple creatures with few DoFs can be created.

However, so far automatic controller generation techniques have not scaled up to

provide natural motion for full-sized virtual humans.

Physical Controllers Toolkits The Dynamic Animation and Control Environment

[260] provides researchers with an open, common platform to test out and design

physical controllers using scripting. NaturalMotion’s Endorphin [200] is a com-

mercial animation system that provides a predefined set of controllers. It offers

animation authoring through controller parameterization, controller combination,

physical constraint handling (e.g. lock hands to a bar for a ’hang on bar’ motion)

and several ways to integrate motion capture with physical simulation. NaturalMo-

tion offers the Euphoria toolkit to handle such functionality in real time so that it

integrates with a game engine. Details on how Naturalmotion software handles this

functionality (as far as disclosed) are discussed in the appropriate sections.

2.2.4 Strengths and Weaknesses of Different Animation Tech-

niques

Motion editing techniques retain the naturalness and detail of recorded example

motion primitives or motion primitives generated by skilled artists. However, mo-

tion editing techniques produce natural motion only when the modifications to the

example motion primitives are small. Techniques that make use of multiple exam-

ple motion primitives retain naturalness over larger modifications than techniques

that use a single example motion primitive [96]. However, both blending and sta-

tistical techniques suffer from the curse of dimensionality: in practice the number

of required example motion primitives grows exponentially with the number of an-

imation parameters [92]. Furthermore, motion editing techniques do not provide

physical interaction with the environment and motion editing can invalidate the

physical correctness of motion (see Section 2.4.1). Motion editing is useful for cre-

ating animation in advance for non-interactive applications (such as films). For

other domains, such as games, naturalness and controllability can only be assured

by using a huge database of example motion primitives.
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Physical simulation provides physically realistic motion and (physical) interac-

tion with the environment. Physical controllers can robustly retain or achieve an-

imation parameters under the influence of external perturbation. This robustness

comes with a disadvantage: precise timing and limb positioning using physical con-

trollers is an open problem (see Section 2.3.1.5). While physical simulation provides

physically correct motion, this alone is often not enough for motion to be natural.

Therefore, physical simulation is mainly used to generate human motion that is

physically constrained and in which interaction with the environment is important,

such as motion by athletes (for example in [115, 313]), stunts by stuntmen [73], or

falling motions (for example [187, 262, 312]).

Procedural animation offers precise timing and limb positioning and can easily

make use of a large number of parameters. However, it is hard to incorporate move-

ment details such as those found in example motion primitives into the mathemat-

ical formulas that create motion. Furthermore, to maintain physical naturalness,

it has to be explicitly authored in the procedural model for all possible parame-

ter instances. Expressive motion, as used in talking and gesturing virtual humans,

requires many control parameters and precise timing to other modalities, such as

speech. It is therefore typically the domain of procedural animation techniques such

as [58, 104, 155, 207, 217, 218].

The qualities of motion editing and motion simulation techniques can potentially

be combined by taking into account which of the qualities is needed in a certain

situation, or by determining which quality is needed on which body part. For exam-

ple, a virtual human can be steered by motion editing until a physical interaction

with the environment is needed, which will then be handled by physical simulation,

or the flexibility and precision of procedural motion can be used to generate arm

gestures on a virtual human which retains balance in a physically realistic manner

using a balance controller on the lower body. Throughout the remaining sections, I

will show several examples of such combinations that enhance naturalness and/or

control, as I discuss the control and naturalness provided by different animation

techniques.

2.3 Control

Animation involves the creation of animation plans that typically span multiple mo-

tion spaces and are executed by multiple motion primitives. To be able to deal

with interactive and changing environments, such plans need to be constructed and

adapted in real time. Control enables the expression and adaptation of such plans

by means of parameterization, combination and concatenation.

Parameterization (see Figure 2.3) is the process of selecting animation parame-

ter values (such as blend weights, stiffness gains, Principal Component values, etc.)

that, when provided to an animation technique, create a motion primitive that sat-

isfies some control parameters (for example: create a gesture motion primitive that

exhibits a certain tension and amplitude).

Concatenation (see Figure 2.4) deals with the generation of a sequences of mo-
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tion primitives, to form a natural motion that satisfies certain control parameters.

The motion primitives can be generated by different techniques (or the same tech-

nique that is initialized differently). For example: using a walk controller and a

blending technique that uses preprocessed sit down motion primitives as its input, a

sequence of motion primitives can be generated to achieve a ‘walk to the chair and

sit on it’ motion.

Rather than explicitly constructing new motion primitives for each combination

of motions acting on a separate body part, different motion primitives, possibly

constructed by different animation techniques, can be combined (see Figure 2.5) in

such a way that a coherent whole body motion results. For example: a walk cycle

motion primitive and a gaze motion primitive can be combined to allow a virtual

human to walk and gaze at the same time.

Controllability is determined by various aspects. Responsiveness determines how

fast a desired change in the motion plan is achieved. For example, how fast does an

animated soccer player respond to a gamer pressing the shoot button? Precision is

the accuracy with which control parameters (such as end effector position or timing

constraints) are achieved. Coverage deals with how much of the control parameter

space is covered (for example: what positions can be kicked within a kick motion

space). I define expressiveness as the number of control parameters that can be used

in the motion plan. Intuitiveness deals with how intuitive the control parameters that

can be used in the specification of the motion plan are for human motion authors.

2.3.1 Parameterization

Parameterization deals with selecting the animation parameters, that, when pro-

vided to an animation technique, create a motion primitive with some desired con-

trol parameter values. One common control parameter is a pose constraint (for

example: requiring the hand to be at a certain location) at a desired time. Other

more abstract parameterizations deal with control parameters such as emotion or

physical state (such as tiredness). Some animation techniques provide intuitive an-

imation parameters that can be expressed directly as control parameters (for exam-

ple: geometric constraints in motion modification). Other techniques (for example

blending) do not provide intuitive animation parameters. For such techniques and

for the more abstract parameterizations mentioned above, some mapping of control

parameters to animation parameters is needed (see Figure 2.3). If multiple desired

control parameter values are specified, it might not be possible to satisfy them all.

Several parameterization methods therefore include strategies to deal with conflict-

ing control parameter values.

2.3.1.1 Parameterization in Procedural Motion

In procedural animation, the control parameters can directly be expressed in terms

of parameters of the motion functions (and thus animation parameters). Pose con-

straints are typically satisfied by setting animation parameters that specify end ef-

fector positions or joint rotations. Authoring procedural motions requires specifying
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Figure 2.3: Parameterization maps control parameters to animation parameters to create a motion
primitive that satisfies control parameter values.

how each parameter influences the motion. For control parameters such as emotion

or physical state, this is not a very intuitive process. Therefore, such control pa-

rameters are typically mapped to animation parameters instead. This mapping can

result in parameter conflicts if control parameter values select different values for

the same animation parameter.

Neff and Fiume [203], design a hierarchical framework for procedural motion

and provide a generic parameter mapping framework. Lower level control parame-

ters specify the motion on a single joint or group of joints (called an action in [203]).

Higher level control parameters are mapped to animation parameters through a

script created by an animator. Motion primitives are created using various, pos-

sibly conflicting, low level and high level control parameters. Therefore, several

mechanisms are in place to handle conflict resolution: low level control parameters

(placed on a single DoF, rather than on the whole body) take precedence over high

level control parameters, which take precedence over the default values defined in

a ‘Sketch’ (a model of the virtual human’s style in [203]; see Section 2.4.3.2).

Chi et al. [58] claim that Effort and Shape parameters from Laban Movement

Analysis (LMA) not only provide means to parameterize gesture, but are essential

features of a gesture. Shape involves the changing forms that the body makes in

space. Effort describes dynamic qualities of movement, such as weight (light, for

example dabbing paint on a canvas vs. strong, for example punching someone

in the face in a boxing match) and flow (uncontrolled, for example shaking off

water vs. controlled, for example carefully carrying a cup of hot tea). Their work

provides a computational framework that maps Effort and Shape control parameters

to animation parameters that guide arm and torso movement. The arm movement

is specified by end effector key locations. Shape parameters influence the position

of the hand in space on those key locations. Effort parameters influence the path

and timing of the movement toward the end effector location. In later work, Badler
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et al. [13] achieve emotional parameterization by mapping emotion to LMA control

parameters.

Hartmann et al. [104], use a smaller but quite similar set of control parame-

ters. From a literature review they conclude that six control parameters (activation,

spatial extent, temporality, fluidity, power and repetition) are sufficient to specify

gesture expressivity. The control parameter selection is based on what humans can

observe and reliably recognize. In their system, gestures are generated by Kochanek-

Bartels splines [146] defining the trajectory of the hands. The six control param-

eters are mapped to animation parameters that modify the timing and position of

the control points in the spline or set the tension, bias and continuity of the spline.

Their control parameters are intuitive, but not independent, specifically they men-

tion an unresolved conceptual interdependence between the power and temporal

extent (roughly duration) control parameters.

2.3.1.2 Parameterization using Constraint Editing

Recorded motion primitives can be modified to adhere to a pose constraint, using

a motion modification technique (see Section 2.2.1.1). In this case, the animation

parameters are used directly as control parameters. Le Callennec et al. [44] provide

a PFIK+F framework that can handle multiple pose constraints. It resolves possible

conflicts in constraints by satisfying those with the highest priority first.

Amaya et al. [8] state that emotion is observed in motion timing and spatial am-

plitude. An emotion transform is applied on neutral motion using non-linear time-

warping and a spatial amplitude transform technique based on signal amplifying

methods. The required time warp and amplification for such an emotion transform

is obtained by determining the emotional transforms needed to get from recorded

neutral movement to the same movement executed in an emotional style. Hsu et

al. [117] describe a similar method for emotion transform, using a Linear Time

Invariant model rather than signal amplification for the spatial transform.

2.3.1.3 Parameterization using Blending

To achieve a desired pose at a desired time, a set of motion primitives to interpolate

and their interpolation weights have to be found. Many parameterization methods

have been developed to solve a subset of the pose constraint problem: position-

ing an end effector at a desired position sdes, specified by three control parameters.

Unfortunately, blending does not yield a linear parameterization of this control pa-

rameter space [242]. That is, if sdes is exactly in between s1 and s2, this does not

mean that a blend with interpolation weights of 0.5 of the joint rotation vectors q1

and q2, placing the end effector at s1 and s2, will end up placing the end effector at

sdes. Several methods have been developed to solve this discrepancy.

Rose et al. [240] use a scattered data interpolation method to approximate

control parameter values. This method calculates the resulting motion primitive

using a linear map between blend weights and control parameters combined with

radial basis functions centered on each example motion primitive. For desired poses
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that are far from the examples, the motion primitives calculated using this approach

are based purely at the linear approximation and hence are effectively arbitrary

[157]. Grassia [96] uses a linear approximation of the blend weights in an initial

positioning step and then exactly positions the end effector at the goal position

using a constraint based method (see Section 2.2.1.1). Van Basten et al. [20]

linearize part of the posture representation and interpolate positions of joints instead

of rotations. This will result in end effectors that are exactly on the desired position.

Many other techniques make use of pseudo example motion primitives. Wiley

and Hahn [305] resample the examples to a dense regular grid in a precomputing

step that exhaustively searches through interpolation weights and recorded motion

primitives. The grid can then be used to efficiently select the pseudo examples to be

interpolated. Note that, compared to Rose et al. [240], only a subset of the exam-

ple motion primitives are blended. Also, the number of required example motion

primitives is O(2d), where d is the dimensionality of the parameter space, whereas

Rose et al. [240] only require O(d) samples. Rose et al. [242] use the smoothness

of the function that maps blend weights to end effector position values to create

pseudo examples online at selected positions, iteratively improving the accuracy of

the parameterization. Kovar and Gleicher [157] randomly create random pseudo

examples online. By using k-nearest neighbor interpolation rather than interpo-

lating from all samples, the run-time cost of their algorithm is independent of the

number of recorded and pseudo example motion primitives.

Using blending methods, the intensity of an emotion or physical state can be

adapted. For example: by blending a happy walk with a normal walk, a slightly

happy walk can be obtained [120, 240]. Unuma et al. [296] introduces blending in

the Fourier domain for cyclic motions (such as walking and running). Such a Fourier

domain blend ensures that the motions that are to be blended are automatically

time-aligned, so time warping is not needed in the preprocessing steps. For walking

and running, the Fourier description provides parameters to control the step size,

speed, duration of the flight stage and maximum height during the flight stage. Sim-

ilar motions with different emotional or physiological aspects (brisk, tired, happy,

etc) can be blended in the Fourier domain, so that these aspects can be used as mo-

tion parameters. Fourier descriptions can also be used to transfer motion aspects:

by applying the Fourier description of briskness from a brisk walk onto a normal

run, a brisk run is created. Because the parameters are qualitative, strict accuracy

cannot be attained by the blending methods described above.

Torresani et al. [288] provide parameterization of three of the LMA Effort control

parameters (see Section 2.3.1.1). Recorded motion primitives are annotated by an

LMA expert. These annotations are translated into numerical values. By annotating

the Effort of blends of motion primitives with known Effort values, a function that

maps blend weights, input joint angle data and input Effort values to the output

Effort values is learned. A motion primitive with unknown Effort values can then be

adapted to have desired Effort values by blending. This entails finding its k-nearest

neighbors in the database of annotated motion primitives and finding the motion

primitive pair that, with the optimal blend weight (found by uniform sampling),

approximates the desired Effort values the best. At the cost of computation time
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and annotation effort (by an LMA-expert), this method achieves a more accurate

Effort parameterization than simple linear blending.

2.3.1.4 Parameterization in Statistical Models

Satisfying control parameters using statistical models requires specialized methods

for each statistical model. Grochow et al. [100] search their SGPLMVM model

representation of the motion space using optimization to create motion primitives

that satisfy pose constraints. Li et al.’s [173] motion texton representation of the

motion space allows the creation of motion primitives by directly specifying poses

at selected frames. Mukai and Kuriyama [199], create a geostatistical model of a

set of recorded motion primitives. Geostatistical interpolation is used to create the

motion primitive with desired pose constraints. This method is more accurate in

achieving the desired pose constraints than blending methods that use radial basis

functions. It is more efficient (in terms of calculation time and memory usage)

than blending methods that use pseudo examples. Carvalho et al. [46] introduce

a constraint based editing method that uses the same prioritized IK solver as [44]

(see also Section 2.3.1.2) on a low-dimensional statistical motion model, generated

using PCA or probabilistic PCA. Their system is computationally more efficient, and

is, according to the authors, in some cases more natural than the PFIK+F approach

used in [44].

In human motion, there are many correlations between joint actions. Statistical

methods [69] and machine learning [38] have been employed to find orthogonal

control parameters in a set of recorded motion primitives. Because the parameters

are independent, it is not necessary to resolve parameter conflicts. However, the

control parameters learned in such approaches are not very intuitive to use and are

highly dependent on the training data.

2.3.1.5 Parameterization using Physical Simulation

The desired state of a controller can be used directly as a control parameter. An-

imation parameters such as desired joint rotation, pelvis height or CoM position

provide intuitive control. However, satisfying pose constraints precisely and timely

using a physical controller is still an open problem, since in general it is unknown

if and when a controller achieves such a pose constraint. Some recent efforts have

attempted to address this issue. Neff et al. [207] use empirically determined offsets

on the pose time and angular span multipliers on the pose itself, so that their system

achieved poses on time, for certain classes of movement (e.g. gesture). Other sys-

tems rely on critically damped controllers to achieve precisely and timely arm poses

[6, 149]. These controllers can only generate movement in which the ‘muscles’ are

critically damped and impose limited or no movement of the trunk.

Abe and Popović [1] show how to set up a physical controller that satisfies con-

trol parameter values in order of their priority. They report that prioritization of

balance control interferes with posture control, which makes it difficult to combine

these two control objectives in a natural manner. In later work, Abe et al. [2] use a
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weighted combination of control objectives to achieve a compromise between their

control parameter values. The weights can be used to move smoothly from one ob-

jective to the next. Some techniques have been devised to map control parameters

to animation parameters used in controllers.

Chao et al. [56] provide a mapping from LMA-Effort parameters to animation

parameters for a PD-controller, such as damping, stiffness and desired joint rota-

tion. Yin et al. [316] apply an optimized learning strategy to adapt the animation

parameters w of a physical walking controller to a new situation parameterized by

the control variable γ (for example: step over an obstacle of height γ, push a piece

of furniture with weight γ, walk on slippery terrain with friction coefficient γ). The

animation parameter space is searched for valid values of w (as in, those that do not

make the virtual human fall) that achieve γ. There may be many viable solutions of

w that achieve γ. A hand-authored objective function evaluates w to help select a

unique optimal solution that achieves γ. It can be designed to prefer solutions that

have a minimal deviation from the original animation parameters, a certain walk-

ing speed or step size, and so on. The learning process is off-line, but the learned

animation parameter values can be interpolated to achieve real-time control. It is

yet to be seen wether and how this method generalizes to more than one control

parameter.

2.3.2 Concatenating

Concatenation (see Figure 2.4) deals with the generation of a sequences of mo-

tion primitives, to form a natural motion that satisfies certain control parameters

and assures the naturalness and smoothness of the resulting motion. The motion

primitives can be generated by different techniques (or the same technique that is

initialized differently).

2.3.2.1 Concatenation using Motion Editing

Ease-in ease-out interpolation between two motion primitives can be used to con-

catenate them. The first motion primitive is faded out as the second one is faded

in. Displacement maps (see Section 2.2.1.1) can also be used to transition from one

motion primitive to another, as is done in [168]. Transitions between different pairs

of motion primitives concatenated in this manner differ in naturalness. Ikemoto et

al. [121] generate transitions by cached multi-way blends. They cluster recorded

motion primitives using the distance metric by Kovar et al. [158]. All mediods (cen-

tral item of cluster) are representatives for the motion primitives belonging to that

cluster. During preprocessing, the naturalness of all possible 2, 3 or 4 multi-way

blends between representatives is evaluated (using footskate and ZMP position as

evaluation criteria) and the best blend recipe (containing a weight function and rep-

resentatives) is stored. A transition is generated at runtime by matching the current

and next motion primitives to mediods and applying the stored blend recipe.
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Figure 2.4: Concatenation generates a sequence of motion primitives using (possibly different)
animation techniques. The resulting motion satisfies the control parameter values.

Motion Graphs In many applications, one requires multiple concatenated motion

primitives to satisfy a longer term control parameter (for example: walk to a certain

position). A very common technique is to encode the possible transitions between

motion primitives in a graph-like structure: a motion graph. A motion graph is a

directed graph where all edges correspond to motion primitives and nodes corre-

spond to poses. Interpolations between poses from different (or the same) motion

primitives that are ‘similar enough’ are added as new edges. In the game indus-

try such graphs, move trees, were originally created manually [196]. Kovar et al.

[158] present an algorithm that automatically creates motion graphs. Good transi-

tion points are automatically detected using Cartesian joint distance as a distance

metric. After the graph is created, the graph can then be searched to find a sequence

of motion primitives that adheres to control parameter values (for example: walking

along a specified path). Many variations of motion graphs exist, which can be dis-

tinguished in off-line methods where the desired control parameters are known in

advance and the motion is generated off-line (for example: [10, 158]), and methods

that work at interactive speed (for example: [19, 93, 168, 169]). These techniques

mainly differ in the graph structure or the search strategy. Here I mainly discuss the

inherent naturalness-control-calculation time trade-offs in motion graphs. For an

exhaustive literature overview I refer the reader to a recent article featuring motion

graphs (e.g. [322]) or Forsyth et al.’s survey ([79], p184-194). Throughout this

chapter, I make use of the terminology for naturalness, control and calculation time

aspects of motion graphs introduced in [79].

At interactive speed, a global search on the graph is infeasible [79]. Local search

evaluates only the values of control parameters in a path through a limited number

of nodes when choosing the next sequence of motion primitives. Even if a path on

the graph that satisfies control parameter values is available, a local search method
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might not find it, because it cannot look far enough ahead. This is called the horizon

problem in [79].

Reinforcement learning (first proposed by Lee and Lee [169]) can be used to

learn (near) optimal long-term plans for specific control parameter values that are

specified as a reward function. The learning process is off-line. For each global state

(=world state × virtual human state) a (near) optimal path on the motion graph is

learned that achieves specific selected control parameter values. Some flexibility can

be gained by a smart selection of state and objective function. For example: if the

state is set as the angle between the current walk direction and the goal direction,

walking in any goal direction can be learned by learning how to walk forward.

Walking to a desired 2D location can be learned in a similar manner. One can

also learn a grid of control parameter values [169]. Because of its discretization of

control parameter values, reinforcement learning sacrifices some accuracy for long-

term goal satisfaction. Furthermore, it can be hard to coordinate multiple control

parameter values and is typically very memory intensive [169]. Recent approaches

using reinforcement learning aim to address the latter [172, 175, 292].

Control and motion planning is limited by the available paths on the graph. As

more control parameters are added, less paths will become available that satisfy

all their desired values. It is possible to extend the graph (and hence, gain more

control) by adding more transitions. Unfortunately, at some point the added transi-

tions become unnatural [18]. This is a typical trade-off when using motion graphs.

More transitions will result in more control but also more visual artifacts such as

footskate. Another disadvantage is that motion graphs are, in general, not able to

generate motions that require tight coupling to the environment unless exactly those

motions are in the database.

Several techniques have been developed that are able to automatically identify

natural transitions between motion spaces. Shin and Oh [266] present fat graphs.

In these fat graphs, blend spaces are constructed using edges that start and end at a

common pose (or hub) of a motion graph. These blend spaces allow more flexible

parameterization than traditional motion graphs. However, in order to transition

from one motion to another, the virtual human must always first move through

one of the common poses. Heck and Gleicher [107] introduce parametric motion

graphs. A parametric motion graph encodes an edge as a mapping from a control

parameter in the source motion space (creating a source motion primitive) to a

subspace of the control parameter values in a target motion space. This subspace of

parameter values in target space is selected so that they create a target motion prim-

itives that connects it to the source motion primitive (that is, the start of the target

primitive and the end of the source primitive are ‘similar enough’). Transitions are

selected by specifying the current motion space and control parameter values and

the target motion space and desired target control parameters values. If a natural

transition satisfying the target control parameters exists, they are achieved precisely.

If not, a transition that provides the closest match to the target control parameter

values can be selected. This either sacrifices accuracy for naturalness (for example,

for a punch motion space with target punch position as a control parameter), or it

can sacrifice responsiveness for naturalness if control parameter values are achie-
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ved by subsequent transitions (for example for a walk motion space with a direction

control parameter).

Concatenation using Statistical Methods Li et al. [173] model a motion space as

a linear dynamic system (LDS). They define a distance metric for LDSs and construct

a motion graph-like structure to support concatenation of similar LDSs. By setting

the first two poses of the next LDS in the path to the last two poses of the current

LDS (see Section 2.3.1.4), a fluent connection is achieved.

2.3.2.2 Concatenation of Physically Controlled Motion

In physical simulation using controllers, concatenation implies a switch to a differ-

ent controller. If the exit state of one controller leaves the simulation in a valid entry

state for the next controller, valid transitions can easily be attained [311]. Prede-

fined transitions between controllers that satisfy this condition can be encoded in a

state machine. For example, [115] shows a state machine that uses different phases

(and thus, controllers) for the flight, loading, heel contact, heel and toe contact, toe

contact and unloading phases of a running motion.

A transitional controller can be designed to facilitate transitions between con-

trollers with incompatible exit and entry states. Wooten and Hodgins [311] demon-

strates this, by using a landing controller to take a virtual human from a flight state

to a state suitable for balancing on the ground. Faloutsos et al. [73] facilitates

transitions between controllers by describing preconditions and post-conditions for

each controller. The preconditions define the sensor values (see Section 2.1.3.1)

that lead to a successful execution of the controller. Specifying valid preconditions

for controllers is not always a trivial task (for example: what are valid preconditions

for balancing?). Support vector machine (SVM) classifiers are trained to predict the

success or failure of a controller given sensor values. The preconditions for a con-

troller are then determined by what a trained SVM for that controller classifies as

successful.

Coros et al. [61] show how to create control policies that satisfy longer term

goals. The policy selects a near optimal sequence of locomotion controllers given a

certain control parameter value offline. Each controller executes one locomotion cy-

cle. After each walk cycle, the control policy selects the controller that will achieve a

new global state (=world state × virtual human state) that maximizes the reward.

Rewards are explored for ‘trusted’ global states (those close to states achieved ‘nor-

mally’ in the controllers), using off-line reinforcement learning, in a similar manner

as discussed earlier for motion graphs (Section 2.3.2.1).

2.3.2.3 Concatenation of Procedural Motion

Zeltzer [319] models the different phases of a procedural walking motion by differ-

ent procedural models and concatenates them using a state machine. Some frame-

works for the generation of procedural arm gestures concatenate the gestures using

procedural techniques that allow a flexible start pose of the arm [105, 155]. The



Section 2.3 – Control | 29

end pose of the previous gesture is then used as the start pose of the current ges-

ture. Other procedural animation systems use interpolation to generate a transition

motion primitive between two procedural motions [131, 218].

2.3.2.4 Concatenating Physical Simulation and Motion Editing

Motion editing techniques provide natural motion, but it is hard to set them up to

interact with the physical world. Physical simulation provides world interaction,

but less naturalness. Several methods have been developed to take advantage of

the strength of both techniques by switching between them depending on the type

of interaction needed.

Shapiro et al. [262] switch control from kinematics to physics on contact with

physical objects in the environment. A transition from physical simulation to mo-

tion editing (in their system a motion graph) can be made if the pose of the virtual

human is similar to a pose in a motion primitive of one of the motion editing motion

spaces. It is not stated how such a suitable motion primitive is found. Presumably

the number of motion primitives in the graph is low, so that an exhaustive search

can be performed on all their poses. Mandel [187] makes the transition from mo-

tion editing to PD-control, whenever some physical event occurs that makes the

virtual human fall over. A PD-control system is then started in the pose last set by

the motion editing motion primitive. A fall controller lets the virtual human fall,

while trying to break this fall with the hands. As soon as the hands hit the floor,

the system attempts to return control to motion editing. To find a suitable motion

primitive, the motion capture database is searched for a motion primitive that has

a similar pose to the pose the virtual human is in. This is done using the Approxi-

mate Nearest Neighbor Search algorithm. An intermediate physical controller then

moves the virtual human to this pose. Once the virtual human is close enough to

that pose, control is returned to motion editing. NaturalMotion’s [200] Euporia and

Endorphin animation systems allow transitions between motion editing and physical

simulation. Selecting a suitable motion primitive to play after physical simulation is

left to the motion author.

Rather than using recovery controllers, Zordan et al. [326] search a motion

capture database to find a suitable recovery motion primitive to play after a physical

impact. During the physical impact, a physical rag doll motion is played for a short

period of time (0.1-0.2s), then motion is steered by a physical tracking controller

(see Section 2.4.1.3), that tracks a blend of the motion primitive before the impact

and the selected motion primitive after the impact. In later work, Zordan et al.

[325] contribute an automatic, real-time, motion primitive search algorithm. Re-

entry motion primitive candidates are classified off-line, using machine learning.

This significantly reduces the number of candidates to select from.

2.3.3 Combination

A virtual human can execute multiple tasks that each require motion at the same

time, possibly with different parts of the body. Rather than explicitly setting up new
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motion primitives for each combination of motion acting on a separate body part,

different motion primitives, possibly created by different animation techniques, can

be combined in such a way that a coherent whole body motion results (see Fig-

ure 2.5).
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Figure 2.5: Different motion primitives, each acting on a subset of the joints of the virtual human
can be combined to form full body motion.

2.3.3.1 Combination using Motion Editing

A simple way to combine motion primitives is by using a direct ‘ease-in ease-out’

interpolation of the motion primitives (as done in [131, 217]). The interpolation

weights of the motion primitives to be combined is set per joint, so that certain mo-

tion primitives can be set up to affect certain joints more than others. This method

can produce unrealistic results because it ignores both physical and stylistic correla-

tions between the motion of various joints in the body [108].

Heck et al. [108], aim to combine (splice) one motion primitive on the upper

body with one acting on the lower body. Both motion primitives contain a walk

cycle. Temporal relations between the upper and the lower body are maintained by

making use of the rhythmic nature of walking to time warp and align the motion

primitives. The pelvis is rotated in such a way that the upper and lower body are

aligned, while retaining the desired upper body posture. Ha and Han [101] gen-

eralize Heck’s splicing method. They construct a time warp between upper body

and lower body motion spaces off-line. This time warp can then be used to splice

motion primitives of the two spaces online. Note that these two splicing methods

only enforce coherence of the upper and lower body in the temporal domain.

2.3.3.2 Combination of Physical Controllers

Physical controllers can be combined by adding up the forces and torques applied by

them on each joint (as done in [312]). Such a combination automatically provides
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physically coherent whole body motion, because an articulated rigid body system

models the force transference through the joints.

2.3.3.3 Combination of Procedural Motion

Many procedural animation systems combine procedural motion on different body

parts, by employing a procedural motion technique for each body part [105, 155].

Procedural motion from different procedural models, acting on the same body part

can be combined using interpolation (see Section 2.3.3.1, [218]). Thiebaux et al.

[280] employ specialized blend mechanisms to combine motion primitives gener-

ated by different procedural animation techniques.

2.3.3.4 Combination of Kinematic Motion and Physical Simulation

The requirements of physical integrity and accuracy are often of different impor-

tance for different body parts. For example, for a gesturing virtual human, posi-

tional and timing accuracy is primarily important on movement of a gesturing arm

or head. At the same time, a physically valid balancing motion of the whole body

could be achieved by moving only the lower body, where precise timing is less im-

portant. Combining kinematic motion with physical simulation on different body

parts allows one to combine the accuracy of motion generated by procedural an-

imation or motion editing with the physical realism of physical simulation. Oore

et al. [211] present a system that mixes physical simulation, acting on the knee

and ankle joints, with kinematical upper body motion. The physical model is cou-

pled with the upper body through its mass displacement. The joint torques of the

kinematically moved parts in the upper body are not taken into account in the phys-

ical movement of the lower body. Isaacs and Cohen [123] show how inverse and

forward dynamics (see Appendix A) can be combined in a custom designed physi-

cal simulation system, given that either the joint accelerations or the joint torques

are known for each joint, at each frame. This way, if kinematic motion is known

at every frame for some joints, the forces those joints exert on the other joints is

taken into account when the remaining joints are moved using physical simulation.

In Chapter 3, I present my extension on this work that provides a simplification of

the simulation model. My system allows the use of efficient iterative techniques to

calculate the torques exerted by the kinematically steered joints and provides easy

integration with existing physics engines.

2.3.3.5 Combining Procedural Motion and Motion Editing

By augmenting motion editing with procedural motion, expressiveness can be en-

hanced without requiring a prohibitive amount of motion primitive examples. Some

examples: a biomechanical model of eye movement (which is hard to motion cap-

ture) can be combined with a motion editing technique for neck and trunk mo-

vement [165]. Heck [109] employs a biologically and psychologically inspired
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model for gaze that is layered on top of motion primitives created by motion edit-

ing. Shapiro et al. [261] combine lower-body motion capture with arm movement

determined by planning techniques from robotics.

2.3.4 Aspects of Control

In the previous subsections I have looked at ways to parameterize, concatenate and

combine motion spaces using various techniques. Here I discuss how much control

can be gained using such techniques, by looking at the various aspects of control.

2.3.4.1 Responsiveness

Responsiveness determines how fast a desired change in the motion plan is achie-

ved. Responsiveness is a major theme in the design of motion graphs, it might take

a while to traverse the graph to reach the desired node, especially if the graph is

sparse. Forsyth et al. [79] introduce the diameter: the average path length of the

shortest path connecting two nodes on a motion graph as a measure for responsive-

ness. A denser graph (with a smaller diameter) can be created by sacrificing some

naturalness (see Section 2.3.2.1). Physical simulation has high responsiveness to

physical events (for example, being hit by a falling anvil), but lower responsive-

ness to control parameter changes that effect the desired state of the virtual human.

Procedural animation and motion editing techniques have higher responsiveness to

parameters that change the desired state of the virtual human, but direct reaction

to physical events that occur in the world is not built-in.

2.3.4.2 Precision

Precision is the accuracy with which control parameters (such as end effector posi-

tion or timing constraints) are achieved. Procedural motion is very precise. Motion

editing techniques can provide precision at the cost of calculation time. Physical

simulation is imprecise, it is unknown whether and when desired pose and time

constraints have been met. Some precision can be gained by sacrificing natural-

ness and creating only motions in which the ‘muscles’ are critically damped (see

Section 2.3.1.5).

2.3.4.3 Coverage

Coverage deals with how much of the control parameter space is covered. Motion

graphs can suffer from bad coverage. For example: some parts in an environment

cannot be reached from certain nodes in a motion graph because no path starting

in this nodes will go there. Reitsma and Pollard [233] present an algorithm to de-

termine the environment coverage of a given motion graph. Note that the coverage

of a motion graph is also greatly influenced by the search algorithm it uses. Even

if a path on the graph that satisfies control parameter values is available, a local

search method might not find it. Physical simulation can suffer from bad coverage
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whenever control parameter values create motion primitives that put the virtual hu-

man on the edge of balance. The coverage of physical simulation can be increased

by sacrificing some balancing naturalness (see [313]) or by using better balance

methods that require more calculation time (see [268]). While most motion editing

techniques can cover a wide range of control parameter values, only the control

parameters that result in a motion primitive near an example motion primitive will

yield natural motion. Procedural motion has good coverage, but again not all con-

trol parameter values will provide natural motion.

2.3.4.4 Expressiveness

I have defined expressiveness as the number of control parameters that can be used

in the motion plan. Procedural and physical simulation techniques have high expres-

siveness. The number of parameters that can effectively be used in motion editing

is low.

2.3.4.5 Intuitiveness

Intuitiveness deals with how intuitive the control parameters that can be used in

the specification of the motion plan are. All techniques allow the use of control pa-

rameters that can set pose constraints. Other control parameters (such as emotion,

physical state) can often be mapped to animation parameters. An intuitive set of

control parameters might cause conflicts between animation parameters, but an or-

thogonal set of control parameters is typically not intuitive (see Section 2.3.1.4). For

example, [38] reports having a parameter that sets both the speed and the global

pose. Therefore, orthogonal control parameters are typically used solely to create

small variations on existing motion (see Section 2.4.4.2).

2.3.4.6 Control Enhancement with Multiple Animation Paradigms

By combining and concatenating motion primitives created by different animation

techniques, several aspects of control can be enhanced. For example, a concatena-

tion of a motion primitive created by motion editing with one created using physical

simulation enhances the responsiveness to physical events (see 2.3.2.4). Another ex-

ample is the enhancement of expressiveness by combining procedural motion and

motion editing (see Section 2.3.3.5).

2.4 Naturalness

For many animation systems, plausibility or naturalness rather than full realism is

acceptable. I define naturalness as perceived realism of a virtual human’s move-

ment. Naturalness therefore partly depends on properties of human observation.

Physical realism is one property of natural animation (see also the Appendix A),

but physical realism alone is not enough for motion to be perceived as natural. In-
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volvement of the whole body is crucial to make an animation natural [58]. Further-

more, movement should be consistent with static (such as age, gender) properties

of the virtual human that is being animated [98, 246]. Variability is a concern if a

motion is to be repeated. In this section I will elaborate on these different aspects

of naturalness and show how naturalness can be enhanced and evaluated. Natu-

ralness effects related to animation planning, such as the plausibility of the motion

with respect to the cognitive and emotional state of the moving virtual human [98],

are beyond the scope of this thesis.

2.4.1 Physical and Biological Realism

Motion primitives created by physical simulation techniques are physically realis-

tic by design. It is relatively easy to consider muscle strength in these methods.

Motion captured animation is also physically realistic, since it originates from real

humans moving. However, motion editing might invalidate its physical correctness,

introducing artifacts such as foot skate, unnatural balance, or momentum changes

in flight. I outline some methods to correct or prevent these artifacts and enhance

physical and biological realism.

2.4.1.1 Physical filters

The physical naturalness of motion primitives can be improved by post processing

motion primitives with a physical filter.

For instance, Pollard and Reitsma [222] propose to filter motion primitives to

obtain physically correct ground contact. A friction model is used to make the foot

slide when appropriate. Their filter makes use of the fact that a (virtual) human

cannot apply a force or torque at its root joint. Each frame of motion is cast on

a physical model of the virtual human. Then, per frame, the net root forces and

torques are eliminated by modifying the rotational acceleration on all actuated joints

and the rotational and transitional acceleration on the root.

Shin et al. [265] employ a constraint based motion editing method (see Sec-

tion 2.2.1.1) to enhance the physical and biomechanical correctness of edited mo-

tion. During flight stages, the angular momentum is conserved and the center of

mass is constrained to follow a parabolic path. During ground contact, the ZMP is

constrained to fall into the support polygon. The corrections are applied to a user-

selected set of joints during the flight stage, ZMP correction is applied on one user

selected joint.

Footskate is a typical artifact caused by motion editing. The virtual human’s foot

slides on the floor after the virtual human plants it, rather than remaining tightly in

place [122]. If it is known when a foot is planted, then a constraint based motion

editing method (see Section 2.2.1.1) can be used as a motion filter, to constrain the

movement of the planted foot [159]. Fully automatic reliable detection of footskate

in real time is still an open problem. Existing methods have to be trained for each

motion [122] or refine motion type (e.g. run, walk) specific estimations of con-

tact times and durations [89]. Alternatively, foot contact can be annotated in the
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recorded motion primitives, and motion editing techniques can be set up to retain

these annotations [156].

2.4.1.2 Retaining Physical Correctness in Interpolation

Because of the difficulties and large computation time associated with physical fil-

ters, some interpolation techniques deal with physical realism during the interpola-

tion stage, rather than using a post-processing method. A number of simple modi-

fications can be used to improve the physical correctness of interpolation of motion

primitives that are physically correct on their own [250]. By interpolating the center

of mass, rather than the root and clever selection of the interpolation duration, the

net force during flight is equal to gravity. If, during ground contact, the center of

mass, the foot positions, knee-swivel angles and all joints angles except the legs are

interpolated, rather than directly interpolating joint rotations, the feet will not pen-

etrate the ground, balance will be retained and the ground friction will be within

the same friction cones as the source motion primitives.

Ménardais et al. [192] use a simple technique to avoid or reduce footskate. Mo-

tion primitives are annotated with support phase information (left foot, right foot,

double support, no support). A time warp then synchronizes the support phases of

motion primitives so that they are compatible during the interpolation. Treuille et

al. [292] prevent footskate in support phases where only one foot is on the ground

by first aligning the support foot of the second motion with the support foot of

the first and then interpolating the motion primitives with the support feet as the

root. Oshita [212] contributes a method to generate transitions between two mo-

tion primitives based on their support phase that does not require re-aligning them

and can handle a wider range of support phase combinations. It uses Treuille et al.’s

method for the connection of motion primitives in which the same foot is moved.

Flying motions are connected by aligning their pelvis directions and interpolating

some frames of the start of the second motion with some frames of the end of the

first. A transition from a motion primitive with single support to one with double

support is created by interpolating from some frames of the end of the first motion

primitive with the start pose of the second motion primitive. Transition between

double support motion primitives are created by modifying the lower body of the

second motion primitive, so that its feet positions match the first motion primitive.

The upper bodies are then interpolated. As soon as a foot is lifted in the second

motion primitive, the lower body is interpolated with the second motion primitive

too.

2.4.1.3 Improving Physical Correctness using Tracking

Tracking is used to enhance existing kinematic motion to allow physical interaction

with the environment. A physical tracking controller tracks the joint rotation path

specified in a motion primitive. This is done by setting this path as the desired

state for the controller. Physical tracking recently became a component of some

commercial high level animation toolkits [11, 106].
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A tracking PD-controller necessarily has very high PD-gains, which result in stiff

reactions to the environment. The PD-gains can be reduced on impact, to decrease

such undesired stiffness (as done in [313, 324]). More sophisticated controllers

use a predictive model that determines joint torques and typically corrects small

perturbations using a low gain feedback PD-controller (for example: [198, 269,

315, 317]).

Motion capture noise, retargetting errors, tracking errors and environmental

changes can easily disturb the balance of a virtual human that is controlled by track-

ing. For early tracking methods such as [149, 323] this was not an issue because

they only track the upper body. Other tracking methods enforce balance by con-

straining the root to the translation specified in the motion primitive [200, 315].

Zordan and Hodgins [324] use a balance controller specialized for standing with

double support contact. Wrotek et al. [313] use a less realistic balancing method

that does allow locomotion: a weak root spring connects the root of the virtual

human to the world. This spring can ‘break’ if too much force is exerted on it,

causing the virtual human to lose balance. Yin et al. [317] use a custom balance

controller for locomotion. Da Silva et al. [268] use a linear time varying system

that learns (in an off line process) a balance strategy from reference motions, which

allows them to track both cyclic and non-cyclic motions. Muico et al. [198] do not

make use of a balance controller, but make use of a more precise torque prediction

model instead. Their non-linear predictive model takes contact forces into account

and tracks the input motion precisely. It allows the creation of controllers for agile

motions, including running and sharply turning.

Using off line learning from a given motion primitive to construct a balance strat-

egy (as in [268]) or a forward model (as in [198, 317]) enhances the naturalness

of the resulting motion generated by a controller. However, by using such off line

strategies some control is lost, since they no longer allow the tracking of unknown

(for instance: generated by a motion editing technique) motion primitives.

2.4.1.4 Physical Correctness in Procedural Techniques

Physical simulation can greatly enhance expressive procedural motion. It can help

to model important nuances of virtual human motion, such as realistic balance,

force transference between limbs and momentum effects such as overshoot [201].

Physical controllers can explicitly address muscle strength and comfort. Some of

these effects have, to some extent, been reproduced by procedural models.

Inverse kinetics [37] is a kinematic technique that can be used to position the

CoM of a virtual human. This does help in creating balanced poses, but to generated

realistically balanced movement, these methods need to be augmented with a model

that provides a path of the CoM over time. Neff and Fiume [204] devise a feedback-

based procedural balance system based on the physical controller of [312]. Unlike

this physical balance controller, the procedural system works only on a single sup-

porting foot and takes just the position of the CoM and velocity of the CoM, but not

the forces generated by upper body movement into account.

Inverse dynamics can be used to analyze the muscle power used in procedural
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motion. The motion can then be adapted to adhere to muscle strength limits (as

done in [145, 171]).

2.4.2 Whole Body Involvement

Procedural gesture animation techniques typically steer the head and the arms and

leave the rest of the body relatively stiff. Naturalness can be enhanced by providing

automatic, coherent movement of the rest of the body. Some of the techniques used

to enhance physical realism also help to engage the whole body. For example, a

physically based balance model can be used to automatically generate lower body

movement (see Section 2.4.1.4 and [201]). In Chapter 3 I show how to combine

procedural animation with physically controlled balancing to achieve involvement

of the lower body.

Egges and Magnenat-Thalmann [68] propose a statistical model to enhance the

naturalness of procedurally generated gesture movement on the arms. PCA is per-

formed on a motion capture (mocap) database of gesture animation. Using this

PCA analysis, the procedural animation is filtered in PCA-space, in such a way that

only movement similar to that in the database (and thus assumed natural) remains.

Because the PCA components involve multiple joints, this automatically engages the

full body. This method sacrifices some control —exact limb positioning is no longer

guaranteed— for a more natural full body motion.

Both Chi et al. [58] and Neff et al. [206] aim to involve the torso automati-

cally in gesture movement. The Effort and Shape parameters used to enhance the

expressiveness of procedural gesture in [58] (see Section 2.3.1.1) are also used to

enhance their procedurally generated torso movement. Neff et al. [206] show that

‘drives’, such as hand position and gaze direction can be used to automatically gen-

erate torso movement. This is done by defining a mapping between the drives and

movement parameters of a procedural torso movement model.

2.4.3 Style

Style denotes the particular way in which a motion is performed. Stylistic differ-

ences of motion with the same function are caused by certain more or less static per-

sonal characteristics of the subject, such as age, gender and personality [98, 246].

It is important to endow virtual humans with style. Style contributes to naturalness,

and, even more importantly, expresses information about the virtual human such as

cultural identity, as well as his relationship to other (virtual) humans, such as role

and power relationship. Style is reflected by the motions a virtual human performs

and the manner in which these motions are performed [207, 209]. In this chapter

I focus solely on the latter. I discuss techniques that achieve a certain style in real

time. This can be done by post-processing generated motion primitives or by find-

ing the control or animation parameter values that create a motion primitive in the

desired style through an animation technique.
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2.4.3.1 Style using Motion Editing

Motion capture also automatically captures the style of the motion captured actor.

Ideally, this style could be isolated and be used to replace or define the style of other

recorded or generated motions primitives. Here I focus on techniques that aim to

do this automatically (in contrast to methods that require the animator to select the

style component to transfer, e.g. [259]) and in real time.

Urtasun et al. [297] employ blending from recorded motion primitives from

different subjects (and thus with different styles) in PCA space for style transition.

A motion capture database is constructed, containing recorded motion primitives

of several subjects, with different values for one control parameter (for example:

jumping with different heights). A motion in the style of a new subject is created

from a single recorded motion primitive of this subject. First, the recorded motion

primitive is modeled as a blend of motion primitives from the different subjects

in the database that have the same parameter value. The weights of this blend

are then used to construct motion primitives with a new parameter values using a

blend of motions in the database with these new parameter values. This system can

create motion in the style of a user in an online application, by tracking the users

movement using a cheap computer vision system.

Egges et al. [69] generate different styles of idle motion using recorded motion

primitives of different individuals. On top of the posture shift motions, variation

of movement is generated by applying a noise function on principal components

derived from recorded motion primitives. This noise function is defined by a prob-

abilistic model of recorded variations in motion. Individualized variations can be

synthesized by determining the parameters of the probabilistic model for a given

individual.

2.4.3.2 Style in Physical/Procedural Simulation

Procedural animation applies style by mapping style characteristics to lower level

animation parameters, using parameterization. Perlin [217] models personality and

emotion using noise functions on top of motion generated by an existing procedural

model. Ruttkay and Pelachaud [246] model style as a mapping from static charac-

teristics, such as age or sex to gesture animation parameters in a procedural ani-

mation system. Neff and Fiume [203] model style using a Character Sketch. Such

a sketch defines modifications to be made to control parameters, can be designed

to automatically insert new actions to an animation script and provides a default

stance.

2.4.4 Variability

Variability is a measure of the differences in a motion which is repeated many times

by the same person [33]. If the same motion primitive occurs several times in a

motion performance, the performance will look unnatural. Several methods can be

used to avoid this invalidation of naturalness.
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2.4.4.1 Procedural Generation of Variability

Perlin [217] simulates variability by adding noise to the rotation of some of the

joints in the skeleton of a virtual human. This method is not scalable on all joints,

because relations exist between rotation of one joint and rotation of another. If these

relations are not captured, the resulting animation will look unrealistic [69]. Bo-

denheimer et al. [33] apply variability by using a biomechanically inspired method.

Since the amount of variability is usually correlated to the amplitude of the move-

ments of the body (see Section 2.1.3.3), the noise has its largest amplitude at the

extrema of a DoF of a moving joint. The noise is scaled with the distance the joint

travels, thus obeying Fitts’ Law. Since the shape of the noise is based upon the move-

ment of the joints, this approach somewhat implicitly models inter-joint variability

relations. However, reciprocally covarying movement variability between joints (for

example an elbow movement to compensate shoulder variability on an aiming task)

is not captured by this approach.

2.4.4.2 Generating Variability using Statistical Models

Statistical methods that capture orthogonal components of motion (such as [38,

69]) also capture the relation between joint movements. Since these components

are independent, they can be modified separately. Small posture variations are

generated by adjusting the components using Perlin noise [217]. In Li et al.’s [173]

LDS model, variability is generated by sampling noise. Lau et al. [166] learn a

motion space for the specific purpose of generating spatial and temporal variations

of similar motion primitives, using a Dynamic Bayesian Network.

2.4.4.3 Generating Variability in Physical Simulation

Motion generated by physical simulation often looks ‘sterile’, because variation

caused by small details is not taken into account [17]. Such details, for example

small bumps on a floor, or the non-rigidness of human body parts are not simulated

because it would not be possible to do so in real time or because simulation meth-

ods for this are yet unknown. Barzel et al. [17] propose some techniques to model

some of these details in physically plausible (but not physically realistic) ways. For

example: the inherent variability and instability of a physical simulation system can

be exploited to generate motion variability by slight variations in its starting state,

or a physical form of bump mapping can be used to create slight variations in the

normal of a physically modeled flat floor.

Another, biological cause of variability in human movement is noise in the con-

trol signals that steer our limbs [103]. The variability of the noise increases with

the torque to be exerted. Bodenheimer et al. [33] model this type of variability by

adding noise to joint torques in a physical simulation in a similar way as described

above for kinematic motion.
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2.4.5 Evaluation of Naturalness

Measuring naturalness is a daunting task. It depends both on the properties of mo-

tion and on properties of human observation. Often, some control can be sacrificed

to gain more naturalness, or some naturalness can be sacrificed to gain some needed

control. I discuss how this naturalness-control trade-off can be quantified, provide

some motion invariants and metrics that can be used to measure certain aspects of

naturalness and discuss the setup of user tests that can measure naturalness as a

whole.

2.4.5.1 Exploring the Naturalness-Coverage Trade-off

The naturalness of motion primitives created from the same motion space can vary

with the control parameters that were used to create them. The relation between

the size of the parameter space (coverage, see Section 2.3.4.3) and naturalness can

be explored by having subjects directly set and evaluate parameter values, as done

in [33]. Such an evaluation provides direct insight into the naturalness cost of a

certain parameterization, or the control lost (specifically: reduction of coverage) if

a certain level of naturalness is enforced. Clearly, having the subject determine the

natural control parameter set is only feasible with a limited set of parameters.

2.4.5.2 Comparing with Motion Invariants

Some comparisons have been made by comparing motion invariants (see Section

2.1.3.3) of recorded motion with those of generated motion. End effector speed,

end effector square jerk, end effector position and motion curvature can be used

to compare human motion to generated motion, to evaluate how well invariants

such as the bell shaped velocity profile, minimum jerk, Fitts’ law and the two-third

power law are modeled in the generated motion. So far such comparisons have

been solely qualitative and were applied only in arm gesture domains; graphs of

invariants in recorded motion were put side by side with graphs of generated motion

(see [87, 155]).

2.4.5.3 Automatic Evaluation of Naturalness

Intuitively, physical correctness can be measured directly from the animation. Re-

itsma and Pollard [232] evaluate physical correctness by checking and evaluating

perceptual metrics for allowable errors in horizontal and vertical velocities and the

effective gravity constant for ballistic movement.

Metrics such as the average amount of footskate [4] and the number of frames in

which the ZMP is outside the support polygon [124] address the physical anomalies

in motion editing and can be used to compare the naturalness of different motion

editing techniques.

Some attempts have been made to evaluate naturalness automatically. Ren et al.

[234] argue that evaluation of the naturalness of human motion is not intrinsically

subjective, but instead, an objective measure is imposed by the data as a whole. In
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other words, movements that we have often seen are judged as natural, and move-

ments that occur rarely are not. They make use of machine learning techniques,

trained with statistical properties of human motion to classify new animations as

natural or unnatural, and to point out the parts that invalidate natural movement.

The system is still outperformed by human observers in recognizing natural or un-

natural movement.

2.4.5.4 User Evaluation

One can (semi-)automatically evaluate certain naturalness properties of motion us-

ing automatic testing or motion invariant checking. However, most evaluation met-

rics check for a single naturalness artifact that only occurs within a specific anima-

tion technique. They can therefore not be used to compare different techniques.

For example: it does not make much sense to evaluate the naturalness of physically

simulated motion using a foot gliding metric, or to measure the naturalness of a

procedural model that is specifically designed keeping a certain motion invariant in

mind for adherence to that same motion invariant. Most naturalness metrics do not

take human observation properties into account. User evaluation is invaluable for

measuring naturalness as a whole and for providing between-technique naturalness

comparisons.

Virtual humans do not usually have a photo-realistic embodiment. Therefore,

if the naturalness of animation of a virtual human is evaluated by directly compar-

ing moving humans with a moving virtual human, the embodiment could bias the

judgment. A motion captured human movement can be projected onto the same

embodiment as the virtual human. This projection is then compared with generated

animation. Typically this is done in an informal way. A motion Turing Test is used

to do this more formally (see [18, 55, 70, 115, 125]).

In a motion Turing test, subjects are shown generated movement and similar

motion captured movement, displayed on the same virtual human. Then they are

asked to judge whether this was a ‘machine’ moving or a real human. Methods from

Signal Detection Theory [183] provide a bias-independent sensitivity metric d′ that

can be compared between different test setups, observers and motions. This metric

indicates how well two motions can be discriminated. The d′ found by comparing

motion captured motion with the generated motion is used as a naturalness measure

for the model based motion. This approach is followed in [55, 231, 232]. I refer the

interested reader to [125] for an overview of test paradigms for the evaluation of

naturalness of animation that can be used with Signal Detection Theory and their

advantages and disadvantages.

Even if a certain movement is judged as natural, an invalidation of naturalness

that is not noticed consciously can still have a social impact [227]. Unnaturally

moving virtual humans can be evaluated as less interesting, less pleasant, less influ-

ential, more agitated and less successful in their delivery. So, while a virtual human

Turing test is a good first measure of naturalness (at least it looked human-like),

further evaluation should determine if certain intended aspects of the motion are

being delivered. Such aspects could include showing emotion, enhancement of the
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clearness of a spoken message using gesture, showing personality, and so on.

2.5 Discussion

I have discussed a variety of techniques that can all contribute to an ‘ultimate’

fully-controllable animation system producing natural motions in real time. Cur-

rent techniques offer trade-offs between control, naturalness and calculation time.

The selected trade-off depends on the application domain. Motion editing tech-

niques employ the detail of captured motion or the talent of skilled animators, but

they allow little deviation from the captured examples and can lack physical real-

ism. Procedural motion offers detailed and precise control using a large number of

parameters, but lacks naturalness. Physical simulation provides integration with the

physical environment and physical realism. However, physical realism alone is not

enough for naturalness and physical simulation offers poor precision in both timing

and limb placement.
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Figure 2.6: Control and naturalness of methods used in this chapter. Black dots indicate the
animation techniques discussed in Section 2.2. Grey dots indicate hybrid methods.

A big challenge in the animation domain is finding an integrated way of gen-
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erating natural motions that interact with the environment and provide detailed

control. I have shown that hybrid systems that combine and concatenate motion

generated by different paradigms can enhance both naturalness and control. These

systems could provide a starting point for such an integration. In Figure 2.6, I pro-

vide a qualitative indication of the control and naturalness of the different hybrid

systems discussed in this chapter. Note that the control provided by a hybrid sys-

tem is typically not better than the best control of the two techniques it combines.1

Similarly, the naturalness of a hybrid system is typically not greater than the natu-

ralness of its most natural technique. The intersection of two dotted lines starting

in an animation technique in Figure 2.6 indicates this best control and naturalness.

Theoretically, very good naturalness and control could be achieved by combining

techniques with high naturalness with those with great control. However, since

techniques with great control also have low naturalness, it is hard to combine such

techniques in a consistent manner.

I have shown different methods that execute animation plans generated by some

higher level planning process. Such plans could be constructed by higher-level be-

havior generation mechanisms.

One domain of applicability of a flexible motion generation system is crowd

simulation. Here physical characteristics of the environment (obstacles, quality of

the ground) as well as physical and social behavior rules (e.g. strategy to avoid

collision with objects and other people) serve as a basis for generating the animation

plan.

This thesis focuses on another application domain: that of interactive virtual

humans (see Chapter 10 for example applications). In this domain, the animation

plan is typically constructed from intentions (such as greet the partner, indicate a

location) and states (emotional, physical, cognitive). Typically the animation plan is

embedded in a multimodal behavior script, describing the synchronization between

speech and gesture. Recent efforts aim to unify the multimodal behavior scripts

designed by different research groups into the Behavior Markup Language [152],

discussed further in Chapter 6. In Chapter 3 I discuss the naturalness and control

requirements for interactive virtual humans and introduce a hybrid method to com-

bine the control of procedural (gesture) animation with the naturalness of physical

simulation. Chapter 8 discusses Elckerlyc, an architecture that can schedule and

execute an multimodal plan specified in BML and can make us of and combine the

animation paradigms discussed in this chapter.

1In theory this is possible if the two techniques that are good in non-overlapping control aspects.
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Chapter 3

Mixing Physical Simulation and

Kinematic Motion†

Synthesis of expressive motion, such as conducting or gesturing for virtual humans

in interactive, real-time applications is a challenging task. Such motion is often

tightly synchronized with other internal output modalities, such as speech, or exter-

nal output modalities such as user input or music. Motion (capture) editing1 methods

are not flexible enough to deal with the many control parameters and the tight syn-

chronization with other modalities, that is needed for such expressive motion (see

[92, 278] and Chapter 2). Physically simulated animation steers the body of a vir-

tual human using muscle forces, taking gravity and inertia into account. While such

motion is physically realistic, precise timing and limb positioning is still an open

problem in real-time physical simulation (see Chapter 2.3.1.5). Therefore, timed

expressive motion, as used in talking and gesturing virtual humans, is typically the

domain of procedural motion techniques [58, 104, 207, 217, 304].

However, such procedural animation does not explicitly model physical integrity.

As a result, the generated motion can look unnatural, as it does not seem to respond

to gravity or inertia [185]. I refer the interested reader to Chapter 2 for background

information on the animation techniques used throughout this chapter and a more

elaborate discussion on the trade-offs between naturalness, control and calculation

time of different animation techniques.

My system builds on the notion that the requirements of physical integrity and

tight synchronization are often of different importance for different body parts. For

example, for a gesturing virtual human, tight synchronization with speech is pri-

marily important on the arm and head movement. At the same time, a physically

valid balancing motion of the whole body could be achieved by moving only the

lower body, where precise timing is less important.

My mixed dynamics system can apply kinematic motion (including procedural

motion) on certain selected body parts, and combine this with physical simulation

†This chapter is largely based upon the article:
H. van Welbergen, J. Zwiers and Zs.M. Ruttkay. Real-Time Animation Using a Mix of Physical Simu-
lation and Kinematics, Journal of Graphics, GPU and Game Tools, 14(4):1-21, 2009

1Or editing of keyframe animation
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on the remaining body parts. Isaacs and Cohen [123] show how a combination of

inverse and forward dynamics can be used to animate an articulated body in a phys-

ically coherent manner, if either the joint acceleration or the joint torque is known

for each joint in the body, at each time frame. A similar approach is commonly used

in biomechanics to visualize the biomechanical movement model of interest on some

body parts (using joint torques), enhanced with known motion on other body parts

(using kinematic motion) [213]. My system builds upon the ideas in [123] in an

interactive application, using physical motion controllers and procedural kinematic

motion. Implementing the system described in [123] entails implementing a full

physical simulator. Implementing such a new physical simulator from the ground

up is a daunting task. Nowadays, many physical simulators are available that handle

the movement of articulated bodies, collision detection and friction (among others:

[62, 106, 210, 264, 273]). I introduce a simplification in Isaac’s simulation model,

which allows the use of efficient iterative techniques to calculate the torques exerted

by the kinematically steered joints. Using this simplification, my system can be used

as plug-in for existing physical simulators.

In this chapter, the mixed dynamics technique is demonstrated on a virtual hu-

man by combining a physical controller for lower body balancing with kinematic

animation for the upper body movements. I show how my algorithm is used with

different types of kinematic arm and head animations, including parameterized pro-

cedural animation (for example, conducting motions or speech-accompanying ges-

tures) and motion captured animation. This chapter will discuss the implementation

of my system in detail, providing enough information for a robust implementation.

Chapter 8.7 shows how this system is implemented in Elckerlyc.

Throughout this chapter I make use of Featherstone’s concise notation of the

equations of motion using ‘spatial’ 6-vectors. The transformation from such spatial

vectors to the traditional 3-vectors is shown in Appendix B. For a more thorough

overview of spatial algebra, I refer to [75].

3.1 Mixed Dynamics

In a mixed dynamics system (see Figure 3.1), motion is executed by a kinematic

model (which can consist of motion editing method(s) and/or procedural motion

model(s)) and by physical controller(s). The motion can be adapted in real time by

changing the parameters and timing of the kinematic motion or the desired state of

the physical controller. The kinematic model directly rotates the joints in the virtual

human. I use inverse dynamics to calculate the torque applied by the kinematically

steered body parts onto the physically steered body part, based on their rotations,

angular velocities and angular accelerations. The physical controller calculates the

joint torques that reduce the discrepancy between a desired physical state and the

current physical state. An existing physical simulation engine is then used to calcu-

late the joint rotations on the physically steered joints.

The body of the virtual human is divided in one physically steered part and one

or more kinematically steered parts. Each part consists of joints, connected by rigid



Section 3.1 – Mixed Dynamics | 47

���������	


�����	����


�������

��������

�������


����
�����

�������


������

��

�������	�����

�����	���������

�����	��
�������

�����	����
��������

���������	������

��
���	������	

�������������

���������

��
������

���������	

����
�������

�����	

�������

�����	���������

�����	���������

�������	������	����������

 �����
	!����

�������	�����

Figure 3.1: Mixed dynamics system.

bodies. I denote the set of joints on the physically steered part by P . In my example,

these joints are located on the lower body. Groups of kinematically steered joints

are denoted by K1, ..., Kn. The joints in each Kj need to be connected to each other

in a tree. P and all Kj ’s are mutually disjoint, that is, if a joint is steered, it is either

steered by the kinematic model or by a physical controller. The groups are set up

in such a way that each Kj connects to P at a single connector location Cj. Cj is

located on the position of the root joint of Kj, in the rigid body in P that connects

to this joint. See Figure 3.2 for an example structure.

To realistically model the effect that kinematic motion has on the physically

steered body, the force exerted by each Kj is transfered to P via Cj. This force

is calculated using inverse dynamics. The inverse dynamics algorithm needs the po-

sition, velocity and acceleration of each joint in Kj and the velocity and acceleration

of Cj.

The velocity and acceleration of Cj is dependent on the movement of all joints

in the body, and can only be calculated accurately by an algorithm that takes the

accelerations q̈k (of all joints in K1, ..., Kn) and torques τp (of all joints in P ) into
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Figure 3.2: A body divided into kinematic parts that steer the arms and head and a physical part
that steers the lower body and trunk.

account simultaneously. The equation of motion then has the form

[

τk
τp

]

= H(q)

[

q̈k

q̈p

]

+C(q, q̇, fx), (3.1)

where q, q̇ and q̈ are vectors of generalized joint position, velocity and acceleration,

fx is a vector of external forces (including gravity), H is the joint-space inertia matrix

and C is the joint-space bias force. q, q̇, fx, H and C are considered inputs for the

algorithm. Intuitively, q̈p and τk can be calculated if q̈k and τp are known.

Currently there is no real-time physics engine that solves the equation of motion

for such a hybrid specification of joint torque and acceleration. Furthermore, solving

the equation of motion given both forces and accelerations cannot be done using

efficient iterative approaches such as the recursive Newton Euler approach [213].

The recursive Newton Euler approach has a complexity of O(n), where n denotes

the number of joints. Typically, in a hybrid system, the equations of motion are

solved using a Lagrangian approach, which has a complexity of O(n3).
Because of this, I opted to sacrifice a slight amount of accuracy to gain calcula-

tion efficiency and allow my hybrid method to be used with current real-time physics

engines. Rather than calculating the acceleration aCj of Cj, at the current frame, I

use aC
′
j, the acceleration of Cj at the previous frame to calculate the forces that each

Kj exerts on P . Using this simplification, the movement of the Kj ’s can be modeled

as movement of isolated systems, connected to a moving base Cj, that moves with
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Table 3.1: Terms used in the Featherstone recursive Newton Euler approach

µ(i) set of children of body i
λ(i) parent of body i
NB number of rigid bodies

ag spatial gravitational acceleration

vCj
spatial velocity of connector j

aC
′
j spatial acceleration of connector j at the previous frame

vi spatial velocity of body i
ai spatial acceleration of body i
qi generalized DoF value vector of joint i
Si(qi) matrix that maps generalized

joint velocities on the DoF to spatial joint velocity

Ii spatial inertia tensor of body i
fBi spatial net force on body i
fxi spatial external force on body i
fi spatial force transmitted across joint i
τi torque exerted on joint i

acceleration aC
′
j. The torque of each joint in each Kj can then be efficiently calcu-

lated using the recursive Newton Euler approach. The reactive torque of the parent

joint in Kj is then applied to the rigid body in P that is connected to this parent

joint. I make use of Featherstone’s formulation of recursive Newton Euler approach,

using ‘spatial’ 6-vectors [75]. The transformation from such spatial vectors to the

traditional 3-vectors is shown in Appendix B. Table 3.1 summarizes the terms used

in Featherstone’s formulation of the recursive Newton Euler approach.

For the sake of clarity I model each Kj as a chain of joints. This is not a limi-

tation of the system, as the recursive Newton Euler approach can easily deal with

a branching tree of joints. Kj contains a chain of NB rigid bodies, connected by

NB − 1 joints. An additional joint (joint 1) connects the chain to P at its connector

location. The bodies are sequentially numbered 1..NB, starting with body 1, which

is connected at the connector location Cj by means of joint 1. The remaining joints

connect the rigid bodies in the chain: joint i ∈ 2..NB connects body i− 1 with body

i. Figure 3.3 illustrates the numbering convention used.
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Figure 3.3: Numbering convention for joints and rigid bodies.

The spatial velocity of body i can be calculated as the sum of the spatial velocity

of its parent and the spatial velocity across the joint connecting it to its parent:

vi = vλ(i) + Siq̇i (v0 = vCj
), (3.2)
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where λ(i) denotes the number of the parent of joint i. q̇i is the n-dimensional

vector of generalized joint velocity, in which n is the number of degrees of freedom

of the joint. Si is a 6×n matrix that maps q̇i to spatial joint velocity. The spatial

acceleration of body i can be calculated by differentiating equation 3.2:

ai = aλ(i) + Siq̈i + Ṡiq̇i (a0 = a′
Cj

+ ag) (3.3)

The net force acting on body i is given by the equation of motion

fBi = Iiai + vi ×∗ Iivi (3.4)

in which Ii is the 6 × 6 spatial inertia tensor. ×∗ is the spatial cross product of

force and velocity operator (see equation B.5 in Appendix B). Successive iteration

of equations 3.2, 3.3 and 3.4 with i ranging from 1 to NB provides the net forces

acting on all bodies in the chain.

The spatial force transmitted from body λ(i) to body i, across joint i is given by:

fi = fBi − fxi +
∑

k∈µ(i)

fk, (3.5)

in which µ(i) is the set of children of a body. For a chain of bodies

µ(i) =

{

∅ if i = NB

{i+ 1} if i < NB

(3.6)

fxi is the net external spatial force acting on body i. The values of such external

forces are assumed to be known. For instance, gravity can be modeled as an external

spatial force.2 Figure 3.4 illustrates equation 3.5 for a chain of rigid bodies.

��
�

����

��
�

Figure 3.4: Spatial forces acting on rigid body 1. f
B
1

= f1 + f
x
1
− f2, in which −f2 is the reactive

force of joint 2 on body 1.

Successive iterations of equation 3.5 with i ranging from NB down to 1 will

calculate the spatial forces acting on all joints in the chain.

2However, it is more efficient to model a uniform gravitational field as a fictitious spatial acceler-
ation of Cj , as I did using the gravitational acceleration vector ag in equation 3.3.
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Finally, the torque at joint i is given by:

τi = ST
i fi, (3.7)

The reactive torque −τ1 is the torque exerted by Kj on a physical body consisting

of P and Kj. I assume that the inertia of Kj is small compared to the inertia of P
and apply a reactive torque −kτ1 directly to the rigid body from P that is connected

to Kj. Alternatively, one can augment the inertia of P with the current combined

inertia of the rigid bodies in Kj, by modifying the inertia tensor of rigid body from P
that is connected to Kj on each simulation frame if the physical simulator allows one

to do this. If this is not the case, one could use the articulated body method ([75],

chapter 7) to calculate the spatial acceleration of a physical body P augmented with

Kj resulting from applying −τ1. The torque to be applied on a physical body con-

sisting solely of P (as used in the simulator) can then be calculated to achieve this

desired spatial acceleration. In practice the assumption holds for kinematic gesture

motion on the arms and neck combined with physical motion on the lower body and

physically convincing motion is generated without requiring such computations.

For a value of k = 1, the exact torque generated by the kinematic chain is applied

to the rigid body in P . Values of k in the range 0 < k < 1 can be used to increase

the stability of the physical simulation. This can be seen as a crude way to model

an increase in muscle tension to dampen the effect of large movements. Values of

k > 1 can be used to exaggerated the effect of the joint torques of the kinematic

motion.

3.2 Mixed Dynamics In Practice

I illustrate the use of my mixed kinematic/physical simulation system by combin-

ing a physical balancing model for the lower body with kinematic motion: a pro-

cedural arm swing, conducting arm gesture, a speech-accompanying gesture or

a motion capture recording. Videos of these animations are available at http:

//thesis.herwinvanwelbergen.nl/.

3.2.1 Constructing a Physical Model of the Virtual Human

The physical model of the virtual human used in the examples in this chapter con-

sists of 15 rigid bodies, connected by 14 joints (see Figure 3.5). Meshes of these

rigid bodies were constructed by segmenting the mesh of the original virtual hu-

man, adapting it to be skintight, and closing the gaps in the resulting segments. I

assume that the rigid bodies have a uniform density ρ. This density can be mea-

sured directly, from cadavers for instance, or using scanning systems that produce

the cross-sectional image at many intervals across the segments [307]. I use the

density table from [307], which provides densities for all segments but the sacroil-

iac, where I use the density given in [67]. Given the uniform density of each body

and its closed polyhedral shape, its mass, its center of mass and its inertia tensor

can be determined using [195]. The results are shown in Figure 3.5.

http://thesis.herwinvanwelbergen.nl/
http://thesis.herwinvanwelbergen.nl/
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body part ρ mass center of mass

kg/l kg (x,y,z) in m
1 head&neck 1.11 4.80 0.00 1.63 0.01

2 upper-body 1.03 25.20 0.00 1.28 0.02

3 upper arm 1.07 2.95 ±0.31 1.44 -0.01

4 lower arm 1.13 1.59 ±0.32 1.17 -0.03

5 hand 1.16 0.70 ±0.27 0.88 -0.01

6 sacroiliac 1.03 10.56 0.00 1.00 0.01

7 upper leg 1.05 8.79 ±0.09 0.77 0.01

8 lower leg 1.09 3.73 ±0.10 0.34 -0.03

9 foot 1.10 1.41 ±0.10 0.04 0.02

Total 94.21

Figure 3.5: Segmentation of the virtual human into rigid bodies and the inertial properties of the
bodies

I base the joint rotation limits for the physically steered joints on data from male

US air force personal [310](see table 3.2).

Precise collision shapes are typically not crucial in Elckerlyc’s applications, and

collision detection is fast when simple bounding shapes, such as boxes, capsules

and spheres are used. In the examples in this chapter, I set the collision shape of the

rigid bodies to the bounding box of their mesh. If more precise collision detection

is needed, the actual mesh of the rigid body can be used as a collision shape, or the

collision shape can be approximated with a combination of simple bounding shapes.

3.2.2 Obtaining Joint Velocity and Acceleration

The joint velocities and accelerations for each joint are calculated from their rotation

data at time t, t − h and t + h. I define p(t) as the rotation of a joint at time t. If

the simulation rate is set to step size h, it is possible to reuse the p(t + h) and p(t)
values from the previous simulation step, so that in each step only p(t+ h) needs to

be calculated. In the examples, h is 3 ms.

3.2.2.1 Reparameterization

The rotation of the joints is represented by quaternions. The quaternions p and

−p represent the same rotation. For a sequence of quaternions, representing the

rotation of a joint, switches between these alternate representations causes large

differences between the quaternion components of quaternions that actually rep-

resent (nearly) the same rotation. This is undesired for signal analysis techniques

that work on quaternion components, such as filtering and numerical differentia-

tion. Therefore I reparameterize p(t) and p(t + h) so that the distance between

the quaternion components of p(t − h) and p(t) and between p(t) and p(t + h) is
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Table 3.2: Joint rotation limits, in degrees, in a right-handed coordinate system, with the y-axis
pointing up and the virtual human facing the positive z direction. Rotation limits for
the shoulder around the y-axis are not provided in [310].

joint xmin xmax ymin ymax zmin zmax

left wrist -27 47 - - -90 81

right wrist -27 47 - - -81 90

left forearm - - -103 113 - -

right forearm - - -113 103 - -

left elbow -142 0 - - - -

right elbow -142 0 - - - -

left shoulder -188 61 ? ? -48 134

right shoulder -188 61 ? ? -134 48

neck -60 61 -79 79 -41 41

left ankle -38 35 - - -24 23

right ankle -38 35 - - -23 24

left lower leg - - -43 35 - -

right lower leg - - -35 43 - -

left knee 0 113 - - - -

right knee 0 113 - - - -

left hip -113 0 -31 30 -31 53

right hip -113 0 30 31 -53 31

minimized:

p̃(t) = { −p(t) if p(t− h) · p(t) < 0
p(t) otherwise

(3.8)

p̃(t+ h) = { −p(t+ h) if p̃(t) · p(t+ h) < 0
p(t+ h) otherwise

(3.9)

where p̃(t) is a reparameterized quaternion rotation at time t and p(t) is the original

rotation at time t.

3.2.2.2 Filtering

Motion capture data contains high frequency noise. This noise gets amplified with

time differentiation [307]. Noise will dominate the signal after double differentia-

tion. To prevent this, I make use of the 2-pass Butterworth low pass filter proposed

in [307] to cut off high frequency noise before differentiating. The filter is described

by:

x̃i = { xi if i < 2
a0xi + a1xi−1 + a2xi−2 + b1x̃i−1 + b2x̃i−2 otherwise

(3.10)

where x̃i is the filtered data at frame i and xi is the raw data at frame i. In a
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Butterworth filter, the filter coefficients a0, a1, a2, b1 and b2 are calculated as follows:

ωc =
tan(πfc/fs)

C

a0 =
K2

1 +K1 +K2

, with K1 =
√
2ωc, K2 = ω2

c

a1 = 2a0

a2 = a0

b1 = −2a0 +K3, with K3 =
2a0
K2

b2 = 1− 2a0 −K3

(3.11)

where fc is the desired cutoff frequency, fs is the sample frequency. The digital filter

introduces a phase shift in the output signal relative to the input signal. To cancel

out this phase shift, the once-filtered data is filtered again in the reverse direction

of time [307]. C is a correction factor for each additional pass of the Butterworth

filter:

C = (2
1

n − 1)0.25 (3.12)

qn is the number of filter passes. In my case, C = 0.802. The exact value of fc is not

very critical, values of around 15-25 Hz work well in practice. I filter the s, x, y and

z components of the quaternions in the keyframe data separately and re-normalize

the quaternions after filtering. If the quaternions are reparameterized according to

equation 3.8, the renormalization only slightly adjusts the filtered quaternions in

my mocap recordings. Procedural motion is typically already smooth by design and

does not need filtering.

3.2.2.3 Calculating Angular Velocity and Angular Acceleration

For ease of calculation, I model all joints driven by kinematic motion as ball joints,

that is: with three rotational degrees of freedom. If I choose a joint’s angular velocity

vector ω in the joint’s own coordinate system as its velocity variable qi, S reduces to

S =

















1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

















(3.13)

[75]. ω and ω̇ can be determined from the quaternion rotation p(t) and its deriva-

tives:
[

0
ω

]

= 2ṗ(t)p(t)−1 (3.14)

[

s
ω̇

]

= 2p̈(t)p(t)−1 (3.15)
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ṗ(t) and p̈(t) are determined using numerical differentiation of the reparame-

terized and optionally filtered joint rotations p(t− h), p(t) and p(t+ h):

ṗ(t) =
p(t+ h)− p(t− h)

2h
(3.16)

p̈(t) =
p(t+ h)− 2p(t) + p(t− h)

h2
(3.17)

3.2.3 Simulation Details

The Open Dynamics Engine (ODE) [273] is used to generate the motion of the lower

body, based on the joint torques provided by the balance controller and the torques

calculated by inverse dynamics. It also handles the collision detection and contact

of the physical model of the lower body with the floor. Friction of the feet with

the floor is handled using ODE’s simplification of Coulomb friction. In very long

simulations (longer than 1 hour), small foot-lifts and accumulated simulation errors

can slightly move the feet over time. If extra stability or calculation speed is needed,

friction handling can be omitted by setting foot constraints that effectively ‘glue’ the

feet to the floor, preventing them from moving completely. To take advantage of

multi-processor systems, the physical simulation runs in a separate thread.

3.2.4 Balancing Controller

I use the balancing controller described in [312]. This controller dampens the ve-

locity of the center of mass and steers it toward its desired position, specified by a

predefined hip height and a horizontal balance location which lies in between the

feet. The output of the controller are the torques, to be applied to hips, knees and

ankles. To adapt to a body with different inertial properties, a single stiffness multi-

plier is used on all spring gains in the PD-controllers used in the balance controller.

An estimation of the value of this stiffness multiplier can be calculated (see [114]),

but in practice it’s easier to tweak it manually. A video of the balance controller, us-

ing virtual humans with different physical properties (fat vs thin and tall) is shown

at http://thesis.herwinvanwelbergen.nl/.

3.2.5 Results

Figure 3.6 shows a series of captured frames of animation generated with my sys-

tem, using a combination of my physical balance model with a procedurally gener-

ated large arm swing. The motion enhancement created by my system is subtle for

smaller kinematic motions and therefore hard to capture on a series of images. I re-

fer the interested viewer to the videos at http://thesis.herwinvanwelbergen.nl/

to see the system in action with more subtle kinematic motions, including several

procedural conducting and other gestures and motion captured arm and head move-

ments. I also reproduce one of the motions described in [123]: a physical swing is

put into motion with a kinematically moving body.

http://thesis.herwinvanwelbergen.nl/
http://thesis.herwinvanwelbergen.nl/
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Figure 3.6: Mixing a kinematic arm swing with physical balancing. The blue virtual human is
animated with physical simulation and kinematic arm motion, the red virtual human
is animated solely with kinematic motion. The wireframe on the right side of each
picture shows the visualization of the physical model of the lower body of the virtual
human.
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3.2.6 Performance

In a performance test, my system animated up to 30 conducting virtual humans in

real time on a desktop computer (2.83 GHz, Quad core, 4Gb ram, Nvidia GeForce

8800 GTS video card). Each conductor is animated by its own procedural animation

model and physical balance model. The physical simulation frame rate is set to 200

fps and the visual frame rate is around 50 fps. Roughly half of the simulation time is

spent on the procedural animation, the other half on physical simulation. The video

of this performance test is shown at http://thesis.herwinvanwelbergen.nl/.

Like my method, motion tracking can be used with any existing physics engine.

Motion tracking (see Chapter 2.4.1.3 for an overview of techniques) uses physi-

cal simulation on the whole body. A tracking controller is used to compute the

torque on each joint. The desired state of this controller is the desired rotation of

the joint, as specified in motion capture or other kinematic data. Motion capture

noise, tracking errors and environmental changes can easily disturb the balance of a

character whose body is animated using a tracking controller. Therefore an explicit

physical balance controller is still needed. Because tracking makes use of physical

controllers, the motion generated by tracking has a time-lag relative to the kinemat-

ically specified motion and it is not guaranteed that the joint rotations specified in

the mocap data are actually achieved. This makes tracking unsuitable for applica-

tions where precise timing and limb placement is needed.

My method potentially preserves the characteristics of the kinematic motion bet-

ter than tracking methods. Furthermore, my method is far more efficient than track-

ing methods, not only because solving the equations of motion in my hybrid system

is more efficient ( O((n − k)3 + k) vs O(n3) using ODE), but also because it avoids

the expensive double integration of acceleration for the kinematically steered joints

and does not need to do collision detection on those joints. A tracking method

would be preferred over my method if realistic collision detection and response on

kinematically steered joints is needed and precise timing and limb placement is less

crucial.

Unlike methods that model the physical balancing solely through the displace-

ment and velocity of the center of mass [201, 211], my method also models the force

transference from the arms to the trunk. This results in a more natural ‘sharper’,

less smooth movement of the lower body when large accelerations occur in arm and

head movement. The videos at http://thesis.herwinvanwelbergen.nl/ illustrate

this with a clapping motion and several conducting motions.

3.3 Discussion

I have developed a system that can combine kinematic motion with physical simu-

lation in a physically coherent manner. The balance controller used in my system

is relatively simple. What I did not model yet is the fact that human balancing is

not a purely reactive process. The balance controller therefore lacks the notion of

anticipation. For example, it does not move backward in advance to anticipate a

http://thesis.herwinvanwelbergen.nl/
http://thesis.herwinvanwelbergen.nl/
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large arm swing forward, as a real human might do. This is not a limitation of the

mixed dynamics system itself, another more elaborate balance controller could be

designed that takes this into account.

The inverse dynamics analysis of kinematic movement does not only yield the

reactive torque, but also the torque on all other kinematically steered joints. This

type of information can potentially be used in the motion planning stage, for exam-

ple to drop a load if it is too heavy, or to show an angry facial expression when some

motion costs more effort than anticipated.

Other hybrid physical simulation/kinematic systems [262, 325, 326] have been

designed to switch between full-body kinematic motion and full-body physical simu-

lation, depending on the current situation’s needs. Such systems can show realistic

interaction with the environment (e.g. falling) when needed. Rather than doing

full-body switches, I allow switching to a different mix of physically and kinemat-

ically steered joints in real time. One of the usage scenarios for this is the virtual

conductor (see also Chapter 8). A conductor typically conducts with his right hand

and uses the left hand only for expressive cues. If the left hand is not needed, it

should hang down loosely. I modeled this loose movement using a simple PD pose

controller (see the movie on the web page of this thesis). The desired state for the

controller is the desired rotation of the shoulder and elbow joints. The animation

needed to create the expressive left hand cues require tight synchronization to the

music and is therefore generated by procedural motion. Switching from loosely

hanging arm movement to expressive left hand conducting gesture and back oc-

curs in real time and requires switching between different mixes of physically and

kinematically steered joints. A switch from kinematical to physical control on Kj is

implemented by augmenting P with the rigid body representation of Kj and apply-

ing the current joint velocity and rotation to the matching joints in the new physical

representation. This will obviously result a similar torque being executed on P .

Therefore such a switch results in smooth movement. A switch from the physical to

kinematic control removes the physical representation of a body part from P and

inserts a new kinematic chain Kj. To ensure that no sudden torques occur on the

new physical body, the movement on Kj directly after the switch must be similar

to the movement in its former physical representation. Chapter 8.7 discusses the

animation plan requirements for such switching and its setup in Elckerlyc in more

detail.



Chapter 4

The Motor Plan

The motor plan of a virtual human describes how it achieves some intentional goal

(e.g. walk to a door and open it, inform a student that he needs to work harder)

using a set of coordinated PlanUnits. In addition to that, it may contain PlanUnits

that reflect the virtual human’s unconscious behavior (blinking, breathing, etc.).

MotionUnits are a specific category of such PlanUnits that execute computer ani-

mation. In the previous chapters, I have discussed how several animation techniques

can be employed to generate the motion for virtual humans. Here I show how sev-

eral state-of-the-art animation techniques are implemented in the MotionUnits of

my virtual human platform Elckerlyc.

The PlanUnits in a motor plan are tightly coupled to each other in both timing

and shape. In the previous chapter I have described the mechanical coupling be-

tween PlanUnits; this chapter shows that, in addition to this mechanical coupling,

PlanUnits are also tightly coordinated through neurological coupling processes.

The coordination of the PlanUnits in the motor plan thus reflects the ordering of

PlanUnits needed to achieve some intentional goal or execute some reactive behav-

ior and the constraints that satisfy the neurological coupling between the PlanUnits.

This chapter illustrates several such neurological couplings. In Chapter 5, I show

that the constraints that describe the coordination between PlanUnits within one’s

own body are very similar to the constraints that describe our coordination with

others. In virtual human applications, the motor plan is typically described by a

multimodal specification language. Such languages (see Chapter 6.1 for a historical

overview) describe the coordination between PlanUnits as constraints between their

key time moments (keys).

4.1 PlanUnits: Elements of Motor Movement

I model the execution of motor movement (including speech) as the coordinated

execution of PlanUnits that form a multimodal motor plan. A similar modular or-

ganization of motion plans is found in neuroscience [31, 276] and most computer

animation approaches (among many others: [96, 104, 152, 203, 218, 312]).

Each PlanUnit has a predefined semantic function (for instance: a three-beat
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conducting gesture, a speech clause, an eyeblink). It has at least a certain start time

and may contain several other key time moments (further called keys) that are rele-

vant for its coordination with other PlanUnits or events in the (virtual) world. Some

PlanUnits represent discrete actions that have a clear end (for example: a speech

clause, a gesture). Others represent ongoing behaviors (for example: standing in a

balanced pose, letting an arm hang down loosely). PlanUnits can represent behavior

that is executed ballistically, or behavior that is continuously adapted on the basis of

perceptual or other feedback. To allow the latter, the timing and parameterization

of ongoing PlanUnits can be updated continuously. Thus, PlanUnits can be seen as

a mapping f from current time t and a set of parameter values a to a set of control

primitives (for example: a pose in animation) c.

f(t, a) = c (4.1)

To allow parameters to be used over different embodiments of a virtual human,

they can be defined in units relative to the embodiment. For example, a pelvis

height parameter in a balance controller is better defined as a percentage of leg

length than in an absolute value in meters. The MPEG-4 Facial Animation standard

[215] achieves face independent parameterization of animation in this manner: its

animation is specified in specific measurement units, called Facial Animation Pa-

rameter Units, which represent fractions of key facial distances (e.g. the distance

between the eyes, the mouth width, etc.).

Furthermore, parameters should be independent of execution channel. For ex-

ample, speech volume can be defined in percentage rather than decibel so that it can

be used in both text synthesis (mapping to font size) and speech synthesis (mapping

to audio volume).

4.2 MotionUnits: the PlanUnits of Animation

MotionUnits1 form the specific category of PlanUnits that steer the motion of a vir-

tual human. Elckerlyc uses two types of MotionUnits: kinematical MotionUnits

steer the virtual human through rotations and translation of joints in its skeleton,

and physical MotionUnits that use torques and forces to steer the physical represen-

tation of the virtual human. Each MotionUnit acts on a selected set of joints.

In Chapter 2.2 I defined a motion primitive as the mapping of time to the DoF

values of a skeleton. A motion space was defined as the collection of motion primi-

tives with the same semantic function. A MotionUnit is a continuous mapping from

both time and parameter values to the DoF of a skeleton and has a specific semantic

function. Unlike a motion primitive which has a fixed path of DoF values it follows

while being executed, a MotionUnit has the inherent ability to change its motion on

the basis of parameter value changes or timing changes while it is being executed.

1Motion structures that have a function and granularity that is similar to Elckerlyc’s MotionUnit
have been called gestures [104, 209], controllers [280, 312], verbs [240], motion units [241], local
motor programs [155, 319], atomic animated actions [218], clips [96], action units [267], or actions
[107, 203, 217] in some other literature on virtual humans or computer animation.
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Once the MotionUnit is fully executed, the path of DoF values it created can be

seen as a motion primitive. The different motion primitives that can be created by

a MotionUnit thus form a motion space whose size is dependent on the number of

parameters the MotionUnit supports and their range.

Like the clips defined by Grassia [96], MotionUnits are executed on the basis

of a canonical time value α, rather than directly on absolute time. Grassia mea-

sures canonical time in integer key frame numbers. Because most of Elckerlyc’s

MotionUnits are constructed using procedural motion models rather than keyframe

animation, canonical time α is represented using a value between 0 and 1 instead

(α = 0 refers to the start of the motion, α = 1 to its end).

MotionUnits contain one or more motion phases, separated by keys. Each key is

assigned a predefined canonical time value 0 ≤ αi ≤ 1 that indicates where it is

located within the MotionUnit (See Figure 4.1 for some typical phases and keys for

a gesture MotionUnit).

Figure 4.1: Typical typical phases and keys for a gesture MotionUnit (picture from http://wiki.

mindmakers.org/projects:bml:main).

Given the current set of parameter values a and a canonical time 0 ≤ α ≤ 1, a

MotionUnit can be executed, typically by rotating some joints of the virtual human.

I employ a time warping technique to set up the mapping from absolute time to α
(see also Chapter 8.7.5).

4.2.1 Procedural MotionUnits

Procedural MotionUnits rotate joints over time as specified by mathematical expres-
sions that take α as well as a vector a ∈ ℜn as parameters. These expressions can

http://wiki.mindmakers.org/projects:bml:main
http://wiki.mindmakers.org/projects:bml:main
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be used to steer joint rotation directly, to position the skeletal root or to position
the wrists and ankles using analytical inverse kinematics [287]. The procedural
MotionUnits support the specification of wrist/ankle positions as continuous math-
ematical formulas in both global (world) and local (shoulder) coordinate systems.
For example, the expression

<EndEffector local="false" target="r_wrist"

translation="0;(1-alpha)*starty+alpha*endy;0.3"/>

describes how the global position of the right wrist should trace a vertical path, with

starty and endy position parameters as specified.

Joint rotations can be specified as continuous mathematical functions of α and

a, or as global or local rotation values defined procedurally (as a function of a) at

key times (in a similar manner as in [104, 111]).

The parameter values a can be changed in real time, changing the motion shape

or timing. All mathematical expressions are evaluated using the Java Math Expres-

sion Parser.2 Custom function macros can be designed. I have defined such macros

for Hermite splines, TCB splines [146] and Perlin noise. Additional examples of

XML-specifications of procedural MotionUnits can be found on the web page of this

thesis.

This design — allowing arbitrary mathematical formulas and parameter sets to

be used for motion specification — is more flexible than traditional procedural an-

imation models that define motion in terms of splines or other predefined motion

formulas and use fixed parameter sets [58, 104, 111]. Since it is compatible with

these traditional methods, Elckerlyc can make use of such existing procedural ani-

mations. I have semi-automatically converted several MotionUnits from Greta [104]

into the XML description for procedural animation. Motion capture animation is also

incorporated as a procedural MotionUnit.

4.2.2 Custom Programmed Procedural MotionUnits.

While this generic procedural motion definition in XML is very flexible, it is some-

times more convenient to author procedural MotionUnits by programming them

directly. By doing this, the motion author gains direct access to functionality within

Elckerlyc’s AnimationPlayer. This functionality includes the prediction of a pose at a

given time (see Section 4.2.4) and provision of the current joint pose of the virtual

human, which makes it very easy to author a MotionUnit with a flexible start and/or

end pose. Several such Custom MotionUnits have been implemented in Elckerlyc.

The Gaze MotionUnit The Gaze MotionUnit that steers the head and eyes is im-

plemented on the basis of Tweed’s biological model of gaze [293]. This model

provides a comfortable rotation of the head given a certain gaze direction. Because

the head usually moves more horizontally than vertically, the model scales horizon-

tal and vertical components of the desired head rotation differently. The torsional

component of the head rotation is scaled to fit Donders’ law of the head [225]. The

2Singular Systems, http://sourceforge.net/projects/jep/

http://sourceforge.net/projects/jep/
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desired eye rotation is recalculated for each frame, given the current head rotation.

This models the eye overshoot that is observed in gaze. That is, the eye can lock

onto the gaze target before the head does and then glide ‘back’ to achieve its final

position as the head catches up.

Tweed’s model also provides head and eye velocity profiles, which are currently

not implemented in the Gaze MotionUnit. Instead, the Gaze MotionUnit uses a

simple bell shaped velocity profile.

The rotation axis of the head during gaze movements is approximately constant

throughout the movement [294]. The gaze MotionUnit limits the eye gaze rotation

to be within the biologically motivated rotation limits (obtained from [293]).

Saccades Saccades are quick, simultaneous movements of both eyes in the same

direction, used (among other things) to shift gaze. The duration of a saccade is

linearly dependent on its amplitude (in radian) [45]. Saccades have a symmetric

velocity profile. The peak velocity of the saccade is linearly dependent on its ampli-

tude (with a plateau velocity of around 8.7 radian / s) [45].

Elckerlyc’s eye-only gaze MotionUnit adheres to the duration rule specified in

[45]. Its velocity is currently set as a constant rather than the more biomechanically

correct symmetric peak described above. Again, the eye rotations are limited to be

within biologically motivated rotation limits.

The Pointing MotionUnit Pointing gestures are implemented using a custom Mo-

tionUnit that moves the pointing arm from its start pose to a pointing target, keeps

it there during the stroke phase, and then moves it back to the starting pose. The

pointing gesture has a symmetric retraction and preparation movement, motivated

by similar symmetry in pointing observed in humans [140, 303].

Many studies have shown that the hand trajectory for reaching and pointing

movements has a bell-shaped velocity profile [320]. A clear acceleratory and de-

celeratory phase can be recognized. This bell is usually asymmetric, that is, the

length of the acceleratory phase can be different from that of the deceleratory

phase. The Pointing MotionUnit provides a custom, configurable sigmoid function

that describes the relative position-time diagram of the arm position. This sigmoid

allows one to adjust its steepness and the length of the acceleratory and decelera-

tory phases. It thus achieves an adjustable bell shaped velocity profile. The exact

implementation is detailed in [303].

4.2.3 Physical MotionUnits

Physical MotionUnits are executed by physical controllers. Physical controllers use

techniques from control theory to steer the virtual human’s ‘muscles’ in real time

using Newtonian physics, taking friction, gravity, and collisions into account. The

input to such a controller is the desired value of the virtual human’s state, for ex-

ample desired joint rotations or the desired position of the virtual human’s center

of mass. The output is a torque applied to one or more joints. To a certain extent,
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such controllers can cope with, and recover from, external perturbations. I have

implemented several physical controllers.

Pose Controllers Simple proportional derivative controllers are used as pose con-

trollers that loosely keep a body part in its desired position, while still being affected

by forces acting on the body. The pose controller acts upon a selected hinge or ball

joint.

Balance Controller I have implemented the balance controller described in [312].

This controller dampens the velocity of the center of mass and steers it toward

its desired position, specified by a predefined hip height and a horizontal balance

location which lies in between the feet. The output of the controller are the torques,

to be applied to hips, knees and ankles.

Rag doll Controller The rag doll controller is a controller that acts upon all joints

of the physical body of the virtual human it steers. It applies no torques to any of

these joints. This controller makes the virtual human collapse like a rag doll, an

effect that can be used to simulate movement during heavy collisions (e.g. being hit

by a car) or to simulate death animations.

Compound Controllers A compound controller combines several controllers into

a single controller. This combination is described in an XML specification file. Fig-

ure 4.2 shows an example of such a compound controller: a controller to let the

left arm hang down loosely is composed of three PD controllers controlling the left

shoulder, left elbow and left wrist joint respectively. Compound controllers are com-

posed of a set of required controllers that are essential for their functioning and a

set of desired controllers that should be enabled if the physical representation of the

virtual human allows it (e.g. it contains the joints steered by the desired controller).

For example, the loosely hanging left arm controller of Figure 4.2 only dampens the

movement of the left wrist if it is available in the physical body.

4.2.4 Transition MotionUnits

Transition MotionUnits are used to create transitions between other MotionUnit

types. They interpolate between the final state (position and velocity) of one Mo-

tionUnit and the predicted initial state of another motion unit. Transition Motion-

Units are specified solely by their start and end times and the set of joints they act

upon. At animation time, the start pose is taken from the current joint configura-

tion of the virtual human at the moment that the transition MotionUnit starts. The

end pose is determined by an Animation Predictor. The Animation Predictor uses a

copy of the motor plan containing only the predictable MotionUnits of the original

plan. Predictable MotionUnits are those MotionUnits that deterministically define

the pose they set at any given time (for now, only procedural MotionUnits).
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<CompoundController xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt">

<required>

<Controller class="hmi.physics.controller.BallJointController"

id="shoulder">

<bmlt:parameter name="joint" value="l_shoulder"/>

</Controller>

<Controller class="hmi.physics.controller.HingeJointController"

id="elbow">

<bmlt:parameter name="joint" value="l_elbow"/>

</Controller>

</required>

<desired>

<Controller class="hmi.physics.controller.HingeJointController"

id="wristx">

<bmlt:parameter name="joint" value="l_wrist"/>

<bmlt:parameter name="axis" value="0"/>

</Controller>

<Controller class="hmi.physics.controller.HingeJointController"

id="wristz">

<bmlt:parameter name="joint" value="l_wrist"/>

<bmlt:parameter name="axis" value="2"/>

</Controller>

</desired>

</CompoundController>

Figure 4.2: A compound controller specification for a loosely hanging left arm.

I have designed a transition MotionUnit based upon a slerp transition on each

joint and one that creates a C2 continuous rotation curve between joint rotations

[143].

4.3 Intrapersonal Multimodal Synchrony

The movement of the body should not be seen as a process of executing a set of

completely independent PlanUnits steering separate body parts. The PlanUnits are

tightly coupled. In Chapters 2 and 3, I discuss models for coordination in the form of

mechanical coupling between limbs (e.g. through force transference between body

segments). This section discusses the coordination between PlanUnits (including

the coordination of motion with speech) at a neurological level.

4.3.1 Inter and Intra-limb Synchronization

Periodic bimanual movements are often the focus of studies on basic organization

of human actions [102, 133, 134, 191, 237]. A common finding in all these stud-

ies is that only two patterns of rhythmic bimanual coordination can be achieved

without training: a stable ‘in-phase’ pattern and a less stable ‘anti-phase’ pattern.

At higher movement frequencies, the stability of the anti-phase patterns decreases,
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eventually resulting in a loss of stability, typically followed by an involuntary tran-

sition to the in-phase pattern [133]. When the frequency is then reduced again,

the movement does not automatically return to an anti-phase pattern [102]. Simi-

lar coordination is observed in the organization of the movement of the elbow and

wrist joints within a single limb [135] and between synchronized movement of the

knee and elbow [136]. The spatial orientation of the body also determines which

pattern is stable (and thus called in-phase). The synchronized flexing/extending of

homologous muscles may be an in-phase pattern in one body pose and the anti-

phase pattern in another [135, 136, 191]. When the two coupled components are

not equivalent (e.g. in mass), absolute phase and frequency synchronization may

no longer be observed; only tendencies for in-phase and anti-phase coordination

are present, interspersed with desynchronization and phase wandering [136]. Typ-

ically, two stable states still exists that are close to (but not exactly at) either a 0°

or 180° phase difference between the components. Again, the anti-phase pattern

is less stable. At higher movement frequencies its stability decreases and involun-

tary transitions to the in-phase pattern occur. In such asymmetric systems, fixed

point drifts (of the stable phase) are observed with frequency changes. Treffner

and Turvey [291] show that, even when the coupled components are equivalent,

slight differences in phase can occur between, for example, the left and the right

hand. Right-handed individuals typically ‘lead’ the movement with their right hand

and left-handers with their left. This phase difference between hands increases with

movement frequency.

Haken, Kelso and Bunz [102] propose a model of two coupled oscillators that fit

the observations of symmetric limb coordination (the HKB-model). This model was

later extended to fit the synchronization observations of inequivalent limbs [136].

Treffner and Turvey [291] provide an asymmetric extension of the HKB model which

provides a small anisotropic coupling element to fit the observations on handedness.

The exact channel of the coupling between the oscillators is not given in these mod-

els. Ridderikhoff et al. [237] show that a combination of several interlimb inter-

actions underlie the stability characteristics of rhythmic interlimb coordination: the

integrated timing of feed-forward control signals, phase entrainment through con-

tralateral afference (=reception of sensory signals) and timing corrections based on

the perceived error of relative phase.

Tight synchronization also occurs between discrete (rather than rhythmic) ac-

tions: Kelso [137] shows that when subjects have to point at an easy and a hard

target simultaneously with two hands, the movement of the hands is tightly coordi-

nated. That is, the timing and the velocity profile of the hand movement of the easy

task adjusts to that of the hard task.

Adamovich et al. [3] show some interaction effects between rhythmic and dis-

crete arm movements of the same arm. Subjects perform a rhythmic elbow move-

ment around a target and are instructed to move it to another target upon a trigger.

The initiation of the discrete movement to the new target resets the phase of the

rhythmic movement. The onset of the discrete movement was confined to a limited

phase window in the rhythmic cycle. Sternad et al. [276] replicated these findings

and show that the movement duration of the discrete movement was influenced by
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the period of the oscillation.

4.3.2 Speech-Gesture Synchronization

Treffner and Peter [290] argue that since English speech seems rhythmical at the

level of stressed syllables, it could potentially be coordinated with rhythmic move-

ment. In an experiment they let subjects tap their index finger to the rhythm of a

metronome, while saying /ba/. The subjects were asked to move either in-phase

(synchronize jaw maximum down with finger maximum down) or in anti-phase

(synchronize jaw closed with finger maximum down). The subjects were able to

maintain both the in-phase and anti-phase coordination for all frequencies. The

anti-phase coordination was less stable, and relations between frequency and phase

were shown to match the asymmetric extension of the HKB model.

Others have looked at speech/gesture coordination in more natural settings.

Condon and Ogston [60] observed —using micro-analysis of video images and

speech— that the morpheme, syllable and word boundaries of speech are in align-

ment with the points in which the movement of limbs, head, eyes, eyebrows and

mouth changes direction.

Later research provided further insights into the exact nature of this synchro-

nization and revealed synchronization between speech and gesture at higher (e.g.

locution, locution group and discourse) levels [139, 176, 189]. Gestures are hier-

archically organized in a way similar to the organization of speech [139]. Kendon

[139] observed that the elements of a similar ‘level’ within these two hierarchies are

strongly synchronized (see Figure 4.3).

I provide a brief overview of some of these synchronizations here, the reader

is referred to [176] for an extensive overview of both the synchronizations and

synchronization mechanisms.

The left side of Figure 4.3 shows the organization of gesture used in this thesis.

A gesture unit is defined as the period of time between successive rests of the limbs.

A gesture unit begins when a limb starts to move, and ends when it has reached

its resting position again. A gesture unit can contain several gesture phrases. The

gesture phrase consists of one or more movement phases:

• preparation (optional), in which the limb moves away from the resting posi-

tion to a position in gesture space where the stroke begins.

– pre-stroke hold (optional) is the position and hand posture reached at the

end of the preparation itself. This may be held until the stroke itself be-

gins. Pre-stroke holds occur if for some reason the stroke onset is delayed

[189].

• the stroke (obligatory) is the peak of effort in a gesture. In this phase, the

meaning of the gesture is expressed.

– post-stroke hold (optional) is the final position and posture the hand

reaches after a stroke. This may be held until the retraction begins. Post-
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stroke holds occur if, for some reason, the co-expressive spoken utterance

is delayed [189].

• retraction (optional) is the return of the hand to a rest position.

Gestural units can be grouped by a common feature, typically a consistent head

movement pattern, that occurs in all of them. At the highest level, Kendon noted

consistencies in arm use (left, right, both) and body posture.

A speech stream can be segmented into intonation tune units or tone units. A

tone unit is a group of syllables over which there is a complete intonation tune

(e.g. rise-fall, so roughly a clause or a sentence). The gestural stroke typically

occurs at or slightly before the stressed syllable in such a tone unit ([82, 139, 189],

but challenged by [243]). Loehr [176] provides a more detailed account of this

synchrony. He observed that the apex of the stroke of a gesture tends to align with

a pitch accent in speech.

Tone units contain intermediate phrases. An intermediate phrase is defined by

an intonation contour with one or more pitch accents and a phrase accent, but no

(final) boundary tone. Gesture phrases align with intermediate phrases [176]. The

gesture phrase typically starts and ends slightly before the intermediate phrase (on

average with 100ms). Typically there is a one to one alignment, but often multiple

gesture phrases align with one intermediate phase. The reverse (the occurrence of

multiple intermediate phrases within one gesture phase) occurs seldom.

Tone units combine into groups called locutions. Locutions are usually complete

sentences. Kendon observed that all locutions have their own gesture unit. That

is: the boundaries of the locution are associated with the gesticulatory limb either

being in the rest position or returning to the rest position.

Locutions combine into locution groups; that is, locutions sharing a common

intonational feature apart from other groups of locutions, for example they might

all end with low-rise. Consistent head movement patterns are typically observed

over all locutions within a locution group. Locution groups combine into locution

clusters.

Locution clusters can be seen as discourse paragraphs. They are separated by

a pause or a marked change in voice quality, loudness or pitch range. During a

locution cluster, speakers often consistently gesture with the left, right or both hands

[139, 190].

Locution clusters combine into a discourse, which is equivalent with a speaker’s

turn. Kendon observed that speakers sustain a certain body posture that contrasts

with the posture before or after the discourse.

Cassell et al. [49] show that posture shifts occur frequently at both locution

cluster (which they call discourse segments) boundaries and discourse boundaries.

Loehr [176] notes that eye blinking synchronizes with gesture and speech as

well:

I found that eye blinks typically happen on the rhythmic pulse. A casual

viewing of my video data (or of anyone speaking) will confirm this. Eye

blinks co-occur not only with stressed syllables, but with bodily pikes
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Figure 4.3: The coordination between gesture and speech.

[Loehr’s ‘bodily pikes’ refer to head movement apexes and gesture stroke

apexes] as well. Even more intriguingly, upon close examination, eye

blinks don’t typically happen on the rhythmic pulse, but just prior to it,

so that the eyelids are re-opening on the rhythmic pulse. It’s as if eye

blinks are a syncopated note, slightly anticipating the rhythmic pulse.

[. . . ]

As can be seen, each eye blink is timed so that it ends (i.e. the eyes are

re-opened) with other pikes (including a waveform burst), on a rhythmic

pulse. This is very common in my data, and three out of four subjects

timed most of their eye blinks thus. It’s almost as if the speaker were

holding the eyes closed until the rhythmic moment, and then opening

them, just as manual gestures hold their position, and then perform the

stroke at the appropriate moment. In terms of manual gestures, then,

the closing of the eyelids would be the preparation, the period of closure

would be the hold, and the re-opening would be the stroke. Its inter-

esting that most eye blinks in my data took longer than the minimum

apparently needed to moisten the eye. The minimum eye blink in my

data lasted three frames (100 ms), yet the average was six (200 ms).

The extra time could be used for the hold, to wait for the appropriate

moment to re-open.

So, in summary, speech and movement are highly coordinated at different levels.
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This coordination is not without trouble, and some mechanisms (e.g. hold phases)

allow one to repair it in ongoing utterances. The amount of synchrony that can

be achieved between speech and gesture is still an open question. De Ruiter [243]

argues that speech and gesture are two ballistic processes that have few alignment

possibilities. Furuyama et al. [82] however claim that the alignment of speech and

gesture is interactive throughout their entire performance. The motor plan repre-

sentation and execution in Elckerlyc allows for the latter, so that gesture/speech

synchronization predicted by both accounts can be achieved (and be compared in

synthesis).

4.4 Specifying and Executing The Motor Plan

In this chapter, I have introduced PlanUnits as elements of the motor control plan.

To allow flexible coordination between PlanUnits and to allow them to interact with

the world, they were designed to allow continuous timing and shape updates. I

have shown that tight coordination exists between ‘PlanUnits’ of human motor mo-

vement, not only through mechanical connections between them, but also through

neurological coupling processes.

The motor control plan consists of a coordinated combination of PlanUnits. This

coordination of PlanUnits is defined by the time relations between relevant keys in

PlanUnits. Such time relations can, for example, specify that a key in one PlanUnit

must occur at the same time as a key in another, or that one key must occur after

another. The Behavior Markup Language (BML), discussed in Chapter 6 provides

the means for the specification of PlanUnits and the time constraints between them.

The next Chapter illustrates that the coordination of PlanUnits is not limited to

one’s own body; tight coordination is observed between the ‘PlanUnits’ of interact-

ing humans. I show that the synchronization of modalities that is observed within a

single person is very similar to the synchronization observed between modalities of

two (or more) interacting persons and that similar models (e.g. the HKB model and

its extensions discussed in Section 4.3.1) have been used to describe this synchro-

nization. In Chapter 6, I propose an extension of BML that allows the specification

of such interpersonal coordination. Chapter 7 deals with the construction and main-

tenance of a flexible motor plan; its execution is described in Chapter 8.



Chapter 5

Continuous Multimodal Interaction

Traditionally, interaction with virtual humans was designed using ‘sender-receiver’1

interaction paradigms, in which the user and the virtual human take turns to send

(encode) and receive (decode) meaning carrying messages that travel across chan-

nels between them [151]. Such an interaction model is insufficient to capture the

richness of human-human interaction (including conversation): interactions be-

tween humans are characterized by continuous interpersonal coordination. Kopp

[151] classifies this coordination in:

1. Behavior coordination: which lets interactants assimilate their behaviors in

form, content or timing;

2. Belief coordination: which leads to compatible knowledge about specific topics,

tasks or each other;

3. Attitude coordination: which regulates the individual’s stance toward each

other or external objects.

This thesis deals with behavior coordination (here called interpersonal coordina-

tion), and specifically with the coordination of form (‘shape’ in this thesis) and tim-

ing. In terms of the PlanUnits defined in Chapter 4, content deals with the selection

of a PlanUnit, shape deals with the parameter value selection and change within a

PlanUnit, and timing deals with the placement of its keys. This chapter presents a

literature overview on interpersonal coordination in interactions between humans,

shows why it is useful to model interpersonal coordination for virtual humans and

motivates the design of Elckerlyc and its behavior specification language BMLT.

Some forms of interpersonal coordination have already been implemented in exist-

ing virtual human applications or frameworks. This chapter gives a brief overview

of them, focusing on their architecture. The SAIBA framework provides an architec-

ture setup for a fully functional virtual human with different layers of abstraction.

I discuss how the SAIBA framework fits into virtual human applications that allow

continuous interaction and which additional requirements are posed upon its be-

havior specification language BML to allow it to specify behavior that can be used

in such continuous interaction applications.

1or walkie-talkie, ping-pong, vending machine [282]
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5.1 Interpersonal Coordination

Interpersonal coordination [28] (coordinating our motor behavior with others) plays

a large role in our social lives. Bernieri et al. [28] define interpersonal coordination

as the degree to which behaviors in an interaction are non random, patterned or

synchronized in both timing and shape. They categorize interpersonal coordination

in behavior matching or similarity and interactional synchrony. Behavior matching

includes mimicry such as interlocutors adapting similar poses. Interactional syn-

chrony includes alignment of movement rhythm (staccato-like vs slow and fluid),

synchronization of behavior (down beats at which two people change movements

simultaneously) and smooth meshing/intertwining of behavior (for example smooth

turn-taking and listener responses in conversation).

5.1.1 Behavior Matching

Behavior matching involves the alignment of the shape and content of the behavior

of interlocutors. One important form of behavior matching is unconscious mimicry.

Individuals mimic many different aspects of their interaction partners, including

their postures, facial expressions, rate of speech and syntax of speech [57, 164].

Bavelas et al. [22] show how motor mimicry (in their case, responding with a

winced facial expression to a person in pain) is not just a simple reflex, but forms

a communicative act. The shape and timing of this facial expression is affected by

whether there is eye contact with that person. If there is eye contact, an initial wince

increases in intensity. If not, an initial wince might appear, but it quickly fades out.

Boker et al. [36] show that shape alignment can occur over different modali-

ties: they attenuated the facial expressions of one of the interlocutors in a video-

conferencing setup. This attenuation of facial expressions led to increased velocity

of the head nods in his interlocutor.2

5.1.2 Interactional Synchrony

According to Clark [59], joint actions (such as conversation) can be coordinated be-

cause they divide into phases. Each phase has a unified function and identifiable en-

try and exit times. For example, in a handshake phases include extending the hands,

shake, and withdraw. Phases can be hierarchical (the shake can be subdivided again

into grasping, pumping and releasing). Synchrony requires the coordination of en-

try and exit times of each phase. This requires that participants can anticipate and

project these entry/exit times. This entails making moment by moment timing and

other (e.g. where will the ball drop in a game of catch, what will my interlocutor be

pointing at) estimates.

Schmidt et al. [255] are interested in figuring out whether certain entrainment

phenomena found in within-person coordination also hold for between-persons co-

2In another experiment they attenuated head movement, which (perhaps not surprisingly) led
attenuated head movement in the interlocutor.
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ordination, and whether the same very general dynamical principles govern both.

They perform an experiment in which two seated participants were asked to syn-

chronize their leg movement to be in-phase or in anti-phase while oscillating them

at a tempo given by a metronome. At higher frequencies, the stability of the anti-

phase pattern decreased, and involuntary transitions to the in-phase pattern oc-

curred. Schmidt et al. demonstrate that the HKB-model, used among other things

to describe intra-personal synchronization (see Chapter 4.3.1, [134]), can also de-

scribe the inter-personal coordination in these experiments.

In many everyday interactions, the synchronization between interlocutors is not

consciously achieved. Schmidt et al. [256] provide an overview of laboratory ex-

periments on such (unconscious) inter-personal synchronization processes. A first

experiment showed that when swinging pendulums in a comfortable tempo, two

subjects that can see each other unintentionally align their swinging to achieve ei-

ther in-phase or anti-phase (that is, relative phase is 180 degrees) movement. The

coordination was not one of absolute phase locking, but a ‘non-steady state coor-

dination behavior produced by dynamical systems with weak attractor basins and

intrinsic noise’. Later experiments describe increasingly natural conditions. For

example, coordinated rocking movement was observed between two participants

sitting in a rocking chair and entrainment of postural sway occurs when partici-

pants interact verbally with each other in a puzzle task, even if they do not see each

other. Schmidt et al. argue that the HKB-model can also describe the inter-personal

coordination in these experiments.

In Chapter 4.3.2, I illustrate how the movement of our body is rhythmically or-

ganized with our speech. In dialogue, a similar rhythmic organization also occurs

between interlocutors: the flow of the movements of the listener becomes rhyth-

mically coordinated with the movement and speech of the speaker and vice-versa

[60, 138]. When such interactional synchrony occurs, ‘boundary’ points of both

speech and movement of a speaker become aligned with boundary points in the

movement of a listener. In dialogue synchrony can occur on the phonic, syllable and

word level of speech. In body movement the boundaries are defined by an initiation,

a termination or a change in the direction of the motion in certain body parts. The

listener is not just mimicking/mirroring; he aligns movement of various body parts

to the speech or movement patterns of the speaker. Such alignment does not only

occur with head nods, posture shift or gestures but also ‘pours’ into actions that are

not related to the conversation (in one example in [138], the listener leans over,

tamps ash off of a cigarette into an ash tray and leans back again, exactly in the

rhythm of the speaker’s speech). The precision of this synchrony indicates that the

listener is in some way able to anticipate what the speaker is going to say.3

Furuyama [81] provides some interesting examples of synchronization between

the gestures of a listener and the speech and gesture of a speaker. In an origami

learning task (without paper) a learner synchronizes his ‘origami-construction’ ges-

tures tightly with the speech and gestures of a teacher. The synchronization follows

similar ‘rules’ to those of speech-gesture synchronization within one person for, for

3Condon proposes that the listener uses rhythmic entrainment for this; according to Kendon the
prediction mechanism is of a tracking (or ’speaking while listening’) nature [85].
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example, stroke-alignment (see also Chapter 4.3.2). The gestures of the listener do

not mimic those of the speaker, but are creative in their own right. The listener

gestures sometimes even precede those of the teacher. Similar synchronization be-

tween listener gestures with speaker speech and gesture was observed (but is far

less common) in a cartoon narration task. In a telephone conversation, the head

nods of a listener were observed to align precisely with the head nods of a speaker.

Cassell et al. [49] show that listeners, like speakers, perform posture shifts at

the boundary of a locution cluster of the utterance of the speaker.

So, in summary, the very same synchronization of modalities that is observed

within a single person is also observed between modalities of two (or more) in-

teracting persons. Such synchronization requires a prediction of the actions of the

interlocutor and the alignment of one’s own motor behavior to these predictions.

5.1.3 Turn-Taking

During a conversation, overwhelmingly one party talks at a time. Speaker turns are

not preallocated. Interactants ‘locally manage’, that is on a turn by turn basis, who

will be the next speaker [59, 249].

Humans are capable of very rapid turn-taking in conversation. Typically, one

interaction participant starts speaking immediately after (or even before) the previ-

ous speaker finishes his turn [84, 249]. A turn switch requires the speaker to stop

speaking at the right moment and the listener to take the turn immediately after this

moment, producing an utterance that is relevant to both the conversation at hand

in general and specifically to the utterance uttered by the previous speaker. A com-

bination of several mechanisms has been proposed that allows humans to achieve

this.

Sacks et al. [249] propose a model for turn-taking in conversation (the SSJ

turn-taking model). In their model, speech is produced in turn-constructional com-

ponents (TCCs, in English roughly corresponding with a sentence, clause, phrase,

lexical construction). The first possible completion of the TCC constitutes a transi-

tion relevant place (TRP). The TCCs are produced in such a way that their endings

are projected by the speaker during their execution.

Listeners can predict when TRPs will occur and may use their predictions to take

the turn instantly at TRPs. De Ruiter et al. [244] demonstrate that the syntax of

an utterance is a necessary (and possibly sufficient) cue for the prediction of TRP

and shows that the intonational contour of a TRP is neither necessary nor suffi-

cient for human TRP prediction. Barkhuysen et al. [16] show that subjects achieve

better end-of-utterance classification when presented a combination of verbal and

nonverbal cues instead of verbal only or nonverbal only cues. Recent work [110]

has empirically shown that the timing of turn-taking is not as precise as suggested

by the SSJ model. Heldner and Edlund show that in their corpora the overlap time

between turns widely varies. 41-45% of all turn shifts they observed occur after a

minimal perceivable pause (200ms). These turn shifts did not require the listener to

predict the turn’s end. The other turn shifts have overlapping speech or occur with
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a non-perceivable pause. This suggests that some prediction mechanism is at work

for these turn shifts.

5.1.3.1 Negotiating the Turn

Schegloff [251] introduces an ‘overlap resolution device’ as a mechanism to handle

simultaneous talk by multiple participants in a conversation within the SSJ turn-

taking model described above. In several cases such speech overlap is not problem-

atic: if prior speaker is about to finish his turn, if the overlap consists of a continuer

(e.g. uh huh, mm hm, yes), if the speaker allows conditional access to the turn (e.g.

if he is searching for a word), or if the speech is ‘choral’ in nature (e.g. laughter,

collective greeting). If the overlapping talk is problematic, all but one of the conver-

sation partners should stop speaking. To display that the overlapping talk was the

ground for stopping, they should do so before the end of their TCC. Schegloff lists

several shape and timing adjustments of ongoing speech that are employed to keep

the turn:

• Stretch the uttered sound until a TRP of the overlapping speaker, then try to

say your sentence again.

• Increase volume and pitch of ongoing speech.

• Increase speech rate (when predicting an interruption by the new speaker, as

if to allow no room for a new speaker to begin).

• Decrease speech rate (this is typically used when already within overlap).

• Re-utter the turn so far.

• Completely ignore the interruption and continue to speak in ‘solo’ mode.

These adjustments can also be used based on predicted (on the basis of gesture de-

ployment, posture alignment, audible drawing of breath, or other preturn beginning

behavior) interruptions. The adjustments are employed at beat (roughly syllable)

granularity. When the beats of two speakers overlap, one or both of the speakers

can shift to a competitive mode for the next beat (by using one of the mechanisms

described above). Once the turn is secured, speech is restored to normal. Speakers

are able to interrupt their speech within a beat.

5.1.3.2 Opportunistic Planning

The SSJ turn-taking model explains how a listener is capable to take the turn imme-

diately after a speaker releases it. However, it does not explain how we are able to

produce meaningful sentences on the spot, a problem called opportunistic planning

by Garrod and Pickering [84].

Conversation is a joint activity in which the participants have a common goal

[59]. This helps in solving the opportunistic planning problem, because the contri-

butions of the speaker are more predictable [84].
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A common mechanism to work around the need for opportunistic planning is the

use of apositional beginnings, such as “well..” , “but ..”, “and ..”, “oh god..”, etcetera

[59, 249]. Such an apositional beginning allows an interlocutor to take the turn

without having a plan at hand.

Routines form another mechanism that allows humans to rapidly produce speech.

A routine is an expression that is fixed to a great extent. Often it has a flat intona-

tion. Examples are: “How do you do”, “thank you very much”, “spill the beans”,

etcetera. Routines occur frequently in dialogue [219]. Routines are in general eas-

ier to produce than non-routines. The flat intonation of routines suggests that no

choices are made on stress placement. Extreme examples of the use of routines

are heard in the speech of radio horse racing commenters and auctioneers. These

speakers have to produce rapid and time-locked monologue. They achieve this by

using highly routinized language and expressions with empty slots that have to be

filled (e.g. X is in the lead) [161].

Garrod and Pickering [84] argue that listening primes certain linguistic represen-

tations. Because the same representations are used in producing and understand-

ing, these representations are activated once the listener starts to speak and he will

have a tendency to use them. This process causes the internal representations of

interlocutors to be aligned. This alignment applies at all linguistic levels (choice

of words, sounds, grammatical forms, meanings, etc.). Interactive alignment leads

to the use of routine or semi-fixed expressions by the interlocutors. According to

Garrod and Pickering, such ‘dialogue routines’ greatly simplify language production

and comprehension by short-circuiting the decision making processes.

5.1.4 Listener Responses

Listener responses [80] are short utterances (for example: yeah, mhm, uhu), vo-

calizations and/or (facial) gestures which are interjected into the speaker’s account

without causing an interruption, or being perceived as competitive of the turn. Such

feedback is mostly expressed simultaneously by vocal/verbal and gestural means

[7]. The occurrence of listener responses has been modeled in turn-taking mod-

els by hypothesizing that they occur on a different channel than the utterance of a

speaker and thus do not interfere with his turn [59]. Yngve calls this channel the

backchannel [318].

Bavelas et al. [23] divide listener responses into generic responses and specific

responses. Generic responses include nodding and vocalizations such as “mhm”.

Specific responses such as wincing or exclaiming are tightly connected to the content

of the speech of a speaker.

Specific responses require interpretation of the speaker’s utterance and gener-

ating them is cognitively more demanding than generating generic responses [23].

Jonsdottir et al. [128] suggest that humans can generate appropriate generic feed-

back without attending to the content of the speech. Acoustic, prosodic and lexical

cues can be employed to detect a relevant position to give feedback [99, 301].

The timing of listener responses is often modulated by mutual gaze [24]. Lis-

teners typically look more at speakers than vice-versa. If a speaker seeks a listener



Section 5.2 – Why use Continuous Interaction in Virtual Humans? | 77

response (e.g. a conformation of understanding), he looks at the listener, creating a

brief period of mutual gaze. The listener is likely to respond (for example with an

uhhuh, nod, etc). after which the speaker looks away. The speaker’s gaze is often

accompanied by pauses, changing intonation contours (e.g. rising pitch), gestures

or facial displays (e.g. rising eyebrows). Quoting Bavelas et al. [24]:

. . . the timing of the listener response, is collaborative process accom-

plished by joint action: Speaker gaze creates the opportunity for a lis-

tener response, and the response then terminates that gaze.

In Goodwin’s [95] observations, a speaker does not change the content of what

he says based on the responses from the listener. Rather, the timing of his speech

is influenced by the listener’s responses. Listener responses are frequently found

in complete overlap but also occur in partial overlap and silence. Goodwin states

that the overlap strategy employed by the speaker depends on whether the listener

feedback was a continuer or an assessment. Continuers are generic responses that

simply acknowledge the receipt of the talk just heard and signal the speaker to con-

tinue speaking. Assessments are specific responses in which the listener produces

an action that is responsive to the particulars of the talk. Such responses require

an analysis of the content of the speaker’s talk by the listener. If the speaker rec-

ognizes an assessment and is about to start a new unit, he delays this unit (e.g. by

an inhalation or production of a filler) until the listener has completed his assess-

ment. However, the speaker may deal with continuers by resuming speech before

the listener response is actually finished, in effect letting continuers occur in par-

tial overlap with the speech resumption. The importance of this is suggested by

Goodwin as follows:

... moving to a new turn-constructional unit while the recipient’s “uh-

huh” is still in progress is a proper and appropriate thing for a speaker

to do. Indeed this is perhaps the clearest structural way for a speaker

to demonstrate that recipient’s action has been understood precisely as

a continuer, and to act upon that understanding.

5.2 Why use Continuous Interaction in Virtual Hu-

mans?

People tend to respond to computers and other media as they do to people. They

behave as if these were social actors [227]. Thus, it is likely that an interaction

with a virtual human that employs continuous interaction is more pleasant and

effective for humans than an interaction with one that uses a turn-based interaction

paradigm, since their (social) expectations about these virtual humans are met by

the former. This section gives a short literature overview of some of the social effects

of interactional coordination in human-human interaction and discusses whether

and to what degree these social effects were also observed in human-virtual human

interaction.
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Throughout the section, I show that the exact execution (e.g. the timing, the

shape and the amount) of interaction coordination can influence the perceived per-

sonality and emotional state of a (virtual) human in subtle, context dependent ways.

To achieve natural interaction, one should therefore not aim for a virtual human that

exhibits as much coordination with its interaction partner as possible, but rather for

coordinative behavior that matches the virtual human’s personality, its emotional

state and the current interaction context. This thesis deals with providing mech-

anisms that allow the exact specification of the timing and shape of coordinative

behavior and with the execution of such behavior. The selection of appropriate co-

ordinative behavior on the basis of the virtual human’s personality, emotional state,

etcetera is beyond its scope.

5.2.1 Behavior Matching

Chartrand and Bargh [57] show that mimicking confederates are liked more than

those that are not mimicking, and that interactions with mimicking confederates

were rated as being more smooth. Bailenson and Yee [14] show that these effects

generalize to interaction with virtual humans. A virtual human that mimics head

movement of a listener (at a 4 second delay) is more liked and more persuasive

than one that uses prerecorded head movement. This is an unconscious effect, the

listeners were not aware that the virtual human was mimicking their movement.

Branigan et al. [39] provide a literature survey on linguistic alignment (at differ-

ent levels) between people and computers. They show that people do align to com-

puters in a similar way as they align to other people. The alignment is even stronger

with computers. The authors argue that people communicating with computers use

‘extra’ alignment because it is unknown how well the computer will understand

them. The same strategy is used when talking to non-native speakers.

Lakin et al. [164] provide a review on the social effects of unconscious mimicry.

Not only does mimicry affect rapport, but this relation works in the other direction

as well: rapport and interpersonal closeness can cause a person to mimic more. Peo-

ple mimic more when situational factors activate a desire to affiliate. The amount

of mimicry is further modulated by a number of personality aspects, including em-

pathy and self-monitoring (sensitivity to factors in the environment that may be

useful; for example awareness of differences in power with the interlocutor).

5.2.2 Synchrony

When human observers perceive movement synchrony in a group of humans, they

perceive this group as having rapport and being part of the same social unit [27,

163]. The degree to which individuals are perceived as a social unit is called entita-

tivity.

The attribution of high entitativity to humans moving in (near) synchrony gen-

eralizes to observations of virtual humans, even if the type of the movement of in-

dividuals in the group is different (but still in phase) [162]. Miles et al. [194] show

that the amount of attributed rapport depends not only on synchrony itself, but also
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on its phase: the attributed rapport of two virtual humans (stick figures) that walk

in synchrony is highest when their strides are either in phase or in anti-phase.

One of the interactional synchronization experiments discussed by Schmidt et

al. [256] shows that two subjects with homogeneous social competence have less

synchronous movement on a pendulum swinging task than two subjects with mixed

social competence. The author explains this by noting that the measure of social

competence used is correlated with social control (or dominance). The individual

with the high social competence leads the individual with low social competence in

the mixed pairs.

5.2.3 Turn Taking

Interruption of a speaker’s turn has been associated with the display of power as-

sertiveness, but also with the display of active and continued listening [94, 239].

Speakers that are interrupted are perceived as less assertive, more traditional and

more emotionally vulnerable [239].

Ter Maat et al. show that the turn-taking strategy (e.g. the length of the pause

between turns/overlap between turns) employed by a virtual human influences its

perceived agreeableness, assertiveness, conversational skill and rapport [181].

5.2.4 Listener Responses

In task oriented dialog, listener responses increase the encoding efficiency. That

is: fewer words are required to transmit a task-defined unit of information [160].

Kraus et al. argue that when listener responses are not available, the speaker does

not have any assurance of the understanding of the listener and is therefore less

likely to shorten her task descriptions.

Listener behavior has also been shown to influence the quality of a narrative of a

speaker [23]. If the listener is distracted, (by making the listener count the number

of days from now until Christmas) from a story told by a speaker, this reduces the

number of responses, especially specific responses. Narrators telling their close-

call stories to distracted listeners told them less well (they circled around, retold

the ending more than once, ended abruptly, added unnecessary explanations, etc.),

especially the dramatic endings.

Several virtual human systems have employed automatic analysis of surface fea-

tures of speech (such as prosody) and gesture to generate generic feedback. Cassell

and Thórisson show that the use of generic feedback increases the perceived lan-

guage understanding and lifelikeness of a virtual human [52]. Gratch et al. [97]

show that a virtual listener that uses both generic feedback and mimicry enhances

the fluency of the speech of a speaker and the speaker’s overall impression of the

communication.
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5.3 Continuous Interaction Architectures for Virtual

Humans

Several virtual human applications have provided conversational interaction capa-

bilities that go beyond a purely turn-based interaction paradigm. Here I give a brief

overview, highlighting the design implications of introducing such a more continu-

ous interaction paradigm.

5.3.1 Ymir

Ymir [283] provides an integrated framework for a virtual human, that covers both

its multimodal behavior perception/interpretation and its multimodal generation on

abstraction levels ranging from dialogue planning to motor behavior. It models mul-

timodal interaction using a layered feedback-loop model (see Figure 5.1). Each of

Figure 5.1: Ymir’s layered feedback model, figure from [283].

these layers acts on a different update frequency and level of awareness. The Reac-

tive Layer makes use of relatively shallow (and quick) input processing to generate
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reactive behaviors (for example: look where the interlocutor is pointing, generate a

generic listener feedback). The Process Control Layer deals with global aspects of

dialog, dealing with issues such as when a question should be answered, what to

do when information is missing, and so on. The Content Layer makes sense of the

content of input and generates acceptable behavior on its basis, for example specific

listener responses (e.g. indicating agreement) or executing a command issued by

the interlocutor (e.g. move the blue box there).

Each layer makes semi-independent decisions, and an action scheduler arbitrates

between them. Its arbitration process prioritizes reactive behavior over deliberative

behavior. The action scheduler is also responsible for scheduling and executing the

virtual human’s behavior.

The action scheduler can execute a stream of behavior incrementally. The be-

haviors in this stream need to be interruptible and one should be able to change

the stream to allow for relevant new events to influence it in a natural way. To

achieve this, it is essential that the action scheduler keeps track of which behaviors

are currently being planned, and which behaviors are executing.

5.3.2 The Listener Feedback Architecture in Max

Kopp et al. [153] propose a layered feedback-loop model that is specifically de-

signed for the generation of listener feedback in their virtual human Max. New in

this work is the use of specific feedback, on the basis of interpreted input. The feed-

back system in Max is part of a larger dialog management system; it is automatically

activated whenever the virtual human is in a listening state. It uses a two-layered

architecture.

Its planning layer consists of dedicated processes that are running to keep track

of the contact, perception, and understanding listener states of the virtual human

and, based on this information, decide which feedback behavior to generate and

when. A reactive layer provides direct connections from input to output. These

connections allow for incorporating feedback behaviors that function independently

of awareness and intentional control of the sender, for example blushing, as well

as behaviors that are only potentially amenable to awareness and control, such as

smiles or emotional prosody.

The system uses an incremental interpretation of the input of the interlocutor.

This input incrementally results in knowledge on different levels that is achieved

at different time rates. These levels include perception, understanding, acceptance

and emotion/attitude. In the planning layer, feedback resulting from these different

levels of knowledge is selected such that feedback from the ‘higher’ knowledge levels

is given priority. Since low level knowledge is faster than high level knowledge, this

results in interesting ways to resolve conflicts between the knowledge levels:

Max would at first look certain and nod due to a positive perception

evaluation, but would then start to look confused once a negative un-

derstanding evaluation barged in, eventually leading to a corresponding

verbal request for repetition or elaboration such as “Pardon me?”.
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String Right buffer Update 

message

t1: one �� ��� �� [w1, w2]

t2: one five �� ��� �� ��	� �
 [w1, w3]

t3: one �� ��� �� ��	� �
 [w1, w2]

t4: one four five �� ��� �� ��	� �


��	� �����
 ��

[w1, w5]

t5: [commit] �� ��� �� ��	� �


��	� �����
 ��

[w5,w5]

Figure 5.2: Incremental speech recognition in Jindigo, Figure from [271].

5.3.3 Jindigo

Skantze and Hjalmarsson [271] designed Jindigo, an incremental speech recogni-

tion and generation architecture that facilitates opportunistic speech planning (see

Section 5.1.3.2). Jindigo is based upon a conceptual framework for incremental

processing in dialog systems, proposed earlier by Schlangen and Skantze [253].

This conceptual framework describes an incremental dialogue processing system as

a network of connected processing modules, where information (packaged in incre-

mental units, or IUs) is passed along the connections. Each module has a Left Buffer,

a Processor and a Right Buffer. The Processor consumes IUs from its Left Buffer and

posts IUs in its Right Buffer. Each IU corresponds with a certain hypothesis. By using

modules in parallel, the dialog system can manage several alternative hypotheses at

the same time. Modules can be connected to each other by connecting the Right

Buffer of one module to the Left Buffer of another module.

Each Processor has three basic operations. The update operation integrates new

Left Buffer IUs into the module’s internal state and eventually produces Right Buffer

IUs. The purge operation purges a Left Buffer IUs from the internal state of the Pro-

cessor. All later hypotheses build on this Left Buffer IU (represented in the internal

state of other modules) must be purged as well. The commit operation commits

to a certain hypothesis, marking it as unchangeable. For example, an input parser

may commit all IUs of a sentence if its structure is complete, or a BML Realizer may

commit a IU if it is completely executed.

Jindigo makes use of incremental speech detection and adapts its generation

with each increment. It implements a graph-like structure to keep track of the cur-

rent hypothesis of the recognized speech (Figure 5.2). Prune and purge operations
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are efficiently implemented by amending to the graph without actually removing

edges or vertices, even if revision occurs. At each time step, a new update message

is sent to the modules that require the current/last committed hypothesis. This up-

date message contains a pair of pointers [C, A]: (C) the vertex from which the last

committed hypothesis can be constructed, and (A) the vertex from which the cur-

rent hypothesis can be constructed. Speech generation in Jindigo uses SpeechPlans,

which are directed graphs of SpeechUnits. The SpeechPlan is generated on the fly

and captures multiple different realization options. A path on this graph is selected

at run-time by an ActionManager.

In a dialog system that uses incremental processing, input hypotheses might be

revised, which could lead to revisions in the ongoing SpeechPlan. To allow this,

the Jindigo supports self-repairs. These repairs may be covert (they are achieved

by changing planned behavior without the interlocutor noticing the plan change) or

overt (involving an explicit correction). Overt revisions may include an apositional

beginning (e.g. sorry, that’s wrong, etc.), for example if the ActionManager decides

that a correction is in order, but it does not have a plan at hand for this correction

yet.

5.4 The SAIBA Framework

Over 20 years of research on virtual humans has generated increasingly sophisti-

cated models, directed to different aspects of their behavior (using emotional mod-

eling, computer animation, speech synthesis, etc.). Building a state-of-the-art virtual

human entails re-implementing all these models. Research groups have now real-

ized that ‘the scope of building a complete virtual human is too vast for any one

research group’ [141].

The SAIBA initiative [152, 298] is motivated by the need to enable collaboration

in building communicative virtual humans. It provides, among other things, a view

on the architectural issues of building a fully functional virtual human with differ-

ent layers of abstraction. It proposes a modular ‘planning pipeline’4 for real-time

multimodal motor behavior of virtual humans, with a standardized interface (using

representation languages) between the modules in the pipeline.

SAIBA proposes two modular splits, well explained by Thórisson and Vilhjálmsson

[286]:

The first [split] is between a representation language that describes an

action/set of actions and the engine/mechanism that realizes these, ac-

cording to a specification written in this language. Another split or set of

splits proposed by SAIBA is between lowest-level behaviors (‘animation

level’), a medium-level representation typically called ‘behavior’ level,

and a higher level called the ‘functional’ level. These levels correspond

roughly to what have sometimes been called the primitive/servo level, e-

move level and task level, respectively, in the robotics community[112].

4including feedback loops



84 | Chapter 5 – Continuous Multimodal Interaction

[. . . ]

The idea behind the split between representation language and realiza-

tion engine is to enable those researchers who desire to focus on a par-

ticular level of planning to stick to a certain level of detail. The language

describing the desired outcome at a particular detail level can be repre-

sented in a common way between researchers, making easier the collab-

oration on and competition between proposed mechanisms. This allows

construction of alternative planning mechanisms at particular levels of

abstraction, and thus exploration of different ways of producing certain

behavior phenomena, without having to solve the mechanism for the

whole field, as the representational languages provide an API that al-

lows modular sharing of solutions for different parts of the architecture.

This also enables the comparison between realization mechanisms from

different research labs.

The SAIBA Intent Planner module generates a plan representation on the func-

tional level, specified in the Functional Markup Language (FML). The SAIBA Behav-

ior Planner generates a plan representation that is incrementally specified through

blocks written in the Behavior Markup Language (BML) (see Figure 5.3).
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Figure 5.3: The SAIBA architecture.

A BML block (see Figure 5.4 for a short example) describes the occurrence of

certain types of behavior (facial expressions, gestures, speech, and other types) as

well as their relative timing. This relative timing is described by constraints between

synchronization points (see Figure 5.5 for the standard synchronization points in

each behavior).
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Figure 5.4: An example of a BML request containing a gaze and a speech behavior. A synchro-
nization constraint ensures that the speech starts as soon as the gaze is aimed at the
audience.

Figure 5.5: Standard BML synchronization points

FML will represent what an virtual human wants to achieve: its intentions, goals

and plans [113]. The exact syntactical representation for this is still under discus-

sion. Heylen et al. [113] indicate that (among other things) context, communicative

actions, content, mental state and social-relational goals could be elements in FML.

5.5 Continuous Interaction in the SAIBA Framework

At first glance, SAIBA’s pipelined architecture seems to conflict with the layered

feedback architectures proposed by other integrated virtual human frameworks (see

Section 5.3.1 and Section 5.3.2). However, one does not necessarily need to inter-

pret the SAIBA architecture as a pipeline in which behavior is only generated on

the basis of intent from the SAIBA Intent Planner and then transformed by a SAIBA

Behavior Planner ‘function’ into a behavior suitable for a Realizer. Instead, Intent

Planning and Behavior Planning can be regarded as processes that run at different

update frequencies and that can each generate behavior descriptions, at different
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levels of abstraction. This view (illustrated in Figure 5.6) allows several feedback

loops to exist in the SAIBA framework.

In the outer feedback loop (indicated with the black arrows) the SAIBA Intent

Planner makes use of interpreted user behavior to decide on the Intent of actions

that are to be executed by the virtual human.

Bevacqua et al. [29] argue for a feedback loop (indicated with the gray arrows),

that generates sensor-activated unconscious and unintentional (so not originating

from the Intent Planner) behavior in the SAIBA Behavior Planner. One example

of such behavior is mimicry, which they propose to implement by incrementally

submitting BML blocks to the Realizer.
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Figure 5.6: SAIBA as a layered feedback architecture.

5.5.1 A Feedback Loop at Realization Level

A novel aspect in Elckerlyc is that it contains a feedback loop at realization level

which elegantly allows the specification and realization of synchronization to pre-

dicted and incrementally updated behavior events of the virtual human’s interlocu-

tor. Such a feedback loop achieves the tight synchronization needed for, for exam-

ple, interactional synchrony.

In Section 5.1.2, I showed that the synchrony between behavior of different hu-

mans relies on the very same synchronization mechanisms that exist between mo-

dalities (e.g. speech, gesture) within one’s own body. Therefore, it makes sense to

allow the specification of synchronization to behavior of an interlocutor in the same

fashion as synchronization of modalities within one’s own body. The BML descrip-

tion of behavior would thus become a specification of a part of a joint action, rather

than the specification of completely autonomous behavior (see BML Example 1).

In BML, synchronization between behaviors of a virtual human on different mo-

dalities (e.g. speech, gesture) is specified as the alignment of the synchronization

points of these behaviors. The SAIBA Behavior Planner specifies only the existence

of such time constraints, the exact timing of the constraints is determined in the

Realizer. If synchronization to an interlocutor is to be specified in an analog fash-
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ion, synchronization points that represent (predicted) synchronization points of the

behavior of an interlocutor are required. The SAIBA Behavior Planner should then

only be required to specify the existence of the constraints between interlocutor

synchronization points and behavior synchronization points, their exact timing is

determined at Realization level. I have introduced the Anticipator as generic mod-

ule5 to predict the timing of such external (e.g. interlocutor) synchronization points

and provide a BML extension that can specify their alignment to the behavior of a

virtual human.

BML Example 1 Specifying taking the turn as an autonomous action and as part of

a joint action.

(a) Specifying a speech behavior that takes the turn as an autonomous action. The start of

the turn is defined by the SAIBA Behavior Planner.

<bml id="bml1">

<speech id="speech1" start="3">

<text>Bla bla</text>

</speech>

</bml>

(b) Specifying a speech behavior that takes the turn as part of a joint action. The start of

the turn is determined by the (predicted) end of the turn of the interlocutor.

<bml id="bml1">

<speech id="speech1" start="anticipators:speechStopAnticipator:stop+0.5">

<text>Bla bla</text>

</speech>

</bml>

An Anticipator typically predicts time events on the basis of observed interlocu-

tor behavior. These predictions are often incremental, and increase in precision over

time. Elckerlyc provides automatic adaptation of the behavior plan it manages in

reaction to updated time predictions of an Anticipator. This incremental update of

synchronization constraint timing introduces another feedback loop (indicated with

the white arrows), which is located within the Realization process. This feedback

loop allows small modifications based on user observations to be made to ongo-

ing behaviors directly. Such adaptivity is not only useful for updating the behavior

plan in reaction to an interlocutor, it is also potentially useful to allow minor tim-

ing updates to maintain consistent timing with ‘internal’ modalities that provide an

incremental prediction of the timing of their sync points (that is, those that have a

poor initial idea of what their timing will be like, for example the behavior of some

robots).

5Implementations of these modules could include an end-of-turn Anticipator (see Chapter 12.2.2
for possible implementations), or a gaze-end Anticipator.
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5.6 Discussion

In this chapter, I have illustrated the interpersonal coordination that occurs in hu-

mans and shown that it is beneficial to implement virtual humans that are capable

of such interpersonal coordination. Implementing such continuous interaction has

several consequences for intent planning, behavior planning and behavior realiza-

tion. Most of this thesis deals with continuous interaction for behavior realization.

In this section I briefly discuss the consequences of continuous interaction on intent

and behavior planning and the specification requirements for behavior realization

of continuous interaction, all within the SAIBA framework.

5.6.1 Consequences of Continuous Interaction for SAIBA Intent

and Behavior Planning

I propose that to achieve continuous interaction, one should think of the SAIBA

planning processes as processes that construct a multimodal behavior plan on the

fly. This multimodal behavior plan serves as a joint information structure shared

by the SAIBA Intent Planner, SAIBA Behavior Planner and the Realizer. At first one

might think that a behavior plan is merely an implementation aspect, internal to

SAIBA components such as the Behavior Realizer. This is in line with the idea that

languages such as FML and BML are declarative languages, so a stream of BML

behaviors would carry no explicit state information. But for certain continuous in-

teraction mechanisms this in an untenable position. An important example of why

this is the case is that of interruption of speech: a SAIBA Behavior Planner sending

a speech behavior for a single sentence to the Behavior Realizer cannot prevent the

environment, including humans, to interrupt that sentence at a later time. When

that happens, continuous interaction demands that there is an instantaneous reac-

tion, for instance by means of sending an interrupt behavior that partially cancels

the speech behavior and removes it from the behavior plan, possibly replacing it

with some alternative behavior. The important observation here is that all this im-

plies that SAIBA Behavior Planners, and ultimately also SAIBA Intent Planners, must

be aware of the state (in the form of a behavior plan or otherwise) of the Realizer.

An Intent Planner, for instance, can use feedback concerning behavior progress and

interrupt information to decide whether some message can be considered to have

actually ‘arrived’ at the (human) receiver, or not, and then act accordingly. Based on

similar information the dialogue management functionality inside the Intent Plan-

ner and the Behavior Planner can make inferences about who has the floor at any

moment. (Although ‘owning the floor’ is clearly a higher level concept, it is affected

nevertheless by lower level events such as interruption, gaze behaviors, etc.). Note

that interruptions are considered less of a problem in more traditional turn-based

dialogue systems, where the (unrealistic) assumption is made that utterances from

interlocutors will alternate. In that case, an interruption would only be noticed at

a higher level, say at the Intent Planning level. This has the undesirable effect that

interruptions at a lower level are handled in an unnatural manner: a virtual hu-

man that is interrupted in a turn-based dialog system would simply keep talking as
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if nothing has happened, unaware of the interruption until the next ‘round’ in the

dialogue.

Continuous interaction therefore requires that planning and execution informa-

tion is shared between the planning processes (see also Section 5.3.1 for a similar

argument in the Ymir architecture, and Chapter 6.5.2.3 for a scenario that illustrates

this in detail). In the SAIBA framework, plan sharing is achieved by implementing

the feedback channels that communicate progress information between the SAIBA

Planning processes.

5.6.2 Requirements for the Specification of Continuous Interac-

tion in BML

Continuous interaction, involving (among other things) behavior matching, inter-

personal behavior synchrony, rhythmic alignment, fluent turn-taking, turn overlap

management and listener responses requires an interface with a BML Realizer that

provides capabilities that go beyond what can be expressed in BML. BML can specify

the internal (within the virtual human) synchronization constraints between behav-

iors (e.g. speech, gesture) and provides a static description of the form of each

behavior.

In addition to this, continuous interaction requires the specification of:

1. the synchronization of (ongoing) behavior to predicted events originating from

the environment or the virtual human’s interlocutor. The timing of such events

is incrementally updated.

2. instant interruption and fluent continuation of ongoing behavior.

3. modifications in the shape of ongoing behavior (e.g. speak louder).

4. immediate execution of behavior, allowing apparent opportunistic planning.

Table 5.1 shows what capabilities are required for different aspects of interac-

tional coordination. The next chapter demonstrates how I have specified these ca-

pabilities in HMI’s BML extension BMLT.
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Allow the alignment of the

entry/exit phases of behav-

ior to predicted and in-

crementally updated inter-

locutor events

X X X X X1

Allow instant interruption

and fluent continuation of

ongoing behavior

X X2

Allow modifications of the

shape of ongoing behavior

maybe3 maybe4 maybe4 X

Immediate execution of be-

havior, apparent oppor-

tunistic planning

X X5 maybe6

1 For speakers and listeners.
2 For speakers.
3 In current virtual human platforms that support mimicking and align-

ment, these are achieved incrementally using subsequent behaviors.

However, some forms of mimicking (see e.g. [22]) might require shape

adjustments within ongoing behaviors.
4 For most behavior types, it is unlikely that the timing can be modified

completely independent of its shape.
5 In restarts.
6 Generic listener responses could rapidly be generated using routinized

speech.

Table 5.1: Specification requirements of some aspects of interpersonal coordination.



Chapter 6

On the Specification of Multimodal

Continuous Behavior for Virtual

Humans

The Behavior Markup Language (BML) has become the de facto standard for the

specification of the synchronized motor behavior (including speech and gesture) of

virtual humans. BML is interpreted by a BML Realizer, that executes the specified

behavior through the virtual human it controls.

This chapter first discusses the historical roots of BML, its behavior and synchro-

nization description features and the underlying design considerations. Continuous

interaction applications with virtual humans pose several generic requirements on

the specification of behavior execution, beyond that of multimodal internal (that is,

within the virtual human) synchronization and form descriptions provided by BML.

I outline the need for the detailed specification of interruption of ongoing behav-

ior, the change of parameter values in ongoing behavior (e.g. speak louder) and

the need for synchronization with predicted external time events (e.g. originating

from the interlocutor). Several usage scenarios further illustrate these needs. BML

Twente (BMLT) extends BML by providing the specification of the continuous inter-

action capabilities discussed above. It thus provides a SAIBA Behavior Planner with

a generic interface to a Realizer through which continuous interaction can be real-

ized. I conclude the chapter by discussing the consequences that the use of BMLT

poses on a SAIBA Behavior Planner that constructs it and highlights the additional

requirements posed upon a BML Realizer that is able to execute BMLT.

6.1 Specifying Multimodal Behavior for Virtual Hu-

mans: A Brief History

There are many languages to specify the motor behavior of virtual humans on

multiple modalities. One of the key aspects in designing these specifications is

the description of the (time) alignment between behaviors on the different mo-

dalities. In classic multimodal systems that generate behavior for virtual humans
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[50, 53, 105, 209, 279], the speech and gesture modalities are aligned by timing

the gestures to speech timing events generated by a speech synthesizer. Speech

then guides the timing of the gestures; speech is the leading modality [304]. This

is reflected by the behavior specification used in these systems: they typically con-

sist of the text to be spoken annotated in-line with nonverbal behavior elements

[53, 65, 209, 279] (see also Example 1).1

Example 1 An example of a script, taken from [279]. Note how the gestures are

specified in-line with the text to be spoken.

you go <g type=iconic>UP</g> the <g type=deictic>STAIRS</g>

<g type=iconic>turn SHARPLY to the RIGHT</g>

and go through the <g type=beat>FIRST</g> door

However, speech/gesture timing in humans shows more complex coordination.

For example: speech output can be delayed so that a complex gesture can be finished

or a gesture’s hold phase can be used to correct the timing of a gesture that was

started too early ([154], see also Chapter 4.3.2). MURML [150] (see Example 2)

is the first gesture and speech synthesis specification that does not require speech

as a leading modality. It defines the speech and gesture in separate channels and

uses symbolic synchronization points to define their alignment. The multimodal

Example 2 An example of a MURML script, taken from [150]. Note how the speech

and gestures are specified in separated channels and how the synchronization is

achieved through symbolical synchronization points t1, t2, t3 and t4.

<definition>

<utterance>

<specification>

And now take <time id="t1"/> this <time id="t2"/> bar

<time id="t3" chunkborder="true"/> and make it <time id="t4"/> this

big. <time id="t5"/>

</specification>

<focus onset="t1" end="t2" accent="H*"/>

<behaviorspec id="gesture_1">

<gesture id="pointing_to">

<affiliate onset="t1" end="t3"/>

<param name="refloc" value="$Loc-Bar_1"/>

</gesture>

</behaviorspec>

<behaviorspec id="gesture_2">

...

</behaviorspec>

</utterance>

</definition>

1RRL [220] is a notable exception. While the behavior planning pipeline used in NECA implies
that speech timing is enforced by gesture timing, gestures are specified in a separate channel.
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behavior specified in MURML is scheduled as a concatenation of chunks, based on

McNeill’s [189] segmentation hypothesis. The chunks contain a segment of speech

and/or one gesture, which are synchronized using symbolic synchronization points.

If only arm gestures and speech are to be coordinated, such an approach works

fine. However, in many multimodal generation applications the behavior of virtual

humans is not confined to just gesture and speech: virtual humans could operate

and explain the working of complex machinery [126], behave naturally in a war

zone [236], comment on an ongoing soccer match [9], or simply walk through an

environment while conversing. To support the specification of the coordination of

such a wider range of modalities, I designed MultiModalSync during my master’s

studies [303, 304]. MultiModalSync implicitly defines a leading modality, but this

leading modality can change over time (see Example 3). Such a change does not

emerge from the behavior generation itself, it has to be specified beforehand.

Example 3 An example of a MultiModalSync script, taken from [303]. Note how

the speech, presentation sheet changes and gestures are specified in separated chan-

nels and how their synchronization is achieved through symbolical synchronization

points t1, t2 and t3. Channels can both set synchronization points, using DefineSyn-

chronisationPoint and make use of synchronization points defined by other chan-

nels. This allows an explicit specification of the leading modality over time.

<MultimodalSync>

<Segment>

<Channel name="sheetcontrol">

<UseSynchronisationPoint value="t1"/>

<ChangeSheet name="sheet1">

<DefineSynchronisationPoint id="t2"/>

</Channel>

<Channel name="verbal">

<UseSynchronisationPoint value="t2"/>

So, the <DefineSynchronisationPoint id="t3"/> bookshelf

right now is sitting here.

</Channel>

<Channel name="deictic">

<Point target="bookshelf" stroke="t3">

</Channel>

</Segment>

</MultimodalSync>

In the Behavior Markup Language2 (BML) [152, 298] (see Figure 6.2), research-

ers working on virtual humans (including those who designed the systems and spec-

ification mentioned above), collaborate to provide a behavior specification language

that allows the specification of conversational (such as speech, gesture) and other

(such as locomotion and posture) behaviors of virtual humans. BML allows very

flexible time synchronization mechanisms that do not require the notion of a lead-

ing modality.

2http://www.mindmakers.org/projects/BML

http://www.mindmakers.org/projects/BML
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This chapter discusses the design choices the SAIBA initiative (including myself)

has made in BML, and how I have extended BML to support the specification of

multimodal virtual human behavior in applications that require continuous interac-

tion.

6.2 BML

The SAIBA Framework (discussed in detail in Chapter 5.4), describes a generic ar-

chitecture for virtual human applications. It contains a three-stage process: com-

municative intent planning, multimodal behavior planning, and behavior realization

(see Figure 6.1). BML provides an interface between the SAIBA Behavior Planner

and a Realizer.
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Figure 6.1: The SAIBA framework.

Initially, BML was designed to provide a general, Realizer-independent descrip-

tion of multimodal behavior that can be used to control a virtual human. This de-

scription ranged from the mere occurrence and the relative timing of the involved

behavior, to the detailed (yet Realizer-independent) definition of the behavior’s form

[152]. Realizer independence requires that the BML specification cannot rely on

such things as the existence of certain joints in the skeleton of the virtual human,

the availability of a specific speech synthesis system, the availability of animation

files, and so on. Instead, BML uses body parts, lexicalized locations and common

verbs (for example: speech, face, gesture, center, left) as terms in its specification.

At a later stage (see [298]), the requirement for detailed form descriptions was

dropped for various reasons:

1. It is hard to unify all the different detailed form descriptions by all research

groups into a single behavior description.

2. Even if this were to succeed, such a description would require a new Realizer

to implement an unwieldy amount of behavior variation.

3. Many more or less standard representation languages already exist that pro-

vide detailed form descriptions for a single modality (for example: SSML,

MaryTTS, or Microsoft SAPI for speech).

Therefore the SAIBA initiative opted to design a simple ‘Core’ BML description that

describes the behavior’s form in a coarse manner and to provide extension mecha-

nisms to allow BML authors to specify the form of their behaviors in greater detail

whenever desired.
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A BML stream contains BML blocks with behaviors (such as speech, gesture,

head movement, etc.) and specifies how these behaviors are synchronized (see also

Figure 6.2). Synchronization of the behaviors to each other is done through BML

constraints that link synchronization points in one behavior (start, end, stroke, etc;

see also Figure 6.3) to synchronization points in another behavior. Each behavior

and each BML block is identified by its id.
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Figure 6.2: An example of a BML request containing a gaze and a speech behavior. A synchro-
nization constraint ensures that the speech starts as soon as the gaze is aimed at the
audience.

Figure 6.3: Standard BML synchronization points

The BML specification does not prescribe a semantic meaning for the BML block.

The BML block merely provides a convenient mechanism to cluster and stream be-

haviors. This allows users of BML to specify short spurts of behavior (for example:

using speech clauses or individual gaze shifts) and generate performances incre-

mentally, or, if they prefer, to construct elaborate performances as a whole and send

them in a single block (for example as entire monologues).
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6.2.1 Scheduling BML

A BML Realizer receives a continuous stream of BML blocks. These blocks are to

be scheduled in order of their arrival. This scheduling of a sequence of BML blocks

results in a multimodal behavior plan.3 BML Scheduling thus updates the current

multimodal behavior plan on the basis of a provided BML block (see Figure 6.4).
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Figure 6.4: The scheduling process. The white bar indicates the current time. The new BML block
defines how the currently playing and planned behaviors are updated and which new
behaviors are inserted, using a scheduling attribute. append (top) indicates that the
behaviors in the BML block are to be inserted after all behaviors in the current plan.
merge (bottom) specifies that the behaviors in the BML block are to be started at the
current time.

The SAIBA Behavior Planner can indicate how a BML block is to be combined

with the current behavior plan using the scheduling attribute in the bml element.

A BML Realizer should implement the following mandatory scheduling attributes4:

1. replace: completely replaces the current behavior plan by the behaviors speci-

fied in the new BML block; interrupts all running behavior.

2. append: schedules the behaviors specified in the new BML block to play after

all BML blocks in the current behavior plan have finished.

3. merge: merges the behavior specified in the new block with the current behav-

ior plan. That is, behaviors in the new block are added to the current plan and

do not have to wait for any behaviors from the previous blocks. An exception

arises when some new behavior would conflict with some behavior already

present in the current plan; in that case the newer one will be ignored, and a

3The multimodal behavior plan is an abstract representation of the Motor Plan discussed Chap-
ter 4. A behavior might be represented by multiple PlanUnits in the Motor Plan.

4see also http://wiki.mindmakers.org/projects:bml:multipleblockissue

http://wiki.mindmakers.org/projects:bml:multipleblockissue
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notification is sent back to the SAIBA Behavior Planner. Behavior descriptions

in a merge block are not allowed to refer to the timing of behaviors outside

the BML block.

If no scheduling attribute is specified, the block is scheduled using the merge at-

tribute.

6.2.2 Behaviors

Core BML supports the following set of behaviors:

• locomotion: move the body of the virtual human from one location to another.

Can be specified by target in the world or by movement velocity for continuous

movement.

• posture: put the body in an ‘overall physical configuration’, specified mainly

by a stance (standing, sitting, lying, . . . ) and a shape (crossed, open, stretched,

. . . ).

• speech: generate both speech audio (or text) and lip/mouth movement, for

example using a speech synthesizer and viseme morphing. Specified by the

text that is to be spoken.

• gesture: coordinated movement of the arms and hands. Specified mainly

by a type (e.g. point, beat, conduit, lexicalized, . . . ). Lexicalized gestures

are linked to a certain animation or controller by specifying a lexeme (for

example: the filename of the animation, the id of the controller).

• head: head movement, to be interpreted as an offset from posture and gaze

direction. Includes head shakes, head nods and generic head rotations.

• face: movement of the facial muscles to form certain expressions. The exact

specification format is under discussion at the time of writing. It has been

proposed to use Action Units from Ekman and Friesen’s Facial Action Coding

System [71] and/or to use lexicalized face expressions in a similar way to

lexicalized gesture.

• gaze: Coordinated multi-joint movement, indicating where the character is

looking. Specified mainly by a gaze target, and a set of gaze modalities (eyes,

head, neck, torso, legs).

• emit, wait: the wait behavior serves both as a simple ‘performance pause’

behavior, typically used to delay the execution of other behaviors and as one

of the elements of an event/message based synchronization system that is

to be used to synchronize inter-virtual human behavior. The semantics and

syntax of the latter are still under discussion at the time of writing.
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6.2.3 Synchronization

Every behavior is broken down into six phases of realization, inspired by the phases

of gesture (see [189]). Each phase is bounded by a sync point (See Figure 6.3).

Behavior may also define custom sync points (for example using sync in speech, see

BML Example 2). These custom sync points must always occur after the start and

before the end sync point of the behavior.5

BML Example 2 A speech behavior that defines the custom sync point sync1 to

occur directly after the word custom.

<speech id="speech1">

<text>This speech behavior defines a custom <sync id="sync1"> sync point.

</text>

</speech>

Synchronization constraints are used to specify the timing relation between two

or more sync references. A sync reference consists of either an offset (in seconds)

from the start of the BML block, or a triple of a behavior, a sync point and an offset

time from the sync point in the behavior (in seconds).

The constraint element provides the general mechanism to specify time con-

straints between sync references. In core BML one can specify that:

1. Two or more sync references should occur at the same time (See BML Exam-

ples 3a,3c).

2. One or more sync references should occur at a fixed time after the start of the

BML block (See BML Example 3b).

3. One or more sync references should occur before or after a specified sync point

(See BML Example 3d).

A shorthand is provided to specify the synchronization of a standard sync point

of a behavior to a sync reference within the behavior specification itself (see the

synchronization constraint in Figure 6.2, BML Example 3a shows the generic way to

specify the same constraint). All synchronization constraints are interpreted as bi-

directional constraints. That is: the synchronization constraint in Figure 6.2 states

that the start synchronization point of speech1 must occur at the same time as the

ready synchronization point of gaze1, but allows that the timing of either or both

behaviors is modified to satisfy the time constraint.

5BML does currently not define where custom sync points are positioned in relation to the other
five standard sync points.
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BML Example 3 Several BML blocks illustrating BML’s general synchronization

mechanisms.

(a) The start sync of speech1 is synchronized with the ready sync of gaze1. This bml script

is equivalent to that used in Figure 6.2.

<bml id="bml1">

<gaze type="AT" id="gaze1" target="AUDIENCE"/>

<speech id="speech1">

<text>Welcome ladies and gentlemen!</text>

</speech>

<constraint id="c1">

<synchronize ref="speech1:start">

<sync ref="gaze1:ready"/>

</synchronize>

</constraint>

</bml>

(b) sync points ready of gaze1 and start of speech1 should occur 4s after the start of the

BML block.

<constraint id="c1">

<synchronize ref="4">

<sync ref="gaze1:ready"/>

<sync ref="speech1:start"/>

</synchronize>

</constraint>

(c) speech1:sync4 should occur at the same time as beat1:stroke and 0.5s after nod1:stroke.

<constraint id="synchronize_example">

<synchronize ref="speech1:sync4">

<sync ref="beat1:stroke"/>

<sync ref="nod1:stroke+0.5"/>

</synchronize>

</constraint>

(d) This constraint requires that the ready sync of gaze1 occurs before the start sync of

speech1.

<constraint id="before_example">

<before ref="speech1:start">

<sync ref="gaze1:ready"/>

</before>

</constraint>
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6.2.4 Feedback

A Realizer should inform the SAIBA Behavior Planner of any errors that occur when

realizing the BML blocks that are sent to it. If required (that is, a failure would

otherwise occur), a Realizer may decide to drop some constraints, or to execute

behaviors in a slightly different form than requested by the SAIBA Behavior Plan-

ner. The SAIBA Behavior Planner is informed of this using a warning message. The

SAIBA Behavior Planner needs to monitor the progress of the multimodal plan it

composed for various reasons. For example, it might need to know when it would

be an appropriate time to merge some new behaviors, or when exactly certain infor-

mation has been delivered to a user. For Realizers that support the interruption of

ongoing behaviors, monitoring behavior progress is crucial to set up the appropriate

interruption strategy (see also the scenario in Section 6.5.2.3).

A Realizer is expected to provide a SAIBA Behavior Planner with feedback on

the current state of any BML block, and to notify it of execution warnings and

exceptions. BML does not specify a specific format for feedback, exception and

warning messages, but does specify the minimum content of such messages. A

Realizer must at least provide the following feedback:

1. Performance start feedback Indicates that the Realizer has started executing the

BML block. Must include the BML block id of the started block.

2. For each sync point in each behavior in the BML block: Sync-Point Progress

Feedback. Indicates that a sync point in one of the behaviors of the BML block

has passed. Must provide the sync points BML block id, behavior id and sync

id.

3. Performance stop feedback Indicates that the Realizer has finished executing a

BML block. Must provide the BML block id and the reason for stopping (for

example: successful completion, error).

4. Warning feedback is used to notify the SAIBA Behavior Planner that requested

behaviors and/or synchronization constraints were modified during realiza-

tion. Warning feedback must contain the BML block id of the block in which

the warning occurred and the list of behavior ids and synchronization con-

straints that were modified to facilitate synchronization.6

5. Exception feedback is used to notify the SAIBA Behavior Planner that requested

behaviors and/or synchronization constraints have failed to be realized. The

exception feedback must include the BML block id in which the exception oc-

curred, and whether the BML block was completely canceled. If the block is

not completely canceled, it must also provide the list of behavior ids and syn-

chronization constraints that failed. If the BML block failed entirely, a reason

6In the current version of Elckerlyc, behaviors are dropped if constraints on them cannot be
satisfied. Elckerlyc does not have mechanisms in place to drop constraints rather than behaviors, or
to modify the form of a behavior to satisfy constraints. Therefore, Elckerlyc does not make use of
warning feedback.
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for this failure must be provided (for example: BML parsing error, non-existing

gaze target, synchronization constraints could not be achieved, etc.).

6.2.5 Mechanisms to Extend BML

Allowing Realizer specific extension of BML is crucial for wide acceptance of the

language. However, this conflicts with the desired Realizer-independence of the

language. BML resolves this conflict by proposing a simple, small set of core BML

behaviors, and allowing additional descriptions to describe these behaviors in more

detail. Such additional descriptions can make use of existing unimodal behavior de-

scription languages, so that they still might be shared by different Realizers. For ex-

ample, Realizers from several research groups might allow the description of speech

in SSML.

The set of BML behavior elements is by no means comprehensive, as much of

the ongoing work behind BML involves identifying and defining a broad and flex-

ible library of behaviors. Implementors are encouraged to explore new behavior

elements. In summary: BML extension is handled in the following ways (see also

Figure 6.5):

1. Additional behaviors should be designed as new XML elements using custom

XML namespaces (see BML Example 4).

2. Specialized attributes can be used to extend core BML behaviors. Such at-

tributes should be identified as non-standard BML by utilizing XML names-

paces (see BML Example 4).

3. Behavior Description Extensions provide a principled way of specifying core

BML behaviors in a more detailed manner, typically employing an existing

XML language (see BML Example 5).

BML Example 4 A customized animation behavior (sbm:animation) and a cus-

tomized joint-speeds attribute (sbm:joint-speeds). The latter specifies the BML gaze

behavior in a more detailed manner. Both extensions are from the SmartBody

project[280].

<bml xmlns:sbm="http://www.smartbody-anim.org/sbm">

<gaze id="gaze1" target="AUDIENCE" sbm:joint-speeds="100 100 100 300 600"/>

<sbm:animation name="CrossedArms_RArm_beat"/>

</bml>

Behavior Descriptions Extensions go beyond the core BML behavior specification

in describing the form of a behavior. They allow a BML author to describe the behav-

ior in more detail for a Realizer that supports the extensions, while still providing

the core behavior as a fallback for Realizers that do not. The additional descriptions

are embedded within the element of the behavior they extend as children elements.
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Figure 6.5: Extending BML. Description levels provide more detail on existing BML behaviors,
additional behaviors are created as new XML elements (picture from http://wiki.

mindmakers.org/projects:bml:bml1.0-proposal).

The type attribute of the description element should identify the type of content,

indicating how it should be interpreted.

Description elements in BML can include existing representation languages such

as SSML7, MARY TTS8, etcetera. or new languages can be created that make use of

advanced realization capabilities. Each description element is a self-contained de-

scription of a behavior. It is also required that each description provides exactly the

same synchronization points as its core BML description. It is however allowed to

time the synchronization points in the description level at slightly different positions

than those in the core BML. This can be used, for example, to provide synchroniza-

tion at syllable level rather than at word level in a description extension of a speech

behavior (see BML Example 6).

If a Realizer does not know how to interpret the available description types, it

should default to the core behavior. If multiple description elements are given, and

a Realizer is capable of interpreting more than one, the Realizer should use the

highest priority description.

7http://www.w3.org/TR/speech-synthesis/
8http://mary.dfki.de/

http://wiki.mindmakers.org/projects:bml:bml1.0-proposal
http://wiki.mindmakers.org/projects:bml:bml1.0-proposal
http://www.w3.org/TR/speech-synthesis/
http://mary.dfki.de/


Section 6.2 – BML | 103

BML Example 5 Use an audio file to play back this speech behavior. If that is not

supported, use SSML. As a last resort, fall back to the core behavior. Note that the

descriptions specify the same sync points as the core behavior.

<speech id="s1">

<text>This is a BML <sync id="tm1"/> extended speech specification.</text>

<description priority="1" type="application/ssml+xml">

<speak xmlns="http://www.w3.org/2001/10/synthesis">

This is a <emphasis>BML</emphasis> <mark name="tm1"/> extended speech

specification. </speak>

</description>

<description priority="3" type="audio/x-wav">

<sound xmlns="http://www.ouraudiodesc.com/">

<file ref="bml.wav"/>

<sync id="tm1" time="2.3" />

</sound>

</description>

</speech>

BML Example 6 In the Mary TTS description of speech behavior s1, the synchro-

nization point sync1 is defined to occur after the first syllable of “Hello”. Since I

cannot define sync points at syllable level in core BML, but the core BML does re-

quire the same sync points as the description, I define it to occur before “Hello” in

the core description.

<speech id="s1">

<text><sync id="sync1"/>Hello world!</text>

<description priority="1" type="maryallophones">

<maryxml xmlns="http://mary.dfki.de/2002/MaryXML">

<p><s><phrase>

<t accent="H*" g2p_method="lexicon" ph="h @ - ’ l @U" pos="UH"> Hello

<syllable ph="h @">

<ph p="h"/><ph p="@"/>

</syllable>

<mark name="sync1"/>

<syllable accent="H*" ph="l @U" stress="1">

<ph p="l"/><ph p="@U"/>

</syllable>

</t>

<t accent="H*" g2p_method="lexicon" ph="’ w r= l d" pos="NN"> world

<syllable accent="H*" ph="w r= l d" stress="1">

<ph p="w"/><ph p="r="/><ph p="l"/><ph p="d"/>

</syllable>

</t>

<t pos=".">!</t>

<boundary breakindex="5" tone="L-L%"/>

</phrase></s></p>

</maryxml>

</description>

</speech>
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6.3 Recommendations

BML is a language that is still in development. Currently some of the behavior

form specifications are unfinished (e.g. those of face) and the form description

abstractions and parameters are not consistent over different behaviors. Behaviors

can be synchronized using seven sync points of gesture, but the semantic meaning

of these sync points is not specified clearly for other behaviors.

More importantly, several issues with behavior persistence and mutually exclu-

sive behaviors are unresolved. Here I propose some solutions for these issues.

6.3.1 Persistent Behavior

The BML specification of a behavior does not need to include a specification of its

end time. For most behaviors the BML Realizer automatically finds an appropriate

end time. For some behaviors (currently posture and certain forms of locomotion)

it makes sense to keep them running persistently if no end time is specified. This is

used to makes a virtual human stay in a prescribed pose or keep him walking with a

certain velocity. I recommend that gaze should be defined as persistent too, so that

it can be used to keep the gaze on a target.

6.3.2 Behavior Persistence and the BML Block End

The notion of a BML block being finished is needed when sending its end feedback

and when appending other BML blocks to it. If a BML block contains persistent be-

haviors, it is never finished. This means that once a BML block containing persistent

behavior is sent to a Realizer, the append scheduling attribute is no longer mean-

ingful. I recommend the inclusion of the BMLT/SmartBody append-after scheduling

attribute (See Section 6.6) to the core BML standard to circumvent this issue.

Alternatively9, behavior persistence could be replaced by behavior state and state

transition descriptions. For example, rather than having a persistent posture behav-

ior that retains the posture, a posture behavior could define the posture change and

model the desired final posture state. This introduces state management as a re-

sponsibility of the Realizer. States could include the posture, the walking velocity,

the gaze target, and so on. The execution of the behavior itself would then entail

the state change (e.g. the change of gaze target, the change of walking velocity, the

posture change); its end indicates that the state change was completed.

6.3.3 Mutually Exclusive Behaviors

For some behaviors it is impossible to have more instances of the same behavior

active at the same time (for example: one cannot gaze at two objects at the same

time, speak two sentences at the same time or stand in two poses at the same time).

I define these behaviors as mutually exclusive behaviors.

9As suggested to me by Stefan Kopp.
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For mutually exclusive behaviors that also allow behavior persistence, it makes

sense to allow the latest behavior to overwrite previous behavior. This allows the

virtual human to, for example, temporarily divert gaze to a new target and then

return gaze to an earlier specified target. Such behavior suspension is currently

proposed only for the posture behavior in core BML. I propose to extend this to

the gaze behavior and to specify the exact overwriting rule as follows: the running

behavior in a set of mutually exclusive behaviors is the behavior with the latest

start time (earlier than the current time). If the same latest start time is shared by

multiple behaviors, the active behavior is that with the earliest end time. If two or

more mutually exclusive behaviors share the latest start and the earliest end time,

all but one of them are dropped and the SAIBA Behavior Planner is informed of the

dropped behaviors. Figure 6.6 illustrates this mutually exclusive behavior handling

algorithm.

����

����

����

����

����

����

����

����

����

Figure 6.6: In all figures, behaviors beh1 and beh2 are two mutually exclusive behaviors. Top:
beh1 and beh2 overlap during some interval of time. Since beh1 has the latest start
time, it will be selected to play during the overlapping time interval. Middle: beh1

and beh2 share the same start time. Since beh1 has the earliest end time, it will
be selected during the time interval on which the behaviors overlap. Bottom: beh1

and beh2 share the same start and end time, one of them is dropped and the SAIBA
Behavior Planner is informed of this.

6.4 Continuous Interaction

The basic requirements for a specification language for multimodal behavior of a vir-

tual human are clear. One should be able to specify short monologues of behavior
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using different modalities (speech, face expression, gestures) and to specify the rel-

ative synchronization constraints between single behavior elements. Furthermore,

one should be able to add additional behaviors, either to be performed immediately,

in parallel with the earlier specified behavior, or to be appended after the other

behavior is finished. BML satisfies such requirements.

In order to achieve the continuous interaction described in Chapter 5, there

are four additional core requirements to such a markup language. It should allow

the synchronization of ongoing behavior to predicted interlocutor events, flexible

interruptibility, shape modification of ongoing behavior, and high responsiveness.

In this section I will go into more detail on these four requirements.

Virtual humans should be able to synchronize their behavior with the behavior

of an interlocutor or allow it to be aligned with predicted interlocutor events (such

as the end of their speaking turns). This requires the specification of behavior align-

ment to predicted interlocutor events.10 The time predictions of these events are

updated incrementally, typically providing more detailed prediction accuracy at a

later time. The multimodal behavior plan should be updated automatically, reflect-

ing such an updated prediction.

Virtual humans should be capable of dealing with interruptions. Utterances may

need to be (gracefully) broken off halfway through the sentence because the user

interrupts the virtual human. A gesture that was already initiated may have to be

be abandoned (retracted) directly after the preparation or hold phase because it is

suddenly no longer relevant (e.g., the object to be pointed at has disappeared, or

the user is no longer looking at the virtual human). However, state-of-the-art virtual

human systems do not yet allow one to specify exactly where to interrupt ongoing

behavior. Furthermore, one also needs to specify alternative continuations for the

interrupted behavior: the abandoned gesture needs to be retracted; the last word in

the interrupted sentence may have to be pronounced in a ‘fade-out’ manner (e.g.,

with a falling intonation and softer voice); et cetera. In this section, I present a

mechanism to specify graceful interruptions of ongoing behavior (speech, gestures)

that allows one to specify exactly where the behavior needs to be interrupted, and,

in addition, to specify how to alternatively and immediately continue after the in-

terruption.

Virtual humans need mechanisms to slightly modify the shape of ongoing behav-

ior (e.g., increase gesture amplitude or speech loudness). Such shape modifications

typically occur in reaction to interlocutor events (for example, the interlocutor try-

ing to take the speaking turn).

Virtual humans should exhibit quick and immediate responsiveness to the user.

In human-human interaction, some responses are delivered with a short (500 mil-

liseconds) to near-zero delay. The coordination between humans in synchrony and

alignment behavior occurs on a similar timescale. For a virtual human this means

that, given a certain action from the user, specification of new behavior and changes

to the ongoing behavior must be done with virtually no delay at all (see also Chap-

ter 5). Given the fact that behavior scheduling takes a non-negligible amount of

10See also Chapter 5.5, for a more detailed explanation of why this should be in the specification
itself rather than be handled through the Behavior Planner.
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time, it should be possible to specify potential responses by the virtual human ahead

of time, to be activated with near-zero delay at the appropriate moment. This also

argues for rapid handling of the requirements of shape modification and alignment

to predicted interlocutor events, preferably in such a manner that time-consuming

rescheduling is avoided.

This thesis contributes the BML extension BML Twente that augments BML to

satisfy the four fundamental requirements for the specification of continuous inter-

action mentioned above.

6.5 Scenarios for Continuous Interaction

Continuous interaction is often observed in fluent turn-taking or when humans ex-

ercise the same behavior together. This section provides some typical scenarios of

continuous interaction and demonstrates how they can be specified in BMLT.

6.5.1 Interpersonal Behavior Synchronization

A Virtual Trainer is exercising together with a user. The Virtual Trainer infers from

sensor data that the exercise is too easy for the user. She decides to increase the

difficulty of the exercise. One way of doing this is by increasing the exercise tempo.

A subtle technique to make the user move faster is to move in the same tempo as

the user but slightly ahead of him, so he constantly has the feeling of being ‘too

late’ in his movements. The movements of the user are observed with a sensor.

An Anticipator has been designed that can perceive the tempo a user is exercising

in using this sensor, and from this information extrapolates future exercise time

events (see also Chapter 10.3.6). By making use of the time predictions from this

exerciseAnticipator, one can specify the trainer’s movement to be slightly ahead

of them.

BML Example 7 illustrates this virtual trainer scenario. Based on sensor data,

the exercise Anticipator provides synchronization points for predicted events in

the exercise (e.g. when will the next jumpstart or squatdown occur). This in-

formation can be used as synchronization constraints in a BML block. The BML

block in BML Example 7 describes how synchronization points of a procedural ex-

ercise animation (exercise1) are synchronized to be slightly ahead (0.5 seconds)

of the anticipated synchronization points in the exercise as executed by the user.

exercise1:squatdown and exercise1:jumpstart refer to the squat down posi-

tion and the start of the jump in the squat-jump exercise animation respectively.

exerciseAnticipator:squatdown and exerciseAnticipator:jumpstart refer to

the anticipated timing of squatdown and jumpstart as predicted by movement of

the user. As the sync points used here are custom sync points (rather than the stan-

dard sync points listed in Figure 6.3) in both the animation and the Anticipator, the

synchronize element is used to define a time constraint between them.
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BML Example 7 Using an exercise Anticipator to synchronize the movement of the

Virtual Trainer with that of a user.
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<bmlt:procanimation id="exercise1" name="squat-jump"/>

<constraint id="c1">

<synchronize ref="exercise1:squatdown">

<sync ref="anticipators:exerciseAnticipator:squatdown-0.5"/>

</synchronize>

<synchronize ref="exercise1:jumpstart">

<sync ref="anticipators:exerciseAnticipator:jumpstart-0.5"/>

</synchronize>

...

</constraint>

6.5.2 Turn-Taking

The following examples show how conversational turn-taking strategies can be em-

bedded in the SAIBA framework and how Anticipators and BMLT’s interrupt and

parametervaluechange behaviors allow their elegant specification.

6.5.2.1 Taking the Turn

Humans can take the turn at different moments, for example, slightly before their

interaction partner stops speaking, at exactly the moment their interaction partner

stops speaking, or slightly after their interaction partner stops speaking. The turn-

taking strategy used can modulate the impression of assertiveness, agreeableness,

conversational skill, politeness, friendliness and arousal of the virtual human (see

[179, 181], Chapter 5.1.3). I assume that one can design an Anticipator that can

predict the end of speech of a user (see Chapter 12.2.2 for possible implementa-

tions), called the speechStopAnticipator.

In BML Example 8, the SAIBA Intent Planner decides to take the turn and per-

form a communicative act. The SAIBA Behavior Planner selects a turn taking strat-
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egy, based on, for example, the politeness, arousal and friendliness of the virtual

human. In the illustrated case, it waits for the user to stop speaking and starts

speaking after a certain delay x (note that x could be negative to start speaking

slightly before the user stops speaking). The SAIBA Behavior Planner therefore only

specifies that the virtual human starts speaking after the user stops speaking, and

the exact and precisely timed execution of this behavior is handled by the Behavior

Realizer, using the speechStopAnticipator.

BML Example 8 Taking the turn.
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<bml id="bml1">

<speech id="speech1" start="anticipators:speechStopAnticipator:stop+x">

<text>Bla bla</text>

</speech>

</bml>

Turn-taking using Anticipator timing offers several improvements over having a

the SAIBA Behavior Planner send the BML block that takes the turn to the Realizer

at the moment the turn should be taken: 1) if the BML block is sent ‘early enough’,

turn-taking using an Anticipator avoids or at least decreases scheduling delays and

allows the block to be executed exactly at its desired time, 2) as long as speech1 is

not started, its desired starting time can be changed, providing behavior execution

that can make use of incrementally improving turn start timing predictions, 3) by

providing alignment to Anticipators as a general Realizer mechanism, the design of

SAIBA Behavior Planners is simplified.11

6.5.2.2 Keeping the Turn

In BML Example 9 the SAIBA Intent Planner is informed by an interpretation of

sensor values that the user would like to get the turn. The SAIBA Intent Planner

decides that the virtual human would like to keep the turn. Based on the provided

politeness, arousal and friendliness values, the SAIBA Behavior Planner decides to

realize this in intent by increasing the volume of behavior speech1 (from its starting

11This of course means that the Realizer becomes more complex. However, one typically builds
only one Realizer, but several application/experiment specific SAIBA Behavior Planners that require
such functionality (see also Chapter 8.1 and Chapter 10).
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value to target value 90 along a linear trajectory, the target value is to be reached 1

second after the custom sync synchronization point in speech1).

This is achieved by sending a new BML block to the BML Realizer that contains

a parametervaluechange behavior targeting the volume of speech1. The parame-

tervaluechange is synchronized with the speech1 behavior of BML block bml1. Nor-

mally BML does not allow such synchronization with behaviors in an external BML

block. BMLT provides the allowexternalrefs attribute to indicate that, within a

BML block, external time references are allowed.

BML Example 9 Keeping the turn.
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<bml id="speechchange" bmlt:allowexternalrefs="true">

<bmlt:parametervaluechange target="bml1:speech1" paramId="volume"

start="bml1:speech1:sync1" stroke="bml1:speech1:sync1+1">

<bmlt:trajectory type="linear" targetValue="90"/>

</bmlt:parametervaluechange>

</bml>

6.5.2.3 Turn Yielding

In BML Example 10 the SAIBA Intent Planner is informed by an interpretation of

sensor values that the user would like to get the turn. The SAIBA Intent Planner

decides that the virtual human should yield its turn. The current utterance is spec-

ified in bml1 and contains behaviors speech1 and gesture1. Depending on where

the Realizer is in executing bml1, the SAIBA Behavior Planner employs different

interruption strategies:

1. If gesture1 has not been started, all behavior in bml1 is interrupted using the

BML block in BML Example 10a.

2. If gesture1 is already in its retraction phase, or has already finished, there is

no need to interrupt it, and, using the BML block in BML Example 10b, only

speech1 is interrupted.
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BML Example 10 Yielding the turn.
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(a) Yield the turn by interrupting all behavior in bml1.

<bml id="yieldturn">

<bmlt:interrupt id="i1" target="bml1"/>

</bml>

(b) Yield the turn by interrupting all behavior in bml1 excluding gesture1.

<bml id="yieldturn">

<bmlt:interrupt id="i1" target="bml1" exclude="gesture1"/>

</bml>

(c) Yield the turn by interrupting all behavior in bml1. Insert a behavior (relaxArm) that

gracefully moves the gesturing arm back to its rest position.

<bml id="yieldturn">

<bmlt:interrupt id="i1" target="bml1"/>

<bmlt:controller id="relaxArm" class="CompoundController" name="leftarmhang"/>

</bml>

3. If gesture1 has started, but is not yet in its retraction phase, interrupt all

behavior in bml1 and insert a behavior (relaxArm) that gracefully moves the

gesturing arm back to its rest position. This is achieved using the BML block

in BML Example 10c.

Note that this example requires that the SAIBA Behavior Planner keep track of the

behavior sent to the Realizer and monitors its execution progress. The latter is achie-

ved using the feedback messages that are sent to the SAIBA Behavior Planner by the

Realizer (see also Section 6.2.4). A generic module within the SAIBA Behavior Plan-

ner could be designed this often occurring scenario of gracefully interrupting a piece

of speech with an aligned gesture.

6.5.3 Incremental Interpretation and Generation

Skantze and Hjalmarsson [271] designed Jindigo, an incremental speech recog-

nition and generation architecture that facilitates opportunistic speech planning

(see also Chapter 5.1.3.2), using incremental speech recognition and generation.
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Their speech generation is specified using SpeechPlans, which is a directed graph

of SpeechUnits. The SpeechPlan is generated on the fly. It can capture multiple

different realization options. A path on the graph is selected at run time by an

ActionManager. This ActionManager could be seen as a SAIBA Behavior Planner,

and the SpeechPlan could be expressed in BMLT. This allows such an incremental

generation paradigm to be used within the SAIBA framework. The scenario of BML

Example 11, taken from [271] illustrates this.

The BMLT pre-planning and activation capabilities allow the construction of a

directed graph of SpeechUnits in the multimodal plan of the BML Realizer. The

SpeechPlan is built incrementally in BML. It is extended as more input from an

automatic speech recognizer becomes available. First, two alternative apositional

turn beginnings are created using bml1 and bml2. These apositional turn beginnings

can be executed as soon as the virtual human would like to take the turn, even

without having a plan for the rest of its sentence at hand. As soon as the partial

sentence “how much” is recognized, the Action Manager adds some alternatives

describing cost to the plan using bml3, bml4 and bml5. When the sentence “how

much is the doll” is fully parsed, the ActionPlanner can add a sentence describing

the cost, using bml6. Figure 11c and 11d show how the paths “eh, it costs 40 crowns”

and “let’s say 40 crowns” are selected respectively, using BMLT. The selection of a

node on the graph involves sending a BML block that activates its pre-planned BML

block and interrupts (removes) all alternative nodes.

Feedback on the progress of the BML scheduling process is essential in such in-

cremental generation. Elckerlyc provides feedback indicating when a BML block is

scheduled (see Section 6.7.1). This feedback may be used by the Action Manager to

select a path on the graph. For example, if Elckerlyc has not yet finished scheduling

bml3, bml4 and bml5, the Action Manager can select an apositional beginning (e.g.

bml1 or bml2) to take the turn while not having a SpeechPlan at hand right away.

Alternatively, if bml3, bml4 and bml5 are scheduled, the apositional beginning of the

SpeechPlan (containing either bml1 or bml2) may be omitted. The Action Manager

might be forced to select a node when not all alternatives have been scheduled. It

can then simply select one that is scheduled, removing all scheduled alternatives

and canceling scheduling of the unscheduled ones.

In a dialog system that uses incremental processing, input hypotheses might be

revised, which could lead to revisions in the ongoing SpeechPlan. To allow this,

the Realizer must support self-repairs (see Figure 6.7). These repairs may be covert

(they are achieved by changing planned behavior without the interlocutor noticing

the plan change) or overt (involving an explicit correction). Overt revisions may

include an apositional beginning (e.g. sorry, that’s wrong). To decide whether to

use an overt or covert correction and exactly which one, the ActionManager needs

to know which SpeechUnits have been executed already. As in the scenario of Sec-

tion 6.5.2.3 this requires that the ActionManager keeps track of the behavior sent

to the Realizer and monitors its execution progress. The latter is achieved using

the feedback messages that are sent to the dialog manager by the Realizer (see also

Section 6.2.4). Thus, these self-repair mechanisms can be specified using BMLT.

Self-repair requires the interruption of ongoing speech, using a similar BMLT
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BML Example 11 Setting up and executing an incremental SpeechPlan.

(a) Top: recognition from an automatic speech recognizer, bottom: the produced Speech-

Plan. Vertex s1 is associated with w1, s3 with w3, and so on. (Figure based upon Figure 4

in [271], bml ids are mine).
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(b) Incrementally setting up the SpeechPlan, using BMLT

After w1:

<bml id="bml1" bmlt:preplan="true">

<speech id="s1"><text>eh</text></speech>

</bml>

<bml id="bml2" bmlt:preplan="true">

<speech id="s1"><text>well</text></speech>

</bml>

After w3:

<bml id="bml3" scheduling="append-after(bml1,bml2)" bmlt:preplan="true">

<speech id="s1"><text>it costs</text></speech>

</bml>

<bml id="bml4" scheduling="append-after(bml1,bml2)" bmlt:preplan="true">

<speech id="s1"><text>let’s say</text></speech>

</bml>

<bml id="bml5" scheduling="append-after(bml1,bml2)" bmlt:preplan="true">

<speech id="s1"><text>you can have it for</text></speech>

</bml>

After w6:

<bml id="bml6" scheduling="append-after(bml3,bml4,bml5)" bmlt:preplan="true">

<speech id="s1"><text>40 crowns</text></speech>

</bml>

(c) Realizing the path “eh, it costs 40 crowns”

<bml id="bml7" bmlt:interrupt="bml2,bml4,bml5" bmlt:onStart="bml1,bml3,bml6"/>

Or, incrementally:

<bml id="bml7" bmlt:interrupt="bml2" bmlt:onStart="bml1"/>

<bml id="bml8" bmlt:interrupt="bml4,bml5" bmlt:onStart="bml3"/>

<bml id="bml9" bmlt:onStart="bml6"/>

(d) Realizing the path “let’s say 40 crowns”

<bml id="bml7" bmlt:interrupt="bml1,bml2,bml3,bml5" bmlt:onStart="bml4"/>

<bml id="bml8" bmlt:onStart="bml6"/>
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Figure 6.7: Different types of self-repairs. The shaded boxes show which SpeechUnits have been
realized, or are about to be realized, at the point of revision. Figure from [271].

specification as in the scenario in Section 6.5.2.3. The construction of new paths

on SpeechPlan, including optional apositional beginnings is illustrated in the BML

Example 11.

6.6 BMLT

I developed the BML extension BMLT (BML Twente) specifically to accommodate the

specification requirements of continuous interaction. In addition to that, it provides

several behaviors and description extensions that are specific to Elckerlyc. In this

thesis, the prefix bmlt is used for all BMLT specific elements.12

12For clarity purposes I omit the BMLT namespace declaration in all examples in this chapter.



Section 6.6 – BMLT | 115

6.6.1 Pre-planning and Activation

Scheduling a BML block typically takes a non-negligible amount of time, especially

if the timing of speech is to be obtained through speech synthesis software.13 This

is problematic for developing highly responsive virtual humans. BMLT provides pre-

planning as a mechanism to construct a behavior plan that can be activated later on.

In a typical usage scenario of pre-planning, the SAIBA Behavior Planner already

knows what behavior to execute, and wants to have it ready for (near) instant

execution, for example in reaction to some event such as an incoming response from

the user. Pre-planning is set up for a BML block, using the BMLT pre-plan attribute in

that block. Pre-planned BML blocks can be activated using a BMLT activate behavior.

The pre-planned BML block is activated as soon the activate behavior starts. BML

Example 12 illustrates the BML used for pre-planning.

BML Example 12 Several BML blocks illustrating the pre-planning and activation

of pre-planned behavior.

(a) Pre-plan bml1.

<bml id="bml1" bmlt:preplan="true">

...

</bml>

(b) Activate pre-planned behavior bml1.

<bml id="bmlX">

<bmlt:activate id="a1" target="bml1"/>

</bml>

(c) Activate pre-planned behavior bml2 after nod1 is finished.

<bml id="bml1">

<head id="nod1" action="ROTATION" rotation="SHAKE"/>

<bmlt:activate start="nod1:end" target="bml2"/>

...

</bml>

Pre-planning on its own is not new. Kopp and Wachsmuth [155] make use of

incremental (pre)planning mechanisms for the purpose of late planning of transi-

tions between segments of gesture and speech, which are highly context dependent

(depending on current gesture and the next gesture), but for which some parts

can be pre-constructed (e.g. the speech synthesis). The Sensitive Artificial Listener

(SAL) system [258] can pre-plan behavior and activate pre-planned behavior at

will, like Elckerlyc’s Scheduler. The SAL system does this by providing a separate

pre-planning scheduler and a preplan activation trigger which are both outside the

normal BML stream. Unlike the BML based pre-planning mechanisms used within

13Providing timing information on a short (11 word) sentence takes 110-220ms on the TTS systems
used in Elckerlyc; a within one video frame scheduling delay will not be achieved for the next 8 years
with current TTS systems (given Moore’s law).
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Elckerlyc’s Scheduler, their setup does not allow a direct specification of the (timing)

relations between the normally planned and pre-planned behavior. Example 12c il-

lustrates one such relation that BMLT allows: the pre-planned BML blocks bml1 is

started after nod1 is finished. In Section 6.6.4, I show how a specification of timing

relations between normally planned and pre-planned blocks can be used to achieve

a gracious interruption with an immediate alternative continuation.

6.6.2 BML Procedures

Several applications, including routinized speech and apositional turn beginnings

(see Chapter 5.1.3), can profit from the instant use of already scheduled behaviors.

Pre-planning allows one to use an already scheduled BML block only once, after it

is activated the block cannot be reused. It would be beneficial to allow the reuse

(that is: use it more than once) of, for example, an already scheduled apositional

beginning in a dialogue.

Such reuse could be facilitated by BML procedures. Here I illustrate the con-

cept14 of BML procedures with a possible specification for them. A defineproc XML

block defines a BML procedure: a set of behaviors and their constraints. This proce-

dure can be called using callproc. Conceptually, callproc constructs a new BML

block on the basis of a proc id, bml id and scheduling attribute and sends this to

the Realizer (See BML Example 13). Because the behaviors in the BML block were

already fully scheduled with their procedure definition, their execution is started

instantly.

BML Example 13 Defining and using BML procedures.

(a) Defining proc1.

<bmlt:defineproc id="proc1">

<gaze type="AT" id="gaze1" target="AUDIENCE"/>

<speech start="gaze1:ready" id="speech1">

<text>Welcome ladies and gentlemen!</text>

</speech>

</bmlt:defineproc>

(b) Using proc1 as bml1.

<bmlt:useproc procid="proc1" bmlid="bml1" scheduling="append"/>

(c) The resulting BML block.

<bml id="bml1" scheduling="append">

<gaze type="AT" id="gaze1" target="AUDIENCE"/>

<speech start="gaze1:ready" id="speech1">

<text>Welcome ladies and gentlemen!</text>

</speech>

</bml>

14The functionality discussed here is not implemented in Elckerlyc yet.
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Note that in this specification, the procedure definition and calling is not a part of

BML itself. Rather, it forms a convenient shorthand for the SAIBA Behavior Planner

to ensure that a BML block is executed without a scheduling delay. This shorthand

requires an additional communication channel between the Realizer and the SAIBA

Behavior Planner to define and call procedures. Alternatively, the procedure call-

ing could be integrated into BML, thus allowing a BML block to ‘call a procedure’.

Such procedure calling could then potentially replace BMLT’s pre-planning and acti-

vation functionality. However, pre-planning and procedure definition / calling offer

different performance trade-offs. Procedures avoid the additional scheduling time

of scheduling a behavior more than once. Pre-planning however avoids the mem-

ory footprint of procedures that are used only once. It might thus be worth the

(Realizer) implementation effort to allow both.

6.6.3 The Interrupt Behavior

The BMLT interrupt behavior provides the capability of specifying precisely when

specific running or scheduled behaviors should be interrupted. A simple example

would be to start a “look-at” behavior by the virtual human, while it is speaking (in

the example through BML block bml1), and to interrupt the speech behavior as soon

as the “look-at” behavior has finished (see BML Example 14).

BML Example 14 Interrupt bml1 as soon as gaze1:ready is reached

<bmlt:interrupt id="i1" start="gaze1:ready" target="bml1"/>

As soon as the BMLT interrupt behavior executes it interrupts a complete BML

block, referred to as the ‘target’. Interrupts are normal BML behaviors, so they have

standard BML attributes such as an id or start sync point, and can be synchronized

with other behaviors as usual.

It is often desirable to interrupt only selected behaviors in a BML block. For

example, typically it is undesirable to interrupt gestures that are already in their

retraction phase. The include and exclude attributes of the interrupt behavior

allow this (see BML Example 15).

BML Example 15 Interrupt all behavior in bml1, with the exception of gesture1.

speech1 is interrupted at the time of its synchronization point sync1. All other

behavior in bml1 is interrupted at shake1:stroke.

<bmlt:interrupt id="i1" target="bml1" start="shake1:stroke"

exclude="speech1,gesture1"/>

<bmlt:interrupt id="i2" target="bml1" include="speech1"

start="bml1:speech1:sync1"/>

The SmartBody Realizer [280] provides an interrupt behavior that has similar

functionality to BMLT’s interrupt behavior. It does however not allow the selective
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interruption of behaviors in a BML block. I have based the syntax of the BMLT inter-

rupt behavior on the specification of the interrupt behavior used in the SmartBody

BML Realizer.

6.6.4 Instantaneous Gracious Interruption: Combining Interrup-

tion and Pre-planning

Interrupt behaviors can be combined with activate behaviors to provide instanta-

neous, but gracious interruption (see BML Example 16).

BML Example 16 The Realizer interrupts all behaviors in bml1. speech1 is in-

terrupted at sync1 and gracefully ended with some trailing speech using bml3,

gesture1 is interrupted at its stroke start, and followed by the content of

bml4. All other behaviors in bml1 are interrupted at the start of i1 (that is, at

shake1:stroke).

<bmlt:interrupt id="i1" target="bml1" start="shake1:stroke"

exclude="speech1,gesture1"/>

<bmlt:interrupt id="i2" target="bml1"include="speech1" start="bml1:speech1:sync1"/>

<bmlt:interrupt id="i3" target="bml1" include="gesture1"

start="bml1:gesture1:stroke_end"/>

<bmlt:activate start="bml1:speech1:sync1" id="a1" target="bml3"/>

<bmlt:activate start="bml1:gesture1:stroke_start" id="a2" target="bml4"/>

6.6.5 Anticipators

The Anticipator allows behavior to be synchronized to predicted events of an in-

terlocutor or other outside world events. For example, an Anticipator could be

designed to predict the end of a turn of the interlocutor, or to predict the tempo of

a user that does an exercise with a virtual trainer.

An Anticipator instantiates synchronization points that can be used in the BML

stream to constrain the timing of behaviors. It uses perceptions of events in the real

world to continually update the timing of these constraints, by extrapolating the

perceptions into predictions of the timing of future events. Such an update typically

concerns a micro-adjustment in the timing of some behavior in the behavior plan.

The Anticipator allows such changes to occur without time consuming rescheduling

of the behavior plan.

BML Example 17 illustrates the use of an Anticipator that predicts when the

interlocutor will stop speaking. Behavior speech1 is started 1 second after that

event. The timing of speechStopAnticipator:stop can be updated continually

with predictions of increasing precision of the interlocutors turn stop time (provided

that speech1 has not started yet). Such updates automatically adjust the start time

of speech1.
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BML Example 17 Taking the turn.

<bml id="bml1">

<speech id="speech1" start="anticipators:speechStopAnticipator:stop+1">

<text>Bla bla</text>

</speech>

</bml>

6.6.6 Specifying Parameter Value Changes

The parametervaluechange behavior allows the modification of certain parameter

values of ongoing behavior without requiring a complete rebuild of the behavior

plan. For example, a parametervaluechange can be used to make a virtual human

speak louder in order to keep the turn if her interaction partner tries to interrupt

her (see also the scenario in Section 6.5.2.2).

The parametervaluechange behavior specifies how a certain parameter value

within one behavior is to be set to a new target value. The trajectory element al-

lows a precise specification of the trajectory the parameter value follows to achieve

its target value (e.g. linear, ease-in-ease-out, or instantly). By using a BML be-

havior to change parameter values, we have access to the BML synchronization

mechanisms. That is: the timing of the parameter change can be specified pre-

cisely in relation to the timing of targeted behaviors or to other behaviors. An initial

value for the parameter can be specified in the trajectory, using the initialValue

attribute. If the initial value is not explicitly defined, the parametervaluechange

behavior constructs a trajectory starting at the parameter value obtained from the

targeted behavior, at the start time of the parametervaluechange behavior. The

parametervaluechange behavior sets the parametervalue on the target behavior ac-

cording to the trajectory, in such a way that the targetValue is reached at the stroke

of the parametervaluechange (see also Figure 6.8). Constraining the end sync of

the parametervaluechange behavior is not allowed: it ends automatically with its

target behavior. In its phase between stroke and end, the parametervaluechange

retains the targetValue.

The Multimodal Presentation Markup Language[42] provides a setStateParam-

eter action which is similar to the parametervaluechange behavior. Such a set-

StateParameter action defines the new value of a parameter, and when it is to be

achieved. The setParameterValue action addresses changes in global parameters

values such as the arousal of the virtual human. These parameter values are auto-

matically bound to local parameter values on all ongoing and scheduled behaviors

(e.g. arousal could change both the amplitude of ongoing/scheduled beat gestures

and the volume of ongoing/scheduled speech). In the SAIBA framework, the map-

ping of such global parameter changes to local parameter changes would be handled

by the Intent and/or the SAIBA Behavior Planner rather than the Realizer. BMLT

provides the SAIBA Behavior Planner with specification mechanisms to target the

local parameter value changes within one ongoing or scheduled behavior in a very

detailed manner.
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Figure 6.8: The start of a parametervaluechange behavior is linked to a sync in a target behavior,
its stroke is linked to some other sync point (not shown in figure). The parameter
value is changed along a linear trajectory from start to stroke. The target value is
retained after the stroke.

6.6.7 Other BMLT Behaviors and Descriptions

Besides the behaviors facilitating continuous interaction, BMLT offers several other

behaviors:

• audiofile: plays an audiofile, specified by a filename.

• controller: a physical controller, specified by its Java class name and several

controller specific parameter values. A controller behavior always describes

a desired state that the virtual human is supposed to retain rather than set

of motion phases it has to move through. It is therefore implemented as a

persistent behavior.

• keyframe: Describes a keyframe (or mocap) animation. The ‘joints’ parameter

can be used to select the joints the animation should act upon. This is useful

to select motion on a subsection of the body from full body mocap. The ‘mir-

ror’ parameter can be used to mirror the animation in the mid-sagittal plane,

allowing, for example, motions with the right arm to be reused on the left arm.

• procanimation: a procedural animation, specified by its filename and several

custom parameter values, including joint selection and mirroring as described

above.

• transition: a transition animation. The start and end pose of the transition

are determined automatically from its surrounding motions, the transition is

specified only by the joints it is to act upon and the transition type (e.g. Slerp-

Transition, HermiteSplineTransition). Typically transition behaviors are used

to connect procedural animations or to form the preparation phase of a gesture

that does not contain one.

• noise: generates a noise (typically Perlin noise) animation, specified by the

type of noise and custom parameters.
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• facemorph: a morph based face animation, specified by the morph target and

its intensity.

Note that several BMLT behaviors have parameters that vary with their specific pro-

cedural animation, controller, and so on. Such custom parameters are configured as

name, value pairs using the BMLT parameter tag (see also BML Example 18).

BML Example 18 A balance controller with pelvis height at 0.9 times leg length (so

slightly bent knees) and slightly increased stiffness, used as an independent BMLT

behavior (top) or as a description extension of a posture behavior (bottom).

(a) The BMLT controller behavior.

<bmlt:controller id="balance1" class="BalanceController">

<bmlt:parameter name="pelvisheight" value="0.9"/>

<bmlt:parameter name="stiffnessmultiplier" value="1.1"/>

</bmlt:controller>

(b) A BMLT controller used as description extension in a BML posture behavior.

<posture id="balance1" part="lower" stance="standing" shape="open">

<description priority="1" type="controller">

<bmlt:controller class="BalanceController">

<bmlt:parameter name="pelvisheight" value="0.9"/>

<bmlt:parameter name="stiffnessmultiplier" value="1.1"/>

</bmlt:controller>

</description>

</posture>

Most BMLT behaviors may also be used as a description extension for a core

BML behavior. For example, procanimation can be used as description extension

for gesture and controller can be used as description extension for posture (see

also BML Example 18). BMLT also supports several speech description extensions,

including SSML, Microsoft SAPI and various MaryTTS specifications.

BML Example 19 The persistent controller that lets the left arm hang down loosely

(larm) is temporarily overwritten by an NoController (larm1).

<bmlt:controller id="larm" class="CompoundController" name="leftarmhang">

<bmlt:parameter name="replacementgroup" value="leftarm"/>

<bmlt:parameter name="shoulder:anglez" value="0.3"/>

<bmlt:parameter name="shoulder:ksz" value="40"/>

</bmlt:controller>

<bmlt:controller id="larm1" class="NoController" start="g1:start" end="g1:end">

<bmlt:parameter name="replacementgroup" value="leftarm"/>

</bmlt:controller>

Each BMLT behavior can be set up as a mutually exclusive behavior by using

its replacementgroup parameter. If two BMLT behaviors have the same value for

their replacementgroup parameter, they are mutually exclusive. If a BMLT behavior
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is used as a description extension of a mutually exclusive core BML behavior, it

typically takes the replacementgroup of that behavior. BML Example 19 shows a

typical mutual exclusion scenario: the persistent controller that lets the left hang

down loosely is temporarily overwritten by a ‘NoController’ that releases the control

of the left arm. This allows the left arm to be used for a gesture.

6.6.8 BMLT BML Attributes

In addition to the preplan attribute, BMLT provides several other attributes that are

applied in the bml element itself.

6.6.8.1 The Append-after Scheduling Attribute

BMLT adds the append-after(X) scheduling attribute in addition to the mandatory

BML scheduling attributes. X is a comma separated list of prior BML block ids.

The append-after(X) scheduling attribute instructs the Realizer to execute the new

BML block immediately after all behaviors from the prior BML blocks on list X have

finished (see BML Example 20).

BML Example 20 BML block bml4 is appended after bml2 and bml3.

<bml id="bml4" scheduling="append-after(bml2,bml3)">

...

</bml>

6.6.8.2 The allowexternalrefs Attribute

BMLT’s allowexternalrefs attribute is used to indicate that a BML block may con-

tain time constraints that refer to behaviors in other (external) BML blocks. Such

references are of the form bmlid:behaviorid:syncid. BML Example 21 illustrates

this.

BML Example 21 BML block bml2 contains a parametervaluechange behav-

ior that modifies behavior speech1 in bml1. Two time constraints link the

timing of pvc1:start en pvc1:stroke sync points to the external sync points

bml1:speech1:sync1 and bml1:speech1:end respectively.

<bml id="bml2" bmlt:allowexternalrefs="true">

<bmlt:parametervaluechange id="pvc1" target="bml1:speech1"

paramId="volume" start="bml1:speech1:sync1" stroke="bml1:speech1:end">

<bmlt:trajectory type="linear" initialValue="0" targetValue="100"/>

</bmlt:parametervaluechange>

</bml>
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6.6.8.3 The Interrupt Shorthand

The interrupt attribute is a shorthand for the SAIBA Behavior Planner to remove a

selected set of BML blocks from the multimodal behavior plan before scheduling the

content of the BML block it is in. BML Example 57 illustrates how this shorthand is

used, and what SAIBA Behavior Planner functionality it represents.

BML Example 22 Interrupt all behaviors in bml1, bml2, .., bmln before scheduling

bmlNew. Top: the BMLT shorthand; bottom: an outline of the SAIBA Behavior Plan-

ner functionality it represents.

(a) Interrupt shorthand.

<bml id="bmlNew" bmlt:interrupt="bml1,bml2,..,bmln">

bmlNew content

</bml>

(b) SAIBA Behavior Planner functionality implemented by the interrupt shorthand.

1. Send a BML block to the Realizer that interrupts bml1..bmln:

<bml id="bmlInterrupt">

<bmlt:interrupt id="interrupt1" target="bml1"/>

<bmlt:interrupt id="interrupt2" target="bml2"/>

..

<bmlt:interrupt id="interruptn" target="bmln"/>

</bml>

2. Wait for block end feedback of bmlInterrupt (to make sure bml1..bmln are properly removed from
the multimodal behavior plan).
3. Send the new BML block bmlNew:

<bml id="bmlNew">

bmlNew content

</bml>

6.6.8.4 The onStart Shorthand

The onStart attribute is a shorthand for the SAIBA Behavior Planner to activate a

selected set of BML blocks in the multimodal behavior plan whenever a certain BML

block starts. BML Example 23 illustrates how this shorthand is used, and what

SAIBA Behavior Planner functionality it represents.
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BML Example 23 Activate all behaviors in bml1, bml2, .., bmln when bmlNew is

started. Top: the BMLT shorthand; bottom: an BML script represented by the short-

hand.

(a) Activation shorthand.

<bml id="bmlNew" bmlt:onStart="bml1,bml2,..,bmln">

bmlNew content

</bml>

(b) SAIBA Behavior Planner functionality implemented by the onStart shorthand.

<bml id="bmlActivate">

<bmlt:activate id="activate1" target="bml1"/>

<bmlt:activate id="activate2" target="bml2"/>

..

<bmlt:activate id="activaten" target="bmln"/>

bmlNew content

</bml>

6.7 Discussion

I have introduced BMLT, a BML extension that (amongst other things) allows a

formal specification of multimodal behavior generation mechanisms that satisfy the

requirements of behavior generation for continuous interaction.

Some of the individual specification mechanisms I have introduced have already

appeared in some form as BML extensions, or are used in other multimodal spec-

ification languages. This shows their usefulness, sometimes even outside the do-

main of continuous interaction. The combination of the specification mechanisms

provided by BMLT provides interesting opportunities for virtual human interaction

systems. The prime example of this is the combination of interruption (also avail-

able in a simpler form in SmartBody [280]) and pre-planning (also available in

the SAL system [258]) that allows graceful interruption with an instantly activated

continuation.

BML can be seen as a language that employs a constraint programming paradigm:

time relations between behaviors are stated in the form of constraints. BML’s event/

wait system assumes some event-based interaction with the outside world, but this

feature is currently underspecified. BMLT extends BML with elements of meta pro-

gramming and reactive programming.

Metaprogramming allows the writing of programs that modify other programs

(or themselves). BMLT allows meta programming through its activate and interrupt

behaviors. These behaviors allow the specification of modifications on the multi-

modal behavior plan, which are to be applied during their execution.

Reactive programming allows one to specify data flows that automatically prop-

agate change. A spreadsheet is an example of reactive programming: the value of

a cell can be defined using a formula that relies on the value of other cells (e.g.

=SUM(A1:A10)). If the value in a cell changes, the values of other cells that use it
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in their formula are automatically updated. In Elckerlyc, alignment to time values

predicted by Anticipators introduces a reactive programming element: the multi-

modal behavior plan is automatically updated to reflect the updated predictions of

an Anticipator. In related work on behavior specification, reactive programming is

used for the specification of interactive animation [72] or the specification of robot

behavior [118].

6.7.1 Consequences for the SAIBA Behavior Planner

To make use of the continuous interaction capabilities provided by BMLT (e.g. using

behaviors that interrupt or modify the ongoing multimodal behavior plan), a SAIBA

Behavior Planner needs to keep track of the BML blocks it has sent to the Realizer

and the execution progress made on them. This functionality can be achieved using

the standard BML feedback provided by a Realizer.

Additionally, a SAIBA Behavior Planner might need to know if pre-planning on

a block has finished in order to activate it (see the scenario in Section 6.5.3), and

must have some rough idea of the global start time of a block (or the end time

of its predecessor) in order to specify its alignment to sync points managed by an

Anticipator. To satisfy these requirements, the Elckerlyc Realizer provides the SAIBA

Behavior Planner with feedback on when the scheduling of a BML block is started

and when it is done. It also provides the SAIBA Behavior Planner with predictions

on when a behavior block will be started and when it will be finished. The following

feedback messages are used for this:

1. Scheduling start feedback Indicates that the Realizer has started scheduling a

BML block. Provides the predicted start time of a the BML block (based on its

append targets and the current time).

2. Scheduling finished feedback Indicates that the Realizer has finished scheduling

a BML block. Provides the predicted start time (based on its append targets

and the current time) and the predicted end time (based on the duration of

the scheduled behaviors in the block) of the BML block.

3. Performance start feedback In addition to the required information, Elckerlyc

provides the start time of the BML block and its predicted end time (based on

the duration of the scheduled behaviors in the block).

4. For each sync point in each behavior in the BML block: Sync-Point Progress

Feedback. In addition to the required information, Elckerlyc provides the local

(as offset from the BML block start) and global time of the sync point.

5. Performance stop feedback In addition to the required information, this pro-

vides the end time of the block.

Note that this feedback provides the SAIBA Behavior planner with incremental pre-

dictions (with accuracy increasing with each increment) of the global start and end

time of the BML blocks it has sent to the Realizer.
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6.7.2 Continuous Interaction Requirements for the Realizer

In a Realizer that supports continuous interaction, the execution of behaviors should

not be ballistic, but is instead a continuous process that offers rapid and fine-grained

interruption and allows one to get and set parameter values on behaviors during

their execution.

Gracious interruptions require behavior implementations that allow alternative

continuation (for example: to make the hands return to a rest pose after an inter-

rupted gesture).

BMLT provides the specification of the following changes to an ongoing multi-

modal behavior plan:

1. Activation of pre-planned behavior.

2. Interruption of running or scheduled behavior.

3. Micro-adjustments in the timing of specific behaviors.

4. Setting parameter values on a selected behaviors on the fly.

These changes require a flexible multimodal plan representation that retains infor-

mation on the behavior specification (as specified in the BML blocks sent to the

Realizer). Behaviors in the multimodal behavior plan are identified through their

BML block id and behavior id. This allows the Realizer to access the behavior plan

and modify parameter values in specific behaviors, interrupt specific behaviors or

adjust the timing of specific behaviors. All these modifications to the multimodal

behavior plan should occur without violating the time constraints specified for it

(through BML). The next chapter shows how such a flexible plan is constructed and

maintained in Elckerlyc.



Chapter 7

Scheduling and Multimodal Plan

Representation†

A BML Realizer is responsible for executing the behaviors specified in the BML blocks

sent to it, in such a way that the time constraints specified in the BML block are

satisfied. Realizer implementations, including Elckerlyc, handle this by separating

the BML scheduling process from the execution process. The scheduling process is

responsible for creating a multimodal behavior plan that is in a suitable form for

execution.

Scheduling thus adds new behaviors (specified within a BML block) to the cur-

rent multimodal behavior plan (Figure 7.1).1
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Figure 7.1: The scheduling process

The BML block contains a set of behaviors and the timing constraints that are to

be satisfied between the behaviors in the block. In addition to the constraints that

are explicitly defined in the BML block, the Scheduler needs to take into account cer-

tain implicit constraints that should hold for each BML block. For example, it needs

to ensure that for each scheduled behavior, the sync points remain in order (e.g.

start before ready, ready before stroke start, etc). Realizers can impose additional

constraints upon the scheduling, for example motivated by biological properties of

†A condensed version of this chapter has been published as:
D. Reidsma, H. van Welbergen, and J. Zwiers. Multimodal Plan Representation for adaptable BML
Scheduling, In Proceedings of the 11th International Conference on Intelligent Virtual Agents, 2011,
To appear.

1The multimodal behavior plan is an abstract representation of the Motor Plan discussed Chap-
ter 4. A behavior might be represented by multiple PlanUnits in the Motor Plan.
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humans. Block Level Constraints, as defined by the scheduling attribute in the BML

block, define the time constraint between the start of the to be scheduled BML block

and the behaviors already present in the current behavior plan.

The BML scheduling problem can be phrased as a constraint programming prob-

lem. Both standard constraint programming techniques and custom BML scheduling

algorithms have been devised to solve it.

In most BML Realizers, scheduling the stream of BML blocks results in a rigid

multimodal realization plan in which the timing of all behaviors is fixed. In Elckerlyc

however, the multimodal behavior plan is modified at execution time by the execu-

tion of interrupt behaviors, by the activation of pre-planned BML blocks and by

timing updates from Anticipators. Such modifications should not invalidate the

constraints mentioned above. Elckerlyc contributes a flexible multimodal plan rep-

resentation that allows plan modification, while retaining its constraints.

Section 7.1 gives an overview of constraints that act upon a multimodal behavior

plan constructed by a BML Scheduler. Section 7.2 shows how the BML Scheduling

problem is phrased as a constraint optimization problem and discusses the schedu-

ling solutions used in other Realizers. Section 7.3 discusses Elckerlyc’s flexible mul-

timodal realization plan, the construction of this plan and Elckerlyc’s mechanisms

to keep the scheduling constraints intact under behavior plan changes. Section 7.4

discusses several open issues in scheduling BML and gives an overview of extensions

that can enhance Elckerlyc’s scheduling process.

7.1 Constraint Specification

The Scheduler adds a BML block represented by behaviors b, their sync points s

and the constraints on these sync points c to a behavior plan. After scheduling,

all default and custom sync points of each behavior in the BML block have been

assigned a time. The resulting behavior plan satisfies both the explicit constraints

that are expressed in BML, certain implicit constraints that hold for each behavior,

a BML block constraint on the start time of the block and typically certain Realizer

specific constraints.

7.1.1 Explicit Constraints

Within a BML block, explicit time constraints are expressed between sync references.

A sync reference consists of either an offset from the start of the BML block, or a pair

[s, o], where s is a sync point, defined by the pair [b, sync id] and o is a time offset (in

seconds) from the time of the sync id.2 b is defined as [block id, behavior id]. BML

Example 24 gives an example of a constraint expressed in a simple BML block.

A time constraint expresses a time relation between two or more sync references.

BML defines two types of time relations:

• before/after: sync ref a occurs before (or after) sync refs b.

2For the clarity of this discussion I omit stroke ids here, they can be expressed in a similar manner.
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BML Example 24 Behavior g1 in BML block bml1 in this example defines a con-

straint between the sync refs [[[bml1, g1], ready], 0] and [[[bml1, beh1], start], 1].

<bml id="bml1">

<gaze id="g1" ready="beh1:start+1"/>

...

</bml>

• at: sync refs a occur at the same time.

For ease of specification and without loss of generality, I define each time constraint

as acting between two sync refs. A constraint is an absolute constraint if one of

the sync refs is an offset from the start of the BML block. A constraint is a relative

constraint if both sync refs are triples of behavior id, sync id and offset time.

An absolute ‘at’ constraint ca on a sync point with id s in behavior b at offset o
from the start of the BML block is defined by

ca = [[b, s], o] (7.1)

Absolute before and after constraints cab and caa on a sync point with id s in behavior

b at offset o from the start of the BML block are defined as

cab = [[b, s], o] (7.2)

caa = [[b, s], o] (7.3)

A relative ‘at’ constraint cr between sync refs [[b1, s1], o1] and [[b2, s2], o2] is defined

by

cr = [[b1, s1], [b2, s2], o2 − o1] (7.4)

Relative before crb and relative after cra constraints between sync refs [[b1, s1], o1]
and [[b2, s2], o2] are defined as follows:

crb = [[b1, s1], [b2, s2], o2 − o1] (7.5)

cra = [[b1, s1], [b2, s2], o2 − o1] (7.6)

A relative before constraint [[b1, s1], [b2, s2], o] can be converted to relative after

constraint cra using

cra = [[b2, s2], [b1, s1],−o] (7.7)

A BML block contains a set of behaviors b, a set of sync points (pairs of behavior

id and sync id) s, a set of absolute constraints ca, a set of absolute before constraints

cab
, a set of absolute after constraints caa

, a set of relative constraints cr and a set

of relative after constraints cra .3

3To specify the explicit constraints in a BML block in a unique manner, all relative before con-
straints are converted to after constraints using equation 7.7.
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The function f : s → t maps a sync point s to global time t. The goal of sche-

duling is to find such a mapping for all sync points in all behaviors in the block in

such a way that all constraints are satisfied. The function blockstart : u → t maps

the block id u to its global start time t. In Section 7.1.5 I show how the blockstart
is defined, given the scheduling attribute of the BML block. The BML block defines

the following explicit constraints on f :

∀[[[bmlid, behid], s], o] ∈ ca. f([bmlid, behid], s) = o+ blockstart(bmlid) (7.8)

∀[[[bmlid, behid], s], o] ∈ caa
. f([bmlid, behid], s) ≥ o+ blockstart(bmlid) (7.9)

∀[[[bmlid, behid], s], o] ∈ cab
. f([bmlid, behid], s) ≤ o+ blockstart(bmlid) (7.10)

∀[[b1, s1], [b2, s2], o] ∈ cr. f(b1, s1) + o = f(b2, s2) (7.11)

∀[[b1, s1], [b2, s2], o] ∈ cra . f(b1, s1) + o ≥ f(b2, s2) (7.12)

7.1.2 Implicit Constraints

Besides the explicit constraints defined in the BML block, several implicit constraints

act upon f :

1. Sync points may not occur before the block they are in is started (equation

7.13).

2. Behaviors should have a nonzero duration (equation 7.14).4

3. The default BML sync points of each behavior must stay in order (equation

7.15).

∀[[bmlid, behid], s] ∈ s. f([bmlid, behid], s]) ≥ blockstart(bmlid) (7.13)

∀b ∈ b. f([b, end]) > f([b, start]) (7.14)

∀b ∈ b.f([b, start]) ≥ f([b, ready) ≥
f([b, strokestart]) ≥ f([b, stroke]) ≥
f([b, strokeend]) ≥ f([b, relax]) ≥ f([b, end])

(7.15)

4For a persistent behavior b f([b, end]) = ∞, so b has infinite duration.
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7.1.3 Cluster Constraints

A BML block may contain several clusters of behaviors. Each cluster contains a set of

behavior connected with ‘at’ constraints. I define the start of the cluster as the start

of the first behavior in the cluster. A cluster can be grounded5, that is, connected to

the start of a BML block with an absolute ‘at’ constraint, or ungrounded. A simple

example of an ungrounded cluster is given in BML Example 25.

BML Example 25 A BML script with one ungrounded cluster.

<bml id="bml1">

<speech id="s1"><text>Hello <sync id="world"/>world</text></speech>

<gesture id="g1" stroke="speech1:world" type="BEAT"/>

</bml>

Here the ungrounded cluster contains two behaviors: [bml1, s1] and [bml1, g1].
The constraints defined so far do not determine when an ungrounded cluster starts,

other than that it starts after or at the start of the BML block it is in.

A scheduler has the freedom to set up the internal timing of each behavior as it

likes, as long as the implicit and explicit constraints defined in the sections above

are satisfied. This freedom is typically used to set up the timing of behaviors in

such away that the resulting motor behavior is natural. One would like to schedule

ungrounded clusters in such a way that gaps between clusters, or, between clusters

and the start of the block are minimized, so that they start ‘as soon as possible’,

while retaining this scheduling freedom.

The cluster constraint achieves this by setting up the constraint as one that acts

between clusters, without requiring changes to the relative timing of the behavior

within a cluster. A cluster constraint thus states a synchronization between one sync

point in an ungrounded cluster and either a sync point in another cluster or the start

of its BML block. Thus, in the block bml1 defined above, the cluster constraint would

require that either [bml1, s1] or [bml1, g1] start at blockstart(bml1). A scheduler has

the freedom to select between those solutions. A typical scheduler will pick the

latter solution if [bml1, g1] is a complex gesture (with the start to stroke taking

longer than uttering the word “Hello”) and the first solution if it is not.

An ungrounded cluster may contain relative or absolute ‘after’ constraints. If the

gaps between clusters are to be minimized using only one constraint per cluster, this

means that the cluster should start at the start of the BML block it is in, or that one

of its ‘after’ constraints is satisfied as an ‘at’ constraint. If an ungrounded cluster has

no ‘after’ constraints, then it should start at the start of the BML block it is in.

BML Example 26 shows an example of a BML script with both absolute and rel-

ative after constraints. In this script, the virtual human walks to a painting and

points out a certain spot on the painting. The pointing should start after the vir-

tual human has reached its location. The stroke of the pointing gesture is synchro-

nized to the speech. The speech is constrained to start at least 2 seconds after

5The notion of grounding was taken from [144].
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the start of bml1. BML Example 26 has 2 clusters, one contains behaviors speech1

and point1, and one contains only behavior walk1. Both clusters are ungrounded.

The cluster containing only walk1 does not have any after constraints, so walk1

starts at blockstart(bml1). The cluster containing speech1 and point1 has two after

constraints. To satisfy the cluster constraint, either [bml1, point1] should start at

blockstart(bml1)6, or one of the after constraints should be satisfied as an at con-

straint, that is: [bml1, speech1] should start at blockstart(bml1)+2 or [bml1, point1]
should start at f([[bml1,walk1], relax]).

BML Example 26 Cluster constraint example with relative and absolute after con-

straints. The different options for the cluster constraint are shown in red.

<bml id="bml1">

<speech id="speech1">

<text>

As you can see on <sync id="s1"> this painting,

</text>

</speech>

<gesture id="point1" type="POINT" target="painting1_point1"

stroke="speech1:s1"/>

<locomotion id="walk1" target="painting1"/>

<constraint id="c1">

<after ref="walk1:relax">

<sync ref="point1:start"/>

</after>

<after ref="2">

<sync ref="speech:start"/>

</after>

</constraint>

</bml>
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6This solution implicitly requires that the relax of the walk1 is at blockstart(bml1), that is, that
the virtual human is already at the desired location. Note that starting speech1 at blockstart(bml1)
is not a solution, since the absolute after constraint requires that the start of speech1 is at
blockstart(bml1) + 2 or later.
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7.1.3.1 Cluster Properties

To define the cluster constraint formally, I first introduce some predicates that indi-

cate the cluster properties of a behavior.

The predicate DirectLink(b1, b2) expresses that two behaviors b1 and b2 are di-

rectly connected by an ‘at’ constraint.

DirectLink(b1, b2) ≡ ∃o, s1, s2. ([[b1, s1], [b2, s2], o] ∈ cr∨
[[b2, s2], [b1, s1], o] ∈ cr)

(7.16)

The predicate IsConnected(c, d) expresses that two behaviors c and d are con-

nected by a chain of ‘at’ constraints.

IsConnected(c, d) ≡
∃N > 0. ∀i ∈ 0..N − 1. bi ∈ b ∧DirectLink(bi, bi+i) ∧ c = b0 ∧ d = bN

(7.17)

The predicate DirectGround expresses that a behavior b has an absolute con-

straint.

DirectGround(b) ≡ ∃o, s. [[b, s], o] ∈ ca (7.18)

The predicate DirectAfterGround expresses that a behavior b has an absolute after

constraint.

DirectAfterGround(b) ≡ ∃o, s. [[b, s], o] ∈ caa
(7.19)

The predicate IsGrounded(b) expresses that a behavior b is part of a grounded cluster

of behaviors.

IsGrounded(b) ≡
DirectGround(b) ∨ ∃c. (IsConnected(b, c) ∧DirectGround(c))

(7.20)

The predicate OnBlockStart([bmlid, behid]) expresses that the cluster of behavior

[bmlid, behid] starts at blockstart(bml1).

OnBlockStart([bmlid, behid]) ≡
f([[bmlid, behid], start]) = blockstart(bmlid)∨

(∃c ∈ b. IsConnected([bmlid, behid], c) ∧ f([c, start]) = blockstart(bmlid))

(7.21)

The predicate OnAbsAfterConstraint(b) expresses that the cluster of behavior b
satisfies one of its absolute after constraints as an at constraint.

OnAbsAfterConstraint([bmlid, behid]) ≡
∃[[b1, s1], o] ∈ caa

. (([bmlid, behid] = b1∨
IsConnected([bmlid, behid], b1))∧

f([b1, s1]) + o = blockstart(bmlid))

(7.22)

The predicate OnRelAfterConstraint(b) expresses that the cluster of behavior b
satisfies one of its relative after constraints as an at constraint.

OnRelAfterConstraint([bmlid, behid]) ≡
∃[[b1, s1], [b2, s2], o] ∈ cra . (([bmlid, behid] = b1∨

IsConnected([bmlid, behid], b1))∧
f(b1, s1) = f(b2, s2) + o)

(7.23)
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7.1.3.2 The Cluster Constraint

Using the cluster properties defined above, the cluster constraint is defined as:

¬ IsGrounded([bmlid, behid]) →
OnBlockStart([bmlid, behid])∨

OnAbsAfterConstraint([bmlid, behid])∨
OnRelAfterConstraint([bmlid, behid])

(7.24)

7.1.4 Realizer Specific Constraints

Realizers might impose additional custom constraints, that are typically behavior

specific. They may, for example, be due to a technical limitation. Most Text-To-

Speech systems do not allow one to make detailed changes to the timing of the

generated speech. Therefore, Realizers typically forbid scheduling solutions that

require the stretching of speech behaviors beyond the default timing provided by the

TTS system. Constraints may also be biologically motivated. A Realizer might, for

example, forbid solutions that require a virtual human to gesture at speeds beyond

its physical ability.

7.1.5 Block Level Constraints

The scheduling attribute defined in the BML Block defines constraints on the start

of the block in relation to the set of current behaviors in the multimodal behavior

plan B and the current global time ct. Core BML defines the following scheduling

attributes:

1. merge: start the block at ct (equation 7.25).

2. replace: completely replaces the current behavior, start the block at ct (equa-

tion 7.26).

3. append: start the block directly after all behaviors in the current plan are

finished (equation 7.27).

schedulingattribute(bml1) = merge → blockstart(bml1) = ct (7.25)

schedulingattribute(bml1) = replace → blockstart(bml1) = ct (7.26)

schedulingattribute(bml1) = append → blockstart(bml1) ≥ ct∧
∀b ∈ B. f(b, end) ≤ blockstart(bml1)∧

((∃b ∈ B. f(b, end) = blockstart(bml1)) ∨ (blockstart(bml1) = ct))

(7.27)
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7.1.6 Additional Requirements of Scheduling

• Real-time: to ensure that BML can be sent to a Realizer in a continuous stream,

scheduling behaviors should be (preferably several times) faster than execut-

ing the behaviors.7

• Invariant to behavior ordering: for authoring consistency, the execution of be-

haviors should be the same, no matter their ordering within the BML block.

7.2 BML Scheduling Solutions

BML scheduling is the process of adding a BML block to the multimodal behavior

plan. This requires finding the timing of all sync points in all behaviors in the BML

block that is scheduled, subject to the constraints laid out in the previous section.

The scheduling problem can be phrased as a classic constraint optimization prob-

lem. Several BML Realizers have implemented schedulers to solve this problem (or

a subset of it, e.g., only the ‘at’ constraints). In this section, I discuss the generic

scheduling problem and the scheduling solutions of the SmartBody[280] and EMBR

[111] BML Realizers.8

7.2.1 BML Scheduling as a Constraint Optimization Problem

If cluster constraints are disregarded, the BML scheduling problem can be cast into

a classic constraint optimization problem:

minimize g(t) subject to Ci(t) ≤ ci, Cj(t) = cj, i = 1..n, j = n..m (7.28)

Where t is a vector containing time values for synchronization points in all behav-

iors. Ci(t) ≤ ci encodes an after or before constraint (for example: t1 − t2 ≤ 0
encodes that t1 should occur before t2). Cj(t) = cj encodes an equality constraint

(for example: t1− t2 = 0 encodes that t1 should at the same time as t2). The implicit

constraint defined in equations 7.13 and 7.15 are of a similar form and can also be

encoded in C = [C1..Cm].
Behavior specific constraints can be added (for example to enforce a minimum

duration of a behavior). g(t) defines the cost function of timing t. The cost function

could be used to select the ‘cheapest’ (in terms of behavior stretching/skewing, etc).

It could also be used to set up soft constraints.

The constraint optimization problem can be solved for finite domain values of

the elements of t (e.g. integer values, for example with a resolution of 10ms) using

constraint programming techniques. Several toolkits implement such techniques,

for example JaCop9 or Prolog.

7This constraint depends not only on the scheduling algorithm, but also on the speed of the
scheduling hardware.

8The authors of other Realizers do not provide public documentation of their scheduling solutions.
9http://jacop.osolpro.com/

http://jacop.osolpro.com/
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Alternatively, a solution to the optimization problem can be numerically approx-

imated, for example using standard numerical nonlinear constraint optimization

methods [88], for which several toolkits are available, such as the Open Optimiza-

tion Library10, Matlab’s optimization library [188] or SNOPT [274].

If cluster constraints are not taken into account, there is are an infinite number of

equally valid values for start time of each ungrounded cluster. There does not seem

to be a trivial way to cast the cluster constraints into the simple constraint form

required for a constraint optimization solver. However, since cluster constraints do

not modify time constraints within clusters, the constraint optimization problem can

be solved for each cluster separately and a simple algorithm can be used to combine

the clusters. Alternatively, the problem can be cast into a more generic constraint

programming problem. Such constraint programming problems can also be solved

by the toolkits mentioned above.

Constraint programming forms a nice conceptual framework for describing the

BML scheduling problem. However, using constraint solvers to solve the problem

might be computationally expensive. Furthermore, defining a cost function for the

naturalness of the resulting schedule is a challenging problem. Current schedulers

(including Elckerlyc) therefore apply some simplifications to the problem, trading

scheduling naturalness and expressivity (that is: they might disallow the scheduling

of certain valid BML blocks) for ease-of-implementation and scheduling computa-

tion time.

7.2.2 SmartBody Scheduling

SmartBody’s [280] scheduling algorithm assigns an absolute timing for syncs in each

behavior by processing the behaviors in the order in which they occur in the BML

block. Each behavior is scheduled to adhere to their BML block timing constraint

and the timing constraints posed by their predecessors in the BML block. If two time

constraints on a behavior require certain phases of that behavior to be stretched or

skewed, the scheduler achieves this by stretching or skewing the behavior uniformly,

to avoid discontinuities in animation speed. The scheduling mechanism can result

in scheduling some time constraints into the past (that is, before the start of the

BML block). A final normalization pass shifts, where needed, clusters of behaviors

forward in time to fix this. SmartBody cannot handle before/after constraints yet,

but does comply with all explicit constraints, implicit constraints, and cluster con-

straints that do not concern before and after constraints (constraints 7.8, 7.11,7.13-

7.15,7.24).

As the SmartBody scheduling algorithm schedules behaviors in BML order, the

resulting schedule may be dependent on the order of the behaviors in a BML block.

At worst, BML cannot be scheduled in one behavior order while it can be in another.

For example, the BML block in Figure 27b cannot be scheduled because the tim-

ing of the nod1 is determined first, and the scheduler attempts to re-time speech1 to

adhere to this timing. Most speech synthesis systems, including those used in Smart-

10http://ool.sourceforge.net/

http://ool.sourceforge.net/
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Body disallow such retiming. If the behavior order is changed, as in Figure 27a, then

speech1 is scheduled first, and nod1 will adhere to the timing imposed by speech1.

Since a head nod allows flexible retiming, scheduling of this re-ordered BML block

will succeed.11

BML Example 27 Two BML scripts demonstrating SmartBody’s order dependent

scheduling solution.

(a) BML script that can be scheduled using the SmartBody scheduling algorithm.

<bml id="bml1">

<speech id="speech1">

<text>Yes,<sync id="sync1"> that was great.</text>

</speech>

<head id="nod1" action="ROTATION" rotation="NOD"

start="speech1:start" end="speech1:sync1"/>

</bml>

(b) BML script that cannot be scheduled using the SmartBody scheduling algorithm.

<bml id="bml1">

<head id="nod1" action="ROTATION" rotation="NOD" start="speech1:start"

end="speech1:sync1"/>

<speech id="speech1">

<text>Yes,<sync id="sync1"> that was great.</text>

</speech>

</bml>

This failure of the SmartBody scheduling algorithm to scheduled behaviors in

one behavior order while achieving a schedule in another order is not limited to

BML blocks containing speech. BML Example 28 shows another example. The

stroke of behavior beat1 should occur at the same time as the stroke of nod1. nod1

should start at blockstart(bml1) + 3 and end at blockstart(bml1) + 5. If beat1 is

scheduled first, it is likely to constrain the stroke of nod1 in such a way that it

is before blockstart(bml1) + 3, thus violating its start constraint and resulting in a

scheduling failure. If however nod1 is scheduled first, all constraints can be achieved

and the BML block is scheduled without error.

The SmartBody scheduling algorithm might also fail when scheduling behaviors

that contain a cycle of ‘at’ constraints in combination with time offsets. BML Ex-

ample 29 illustrates this. Nod behavior nod1 is scheduled to start 2 seconds before

gesture g1 and end 3 seconds after gesture g2. Gestures g1 and g2 occur in se-

quence. If the gestures are scheduled first, the BML block is scheduled without a

problem. However, if the head nod is scheduled first, and its duration is shorter

than 5 (see BML Example 29b), then g1 and g2 can no longer be scheduled.

Furthermore, SmartBody provides no mechanisms to find the most natural skew-

ing/stretching solution if one is needed; it simply skews behaviors based on their

position in the BML block.

11To provide some error feedback on this scheduling peculiarity, the SmartBody parser enforces
BML authors to put all their speech behaviors at the front of the BML block.
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BML Example 28 SmartBody’s order dependent scheduling solution may fail on

behaviors other than speech.

(a) BML block that can be scheduled using the SmartBody scheduling algorithm.

<bml id="bml1">

<head id="nod1" start="3" end="5" action="ROTATION" rotation="NOD"/>

<gesture id="beat1" stroke="nod1:stroke" type="BEAT" hand="RIGHT"/>

</bml>

(b) BML block that cannot be scheduled using the SmartBody scheduling algorithm.

<bml id="bml1">

<gesture id="beat1" stroke="nod1:stroke" type="BEAT" hand="RIGHT"/>

<head id="nod1" start="3" end="5" action="ROTATION" rotation="NOD"/>

</bml>

BML Example 29 Failure to schedule a BML block containing a cycle and time

offsets using the SmartBody scheduling algorithm.

(a) BML block that can be scheduled using the SmartBody scheduling algorithm.

<bml id="bml1">

<gesture id="g1" type="BEAT">

<gesture id="g2" start="g1:end" type="BEAT">

<head id="nod1" repeats="5" start="g1:start-2" end="g2:end+3"

action="ROTATION" rotation="NOD"/>

</bml>

�� ��

����
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(b) BML block that might not be scheduled using the SmartBody scheduling algorithm.

<bml id="bml1">

<head id="nod1" repeats="5" start="g1:start-2" end="g2:end+3"

action="ROTATION" rotation="NOD"/>

<gesture id="g1" type="BEAT">

<gesture id="g2" start="g1:end" type="BEAT">

</bml>

����

��
��



Section 7.3 – Scheduling and Plan Representation in Elckerlyc | 139

That being said, the SmartBody scheduling algorithm is easy to implement and

provides rapid scheduling. In practice, most BML scripts are simple and the Smart-

Body scheduler will find a reasonable scheduling solution for such scripts.

It might be possible to solve the ordering issues of the SmartBody scheduling

by sorting the behaviors before scheduling them. As illustrated by the examples

above, sorting should at least take into account behavior rigidity, placement of ab-

solute constraints and occurrence of dependency loops, so implementing a sorting

algorithm is not trivial.

7.2.3 EMBR

EMBR uses a constraint programming technique to solve the scheduling problem

(in a similar way as proposed in Section 7.2.1). For ease of implementation it does

not implement cluster constraints and instead requires certain properties of the BML

blocks it can schedule:

1. The BML block should contain at most one speech behavior.

2. Each connected cluster of behaviors in the BML block is grounded.

The EMBR scheduler first solves the absolute value of all BML sync points in speech.

A timing constraint solver then solves the timing of only the nonverbal behaviors.

Synchronization constraints might require the stretching or skewing of behavior

phases as compared to the defaults in a behavior lexicon. The constraint solver uses

the sum of ‘errors’ (in seconds) of the stretch or skew over all behaviors as its cost

function. Thus it finds solutions in which the overall stretch/skew is minimized.

Unlike the SmartBody scheduler discussed above, the EMBR scheduler [111,

144] can schedule BML blocks containing before and after constraints and favors

solutions that result in more natural behavior (for EMBR’s measure of the natural-

ness: minimal overall behavior stretching/skewing).

7.3 Scheduling and Plan Representation in Elckerlyc

BMLT allows one to describe the synchronization of BML behaviors to anticipated

time events. It adds an append-after scheduling attribute that allows one to ap-

pend a BML block to a specific set of behaviors (rather than to all behaviors) in the

multimodal behavior plan. The additional constraints posed by this on Elckerlyc’s

behavior plan are described in Section 7.3.1.

Elckerlyc is designed specifically for continuous interaction. Its multimodal be-

havior plan is continually updated at execution time by Anticipator predictions, in-

terruption of ongoing behavior using interrupt behaviors and activation of new be-

haviors using Elckerlyc’s pre-plan/activation mechanisms. Elckerlyc’s flexible plan

representation allows these modifications, while keeping the constraints on the be-

havior plan consistent. Plan changes required by continuous interaction are speci-

fied in terms of behaviors and sync points in BML. To allow changes to the Motor



140 | Chapter 7 – Scheduling and Multimodal Plan Representation

Plan, Elckerlyc maintains information on how it relates to the original BML specifi-

cation that created it.

Currently Elckerlyc uses a slightly extended version of the SmartBody scheduling

algorithm for its scheduling. Elckerlyc is designed in such a way that this scheduling

algorithm can easily be changed by an alternative scheduling algorithm at a later

stage.

7.3.1 Additional Behavior Plan Constraints In Elckerlyc

7.3.1.1 Anticipator Constraints

Elckerlyc’s multimodal behavior plan is designed to allow micro adjustments in its

timing. Such time adjustments are steered by Anticipators. An Anticipator instanti-

ates synchronization points that can be used in BML blocks to constrain the timing of

behaviors. It uses perceptions of events in the real world to continuously update the

timing of its sync points, by extrapolating the perceptions into predictions of the tim-

ing of future events. An anticipator sync a is defined by a = [anticipatorid, syncid].
Constraint cant describes an ‘at’ constraint on sync with id s in behavior b at offset

o from the anticipator sync a.

cant = [[b, s], o, a] (7.29)

A sync point should be connected to at most one anticipator sync with an ‘at’ con-

straint.

Constraint canta describes an ‘after’ constraint on sync with id s in behavior b at

offset o from the anticipator sync a.

canta = [[b, s], o, a] (7.30)

Constraint cantb describes a ‘before’ constraint on sync with id s in behavior b at

offset o from the anticipator sync a.

cantb = [[b, s], o, a] (7.31)

In addition to a set of behaviors b, a set of sync points (pairs of behavior id and

sync id) s, a set of absolute constraints ca, a set of absolute before constraints cab
,

a set of absolute after constraints caa
, a set of relative constraints cr and a set of

relative after constraints cra , a BMLT block contains a set of anticipator syncs a, a

set of Anticipator constraints cant, a set of Anticipator after constraints canta and a

set of Anticipator before constraints cantb .

Anticipators provide a global time for their sync points. The function g : a → t

maps an Anticipator sync a to its global time t. The value of g(a) is completely

defined by the time prediction of a’s Anticipator. Anticipator constraints add the

following explicit constraint to the behavior plan:

∀[[b, s], o, a] ∈ cant. f([b, s]) + o = g(a) (7.32)
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∀[[b, s], o, a] ∈ canta . f([b, s]) + o ≥ g(a) (7.33)

∀[[b, s], o, a] ∈ cantb . f([b, s]) + o ≤ g(a) (7.34)

7.3.1.2 Cluster Constraints

Anticipators extend Elckerlyc’s notion of ‘grounding’. In Elckerlyc, a behavior is

grounded not only if it is connected to an absolute ‘at’ constraint but also if it is

connected to an Anticipator sync point. The DirectGround predicate is updated to

reflect this (see equation 7.35).

DirectGround(b) ≡ ∃o, s. [[b, s], o] ∈ ca ∨ ∃o, s. [[b, s], o, a] ∈ cant (7.35)

The predicate OnAbsAfterAntConstraint(b) expresses that the cluster contain-

ing behavior b satisfies one of its absolute anticipator ‘after’ constraints as an ‘at’

constraint.

OnAbsAfterAntConstraint([bmlid, behid]) ≡
∃[[b1, s1], o, a] ∈ caanta

. (([bmlid, behid] = b1∨
IsConnected([bmlid, behid], b1))∧

f([b1, s1]) + o = g(a))

(7.36)

The updated cluster constraint then becomes:

¬ IsGrounded([bmlid, behid]) →
OnBlockStart([bmlid, behid])∨

OnAbsAfterConstraint([bmlid, behid])∨
OnRelAfterConstraint([bmlid, behid])∨

OnAbsAfterAntConstraint([bmlid, behid])

(7.37)

7.3.1.3 Block Level Constraint

In addition to the Core BML merge and append scheduling attributes, BMLT pro-

vides the append-after(X) scheduling attribute. Append-after starts a BML block

directly after a selected set of behaviors (those from a BML block in X) in the current

behavior plan are finished (equation 7.38).

schedulingattribute(bml1) = append-after(X) →
blockstart(bml1) ≥ ct∧

(∀[bmlid, behid] ∈ B. bmlid ∈ X →
f([bmlid, behid], end) ≤ blockstart(bml1))∧

((∃[bmlid, behid] ∈ B. f([bmlid, behid], end) = blockstart(bml1)∧
bmlid ∈ X)∨

(blockstart(bml1) = ct))

(7.38)
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7.3.2 Elckerlyc’s Plan Representation

Elckerlyc’s multimodal behavior plan can be updated continuously at run-time: An-

ticipator timing updates modify the timing of behaviors synchronized to them, be-

haviors are removed from the plan or pre-planned behaviors are activated. Antici-

pator updates and interruption of behavior affects the timing of sync points of be-

haviors and/or the start time of the BML blocks they are in. To allow these updates

the multimodal behavior plan needs to be represented in a flexible manner.

Central to Elckerlyc’s plan representation is the Peg Board. The sync points of

each behavior in the multimodal plan are associated with a TimePegs on the Peg

Board. These TimePegs can be moved, changing the timing of the associated sync

point. If two sync points are connected by an ‘at’ constraint, they share the same

TimePeg. This TimePeg can then be moved without violating the ‘at’ constraint,

because this simultaneously changes the actual time of both sync points. TimePegs

provide local timing (that is, offset from the start of the block). Each TimePeg is

connected to a BMLBlockPeg, that provides a flexible representation of the start

time of a BML block. If the BMLBlockPeg is moved, all TimePegs associated with it

move along. This allows one to move the block as a whole, keeping the intra-block

constraints consistent (see Figure 7.2).

A dedicated BML Block management state machine automatically updates the

timing of the BMLBlockPegs in reaction to behavior plan modifications that occur

at run-time. It maintains the BML Block constraints described in Section 7.1.5 and

Section 7.3.1.3.

7.3.3 Resolving Constraints to TimePegs

Relative ‘at’ synchronization constraints that share a sync point (behavior id, sync

id pair) should be connected to the same TimePeg. That is: relative ‘at’ constraints

cr1 = [s1, s2, o] and cr2 = [s3, s4, p] are assigned to the same TimePeg if

s1 = s3 ∨ s1 = s4 ∨ s2 = s3 ∨ s2 = s4 (7.39)

The timing of constraint cr1 is offset by o − p from the timing of cr2. Such a fixed,

nonzero timing offset between relative ‘at’ constraints is maintained by an OffsetPeg.

An OffsetPeg is a TimePeg that is restrained to stay at a fixed offset to its linked

TimePeg. If the OffsetPeg is moved, its linked TimePeg moves with it and vice-versa.

If the start sync of a behavior is not constrained, an Engine may be asked to resolve

the start sync as an OffsetPeg. That is: the start sync of the behavior is linked to

the closest TimePeg connected to another sync point within the behavior (see BML

Example 30 for some examples of this). If this TimePeg is moved, the start of the

behavior is moved with it. If a behavior is completely unconstrained, a new TimePeg

is created and connected to its start sync. BML Example 30 shows how TimePegs

are resolved from an example BML constraint specification.

Each BML Block has its own associated BML Block Peg, that defines its global

start time. Each TimePeg is linked to one BML Block Peg that is used to determine its

global time offset. The TimePegs resulting from intra-block constraints specified in a
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BML Example 30 Resolving a BML constraint specification to a TimePegs specifica-

tion. A TimePeg tp1 connects relative ‘at’ constraints [[speech1, s1], [nod1, stroke], 0],
and [[speech1, s1], [point1, stroke], 0.5]. Another TimePeg tp2 is created for the ‘at’

constraint [[point1, start], [walk1, relax], 0]. Since the start time of speech1, nod1,

and walk1 is not constrained, they are attached to an OffsetPeg linked to the Time-

Peg that constrains the closest sync in the respective behaviors. The BML Block itself

(with id bml1) is connected to BMLBlockPeg bp1. All TimePegs are connected to this

BMLBlockPeg.
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<bml id="bml1">

<speech id="speech1">

<text>

As you can see on <sync id="s1"> this painting,

</text>

</speech>

<gesture id="point1" start="walk1:relax" type="POINT"

target="painting1_point1" stroke="speech1:s1+0.5"/>

<head id="nod1" action="ROTATION" rotation="NOD" stroke="speech1:s1"/>

<locomotion id="walk1" target="painting1"/>

</bml>
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Figure 7.2: Each BML block has its associated BMLBlockPeg. Internal constraints are linked to
TimePegs associated with this BMLBlockPeg. BML block bml1 contains a constraint
that is linked to an external TimePeg defined by an Anticipator (marked with *). BML
block bml2 has a constraint whose timing is defined by a TimePeg from BML block
bml1 (marked with +).

BML Block are all linked to the BMLBlockPeg for that specific block. Some behaviors

have constraints (and thus TimePegs) that are linked to external BMLBlockPegs,

from Anticipators or from other BML Blocks. TimePegs managed by Anticipators

are typically hooked up to a special, immovable global BMLBlockPeg which has a 0

global time offset. See Figure 7.2 for a graphical representation of these relations.

A first estimate of the time of a BMLBlockPeg is the time at which its scheduling

starts. This estimate is used when scheduling the behaviors in the block. When a

BML block is actually started (its state is set to IN EXEC), its BMLBlockPeg time is

updated to reflect the actual start time of the block. This does not affect the internal

constraints of the block.

7.3.4 Managing BML Block State

A state machine (see Figure 7.3) is used to efficiently maintain the BML block con-

straints 7.25-7.27 and 7.38. In addition to this, the state machine manages BMLT’s

SAIBA Behavior Planner shorthand for interrupt (see Chapter 6.6.8.3), the pre-

planning and activation of BML blocks and the BML and BMLT block level feedback.

I explicitly have modeled the state of each BML block. The names of the states
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Figure 7.3: BML block state chart. Transitions are labeled with trigger [guard] / effect

are inspired by Kopp and Wachsmuth[155]. A BML block starts out in a IN PREP

state, as soon as the Scheduler starts scheduling it. The Scheduler only schedules

one BML block at a time, and the blocks are scheduled in order of arrival at the

Scheduler. The SAIBA Behavior Planner is notified of the start of the schedule pro-

cess on a block with an ‘start scheduling feedback message’. First the block’s inter-

rupt targets are removed from the current behavior plan. If scheduling is finished,

a ‘scheduling finished feedback message’ is send to the SAIBA Behavior Planner. If

the block is to be pre-planned, it moves to the PENDING state and awaits activation

from subsequent BML blocks or activate behaviors. Otherwise it moves to the LURK-

ING state directly and waits for its append targets (if any) to be finished. Once all

append targets are finished, a block start feedback message is sent and the the be-

haviors within the block are executed. As the block is started, it activates its onStart

targets and the time of the block’s Block Peg is set to the current global time.

In the IN EXEC state, the state machine uses behavior progress feedback (see

Chapter 6.2.4) to keep track of the progress of all behaviors in the BML block it

manages. The BML block is finished if end feedback is received for all its behaviors

that are in the current multimodal behavior plan. If the block finishes, block end

feedback is sent and the block moves to DONE state. By matching the BML block

ending with the ending of all of its behaviors in the current behavior plan, rather
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than with the ending of all the behaviors it originally specified, the ending of the

block is found robustly when some of its behaviors are interrupted as it is being

executed. This ensures that the append targets of the block are started at their

appropriate times; that is: constraints 7.27 and 7.38 are automatically satisfied.

A block can be interrupted using the block interrupt shorthand in another block

(see also Chapter 6.6.8.3) at any time while in PENDING, LURKING or IN EXEC

state. An interruption in PENDING or LURKING state simply removes the block

from the plan. If the block is interrupted in IN EXEC state, a block end feedback

message is sent before removing it from the plan.

7.3.5 Scheduling in Elckerlyc

In Elckerlyc, scheduling consists of resolving the constraint in a BML block to Time-

Pegs (see Section 7.3.3), and assigning the TimePegs a first prediction of their ex-

ecution time. Elckerlyc’s main scheduling contribution is in its flexible behavior

plan representation described in Section 7.3.3 and 7.3.4; Elckerlyc currently uses

a simple scheduling algorithm based on that of SmartBody to assign time predic-

tions to the TimePegs. The architecture of Elckerlyc is set up in such a way that this

scheduling algorithm can be replaced by alternative and more flexible scheduling

algorithms (e.g. that of EMBR, or a another custom constraint solver) at a later

stage.

7.3.5.1 Scheduling Architecture

Elckerlyc models scheduling using an interplay between different unimodal En-

gines that provide the scheduler with detailed information on the timing of be-

haviors, given their BML description and time constraints. Elckerlyc’s multimodal

plan representation is managed using unimodal plans in each Engine. These uni-

modal plans contain TimedPlanUnits, whose timing is linked to TimePegs on the

PegBoard. Elckerlyc’s Scheduler communicates with these Engines (e.g. Speech En-

gine, AnimationEngine, see also Figure 7.4) through their abstract interface (see

below). It knows which Engine handles each BML behavior type.

Interfacing with the Engines Each Engine is required to implement functionality

to:

1. Add a BML behavior to its Plan.

2. Remove a BML behavior from its Plan.

3. Resolve unknown time constraints on a BML behavior, given certain known

time constraints.

4. Check which (if any) BML behaviors in the Plan are currently invalid.
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Figure 7.4: Elckerlyc’s scheduling architecture
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Note that an Engine can be queried for time constraints on behavior without adding

it to the plan. This allows a scheduler to try out multiple constraint configurations

on each behavior before it commits to a specific behavior plan. Also note that all

communication with the Engine is in terms of BML behaviors. It is up to the Engine

to map the BML behaviors to TimedPlanUnits. The validity check is typically used

to check if a valid plan is retained after an Anticipator moves certain TimePegs. All

implemented Engines check if the order of the TimePegs of each behavior is still

correct (constraint 7.15). Each Engine can also add validity checks specific to its

output modality. These checks are discussed in the section on the specific Engine in

Chapter 8.

Scheduling Algorithm The BML block management process discussed in Section

7.3.4 delegates the actual scheduling to a scheduling algorithm, using the strategy

pattern [83]. The scheduling algorithm assigns a first prediction of the timing of

each TimePeg, given the current multimodal behavior plan and a parsed BML block

that is to be scheduled. Elckerlyc is designed in such a way that the scheduling

algorithm can easily be changed at a later stage: the BML parsing and block progress

management are separated from the scheduling algorithm, and the Engines provide

generic interfaces that provide the scheduling algorithm with the timing of unknown

constraints on behaviors, given certain known constraints (see Section 7.3.5.1).

Elckerlyc’s current scheduling algorithm is based on the SmartBody Scheduler

(See [280], Section 7.2.2). The behaviors are sorted first, to avoid some of the

ordering issues that occur in SmartBody. The sorting achieves the following order

of behavior groups:

1. Rigid behaviors (e.g. synthesized speech) with one or more absolute ‘at’ con-

straints or Anticipator ‘at’ constraints. The timing of these behaviors is com-

pletely fixed.

2. All other behaviors that are not completely flexible.

3. Completely flexible behaviors (e.g. parametervaluechange), whose timing

should adhere to that of other behaviors.

Within groups 1 and 3, the behaviors remain in the order in which they occurred

in the BML block. A rigid behavior in group 2 that is connected at two different

sync points to a connected set of non-rigid behaviors (that is, it forms a cycle with

these behaviors), is ordered to be before these non-rigid behaviors. This ensures

that a rigid behavior in a cycle of behaviors is scheduled before its more flexible

behaviors. Other than this constraint, the behaviors in group 2 remain in the order

in which they occurred in the BML block. This sorting resolves some, but not all

of the scheduling order issues of the SmartBody algorithm. It fixes issues similar

to BML Example 27b, but not those that might occur in blocks with absolute ‘at’

constraints (as in BML Example 28b) or cycles and time offsets (as in BML Exam-

ple 29). By keeping the behaviors within the groups in their original order, it does

not introduce any ordering anomalies beyond those that would occur in the original

behavior ordering.
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The sorted behaviors are processed in this order using the SmartBody schedu-

ling algorithm. The timing of the first behavior in the BML block is constrained only

by its absolute time constraints, constraint references to external behaviors and by

constraints imposed by Anticipators. Subsequent behaviors are timed so that they

adhere to time constraints imposed by the already processed behaviors (including

those of previous blocks). Elckerlyc’s BML Parser lists all constraints on each be-

havior. Some of these constraints are resolved by already processed behaviors, but

others act on subsequent behaviors in the BML block and are yet unknown. Our

current scheduler delegates resolving these unknown time constraints directly to

the Engine of the behavior it is currently processing. Subsequently, the behavior on

which all time constraints are now resolved is added to its Plan.

7.3.6 Managing Adjustments of the Behavior Plan during Behav-

ior Execution

Once a BML block has been scheduled, several changes can occur to its timing at

execution time. Such changes are initiated by Anticipators and interrupt behaviors.

Elckerlyc’s flexible behavior plan representation allows such changes to occur, while

keeping the timing constraints on the behaviors intact. Plan changes and constraint

satisfaction after plan changes are achieved in an efficient manner, that is, without

requiring a time consuming scheduling action for minor plan adjustments.

The Anticipator notifies the Scheduler whenever its predictions change, and up-

dates the TimePegs. Since the sync points of behaviors are symbolically linked to

the TimePegs, the timing update is handled automatically and satisfies the explicit

constraints of Section 7.1.1. Many of such updates are minor and do not require

additional changes in the behavior plans. That is: the constraints 7.8-7.12 and 7.13-

7.15 remain satisfied. Since the BML Block management state machine dynamically

manages the block end, constraints 7.27 and 7.38 are automatically satisfied when

an Anticipator update changes the block ending. Elckerlyc currently allows minor

timing modification to violate the cluster constraints 7.24.

More significant updates might require re-scheduling of behavior on several mo-

dalities. To check if such an update is needed, the Scheduler asks each Engine if

its current plan is still valid: it checks if constraints 7.13-7.15 are satisfied. The

Scheduler then omits the behaviors that are no longer valid and notifies the SAIBA

Behavior Planner using the BML feedback mechanism. It will then be up to the

SAIBA Behavior Planner to update the behavior plan (using BML), if desired. As an

alternative to dropping the behavior, the Scheduler might decide to drop a violated

constraint and notify the SAIBA Behavior Planner of this with a warning feedback.

The latter is currently not implemented.

Interrupting a behavior in a BML block might shorten the length of the block.

Since the BML Block management state machine dynamically manages the block

end, constraints 7.27 and 7.38 are automatically satisfied, shortening the block

whenever this happens.

Currently Elckerlyc does not update the behavior plan to correct violations of the

cluster constraints 7.24 that might occur when one or more behaviors are removed
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from the behavior plan.

7.4 Discussion

Elckerlyc’s flexible behavior plan representation allows one to make microadjust-

ments to behaviors while keeping constraints between them intact. In Elckerlyc,

scheduling is modeled as an interplay between different unimodal Engines that pro-

vide detailed information on the timing of the behaviors that are to be realized.

The seperation of concerns between unimodal behavior timing, BML parsing, BML

block progress management and multimodal scheduling makes it easy to exchange

Elckerlyc’s scheduling algorithm by a different one as well as to add new modalities.

Thanks to the capability for on-the-fly plan adjustments, Elckerlyc is eminently suit-

able for virtual human applications in which a tight mutual coordination between

user and virtual human is required.

Currently, Elckerlyc cannot handle before and after constraints. In Section 7.4.1,

I outline the changes that have to be made to Elckerlyc to allow it to handle such

constraints while maintaining it flexible plan representation.

Allowing a scheduler to schedule multiple blocks at the same time (in different

scheduling threads) improves a Realizer’s responsiveness. Section 7.4.2 discusses

when two or more BML blocks can be scheduled independently and how this might

be implemented in Elckerlyc.

7.4.1 Handling Before and After Constraints

Currently, Elckerlyc cannot handle before and after constraints. To add this func-

tionality, Elckerlyc needs 1) a scheduling algorithm that takes into account before

and after constraints and 2) a plan representation that maintains before and after

constraints, while allowing micro adjustment in the timing of behaviors.

The scheduling algorithm in EMBR, discussed in Section 7.2.3 is able to handle

before and after constraints. This algorithm could be implemented in Elckerlyc as

an alternative SchedulingStrategy. In addition to providing before and after con-

straints, such an implementation would also test and enhance the Elckerlyc’s sche-

duling algorithm independence. To allow the implementation of EMBR’s scheduling

algorithm in Elckerlyc, the Engine’s interface needs to be extended with a func-

tion that provides the default timing for a BML behavior. Alternatively and more

generally, an Engine could provide the scheduling cost of enforcing certain time con-

straints on the realization of a behavior. A scheduling strategy can then aim to

minimize overall scheduling cost. EMBR’s scheduling algorithm is then a special

case of such a cost minimization strategy. It can be reproduced by providing each

engine with cost functions that measure cost as the deviation (in seconds) from the

default timing of a behavior.

A relative before or after constraint could be modeled by a pair of linked Time-

Pegs: a BeforePeg and an AfterPeg. If a BeforePeg is moved after its corresponding

AfterPeg, the AfterPeg should move with it to retain the before/after constraint. If
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the AfterPeg is moved in front of its corresponding BeforePeg, the BeforePeg should

move with it. Absolute before and after constraint could be handled by specialized

TimePegs that encode the absolute before/after offset and disallow moving Time-

Pegs beyond these offsets.

7.4.2 Multi-threaded Scheduling

Currently, Elckerlyc schedules one BML block at a time, and the blocks are scheduled

in order of arrival. This can potentially ruin the rapid interruptibility and adaptabil-

ity I strive for. The blocks that are to be scheduled form a scheduling queue. If a

new BML block is appended to the scheduling queue, it will not be scheduled until

the scheduling of the other blocks is finished.

However, it is not always necessary for a Realizer to schedule the BML blocks in

order. For example: if a new BML block is queued containing a smile behavior that

is to be merged instantly with some ongoing behavior, while pre-planning block that

contains some long speech segment is currently being scheduled, the scheduling of

the new BML block with the smile should not be delayed until the scheduling of

the (unrelated) other block is finished. Formally: scheduling of a BML block can

be started as soon as no dependent BML blocks are in front of it in the scheduling

queue.

A BML block bmlY is dependent on BML block bmlX if:

1. bmlY activates pre-planned BML block bmlX

2. bmlY is appended after bmlX

3. bmlY interrupts bmlX

4. one or more time constraints in bmlY refer to bmlX

5. one or more behaviors in bmlY refer to bmlX (currently only for interrupt

behaviors and parameter change behaviors)

All these properties can be checked by parsing (rather than scheduling) the BML

block.

Elckerlyc’s scheduler can be extended to a multi threaded Scheduler that spawns

new scheduling threads for all independent BML blocks in the queue. Whenever a

new BML block is added to the queue, or scheduling of a BML block is finished, the

Scheduler will check the current queue and spawn a scheduling thread for all BML

blocks that have no more dependencies on other unscheduled blocks.
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Chapter 8

Elckerlyc†

“Elckerlyc” is a BML Realizer for generating multimodal verbal and nonverbal be-

havior for virtual humans.1 A BML Realizer takes a specification of the intended

behavior (speech, gaze, gestures, etc.) of a virtual human – written in the Behavior

Markup Language (BML) [152], Chapter 6.2 – and executes this behavior through

the virtual human.

Elckerlyc builds upon several earlier projects with virtual humans that were car-

ried out in the Human Media Interaction (HMI) lab. During those projects, the need

became clear for a number of specific novel characteristics that were not available

in the virtual human platforms that we used. Using the experience gained in these

earlier projects, Elckerlyc was developed from the ground up as a state-of-the-art

BML Realizer.

The main design characteristics of Elckerlyc are that (1) it has been designed

specifically for continuous interaction with tight coordination between the behavior

of a virtual human and its interaction partner; (2) it provides an adjustable trade-off

between the control and naturalness offered by different animation paradigms (e.g.

procedural body animation and physical body animation; MPEG-4 facial animation

and morph-based facial animation), allowing the execution of the paradigms simul-

taneously; and (3) it has been designed to be highly modular and extensible and

allows adaptations and extensions of the capabilities of the virtual human, with-

out having to make invasive modifications to the Elckerlyc itself. Throughout this

Chapter I will demonstrate how these three design goals are achieved.

†This chapter is an extended version of the articles:
H. van Welbergen, D. Reidsma, Z.M. Ruttkay and J. Zwiers. Elckerlyc - A BML Realizer for continuous,
multimodal interaction with a Virtual Human, Journal on Multimodal User Interfaces, 3(4):271-284,
2010.
D. Reidsma and H. van Welbergen. Elckerlyc in practice – on the integration of a BML Realizer in
real applications, Proceedings of the 4th international conference on INtelligent TEchnologies for
interactive enterTAINment, 2011, In Press.

1“Elckerlyc” is the protagonist of a Dutch morality play with the same name, written at the end
of the Middle Ages. The name translates as “Everyman”; the protagonist represents every person, as
they make the journey towards the end of their life.
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8.1 Elckerlyc’s Predecessors

Several virtual human applications have been developed at the HMI group. Three of

these applications have been the most influential on Elckerlyc’s design: the Virtual

Presenter, the Interactive Virtual Conductor and the Interactive Virtual Dancer.

8.1.1 The Virtual Presenter

Figure 8.1: The Virtual Presenter.

The Virtual Presenter [303, 304] presents in monologues using synchronized speech,

pointing gestures, gaze, posture and sheet display (Figure 8.1). The gesture reper-

toire was later extended with iconic gestures using keyframe animation [142]. Ear-

lier virtual human applications developed at HMI used speech (as generated by a

Text-To-Speech synthesizer) to determine the timing on all other modalities. The

Virtual Presenter contributed a flexible presentation script that allows authors to

define which modality is leading, that is, which modality determines the timing of

the other modalities and to change the leading modality over time.

Some of Elckerlyc’s global architecture features were inspired by those in the

Virtual Presenter. Both the Virtual Presenter and Elckerlyc are platforms that steer

a virtual human using a multimodal behavior description. Both systems contain

a scheduler that communicates with unimodal planners to construct a multimodal

behavior plan. In the Virtual Presenter this plan was a rigid representation of the

behavior that is to be executed in a monologue. Elckerlyc contributes a flexible plan

representation that allows changes to the plan at run time, as required by continuous
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interaction applications. The biologically inspired gaze and pointing MotionUnits

developed for the Virtual Presenter (see Chapter 4.2 for implementation details) are

reused as custom procedural MotionUnits in Elckerlyc. The Virtual Presenter was set

up as a modular and extendible system. However, making use of this extensibility

required compile time changes in the Virtual Presenter itself. A source code fork of

the Virtual Presenter is still in use in HMI’s Virtual Guide [116], a virtual human

application that uses a turn-based dialog system for route explanations. It was hard

to maintain both systems in parallel, and as a result extensions and changes made

for the Virtual Guide were never ported back into the Virtual Presenter. Elckerlyc

resolves such maintenance issues by providing extensibility that does not require

one to modify Elckerlyc’s source, and thus does not require a fork of Elckerlyc to be

made for each virtual human application it is used in.

8.1.2 The Interactive Virtual Conductor

Figure 8.2: The Virtual Conductor, Photo: Henk Postma, Stenden Hogeschool

The Virtual Conductor [178, 229] is capable of leading, and reacting to, live

musicians in real time (see Figure 8.2). The conductor possesses knowledge of the

music to be conducted, and it is able to translate this knowledge into gestures and to

produce these gestures. The conductor extracts features through audio processing

algorithms as the music is played and reacts to them, based on knowledge of the

score. The reactions are tailored to elicit the desired response from the musicians.

In addition to indicating the beat, the conductor can provide style information, for

example using gestures that indicate that the music should be played louder/softer

or that provide an entrance cue.

Clearly, if an ensemble is playing too slowly or too fast, a (human) conduc-

tor should lead them back to the correct tempo. He can choose to lead strictly or

more leniently, but completely ignoring the musician’s tempo and conducting like

a metronome set at the right tempo will not work. A conductor must incorporate

some sense of the actual tempo at which the musicians play in his conducting, or

else he will lose control. If the musicians play too slowly, the virtual conductor will

conduct a little bit faster than they are playing. When the musicians follow, it will
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conduct faster still, till the correct tempo is reached again. In order to do this, the

Virtual Conductor continuously makes a prediction of how the musicians will be

playing in the next few beats, in order to coordinate its conducting behavior to their

music.

The Virtual Conductor implements a conductor specific ‘Behavior Planner’ (in

SAIBA terms). It manages a flexible conducting animation plan in which (predeces-

sors of) TimedPlanUnits are linked to (predecessors of) TimePegs. When the tempo

changes, the values in these TimePegs are updated by the Behavior Planner. The

conductor’s Behavior Planner adds to, rearranges and removes behaviors from the

plan continuously.

The Virtual Conductor’s Behavior Planner functionality inspired several speci-

fication and architecture components in Elckerlyc. The concept of alignment to

predictions inspired the Anticipator. Elckerlyc manages a flexible behavior plan for

the SAIBA Behavior Planner and provides it with specification mechanisms (through

BML) to specify the removal and addition of behavior.

8.1.3 The Interactive Virtual Dancer

Figure 8.3: Interacting with the Virtual Dancer

The Interactive Virtual Dancer (see Figure 8.3) is a virtual dancer that invites

a real partner to dance with her [230]. The Virtual Dancer dances together with

a human ‘user’, aligning its motion to the beat in the music input. The system

observes the movements of the human partner by using a dance pad to register

feet activity and the computer vision system to gain information about arm and

body movements. By responding to the way the human user is dancing, the virtual

dancer implicitly invites the user to react to her as well. At any point in time, the

virtual human in this application is both expressing herself (dancing to the beat),

and perceiving the user’s style of dancing. When the virtual dancer is in a ‘following’

mode she will break off dancing moves when they no longer fit in with the users style

and continue with better fitting moves. When in ‘leading’ mode she may introduce

dance moves with a completely new style in order to evoke reactions from the user.

To align its dance moves to the beat of the music, the Virtual Dancer requires

prediction of the tempo of the music it dances to. To this end, it uses the tempo

predictor originally developed for the Virtual Conductor. Dancing is animated using
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motion captured dance moves. These dance animations are annotated with sync

points that indicate where they should align with the beat in the music, and with

movement features (e.g. hands high, hands wide, feet wide, etc.). The latter an-

notations are used in dance movement selection. Like the Virtual Conductor, the

Virtual Dancer requires a flexible behavior plan, in which behavior is continuously

retimed (to the beat of the music) and replaced by other behavior (to allow tran-

sition to another dance move). The Virtual Dancer features a specialized Behavior

Planner (in SAIBA terms) that manages such a plan. Elckerlyc offers SAIBA Behav-

ior Planners of continuous interaction applications with standardized mechanisms

to manage such a flexible plan, so that similar plan management and Anticipator

functionality can be shared by each of them.

Transitions between dance animations were originally made using a combination

of interpolation and a procedural stepping motion. These transitions contained less

natural motion than the recorded dance movements, so the fewer transitions occur,

the more natural the motion would look. However, early experiments showed that

for a user to perceive that the Virtual Dancer acted in reaction to her movement,

rapid movement changes of the Virtual Dancer were essential. We needed to set

up a trade-off between the naturalness of long motion capture movements with few

transitions and the control (specifically: responsiveness) needed for rapid move-

ment changes. To this end we used long (≈ 20 second) mocap animations that were

annotated with transition points, indicating natural transition moments within the

animation. If no change in dance movement was needed, the dancer could sim-

ply execute its long mocap animation. However, if user behavior required a rapid

change in the dance movement of the dancer, she could rapidly do so by transition-

ing to another dance move at the first possible transition point in her current dance

animation.

8.2 Design Concerns

8.2.1 Continuous Interaction

Elckerlyc implements novel techniques to support real-time continuous interaction.

This requires the Realizer to be capable of adaptation – in content and in timing

– to the dynamics of the environment and the user. Time adaptations often re-

quire synchronizations to predicted time events (for example the predicted end of a

user’s speaking turn, or predicted key time moments in a user’s exercise motion, see

Chapter 6.5 for some detailed scenarios). This Chapter discusses the Anticipator;

a generic architecture element that provides such predictions. Elckerlyc’s flexible

behavior plan representation that allows flexible microadjustments in the timing of

behavior is discussed in Chapter 7.
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8.2.2 Naturalness and Control

In Chapter 2 several control aspects were identified. For a virtual human that com-

municates with a user using gesture and speech, expressiveness and precision are im-

portant: gesture typically requires many control parameters, and is tightly synchro-

nized with speech. Continuous interaction adds responsiveness, that is rapid reaction

to the behavior of interlocutors, as another required control aspect. The animation

paradigms used should provide control parameters that allow intuitive control. For

different motion types, different control parameters are intuitive. For example, for

a gesture, parameters that modify the trajectory (e.g. amplitude, spatial extend)

can provide intuitive control, but for a motion describing a loosely hanging arm

parameters such as muscle stiffness and damping are more intuitive.

The procedural animation used in gesturing virtual humans often lacks natural-

ness. The generated motion does not involve the whole body in a coherent manner2

and does not seem to respect the laws of physics. Elckerlyc’s animation system is

designed to allow the mix of the physical naturalness provided by physically realis-

tic animation with the control provided by procedural animation. This allows one

to mix procedural arm and head gestures with physical simulation of the rest of

the body. The forces generated by the gesturing body parts are transfered to the

physically simulated body parts, thus creating whole body animation that appears

to respect the laws of physics in a more believable manner and that is internally

coherent (that is: the movement of the physically steered body parts is affected by

the movement of the procedurally steered ones).

8.2.3 Abstraction, Modularity and Extensibility

Virtual human platforms such as Elckerlyc are used by a multi-disciplinary research

community – consisting of computer scientists, (computational) linguists, psychol-

ogists, and others – interested in studying multimodal human behavior in human-

human and human-machine interaction. Using quick prototyping of gestures, facial

expressions and body movements, they build virtual humans that display human-

like behavior. This multi-disciplinary community has a very wide range of require-

ments with respect to the level of abstraction provided by, for example, Elckerlyc.

Some users need access to its functionality only in terms of the possible behaviors

that the virtual human can display, abstracting away from the details of underly-

ing animations. Others need to exercise detailed control over the exact form of the

behaviors that they want to study. To achieve such a separation of concerns, HMI

has at a very early stage joined the SAIBA (Situation, Agent, Intention, Behavior,

Animation) initiative, and in particular the development of the emerging Behav-

ior Markup Language standard (BML) [152, 298]. The SAIBA initiative provides,

amongst other things, a view on the architectural issues of building a fully func-

tional virtual human with different layers of abstraction. Within this context, BML

is a markup language that allows one to specify the different behaviors that a virtual

2Typically some Perlin noise is used to move body parts that are not involved in the gesture in a
random manner unrelated to the movement of the gesturing body parts.
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human should execute (such as speech, gestures, poses, and gaze), together with

their synchronization.

An application that uses a virtual human as one of its components might have

several requirements for the BML Realizer. Specific additional gestures and face

expressions might be needed; the application might need to run distributed over

several machines; the experimenter might need detailed logs of everything that the

virtual human does; one might want to replace the graphical embodiment of the

virtual human, or its voice; the embodiment of the virtual human might need to

reside in a custom game engine instead of in Elckerlyc’s default render engine; and

one might need to plug in completely new custom behaviors and modalities for a

specific usage context.

Developing extensions or alternative configurations of Elckerlyc should be pos-

sible without requiring changes to the core Elckerlyc system (that is, extensions

should not require re-compilation of the Elckerlyc source). After all, if Elckerlyc

extensions lead to a modification of Elckerlyc itself, then this would essentially lead

to a separate Elckerlyc fork for every application using Elckerlyc. This would make

it difficult to share new extensions with the community. Also, once Elckerlyc has

been forked to accommodate a new modality engine or behavior type, it becomes

difficult to take advantage of improvements in the ‘core’ Elckerlyc source: they need

to be painstakingly merged into the fork.

Below follows a number of requirements for Elckerlyc, concerning possibilities

for extension or adaptation, that will be discussed later in more detail. These are all

what we call non-invasive modifications: Some of them entail the implementation of

new run-time libraries, others only the addition of new resources; but none of them

require compile time dependencies for Elckerlyc on new code.

• On the output side, provide integration with new or existing render envi-

ronments, speech synthesis software, physical simulators, sound generators,

etcetera.

• On the input side, provide flexible ways to send BML to the Realizer, and to

adapt the BML stream with capabilities for filtering and logging.

• Provide a transparent mapping from input (BML behavior elements) to output

(control of the virtual human’s embodiment).

• Provide possibilities to add new behavior types or output modalities.

• Provide easy ways to integrate a BML Realizer as a component in an applica-

tion, independent of variables such as the OS and programming language on

which the application is developed.
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8.3 Related Work

8.3.1 BML Realization

As already discussed in detail in Chapter 6.2, the Behavior Markup Language (BML)

provides a general, Realizer-independent description of multimodal behavior that

can be used to control a virtual human. BML expressions (see Figure 8.4 for a short

example) describe the occurrence of certain types of behavior (facial expressions,

gestures, speech, and other types) as well as the relative timing of the involved

actions [152] (see Figure 8.5 for a the standard synchronization points that are

used for this).
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Figure 8.4: An example of a BML request containing a gaze and a speech behavior. A synchroniza-
tion constraint ensures that the speech starts after the gaze is aimed at the audience.

Figure 8.5: Standard BML synchronization points

Elckerlyc is a new BML Realizer. Recently several other BML Realizers have

been developed [54, 63, 111, 280, 281], and existing frameworks for multimodal

behavior generation are being modified to support BML [104, 155]. These Realizers

are typically used in turn-based interaction applications or are (also) employed off-

line, for instance in the reproduction of annotated behavior of real humans [111].
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Since these Realizers are not specifically designed for continuous interaction they do

not support timing or shape adjustments of behaviors that are already in the play

queue.

Body animation is specified by parameterizable keyframes and end effector mo-

vement trajectories [54, 104, 111], procedural controllers that support emotional

parameterization [104, 111], keyframe animation created by artists [280], mo-

tion capture [54, 111, 280], or using biomechanical models of human movement

[54, 155, 280].

Facial animation is typically specified using either MPEG-4 [54, 63, 104] or face

morphing [111]. SmartBody [280] is a noticable exception: it allows both face

morphing for the animation of visemes and skeleton-based facial animation.

Elckerlyc adds physical simulation as another body animation paradigm. Facial

animation in Elckerlyc can be steered by both morph targets and MPEG-4. Elckerlyc

allows all these facial and body animation paradigms to be used together, both in

parallel and sequentially.

My focus is thus not solely on creating animation using one of these paradigms,

but also on designing a Realizer that can make use of – and combine – animation

generated by each of them. Such a Realizer provides an adjustable trade-off between

the naturalness and control provided by different animation paradigms.

8.3.2 Continuous Interaction

Continuous interaction needs flexible planning and behavior synchronization and

anticipation, not only to internal modalities but also to the environment and partic-

ipants in the interaction.

Thórisson [284] describes an interactive cartoon character engaging in an in-

formation exchange with the user. In their Ymir system, perception and behavior

generation are parallel and ongoing all the time, and behavior plans can be modified

last-moment in response to new perceptions and decisions. In Ymir, this flexibility is

achieved by incrementally sending small blocks of behavior to an Action Scheduler

that executes them ballistically. Elckerlyc’s behavior execution process never enters

a ballistic stage and it can therefore achieve a finer interruption and coordination

granularity than Ymir.

Loyal et al. [177] describe a system that allows the authoring of highly in-

teractive motion and demonstrate their approach in an interactive game with a

personality-rich character. The behavior of this character is tightly coupled to chan-

ges in the environment (a bouncing ball, moving mouse, etc.), also with respect to

the exact timing. Continuous changes and the unpredictability of this environment

require flexible animation planning and execution processes. This is achieved by

animating their character using a flexible mechanisms that can interrupt keyframe

animation segments and fluently concatenates them.

Like Loyal et al.’s system Elckerlyc offers synchronization to the anticipation of

user behavior (e.g. what is the tempo that the musicians are playing in). This is

not just relevant for games or for a virtual conductor, but also necessary for general

conversational capabilities of a virtual human (see Chapter 5, [284]). Elckerlyc
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implements more complex behavior realization than [177], adding a modality for

speech and physically specified animation and allowing internal synchronization

between modalities.

8.3.3 Mixed Dynamics

Mixed dynamics combines the precision of kinematic animation (including proce-

dural animation) on certain selected body parts, with the naturalness of physical

simulation on the remaining body parts, in a physically coherent manner. It was pi-

oneered by Isaacs et al. [123]. Mixed dynamics uses inverse dynamics to determine

joint torques on kinematically steered body parts. These torques are transferred to

the physically steered body parts. In addition to being affected by joint torques from

kinematic joints that are connected to physical body parts, the physical body is af-

fected by gravity, collision impulses, friction forces and joint torques from the phys-

ical controllers that steer it. Isaacs et al. use a custom designed physics simulator to

achieve this. My mixed dynamics algorithm builds on their ideas, and extends them

by using efficient iterative techniques to calculate in real time the torques exerted by

the kinematically steered joints and by providing easy integration with existing real-

time physics simulators. However, unlike Isaacs et al.’s system, Elckerlyc currently

requires the physical simulation (if active) to act on only one subtree of the skele-

ton, which must include the root joint. I refer the interested reader to Chapter 2

for an extensive overview of real-time animation techniques for mixed dynamics

and physical simulation and Chapter 3 for a thorough comparison of those methods

with mine.

Other hybrid physical simulation/kinematic systems have been designed to allow

switches between full-body kinematic animation and full body physical simulation

and vice versa, depending on the current situations’ needs (see Chapter 2.3.2.4 for

an overview). Rather than doing full body switches, I contribute a hybrid method

that allows switching to a different mix of physically and kinematically steered joints

in real time.

8.3.4 Extensibility of Existing Realizers

Like Elckerlyc, the BML Realizers SmartBody [280], EMBR [111] and Greta [104]

were specifically designed for integration with an existing renderer, to allow a

wide range of behavior types, and/or to facilitate integration in different applica-

tions. Elckerlyc additionally contributes a transparent and adjustable mapping from

BML to PlanUnits (rather than the mostly hard coded mappings employed in other

Realizers), and allows for easy integration of new modalities and embodiments,

for example to control robotic embodiments. In this section, I discuss how various

requirements were solved for the three Realizers mentioned above, and shortly indi-

cate the differences with Elckerlyc’s solutions. Section 8.16 discusses the solutions

used in Elckerlyc in detail. Chapter 10 shows some examples of how Elckerlyc’s

extensibility features impact actual use in new applications.
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8.3.4.1 Integration with Existing Renderers

SmartBody provides the BoneBus library to connect the SmartBody Realizer to a

renderer. BoneBus is a C++ library that uses UDP to transport (facial) bone po-

sitions and rotations from the Realizer to the renderer. BoneBus is designed to

hide the details of the exact communication protocol used, so that its exact imple-

mentation can be changed at a later stage without changing Realizers or renderers

that use the library. Because the data transport protocol is non-trivial and due to

change, re-implementing BoneBus in programming languages other than C++ or

using the BoneBus interface with other transport mechanisms (TCP/IP, shared mem-

ory, etc.) is infeasible. Currently, SmartBody has been integrated with the Unreal

2.53 and Panda3D4 (in CADIA’s branch of SmartBody) renderers; partial integrations

are available for Ogre5, Gamebryo6 and Half-Life 2.7

The output of Greta contains MPEG-4 facial and body action parameters. By

using the MPEG-4 standard, Greta can potentially be used with any renderer that

supports MPEG-4. However, MPEG-4 –especially for body animation– is not widely

supported by existing renderers.

Elckerlyc currently uses the Thrift remote procedure call (RPC) framework [272]

to handle its communication with the renderer. Unlike the BoneBus library, this

allows the setup of a communication channel that is agnostic to the programming

language used on either side and that allows one to configure and change the mode

of transport (e.g. TCP/IP, shared memory, pipes).

8.3.4.2 Available Behavior Types and Extensibility

SmartBody uses both keyframe animation and a fixed set of biologically motivated

motion controllers (e.g. for gaze) to achieve facial and body motion. EMBR uses

keyframe animation, procedural animation with a fixed set of expressive parameters

(comparable to those used in Greta), autonomous motion (such as eye blink and

balancing), morph targets for facial animation, and controllable shaders (e.g. for

blushing). Greta uses procedural body animation that is parameterized by a fixed

set of expressivity parameters. Facial animation is specified using Ekman’s action

units [71].

Elckerlyc allows the use of all of the above animation types, and adds physically

simulated animation and audio (sound effect) behaviors. More importantly, we con-

tribute the ability to add custom behavior types and new output modalities without

requiring modifications to Elckerlyc’s source code, described in Sections 8.16.1 and

8.16.2.

3http://www.unreal.com/
4http://www.panda3d.org/
5http://www.ogre3d.org/
6http://www.emergent.net/
7http://www.valvesoftware.com/

http://www.unreal.com/
http://www.panda3d.org/
http://www.ogre3d.org/
http://www.emergent.net/
http://www.valvesoftware.com/
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8.3.4.3 Integrating the Realizer as a Component in an Application

SmartBody offers integration with the Active MQ8 messaging system to provide in-

dependency of platforms and programming language, and to allow running the

Realizer on a separate machine. EMBR and Greta offer integration with the SE-

MAINE/Active MQ [257] messaging frameworks to achieve this; Greta additionally

offers integration with Psyclone.9

Elckerlyc uses Ports and Adapters to facilitate quick development of support

for new types of integration; current implementations include support for the SE-

MAINE/Active MQ system and a simple direct TCP/IP connection. Section 8.16.3

discusses this in detail, and touches upon several other things made possible by this

architectural feature.

8.4 Example Application

HMI’s Virtual Conductor (see Section 8.1.2) will be referred to throughout this

chapter as a running example explaining aspects of the Elckerlyc BML Realizer. Al-

though it was originally built when Elckerlyc had not yet been developed, the core

elements of the virtual conductor have found their way into Elckerlyc. Video ma-

terial showing elements described in the running example can be found at http:

//thesis.herwinvanwelbergen.nl/.

Running example 1: The Virtual Conductor

The interactive virtual conductor is a virtual human that can interactively conduct an

ensemble of human musicians. It chooses, schedules, and performs the right conducting

movements for a given piece of music. The right hand is almost always indicating the

beat; the left hand is often loosely hanging down, but is also used to make additional

gestures such as entrance cues. While conducting, audio processing is used to perceive

the music being performed. When the musicians play too fast or too slowly, the conduc-

tor will change the timing of its planned beat gestures to lead them back to the right

tempo. The conductor can add gestures on the fly while playing (e.g. “play louder”

when the music is too soft), or stop the piece when the music is not good enough.

Of course, any virtual human needs to be able to plan multi-modal behavior, and

to extend or change the planned behavior based on its perceptions. In conversa-

tions, people also subtly adapt their timing to each other (see Chapter 5). Currently,

HMI is developing a research application that will be very close to the virtual con-

ductor with respect to these timing changes: the reactive virtual trainer. The virtual

(fitness) trainer will perform an exercise together with a human user in a certain

tempo. Since the user will not necessarily perform the exercise with robotic pre-

cision, the virtual trainer needs to be able to adapt the timing of its behavior (the

8http://activemq.apache.org/
9http://www.cmlabs.com/psyclone/

http://thesis.herwinvanwelbergen.nl/
http://thesis.herwinvanwelbergen.nl/
http://activemq.apache.org/
http://www.cmlabs.com/psyclone/


Section 8.5 – Architecture | 165

movements of the exercise as well as accompanying explanations and motivational

utterances) to the timing with which the user performs the exercise.

8.5 Architecture

Elckerlyc’s architecture is based upon the SAIBA Framework [152], which contains a

three-stage process: communicative intent planning, multimodal behavior planning,

resulting in a BML stream, and behavior realization of this stream (see also Chapter

5.4). Elckerlyc encompasses the realization stage.

Running example 2: The Virtual Conductor

In the virtual conductor system, the intent planning focuses on the musical interaction:

if the musicians play too softly, signal them to play louder; if the musicians play very

badly, stop the piece; if they are too slow, try to correct their timing; etcetera. The

behavior planning uses a many-to-many mapping from intent to behaviors: given a

communicative intent, it selects one of the possible behaviors (gesture, body movement,

head movement) to express this intent.
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Figure 8.6: Architecture of the Elckerlyc BML Realizer, together with the SAIBA Intent Planner
and the SAIBA Behavior Planner which make up the other two parts of the SAIBA
framework

Figure 8.6 shows Elckerlyc’s global architecture, and indicates its relation to the

overall SAIBA framework. The main information flow goes from the SAIBA Behav-
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ior Planning module to the Realizer, in the form of a BML stream. A feedback loop

communicates backwards from the Realizer to the SAIBA Behavior Planner. The

Realizer notifies the SAIBA Behavior Planner when a behavior is successfully ex-

ecuted and warns it if a particular behavior cannot (or: no longer) be executed.

The latter typically occurs when unexpected events occur that prohibit successful

realization or, in Elckerlyc, when predictions of user behavior are revised drastically

(see Chapter 7.3.6). The SAIBA Behavior Planner will have to deal with situations

where the original plan is no longer feasible.

Behavior scheduling determines the synchronization of the behaviors within and

between modalities and distributes the different behaviors over appropriate Engines

(e.g. SpeechEngine, AnimationEngine). Each Engine subsequently executes the be-

haviors through one or more Embodiments (for example, a SkeletonEmbodiment

containing the skeleton representation of the virtual human or an AudioEmbodi-

ment containing the audio channel it may use), using the appropriate control prim-

itives values for that embodiment (for example: joint rotations for SkeletonEmbod-

iment, audio for the AudioEmbodiment).

The Engines act independent of each-other; the timing constraints between the

behaviors they manage is maintained through the PegBoard. One exception to this is

the TTSEngine, which requires access to the AnimationEngine and the FaceEngine

to add the speech animations (lip and mouth movement) to their (facial) anima-

tion plans. Some Engines (e.g. the InterruptEngine) have access to the Scheduler,

allowing them to change or remove ongoing behavior in other Engines.

8.5.1 Continuous Interaction

Elckerlyc has been designed specifically for continuous interaction, in which the be-

havior of the virtual human is adapted continually to the behavior of the interaction

partner.

Running example 3: The Virtual Conductor

In the continuous reactive and anticipatory interaction between conductor and ensem-

ble, the behavior plan that was initially constructed from the score needs to be adapted

all the time. Some changes merely require re-timing, e.g. in order to provide tempo

feedback to the ensemble, or can be solved simply by adding an extra behavior: add an

appreciative nod or smile; conduct two-handed when the ensemble is not paying atten-

tion. Other changes are larger and require substantial modifications. An example of

the latter is when the conductor stops in the middle of the piece, because the ensemble

completely messed up the music. In this chapter I focus on the timing adaptation of

ongoing behavior, since that requires specific capabilities in the Realizer.

As Running Example 3 suggests, some changes to scheduled behavior only con-

cern the timing, and should not lead to completely rebuilding the animation plan.

Small adaptations of the timing of scheduled behavior are not specific to conduc-
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tors, but also occur in other interactions. Elckerlyc offers detailed temporal control

over the execution of scheduled behavior.
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Figure 8.7: TimePegs, Anticipators and Multimodal Synchronization in Elckerlyc.

To achieve this detailed temporal control, I introduced TimePegs and Anticipa-

tors (Figure 8.7). The behavior of the virtual human is specified in a stream of

BML elements (called behaviors). Synchronization of the behaviors to each other

is done through BML constraints that link synchronization points in one behavior

(start, end, stroke, etc; see also Figure 8.5) to synchronization points in another

behavior. The Peg Board maintains a list of TimePegs – symbolically linked to those

synchronization points that are constrained to be on the same time – together with

the current expectation of their actual execution time (which may change at a later

time). Interaction with the world – and conversation partner – is achieved through

Anticipators. An Anticipator instantiates synchronization points that can be used in

the BML stream to constrain the timing of behaviors. It uses perceptions of events

in the real world to update the corresponding TimePegs, by extrapolating the per-

ceptions into predictions of the timing of future events.

Running example 4: The Virtual Conductor

For the virtual conductor, an Anticipator has been implemented that predicts the tempo

with which the musicians play the music (using audio processing algorithms described

elsewhere [229]). It provides TimePegs to Elckerlyc that represent the predicted beats.

The BML stream for the conductor specifies the appropriate conducting gestures for a
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piece of music, and their timing. If the musicians play too slowly, the conductor would

like to increase the tempo. A subtle technique to achieve this is to conduct in the same

tempo as the musicians are playing, but slightly ahead of them, so they constantly have

the feeling of being ‘too late’. This is done by aligning the conducting gestures to the

TimePegs for the predictions of the Anticipator, but slightly ahead of them (see also BML

Example 31).

BML Example 31 Example script which uses a conducting Anticipator. Two synchro-

nization points in the conduct1 behavior (conduct1:start and conduct1:beat2) are

synchronized to desired conducting beats provided by the Conducting Anticipator.

<bml id="bml1">

<gesture id="conduct1" hand="BOTH"

type="LEXICALIZED" lexeme="3-beat"/>

<constraint id="c1">

<synchronize ref="conduct1:start">

<sync ref="anticipators:conductingAnticipator:beat1"/>

</synchronize>

<synchronize ref="conduct1:beat2">

<sync ref="anticipators:conductingAnticipator:beat2"/>

</synchronize>

</constraint>

</bml>

For smooth turn-taking purposes, an Anticipator could be designed that can pre-

dict relevant positions to take the turn from user behavior observed through sensors.

However, designing these kinds of Anticipators is challenging, no off-the-shelf sys-

tems are available.10 To demonstrate and test Elckerlyc’s continuous interaction

capabilities, I have implemented a few simple Anticipators. The Metronome An-

ticipator, as demonstrated in the webstart, ‘predicts’ beats of a metronome. The

metronome tempo can be adjusted in the user interface while the behavior (linked

to its TimePegs) is playing, modifying the timing of this linked behavior in real time.

A Spacebar Anticipator was created for specifying behavior that reacts immediately

to a spacebar press or release. Unlike the previously mentioned Anticipators, the

spacebar Anticipator does not provide event prediction, but simply sets the time of

a TimePeg to the time of a spacebar press or release.

Other, more application specific, Anticipators were developed for the Virtual

Trainer (to predict the user’s exercise tempo) and for the Virtual Conductor (to

predict the musician’s playing tempo). These are discussed in Chapter 10.

10See Chapter 12.2.2 for possible implementations.
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8.5.2 Naturalness and Control

8.5.2.1 Body Animation

Elckerlyc makes use of motion captured motion, procedural animation, and physical

simulation to steer the movement of the virtual human. Physical simulation pro-

vides physically realistic motion and (physical) interaction with the environment.

In Chapter 2, I argue that physical realism is one of the aspects of natural motion.

Physical controllers can robustly retain or achieve desired movement states (joint

rotation, center of mass position, etc.) under the influence of external perturbation.

This robustness comes with a disadvantage: precise timing and limb positioning us-

ing physical controllers is an open problem (see also Chapter 2.3.1.5). Procedural

animation offers precise timing and limb positioning and can make use of many mo-

tion parameters. However, it is hard to incorporate movement details such as those

found in recorded motion into the mathematical formulas that steer procedural an-

imation. Furthermore, to maintain physical realism, it has to be explicitly authored

in the procedural model for all possible parameter instances. Motion (capture) edit-

ing techniques retain the naturalness and detail of recorded motion. However, these

techniques produce natural motion only when the modifications are small, and the

number of required recordings grows exponentially with the number of motion pa-

rameters used. Chapter 2 discusses the naturalness and control offered by different

animation techniques in greater detail.

Elckerlyc offers a mix between, on the one hand, the precise temporal and spatial

control offered by kinematic animation techniques such as motion capture, keyframe

animation and procedural animation, and, on the other hand, the physical realism

of physical simulation. Elckerlyc can steer a virtual human using kinematic ani-

mation and physical simulation. These two paradigms can be used in parallel on

different body parts, and the assignment of body parts to one of the paradigms

can be modified on the fly. I model the force transference from body parts that

are kinematically animated to the physically simulated part of the body, increasing

the perceived physical realism and physical coherence of the resulting motion. The

possibility to specify animation both kinematically and physically also allows one to

select the paradigm that is the most intuitive to author for each required animation.

Physical interaction with the environment, for instance balancing, is hard to author

procedurally, but relatively easy to author using physical controllers in a physically

simulated environment. Gestures, on the other hand, need to adhere to strict timing

and spatial constraints and typically make use of many control parameters. They are

therefore better defined procedurally (see also Chapter 2).

8.5.2.2 Facial Animation

Elckerlyc can make use of morphing and MPEG-4 facial animation simultaneously.

Morphing involves interpolation between the vertex positions of different face mes-

hes of the same face designed by an artist. For each new face expression a new

mesh needs to be created. Furthermore, morph-based animation cannot be shared

between different faces. The MPEG-4 facial animation standard describes animation
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as the movement of facial feature points. The feature point locations and move-

ments are defined in a face independent manner, so that MPEG-4 configurations

can be reused on different faces. This allows the use of automatic mappings from

face muscle movements and emotions to MPEG-4 (see also Section 8.8). How-

ever, animation created using such an automatic mapping is often less natural than

morph-based animation, because the morphs are designed by skilled artists that

were able to take face specific idiosyncrasies into account.

In typical application scenarios of Elckerlyc, morphing is used whenever a small

set of facial configurations suffices; for example for eye blinking and viseme (visual

phoneme) animation. Other face animations are implemented using MPEG-4.

8.5.3 Modularity and Extensibility

Modularity and extensibility were explicit requirements in the design of Elckerlyc.

Figure 8.6 shows the relevant parts of the architecture for extensibility and mod-

ularity. Dashed boxes indicate components that can be changed at initialization,

black boxes indicate unchangeable components.

The SAIBA Behavior Planner controls the virtual human by sending a stream

of BML Blocks to Elckerlyc through a BML Realizer Port. Section 8.16.3 discusses

how Ports can be used, for example, to integrate Elckerlyc with various distributed

messaging systems. The Parser parses the incoming BML stream. It provides the

Scheduler with a list of BML behavior elements and time constraints between these

elements. Section 8.16.1 discusses how to add custom BML behavior elements. The

Scheduler generates an execution plan, based on these elements and constraints.

Different Engines (e.g., a TTSEngine, an AnimationEngine, a FaceEngine) keep track

of and manage unimodal plans for their specific modality. Section 8.16.2 discusses

how to add new Engines. The Scheduler does not need to know about the inner

workings of an Engine (other than that it implements the Engine interface defined

in Chapter 8.6), it only knows which Engine was registered for certain behaviors.

This allows one to add or replace Engines easily. Engines are also responsible for

translating behavior elements to a form that is actually displayed on the Embodi-

ment of the Virtual Human. Section 8.6.1 discusses how this mapping from abstract

behavior element to concrete forms can be configured in a flexible manner within an

Engine. Section 8.16.4 discusses how to connect a new Embodiment to an existing

Engine.

8.6 Engines

In the Scheduling stage (see Figure 8.6), multimodal behavior described in a BML

stream is converted into Plans that are to be executed by different Engines, as al-

ready indicated in Section 8.5.3. The Scheduler has access to several Engines (e.g.

SpeechEngine, AnimationEngine, see also Figure 8.6) with which it communicates

only through the interface defined below. The scheduler knows for each behavior

type which Engine handles it. Each Engine must implement the Engine interface
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Figure 8.8: The architecture of an Engine. Dashed objects are configured at initialization time.

(indicated by the lollipops in Figure 8.8): an Engine is required to implement func-

tionality to:

1. Provide a list of BML behaviors types the Engine supports.

2. Add a BML behavior to its Plan.

3. Resolve unknown time constraints on a BML behavior, given certain known

time constraints.

4. Check which (if any) behaviors in the Plan are currently invalid.

5. Play the current Plan (at a certain time).

6. Interrupt a behavior.

7. Interrupt all behaviors in a BML block.

8. Get the (predicted) end time of a behavior in the behavior plan.

9. Get the current value of a parameter in a certain behavior.

10. Set the value of a parameter in a certain behavior.

Functions 1-4 are used in the Scheduling process, which is discussed in detail in

Chapter 7.3.5.1. Functions 6-10 provide the functionality required to continuously

modify the multimodal behavior plan as it is being played.

Elckerlyc’s current Engines are implemented on the basis of the DefaultEngine,

a skeleton implementation of the Engine interface. The DefaultEngine uses a Plan-

ner, PlanManager, Player and PlanPlayer and manages and plays a unimodal Plan

containing TimedPlanUnits (e.g. a gesture, a speech clause, etc.). The Planner re-

solves and constructs the unimodal Plan on the basis of provided behavior elements

and the constraints acting upon them. The PlanManager manages the unimodal

Plan and provides several functions to query its state or modify it. The Player plays

back the units in the Plan. In the DefaultPlayer, this functionality is fully delegated

to a PlanPlayer. The AnimationEngine requires a specialized Player that manages

the combination of TimedPlanUnits that act simultaneously on the virtual human

(e.g. physical simulation and keyframe animation), but it can still delegate most of
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its execution functionality to a PlanPlayer. The DefaultPlanPlayer provides a sim-

ple default implementation of a PlanPlayer. For TimedPlanUnits whose execution

would otherwise block the calling thread, a NonBlockingPlanPlayer was designed

to play the TimedPlanUnits in a separate thread.

8.6.1 Bindings

BML provides abstract behavior elements to steer the behavior of a virtual human. A

specific BML Realizer is free to make its own choices concerning how these abstract

behaviors will be displayed on the virtual human’s Embodiments. For example, in

Elckerlyc, an abstract ‘beat gesture’ is by default mapped to a procedural animation

from the Greta’s gesture repertoire. The developer may instead want to map this

beat gesture behavior to a different form, for example, to a high quality motion

captured gesture. The mapping of BML behavior to TimedPlanUnits in the Plan

is typically configured in an XML representation: the Binding. This allows one to

change the mapping from BML behavior to TimedPlanUnits without programming,

by simply modifying an entry in the Binding.

8.6.2 Control Primitives and Embodiments

Engine Control Primitive Embodiments

AnimationEngine joint rotation/translation SkeletonEmbodiment

joint torques, root force PhysicalEmbodiment

FaceEngine morph targets MorphEmbodiment

MPEG-4 FAPs MPEG-4 Embodiment

TTSEngine audio AudioEmbodiment

joint rotations SkeletonEmbodiment

morph targets MorphEmbodiment

MPEG-4 FAPs MPEG-4 Embodiment

TextEngine text TextEmbodiment

AudioEngine audio AudioEmbodiment

WaitEngine - -

InterruptEngine scheduler method -

PVCEngine scheduler method -

Table 8.1: Elckerlyc’s Engines, and the Control Primitives they use to steer their Embodiments.

Execution results in values that are set for Control Primitives in an Embodi-

ment that is steered by the Engine. For example, the execution of animation results

in joint rotations on a SkeletonEmbodiment. The Control Primitives and Embodi-

ment interface that is used within one Engine is fixed. However, the implementation

of the Embodiment interface can be selected at initialization time. For example,

the FaceEngine uses an MPEG-4 Embodiment interface and can be configured to

use the ‘standard’ implementation of this interface provided by Elckerlyc, or to use
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an MPEG-4 Embodiment implementation that sends the FAP values to the XFace

[15] talking head. Table 8.1 provides an overview of the Engines implemented in

Elckerlyc and the Control Primitives and Embodiments used by them.

8.7 The AnimationEngine

One of the Engines introduced in Section 8.5 is the AnimationEngine, consisting

of an AnimationPlanner, that creates an AnimationPlan, and an AnimationPlayer

(Figure 8.9) responsible for executing it. The plan contains descriptions of both

physical and procedural motions. The AnimationPlayer implements and combines

several existing state-of-the-art techniques for procedural animation and physical

simulation. The mixed dynamics system described in Chapter 3 is used to execute

the mix of physically and kinematically specified motions simultaneously in a phys-

ically coherent manner. In addition, I have implemented smooth and automatic

switching between physical and kinematic steering (or vice-versa) on parts of the

virtual human’s body whenever this particular mix changes. The end result is an in-

tegrated animation of the virtual human which still allows one to adapt the precise

timing by adjusting the TimePegs described in Section 8.5.1.

8.7.1 Mixed Dynamics

In many situations, different positive features of procedural motion and physical

simulation are needed simultaneously, but acting on different body parts. To achieve

this, the AnimationPlayer dynamically assigns a body structure to the virtual human

that is divided in a physically steered part and zero or more kinematically steered

parts.

Running example 5: The Virtual Conductor

The conducting gesture of the right hand clearly needs the tight temporal control that

is best achieved with procedural motion. On the other hand, the balanced pose, and the

left arm hanging loosely down in gravity, are best left to the realism of physical simu-

lation. The two will necessarily affect each other: the often quite vigorous movements

of a conducting motion should have a perceivable impact on the dynamics of the rest of

the virtual human (see also the movies on the web page of this thesis).

Each part is a tree-structure of joints, connected by rigid bodies. In the current im-

plementation, the physical body part must contain the root joint (or be completely

empty). See Figure 8.10 for an example set of such body structures.

Running example 6: The Virtual Conductor

For the current gesture repertoire of the virtual conductor, the three body configurations

shown in Figure 8.10 are needed: the left-most is used when the virtual human stands

in a balanced pose and makes gestures simultaneously with both hands; the middle one

is used for making gestures with the right hand only (letting the left hand hang loosely
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Figure 8.9: The AnimationEngine

down in simulated gravity using a physical controller); the right-most one is needed

when the conductor is not gesturing at all.

In the AnimationPlayer (see Figure 8.9), motion is executed by MotionUnits (see

Chapter 4.2) which are specified either kinematically or physically. The motion

can be adapted in real time by changing the parameters and timing of a kinematic

MotionUnit or the desired state of a physical MotionUnit, respectively.

Kinematic motion directly rotates selected joints in the SkeletonEmbodiment.

The joint rotations, angular velocities and accelerations of the kinematically steered

body parts result in a torque. This torque is calculated using inverse dynamics and

applied to the physical body. The physical controllers in turn apply joint torques that

aim at reducing the discrepancy between the desired physical state of the physically

steered body part and its current physical state (see Chapter 4.2.3).

8.7.2 Switching Physical Representation

As can be seen from Running Examples 5 and 6, the specific configuration of kine-

matically steered and physically steered joints that is active at a certain moment

may need to change when the virtual human performs different behavior. A switch

from kinematical to physical control on some body part K is implemented by aug-

menting the set of physically controlled parts P with the rigid body representation
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Figure 8.10: Left: a body divided into kinematic parts K that steer the arms and head and a
dynamic physical part P that steers the lower body and trunk. Several variations of
K and P are used in the conductor, this figure shows three of them.

of K and applying the current joint velocity and rotation to the matching joints in

the new physical representation. Before the switch, my mixed dynamics approach

applied a torque calculated from the movement and position of the joints in K to P .

Augmenting P with an articulated set of rigid bodies with joint velocities and rota-

tions that are the same as the joint velocities and rotations in K will obviously result

in a similar torque on P . Therefore such a switch results in a smooth transition.

Finally, a physics simulator11 is used to calculate the actual resulting rotations

of the physically steered joints. I refer the interested reader to Chapter 3 for the

implementation details of my mixed dynamics method.

A switch from the physical to kinematic control removes the physical representa-

tion of the body part from the physical body of the virtual human and inserts a new

kinematic part K. If the movement on K directly after the switch is similar to the

movement in its former physical representation, no sudden forces occur on the new

physical body. To achieve this, the kinematic MotionUnit steering K must smoothly

connect to the former physical motion. A simple way to achieve this is by specify-

ing a transition MotionUnit in BML to connect the physical motion to the kinematic

motion. Elckerlyc’s Hermite quaternion spline transition MotionUnit generates a C2

continuous curve between the end configuration of the joint in the physical body

and the start configuration of the kinematic motion that is to be executed on the

joint [143]. This curve approximates a rotation path with minimal total angular ac-

11Elckerlyc currently uses the Open Dynamics Engine: http://www.ode.org, but any other real-
time physics simulator could be used

http://www.ode.org
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celeration from one joint rotation to another, and satisfies the start and end angular

velocity constraints prescribed by the physical configuration at the time of the switch

and the start configuration of the next kinematic MotionUnit. Alternatively, one can

design a transition MotionUnit that ensures smooth end effector (hand) movement

[155] or make use of procedural MotionUnits with a flexible start state [104, 155]

to ensure a smooth transition.

8.7.3 Planning Animation

The AnimationPlanner is responsible for selecting MotionUnits based on their BML

specification. These MotionUnits are instantiated (that is, their timing and pa-

rameter values are assigned) by the AnimationPlanner and then inserted into the

AnimationPlan. I call such instantiated MotionUnits TimedMotionUnits. This Ani-

mationPlan is played by the AnimationPlayer described in Section 8.7. The Planner

makes use of the GestureBinding to select MotionUnits. The GestureBinding is an

XML specification describing how a BML behavior is bound to a specific MotionUnit,

possibly constrained by parameters of the BML behavior, and maps parameters in

BML to parameters in the MotionUnit (See Figure 8.11). This allows one to bind a

new BML behavior to a MotionUnit without changing Elckerlyc itself and to easily

exchange the exact realization of a behavior (by binding it to a different Motion-

Unit). Currently, a BML behavior specification is bound to at most one MotionUnit.

The AnimationPlanner assists the Scheduler by resolving the execution time of

unknown TimePegs for a MotionUnit, given certain known time constraints on that

MotionUnit (see Figure 8.12). For each procedural MotionUnit a preferred dura-

tion is specified within the definition of the MotionUnit itself. Time constraints and

requested motion times are linked to the keys of a MotionUnit. If only one time

constraint is specified on the MotionUnit, the requested motion times are resolved

in such a way that the specified time constraint is satisfied and the duration of the

MotionUnit is its preferred duration. If two or more time constraints are set on a

MotionUnit, uniform scaling is applied to the motion phases between constrained

keys. The timing of start and end keys, if not constrained, is set to maintain the av-

erage stretch or skew (as compared to the preferred duration, see also Figure 8.12)

caused by the specified time constraints. Note that if exactly two time constraints

act upon the MotionUnit, the above strategy is equivalent to the uniform scaling

used in SmartBody [280]. The current stretching/skewing strategy does not have a

biological basis.

8.7.4 Checking the Validity of the AnimationPlan

Validity checks on behaviors in the AnimationEngine are TimedMotionUnit specific.

For example, in a procedural animation, the minimum and maximum durations are

specified, and the validity check fails if the behavior is stretched or skewed beyond

these specified limits.
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Figure 8.11: GestureBinding fragment binding the <head> element to the nod MotionUnit. Both
the nod and shake MotionUnits execute behaviors of type “head”. They both sat-
isfy the constraint action="ROTATION", but only the nod MotionUnit satisfies the
constraint rotation="NOD" and is therefore selected to execute the head nod. The
GestureBinding maps the repeats parameter value in the BML behavior to the value
of parameter r specified in the procedural MotionUnit. The value of parameter a is
not defined in the BML head behavior, therefore the default value of a, as defined in
the GestureBinding, is used in the procedural animation.
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Figure 8.12: The AnimationPlanner is asked to resolve the start time of a behavior with phases a,
b, c and d, given 3 constraints on its timing. Phase d is stretched as prescribed by the
two rightmost constraints. Uniform scaling is applied to phases b and c to satisfy the
two leftmost constraints. Phase a is slightly stretched to maintain the average stretch
resulting from the satisfaction of the time constraints on the behavior.

8.7.5 Motion Execution

The PlanPlayer takes an AnimationPlan containing TimedMotionUnits. At any spe-

cific point in time, it takes the following steps to animate the virtual human.

(1) The currently active TimedMotionUnits are determined.

The keys of the TimedMotionUnits are linked to the TimePegs, as specified in the

BML. Synchronization between keys in different TimedMotionUnits is achieved by

linking them to the same Time Peg. Each TimedMotionUnit defines a function

fmi(α) = t that maps its canonical time α to time t. The active TimedMotionUnits

are the TimedMotionUnits for which fmi(0) ≤ t < fmi(1).

Mutually exclusive behaviors (e.g. two or more gaze behaviors, or two or more

posture behaviors) allow only one active instance at a time. The latest mutually

exclusive behavior overwrites previous behavior (see also Chapter 6.3.3). This al-

lows the virtual human to, for example, temporarily divert gaze to a new target and

then return gaze to an earlier specified target. Elckerlyc supports this by assign-

ing the same replacement group to all MotionUnits corresponding to such behaviors.

Within each replacement group, the active timed MotionUnit is defined to be the

TimedMotionUnit for which fmi(0) ≤ t < fmi(1) and fmi(0) has the largest value.

If multiple TimedMotionUnits within the same replacement group share the same

value for fmi(0), the TimedMotionUnit with the smallest fmi(1) is selected as the

active TimedMotionUnit for the replacement group. If the fmi(1)’s are also equal,

the TimedMotionUnits are completely overlapping in time. Then, one of the Timed-

MotionUnits is dropped, and a warning is sent to the SAIBA Behavior Planner.

(2) Determine which physical body configuration should be assigned.

The AnimationEngine infers the continuously changing mix of kinematically and

physically steered joints from the active procedural and physical TimedMotionUnits.

Each MotionUnit specifies on which joints it acts. The selected physical body con-

figuration is the smallest physical body configuration that contains all joints steered

by all active physical TimedMotionUnits. For example, the behavior planner for
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the virtual conductor can specify in BML the following behaviors for the left arm:

a physical MotionUnit for ten seconds, that lets the arm hang down, followed by

a procedural MotionUnit to make a certain expressive conducting gesture for one

second, and finally again a physical MotionUnit to let the arm hang down again.

To realize this sequence, Elckerlyc automatically executes a switch of the affected

joints from physical steering to kinematic steering and back again.

(3) The active procedural TimedMotionUnits are then executed at α = f−1
mi (t).

Most TimedMotionUnits calculate f−1
mi (t) using a simple linear time warping scheme

[309]. Others use a more complex warping scheme, for instance one to create a

biomechanically inspired bell shaped velocity profile in a pointing gesture [304].

Providing mechanisms to combine procedural motion on the same joint is future

work (see also Section 8.17).

(4) The physical simulation is performed as a last step. The generated procedu-

ral animation is combined with the active physical TimedMotionUnits, using the

method described in Section 8.7.1 (see also Figure 8.9). If different physical con-

trollers act upon the same joint, the sum of their torques is applied to that joint,

thus combining their objectives.

8.8 The FaceEngine
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Figure 8.13: The FaceEngine

The FaceEngine (Figure 8.13) manages face behaviors. It can combine the natu-

ralness of morph based facial animation with the control of MPEG-4 facial animation

by using them simultaneously as control primitives for the RenderFaceEmbodiment.

The FaceEngine allows facial animation to be specified using morph targets,

MPEG-4 facial action parameters (FAPs), Action Units (AUs) in the Facial Action

Coding System (FACS) [71], or using coordinates in Plutchik’s emotion wheel [221]

(see also Figure 8.14). Morphing uses artist-created morph targets (e.g. for eye

blinks and visemes). MPEG-4 animation uses MPEG-4 FAPs: the animation is spec-

ified by the position of facial action points on the face. The FaceEngine maps the

facial animation descriptions in AUs or emotion wheels coordinates to MPEG-4 FAPs,

using mappings from literature [226, 321]. These mappings were implemented by

Ronald Paul and their exact implementation is discussed in his master’s thesis [216].
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(a) Morph targets. (b) MPEG-4 feature points.

(c) Some Action Units in FACS and their execution in Elckerlyc.

(d) Plutchik’s emotion wheel and some stereotypical emotional face expressions.

Figure 8.14: Facial animation paradigms used in Elckerlyc’s FaceEngine
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Given certain time constraints on a face behavior, the FacePlanner employs a

linear stretching algorithm on its timing, similar to that used to resolve the timing

of animation (see Section 8.7.3) to resolve the remaining constraints.

The RenderFaceEmbodiment combines the naturalness of morph-target based

animation with the control of MPEG-4 based animation. It implements both the

MPEG-4 Embodiment and the MorphEmbodiment, which allows it to capture both

types of input and combine them. This combination process first applies the morph

specified by the Timed Morph Face Units and then moves the morphed mesh on

the basis of the MPEG-4 FAP specification. Alternatively, the FaceEngine can be

connected to custom MPEG-4 and/or MorphEmbodiments.

8.9 The Text To Speech Engine
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Figure 8.15: The TTSEngine

The Text To Speech (TTS) Engine (Figure 8.15) manages speech behaviors. It

executes these behaviors using a TTS system. The TTSBinding provides a generic

interface for such TTS systems. Current implementations include a MaryTTSBinding

(using Mary TTS12) and a SAPITTSBinding (using Microsoft Speech API13). The

TTSPlanner generates TimedTTSUnits from a speech behavior specification. The

12http://mary.dfki.de/
13http://www.microsoft.com/speech

http://mary.dfki.de/
http://www.microsoft.com/speech


182 | Chapter 8 – Elckerlyc

TimedTTSUnits specify the sounds to be spoken. In addition to TimedTTSUnits, a

TTSPlanner may generate TimedFaceUnits and TimedMotionUnits that specify the

speech lip and/or jaw movement respectively. The TTS Engine requires access to

the PlanManager of the AnimationEngine and the PlanManager of the FaceEngine

to add these units to their respective Plans. The VisemeBinding and SpeechBinding

define the mapping from visemes (facial phonemes) to FaceUnits or MotionUnits

respectively. At initialization time, the TTSEngine is configured with the desired

VisimeBinding, SpeechBinding and TTSBinding.

The TTSPlanner uses the TTS system (through the interface provided by its

TTSSpeechBinding) to determine the timing of the requested speech fragment, in-

cluding the timing of any custom sync points in it. The internal timing of Timed-

TTSUnits constructed by the TTSPlanner is fixed; that is, the TTSEngine does not

support stretching or skewing of speech beyond the timing provided by the TTS-

Binding.

8.10 The TextEngine
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Figure 8.16: The TextEngine

The TextEngine (Figure 8.16) was designed as an alternative to the TTSEngine

that allows a more flexible timing of speech behaviors. The TextPlanner constructs

TimedTextUnits from a speech behavior specification. A TimedTextUnit ‘speaks’ by

sending the text to be said incrementally (by default at a rate of two words per

second) through a TextEmbodiment. The TextEmbodiment is a generic interface for

elements that can receive text and optionally can handle speech parameters such

as amplitude. The desired TextEmbodiment implementation is set connected to the

TextEngine at initialization time. Current implementations include a JLabelText-

Embodiment that displays the text on a Java GUI interface element and a Stdout-

TextEmbodiment that displays the text on the standard output. The JLabelText-

Embodiment implements the speech amplitude parameter by mapping it to font

size.

The TextPlanner allows the timing of a speech behavior to be adapted to multiple

provided time constraints (e.g. from other behaviors, Anticipators). It employs a

linear stretching algorithm to resolve the time constraints. This algorithm is similar

to that in used to resolve the timing of animation (see Section 8.7.3).
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8.11 The AudioEngine
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Figure 8.17: The Audio Engine

The AudioEngine manages BMLT audiofile behaviors. Audio file behaviors are

used to play audio from a file. The AudioEngine is implemented using mostly ‘stock’

components (see Figure 8.17). A specialized AudioPlanner constructs TimedAudio-

Units from the audiofile behavior specification. It is provided with a audio file re-

source location (e.g. a directory, or a .jar file) at initialization time. It can open the

audio files specified in the behavior at the resource location.

The audio file behavior currently has only two valid sync points: its start and its

end. The audio file defines the duration of the behavior, the AudioPlanner currently

disallows squeezing or stretching of TimedAudioUnits.

8.12 The WaitEngine
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Figure 8.18: The WaitEngine

The WaitEngine manages wait behaviors. Wait behaviors are used both as a

simple no-operation behavior to offset the timing of other behaviors and in an event

based synchronization system that is to be used to synchronize inter-virtual human

behavior. Elckerlyc currently only supports the first.14 The WaitEngine is imple-

mented using mostly ‘stock’ components (see Figure 8.18).

14The specification of the latter is still an open issue in BML.
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The wait behavior has two relevant sync points: its start and its end. A special-

ized WaitPlanner constructs a TimedWaitUnit from a wait behavior and resolves its

timing. Typically it is asked to provide the timing of one of the wait’s sync points,

given the timing of the other and the wait’s duration.

8.13 The ActivateEngine
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Figure 8.19: The ActivateEngine

The ActivateEngine (Figure 8.19) manages BMLT activate behaviors. Activate

behaviors are used to activate their target pre-planned BML block.

The ActivatePlanner constructs a TimedActivateUnit based on the activate be-

havior. It provides this TimedActivateUnit with access to the Scheduler, so that it

can use Scheduler functionality to activate the targeted pre-planned BML block. The

activate behavior may only be synchronized at its start sync point.

The ActivateEngine executes TimedActivateUnits as soon as the current time is

past their start time. When they are first executed, TimedActivateUnits activate their

target pre-planned BML block. After activating this block, the TimedActivateUnit is

finished.

8.14 The InterruptEngine

The InterruptEngine manages BMLT interrupt behaviors. Interrupt behaviors are

used to interrupt a list of targeted behaviors, as specified by the target BML Block

and the behavior’s include and exclude attributes. The InterruptEngine is imple-

mented using mostly ‘stock’ components (see Figure 8.20).

The InterruptPlanner constructs an TimedInterruptUnit based on the interrupt

behavior. It provides this TimedInterruptUnit with access to the Scheduler, so that

it can use Scheduler functionality to interrupt the targeted behaviors. The interrupt

behavior may only be synchronized at its start sync point.
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Figure 8.20: The InterruptEngine

The InterruptEngine executes TimedInterruptUnits as soon as the current time

is past their start time. At the start of the TimedInterruptUnit it interrupts all its

targeted behaviors. A TimedInterruptUnit makes use of the Scheduler to interrupt

its targeted behaviors.

8.15 The ParameterValueChangeEngine

The ParameterValueChangeEngine manages BMLT parametervaluechange behav-

iors. A parameter value change behavior is used to change parameter values in

another behavior (for example: change the volume in a speech behavior). A pa-

rameter value change behavior contains two sync points: a start and a stroke. The

stroke sync point indicates when the target parameter value is to be achieved. The

ParameterValueChangeEngine is implemented using mostly ‘stock’ components (see

Figure 8.21).

A ParameterValueChangePlanner constructs a TimedParameterValueChangeUnit.

The TimedParameterValueChangeUnit is assigned a trajectory based on the trajec-

tory type specified in its behavior. New trajectories can be designed by adding them

to the TrajectoryBinding. The current TrajectoryBinding contains a trajectory that

moves from start to end parameter value in a linear curve and one that sets the
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Figure 8.21: The ParameterValueChangeEngine
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end parameter value instantly. The TimedParameterValueChangeUnit is provided

with access to the Scheduler, so that it can set and get the parameter value of other

behaviors in the behavior plan.

The Player executes a TimedParameterValueChangeUnit as soon as the current

time is past its start time. The trajectory provides a parameter value at canonical

time α:

α = {
t−tstart

tstroke−tstart
if tstroke > tstart and t < tstroke

1 otherwise
(8.1)

where t is the current time and tstart and tstroke are the start and stroke times of the

behavior respectively. Given α, an initial parameter value vi and a target param-

eter value vt, the trajectory function f(vi, vt, α) determines the parameter value at

canonical time α. Equation 8.2 and equation 8.3 show the trajectory function for an

instant and a linear trajectory, respectively.

f(vi, vt, α) = vt (8.2)

f(vi, vt, α) = vi + α(vt − vi) (8.3)

This calculated parameter value is set through the Scheduler at each execution

frame. If the initial value of a parameter is not set in the behavior, it is obtained

from the Scheduler at the start of the TimedParameterValueChangeUnit.

8.16 Extending and Using Elckerlyc

8.16.1 Adding New BML Elements and PlanUnits

Elckerlyc offers a large repertoire of PlanUnit types, in various Engines, that can be

mapped in a Binding to give form to the abstract BML behaviors: physical simu-

lation, procedural animation, morph target and MPEG-4 face control, speech, and

so on. Still, a developer may need completely new PlanUnit types. For example,

to make the virtual human more lively, one may want to add a PerlinNoiseUnit

that applies random noise to a certain joint of the virtual human, as a kind of ‘idle

motion’. Such new PlanUnits need to become available in the Binding (see pre-

vious section); furthermore, one might want to extend the XML format of BML

with <PerlinNoiseBehavior> to allow direct specification of this idle motion by

the SAIBA Behavior Planner (see Figure 8.22 for an example BML specification of a

Perlin noise behavior).

New BML behaviors are created by sub-classing the abstract class BMLBehav-

iorElement; they can be registered with the Parser using a static call. At initializa-

tion of Elckerlyc, the new BML behavior type is coupled to a single Engine by adding

it to the behavior class → engine mapping (note that multiple behavior types can be

coupled to the same Engine).

New PlanUnits implement the PlanUnit interface (for the AnimationEngine: ro-

tate joints on the basis of time and animation parameters, see also Chapter 4.2).

Such PlanUnits are initialized from the GestureBinding through their class name (as
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<bml id="bml1" xmlns:mynoise="http://mynoise.net">

<mynoise:perlinnoise id="n1" joint="vc4"

baseamplitudex="0.1" basefreqx="1"/>

...

</bml>

Figure 8.22: An XML block with a custom noise behavior. Note that the noise behavior has its own
namespace.

<gesturebinding>

...

<MotionUnitSpec type="perlinnoise" namespace="http://mynoise.net">

<parametermap>

<parameter src="joint" dst="joint"/>

<parameter src="baseamplitudex" dst="baseamplitudex"/>

<parameter src="baseamplitudey" dst="baseamplitudey"/>

<parameter src="baseamplitudez" dst="baseamplitudez"/>

<parameter src="basefreqx" dst="basefreqx"/>

<parameter src="basefreqy" dst="basefreqy"/>

<parameter src="basefreqz" dst="basefreqz"/>

...

</parametermap>

<MotionUnit type="class"

class="mynoisepackage.PerlinNoisePU"/>

</MotionUnitSpec>

</gesturebinding>

Figure 8.23: Binding a custom Perlin noise behavior to a custom noise PlanUnit.

a string), using Java’s reflection mechanism (that is, the ability to construct a new

object from its class name). This ensures that any PlanUnit implementing the right

interface for an Engine can be used in the Binding for that Engine without requir-

ing additional compile time dependencies. Figure 8.23 illustrates this. The noise

behavior in namespace http://mynoise.net is bound to the PerlinNoiseUnit in the

Java class mynoisepackage.PerlinNoisePU.

8.16.2 Adding a New Engine

Building a new Engine involves developing its basic PlanUnits, that implement the

basic control primitives for the modality. Each PlanUnit defines how it will control

an Embodiment over the duration from the start time till the end of the PlanUnit.

Given these PlanUnits, and a Binding for mapping BML behaviors to PlanUnits, a

new Engine is typically constructed using the standard available Engine compo-

nents. An example is provided in Chapter 10.1.3.2: it outlines how a new Engine

was developed to steer a Nabaztag robot rabbit with BML.
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Figure 8.24: Top: the BML Realizer and SAIBA Behavior Planner are connected directly on a Rea-
lizer port. Bottom: the BML Realizer and SAIBA Behavior Planner are connected
through the SEMAINE API; the BML Realizer and SAIBA Behavior Planner are un-
aware of this plumbing, they still SAIBA communicate through BMLRealizerPorts.
Middle: a LogPipe logs the BML and feedback messages that pass through it to a file.

8.16.3 Connecting Elckerlyc to Your Application: Ports, Pipes,

and Adapters

A minimal interface to a BML Realizer has functionality to (1) send a BML string

to the Realizer and (2) register a listener for Realizer feedback. This is the BML-

RealizerPort in Figure 8.6. Both the SAIBA Behavior Planner and the BML Realizer

are connected to such a BMLRealizerPort. The adapter pattern [83] allows one to

change the exact transport of BML and feedback to and from a BML Realizer, with

no impact on the SAIBA Behavior Planner and BML Realizer.

Elckerlyc implements the BMLRealizerPort interface. Several adapters were im-

plemented that plug into BMLRealizerPorts and transport their messages over var-

ious messaging frameworks. Pipes are used to intercept BML and feedback, allow-

ing one to measure it, let it go through slightly modified, or at a different rate.

For example, a LogPipe logs the BML and feedback passing through, and a Block-

ingQueuePipe buffers BML messages for a BMLRealizerPort that can only handle

one BML message at a time. Figure 8.24 shows some examples.
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8.16.4 Integrating Elckerlyc with new Embodiments

Engines set control primitive values on their Embodiments. Each Engine uses a spe-

cific set of Embodiments. For example, the FaceEngine uses an MPEG-4Embodiment

and a MorphEmbodiment. New Embodiments that implement an existing Embodi-

ment interface can be coupled to an Engine at the Engine’s initialization time. For

example, rather than coupling the FaceEngine to its default MPEG4-Embodiment, it

can be coupled to an MPEG-4 Embodiment that steers the XFace [15] talking head.

The next Section discusses a specialized SkeletonEmbodiment that was designed to

set the joint rotations provided by the AnimationEngine to a virtual human in any

Rendering Environment.

8.16.5 Integrating Elckerlyc with new Rendering Environments

By default, Elckerlyc renders the virtual human in its own OpenGL based rendering

environment. One might, however, want to use Elckerlyc to animate an Embodi-

ment in another rendering environment such as Half-Life, Ogre, or Blender. The

ThriftSkeletonEmbodiment was developed to integrate a SkeletonEmbodiment with

any desired rendering environment.

To provide a clear seperation between the virtual human in the rendering en-

vironment and the SkeletonEmbodiment that is animated by Elckerlyc, we follow

a design similar to that proposed by Russel and Blumberg [245]. The Animation-

Engine animates a local copy of the the SkeletonEmbodiment. The joint rotations set

by Elckerlyc are copied to the virtual human in the rendering environment regularly

(typically each frame) by the ThriftSkeletonEmbodiment.

The rendering environment therefore needs to support functionality to (1) pro-

vide the ThriftSkeletonEmbodiment with the joint structure of the virtual human

at its initialization, and (2) provide the ThriftSkeletonEmbodiment with means to

copy joint rotations to the virtual human in the rendering environment. Both re-

quirements should be satisfied in a manner independent of the specific rendering

environment used and of the mode of transport (e.g. through TCP/IP, function

call, shared memory). I use the remote procedural call framework Thrift [272]

to achieve this. I have designed a language independent interface (using Thrift’s

interface definition language) that a rendering environment should implement to

achieve connectivity with a ThriftSkeletonEmbodiment. This interface is automati-

cally compiled to an interface in the target language of the rendering environment.

The transport mode is chosen at initialization time. A proof-of-concept implemen-

tation is provided for the Ogre rendering environment.

8.17 Discussion and Future Work

I have presented Elckerlyc, a modular and extensible BML Realizer designed specif-

ically for continuous interaction. It offers an adjustable trade-off between the con-

trol offered by procedural animation and the naturalness enhancements offered by



190 | Chapter 8 – Elckerlyc

physical simulation. I have shown how these capabilities work in practice in the in-

teractive virtual conductor using a running example. I have assumed that Elckerlyc’s

Engines can operate independently from each other. In practice, some links between

Engines might be required, sacrificing some independency for performance or time

synchronization reasons. This is a common trade-off in the design of Virtual Human

platforms [285]. One example of such a dependency is in the TTSEngine. This

Engine requires access to the AnimationEngine and the FaceEngine to add some

PlanUnits that execute the animation corresponding with the speech it manages.

Currently all Engines execute their plans timed by the same global clock. The tim-

ing of off-the-shelf text-to-speech system can drift significantly from the the global

clock. One implementation of the TTSEngine uses the text to speech system via

an intermediate audio file and enforces time constraints by skipping forward and

backward in the audio file on significant time drifts (more than 70ms). This intro-

duces some sound artifacts and still suffers from minor timing differences between

speech and lip-sync. Finer synchrony and better speech quality could be achieved

by allowing the SpeechEngine to run at its own timing and communicate the drift of

this timing in relation to the global clock to the other Engines using TimePegs. Such

a design makes elegant use of Elckerlyc’s generic synchronization mechanism: the

TimePegs are used to communicate synchronization constraints between Engines.

I have discussed how Elckerlyc can be tailored to the needs of specific applica-

tions, without requiring invasive modifications to Elckerlyc itself. Elckerlyc’s flexi-

bility has allowed its connection to a SAIBA Behavior Planner using either the SE-

MAINE framework or simple function calls, and to switch between such connections

with a simple configuration option. The logging port allowed easy recording of all

communication with Elckerlyc for user experiments, by simply changing the wiring

between the SAIBA Behavior Planner and Elckerlyc. The BMLRealizerPort also made

exchanging both the Realizer and the SAIBA Behavior Planner very easy. Several

SAIBA Behavior Planners were designed at HMI that implement behavior planning

of a virtual human or that replace the behavior planning by a generic Wizard of Oz

interface (see Chapter 10.4.1).

The ability to easily replace the BML Realizer and SAIBA Behavior Planner is

also valuable for testing. A mock-up BML Realizer was designed that allows the

testing of SAIBA Behavior Planners rapidly. This mock-up BML Realizer does not

actually execute the BML behavior, but does provide the SAIBA Behavior Planner

with appropriate BML feedback. I have also designed a SAIBA Behavior Planner

that tests Realizer implementations (see Chapter 9.3). This SAIBA Behavior Planner

executes test BML scripts on the Realizer and inspects if the Realizer provides the

appropriate feedback. Since this test SAIBA Behavior Planner communicates with

the Realizer through the generic BMLRealizerPort, it can not only test any config-

uration of Elckerlyc, but can also test Realizers designed by other research groups

(by writing an adaptor from the BMLRealizerPort to their input and output chan-

nels). Elckerlyc’s ability to add new modalities has allowed hooking it up to the

Nabaztag rabbit (See also Chapter 10.1.3.2) and to steer this rabbit with generic

BML commands.

Elckerlyc’s extensibility is mainly achieved by a very flexible initialization stage.
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In this initialization stage, a desired setup of the Elckerlyc Realizer is constructed

by combining and configuring different components that are provided by Elckerlyc’s

code base or by custom extensions. An XML configuration file format is used to

describe such a configuration. Several default configurations are available, and new

configurations are typically easily achieved by slight modifications of an existing

configuration.

An Elckerlyc demo application (as Java webstart) and several demonstration

movies and BML scripts can be found on the web page of this thesis.

An important topic for future work is conflict resolution. Several behaviors might

request the use of the same animation modality, for example the right arm or head.

Elckerlyc does not currently resolve such conflicting modality requirements. A sim-

ple custom conflict solver is used in the SAIBA Behavior Planner of the virtual con-

ductor application. Conflict resolution requires resource allocation (e.g. select the

left arm for a gesture if the right arm is doing something else) and resource com-

bination (for instance: combine a gaze with a nod). Resource allocation could be

achieved in Elckerlyc by taking into account the currently used resources when se-

lecting a MotionUnit from the GestureBinding. A MotionUnit can store information

on how it might be combined with other MotionUnits [205]. For example, a nod

motion should be additively added on top of other head movements [280] and a

manipulatory gesture should constrain hand position [111], but might allow elbow

movements. The Animation Planner could construct (possibly hierarchical) com-

binatory MotionUnits that solve resource conflicts [280]. This way, the Animation

Plan only contains non-conflicting MotionUnits. Alternatively, the AnimationPlayer

could use a final phase that combines conflicting MotionUnits [111]. I have given

an overview of motion combination techniques for both physical and kinematic mo-

tions in Chapter 2.

Physical simulation in Elckerlyc is currently limited to one subtree of physical

joints of the virtual human’s body, which must contain the root joint. So far, this

has not proven to be a restriction in virtual human applications that use Elckerlyc.

An interesting extension is to provide mechanisms to allow a physical joint to be

connected to a kinematic parent joint or to a (moving) object in the environment by

making use of kinematic constraint mechanisms provided by the physical simulator.

This would allow the use of a kinematic root joint and could perhaps help build a

system in which kinematic and physical body can be interleaved more freely. More

importantly, this allows interesting interactions with the environment, for example:

constrain hand position to a handle to help balancing while riding the bus.

Currently the GestureBinding provides a one-to-one mapping from a BML behav-

ior to a MotionUnit. Extending the GestureBinding to allow one-to-many mappings

might be useful to select the best MotionUnit on the basis of available modalities

at its execution time (left hand, right hand) or on the basis of its time constraints

(select the MotionUnit with the shortest preferred duration if fast execution is re-

quired) or just to select a random MotionUnit for, for example, a beat gesture.
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Chapter 9

Demonstrating and Testing the BML

Compliance of BML Realizers†

The SAIBA framework [152] has standardized the architecture of virtual human ap-

plications with the aim of making reuse of their software components possible. The

SAIBA framework proposes a modular ‘planning pipeline’ for real-time multimodal

motor behavior of virtual humans, with standardized interfaces (using representa-

tion languages) between the modules in the pipeline. One of the components in this

pipeline is the Realizer. A Realizer provides an interface to steer the motor behavior

of a virtual human: a description of behavior in the Behavior Markup Language

(BML) goes ‘in’, feedback comes ‘out’.

Several Realizers have been implemented ([54, 111, 186, 280] and Elckerlyc).

If SAIBA’s goal of software reuse is achieved, it will be possible to use such Realizers

interchangeably with the same BML input. This chapter discusses a collaborative

effort by the authors of SmartBody[280] and Elckerlyc Realizers. We are interested

in measuring and promoting the compatibility between our own and other Realizers

and to provide tools to formally test and maintain adherence to the BML standard.

To this end, we provide a growing test set of BML test cases, a corpus of BML scripts

and video material of their realization in different (so far, our two) Realizers.

By directly comparing BML Realizers, we can better determine changes to the

BML specification that are necessary due to overly narrow or broad specifications.

Overly broad specifications can be detected when Realizers provide BML compli-

ant, but semantically very different results. Overly narrow specifications indicate

that a specification is not expressive enough, this occurs when several Realizers im-

plement the same (semantic) functionality, yet require Realizer specific proprietary

BML extensions to implement (part of) this functionality.

Since each Realizer necessarily implements the same interface, an automatic

testing framework can be designed that tests the adherence to the BML/feedback

†This chapter is largely based upon the article:
H. van Welbergen, Y. Xu, M. Thiebaux, W.-W. Feng, J. Fu, D. Reidsma, A. Shapiro. Demonstrating and
Testing the BML Compliance of BML Realizers, In Proceedings of the 11th International Conference
on Intelligent Virtual Agents, 2011, To appear
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semantics for any Realizer. We contribute our testing framework RealizerTester1,

which provides exactly this functionality.

9.1 On BML Versions and Script Creation

Currently, there are two version of the BML specification: a first draft specified after

the BML workshop in Vienna in November 2006 (the Vienna draft) and the current

draft of BML version 1.0 (draft 1.0). Draft 1.0 is not backward compatible with the

Vienna draft. Currently Elckerlyc implements draft 1.0, and SmartBody implements

the Vienna draft. It is likely that new versions of BML will be developed and that not

all Realizers will adapt to these new versions at the same pace. However, test scripts

can be constructed that are semantically equivalent (that is, execute behavior that

adheres to the same form and timing constraints) for most, if not all, BML behaviors

in different versions of BML. This implies that the same test case (albeit not test

script) can be used to test Realizers that implement different versions of BML.

We aim to construct a test set that contains such semantically equivalent test

cases for all BML versions. These tests will provide a ‘safety net’ for migrating

a Realizer from a previous BML version to the next; the tests that worked for a

Realizer in the previous version should not break in their updated syntax in a later

version of BML.

The process of converting the old tests to a new BML version also helps in the

definition of the standard. It can highlight certain cases in which expressivity is

lost where this might not be intended. That is: if something can be expressed in a

previous version of BML which we cannot express in the new version of BML and

this loss of expressivity was not explicitly intended in the new BML version, then

there might be something ‘wrong’ in the definition of the new version.

Most of our current test scripts were originally designed for draft 1.0 and later

converted to equivalent Vienna draft scripts. During this conversion process, we

have encountered several cases that demonstrate the enhanced expressivity of the

newer draft 1.0. For example:

• In the Vienna draft it was impossible to specify a Realizer-independent pos-

ture behavior; draft 1.0 provides the specification of some default lexicalized

postures.

• Draft 1.0 provides the specification of a modality (e.g. eyes, neck, torso) in

gaze behaviors. The Vienna draft does not allow this. Therefore, SmartBody

currently needs to use a custom extension to specify the modality of its gaze

behavior.

A small set of scripts was converted from a Vienna draft specification to a draft 1.0

specification. So far we have not encountered any cases in which expressivity of the

Vienna draft was lost in draft 1.0.

1RealizerTester is released under the MIT license at http://sourceforge.net/projects/

realizertester/.

http://sourceforge.net/projects/realizertester/
http://sourceforge.net/projects/realizertester/
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9.2 A Corpus of Test Cases and Videos

We provide a growing corpus of BML scripts for the purpose of visual comparison

between the execution of a BML script by the different Realizers. A matching video

corpus illustrates how these scripts are executed in both SmartBody and Elckerlyc.

The corpus of BML scripts (and matching video) provides examples of both short

monologues and of the execution of isolated behaviors. A video on the web site of

this thesis and Figure 9.1 illustrate the comparison of the execution of some of these

scripts in SmartBody and Elckerlyc. Here we discuss some preliminary observations.

Script are included for most types of BML behavior. In the scripts used so far,

the speech, gaze, head and pointing (part of gesture) behaviors look similar in

Elckerlyc and SmartBody. A comparison of face behaviors, specified through Ek-

man’s FACS [71] gives mixed results, as illustrated in the video. The posture behav-

ior could not be compared in a meaningful manner, because the Vienna BML draft

does not provide a Realizer independent way to specify posture. The locomotion

behavior is currently not implemented in Elckerlyc and is therefore omitted from

the visual comparison corpus for now.

When designing short monologues for the visual comparison corpus, it became

clear that existing demonstration scripts of both SmartBody and Elckerlyc rely heav-

ily upon custom behavior elements. One reason for this is the lack of expressivity

of the BML standard and specifically the lack of expressivity in the specification of

iconic and metaphoric gestures. We recommend, at the very least, the extension of

the lexicalized set of gestures that can be specified in BML to include more domain

neutral gestures. The set of gestures that is already implemented through extensions

by current Realizers could serve as an inspiration for this. Another reason for the

use of custom BML elements is that so far there was no real need for BML compli-

ance of Realizers. Some BML elements that are currently implemented using one or

more custom BML extensions in Elckerlyc and SmartBody could be implemented in

standard BML. This testing and comparison corpus building effort serves as a driv-

ing force for this. Already some new core BML behaviors have been implemented in

both Realizers to achieve better BML compliance.

We have created a test corpus containing 19 test scripts in BML draft 1.0, se-

mantically equivalent test scripts in the Vienna draft, and the corresponding test

cases that check, for example, the adherence to the time constraints specified in the

scripts.

9.3 Automatic Software Testing of Realizers

Realizers are complex software components. They often form the backbone of sev-

eral virtual human applications of a research group. Therefore, the stability and

extendibility of Realizers is crucial. So far, the testing of most of these Realizers

was limited to manual, time consuming inspections of the execution of a selected
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Figure 9.1: Execution of some BML behaviors in Elckerlyc (left) and SmartBody(right). From top
to bottom: AU 1 (inner eyebrow raise), AU 6 (cheek raiser and lid compressor), gaze,
point.
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set of BML scripts.2 Automatic testing can be used to detect errors in Realizers and

provides a ‘safety net’ that can, to some extent, ensure that extensions or design

cleanups do not introduce a failure in existing functionality. Since the automatic

tests do not require manual intervention, they can be run often which ensures that

errors are detected early, which makes it easier to fix them.

We illustrate the use of RealizerTester by describing how it was integrated in

the software development process of the Elckerlyc Realizer and discuss how it can

contribute to the emerging BML standard.

A SAIBA Behavior Planner communicates with a Realizer by sending BML blocks

with intended behavior to it and by capturing the feedback provided by the Realizer.

A BML block defines the form and relative timing of the behavior that a Realizer

should display on the embodiment of a virtual human. The Realizer is expected to

provide the SAIBA Behavior Planner with feedback on the current state of the BML

blocks it is executing: it notifies the SAIBA Behavior Planner of the start and stop

of each BML block (performance start/stop feedback) and on the passing of sync

points for each behavior in the block (sync-point progress feedback). Execution

failures are sent using warning and exception feedback.

RealizerTester acts as a SAIBA Behavior Planner: it sends BML blocks to the

Realizer Under Test (RUT)3 and verifies whether the feedback received from the

RUT satisfies the assertions implied by the BML blocks. This allows automatic testing

of the following properties:

1. Message Flow and Behavior Execution: RealizerTester can verify whether the

performance start/stop of each BML block and sync-point progress feedback

messages of each behavior was received in the correct order and only once.

This implicitly provides some information on whether or not the behaviors

were actually executed.

2. Time Constraint Adherence: a BML block defines several time constraints upon

its behaviors. It can require that a sync point in one behavior occurs simul-

taneously with a sync point in another behavior, or that a certain sync point

should occur before or after another one. These constraints can be tested by

inspecting the sync-point progress feedback.

3. Error Handling: The error handling of a Realizer can be tested by inspecting its

warning and exception feedback. For example, RealizerTester can send BML

blocks to the Realizer that are invalid or impossible to schedule and then check

if the Realizer generated the appropriate exception feedback.

9.3.1 Test Architecture

Each automatic test consists of four phases [193]:

2Personal communication with the authors of SmartBody, RealActor, EMBR, Greta and MARC,
2010.

3after System Under Test used in [193]
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Figure 9.2: Testing Architecture

1. Fixture setup: The Fixture contains the RUT and everything it depends on to

run. During Fixture set up, the RUT is created and put in a state suitable for

testing. The necessary functionality to keep track of the feedback sent by the

RUT is also hooked up.

2. Exercise the RUT: Send BML block(s) to the RUT.

3. Result verification: Verify the feedback received from the RUT.

4. Fixture teardown: Clean up the Fixture.

Phases 1 and 4 are Realizer specific, phases 2 and 3 are generic. The Generic (Rea-

lizer independent) Testing Framework contains a set of tests and is responsible for

exercising these tests and verifying their results. The Generic Testing Framework

exercises the RUT by communicating with it through a RealizerPort (see also Chap-

ter 8.16.3). The RealizerPort is a minimal interface for a Realizer.

A Realizer Specific Testing Framework is responsible for setting up and tear-

ing down the Fixture before and after each test case. During the setup phase, this

framework creates a Realizer specific implementation of the RealizerPort and con-

nects it to the RUT. RealizerTester is implemented using the JUnit4 unit testing

framework. Since the Fixture setup and teardown is the same for each test, they are

implemented using Implicit Setup and Teardown [193] patterns (available in JU-

nit): setup and teardown functions are called automatically before and after each

test respectively. Figure 9.2 shows our architecture setup.

9.3.2 Authoring Test Cases

Test cases are typically set up as follows:

1. Send one or more BML blocks to the RUT, capture all feedback.

2. Wait until the RUT has finished executing all blocks.

3. Verify some assertions on the received feedback.

4http://www.junit.org/
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<bml id="bml1">

<speech id="speech1" start="6">

<text>Hey punk <sync id="s1" />what do ya want?</text>

</speech>

<head id="nod1" action="ROTATION" rotation="X" start="speech1:s1"/>

</bml>

@Test public void testSpeechNodTimedToSync() {

realizerPort.performBML(readTestFile("speech_nodtimedtosync.xml"));

waitForBMLEndFeedback("bml1");

assertSyncsInOrder("bml1", "speech1", "start", "ready", "stroke_start",

"stroke", "s1", "stroke_end", "relax", "end");

assertAllBMLSyncsInBMLOrder("bml1", "nod1");

assertBlockStartAndStopFeedbacks("bml1");

assertRelativeSyncTime("bml1", "speech1", "start", 6);

assertLinkedSyncs("bml1", "speech1", "s1", "bml1", "nod1", "start");

assertNoExceptions();

assertNoWarnings();

}

Figure 9.3: An example test case. A BML block (top) is sent to a RUT and the test function
awaits the end feedback for the block (using the waitForBMLEndFeedback Test Utility
Method). It then verifies the correctness of the execution using various assertions.
The Custom Assertions assertSyncsInOrder, assertAllBMLSyncsInBMLOrder, and
assertBlockStartAndStopFeedbacks verify the message flow and behavior execu-
tion. They validate respectively that feedback on the sync points of the speech1 and
nod1 behavior was received in the correct order, and that the performance start and
stop feedback for the block was received once. The BML block specifies that sync point
speech:start should occur at relative (to the start of the block) time 6, and that
sync point speech1:syncstart1 should occur at the same time as nod1:start. The
Custom Assertions assertRelativeSyncTime and assertLinkedSyncs verify these
scheduling constraints. Finally, the Custom Assertions assertNoExceptions and
assertNoWarnings verify that the block was executed without failure.

RealizerTester provides several Test Utility Methods and Custom Assertions [193]

to help a test author with this. In the fixture setup phase, the RUT is coupled

to a feedback handler that stores all feedback messages. Most of the Test Utility

Methods and Custom Assertions act upon these stored feedback messages. The

Custom Assertions in RealizerTester verify various commonly required assertions on

the received feedback and provide meaningful error messages if these assertions

fail.

Figure 9.3 shows an example test case consisting of a BML block (top) and a test

function executing the BML block and verifying the assertions implied by the block

(bottom). Note that the test case is fully specified using Custom Assertions and Test

Utility Methods, that make it very readable.

Many Realizers support custom BML behavior elements. Such elements can be

tested using test cases in the Realizer Specific Framework. The Custom Assertions

and Test Utility Methods described above can help in the creation of such test cases.
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9.4 Testing in Elckerlyc

The BML specification is an emerging standard, and at the moment of writing, there

are no Realizers that fully implement the BML/feedback interface proposed by the

SAIBA initiative. Elckerlyc implements several (but not all) BML behaviors and

supports BML feedback. This makes it a good test-candidate for RealizerTester. Here

we describe our experiences with the integration of RealizerTester into Elckerlyc’s

software development process.

We have implemented an Elckerlyc Specific Testing Framework that sets up a

Fixture that uses Elckerlyc as its RUT. Elckerlyc is tested using the 19 test cases

provided by RealizerTester. An additional 12 test cases were implemented to test

BML behaviors that are specific to Elckerlyc.

Automatic testing has proven useful in both finding errors in Elckerlyc and mak-

ing sure that new functionality did not introduce errors. In some cases it was useful

to define test cases as acceptance tests for new functionality before it was imple-

mented.5 One such test highlighted deficiencies in Elckerlyc’s BML scheduling algo-

rithm. Passing the test (by an update to the scheduling algorithm that fixed these

deficiencies) marked the implementation of a certain software requirement.

Automatic testing is more valuable if it is done as often as possible. However,

running all test cases on RealizerTester takes some time (roughly 3 minutes on our

test set of 31 tests), which might discourage its frequent use by Elckerlyc’s devel-

opers. We have solved this issue by running the tests automatically on Elckerlyc’s

continuous integration server6 whenever a developer commits changes to its source

repository. If a test fails, the developer responsible for the test failure is automati-

cally notified. The integration server also keeps track of the test performance over

all builds, so it is possible to identify exactly which build introduced an error. Re-

alizerTester helps the Elckerlyc developers in the notification of errors, but it does

not directly help in identifying the exact location of errors, since it is testing the

Realizer as a black box. The use of white box testing at a smaller granularity helps

in Elckerlyc’s defect localization. To this end, over 1000 unit tests (typically testing

one class) and mid-range tests (testing groups of classes working together) are em-

ployed to test Elckerlyc. The unit tests run fast (in under 10 seconds) so developers

run them very frequently to check the ‘health’ of newly created code. The test cases

by RealizerTester are used in Elckerlyc to test how different (unit tested) compo-

nents work together as a whole, and, if tests fail, as an indication of locations that

require more unit testing.

Automatic testing is useful because it can be done as often as possible without

cost (e.g. in developer/human tester time). However, we have found that manual

inspection is more flexible than the rigid assertion verification employed by auto-

matic tests and that some errors in Elckerlyc can currently only be identified by

manual inspection of the behavior of a virtual human. Therefore we recommend

regular visual inspection in addition to automatic testing.

Most visualization failures that have occurred in Elckerlyc so far are a result of

5This is a common practice in the Test Driven Development software development process [193].
6Elckerlyc uses Jenkins (http://jenkins-ci.org/).

http://jenkins-ci.org/
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physical simulation errors, resulting in gross movement errors (e.g. the virtual hu-

man falling over, rolling through the scene uncontrollably, showing large ‘hitches’ in

movement, etc.). The occurrence of such failures is often dependent on the specific

set of movement combinations and the virtual human embodiment used. Because of

this, there is often a long time span between the introduction of such failures in the

code base and their discovery, which makes the failures hard to repair. SmartBody’s

testing framework contributes automatic visual regression testing (discussed in the

next section). Integrating such automatic visual testing in Elckerlyc would be quite

helpful to detect these and other visual regressions in a timely fashion.

9.5 Testing in SmartBody

SmartBody contributes a test program that provides automatic visual regression test-

ing mentioned above. This test program takes screen snapshots at predefined mo-

ments in an ongoing simulation (e.g. the execution of a BML script). A baseline

of such screen snapshots is saved as input for subsequent test simulations. During

a later simulation, another snapshot at the same virtual time in the simulation is

taken and then compared pixel by pixel against the baseline image. If the images

differ more than a predefined threshold (see below), then the test can be marked

as failing and examined manually by a tester. To this end, the test program can

provide the tester with an image that shows the baseline image overlayed with the

differences from the test snapshot. Fig. 9.4 shows some examples of such difference

images. A similar visual difference regression testing method is used in the graphics

industry [314].

By comparing the results of all aspects of the simulation via a graphical image,

the tester is better able to determine the impact of various changes to the realizer.

When implementing this method, it is important to position the camera where it can

detect meaningful differences between the images during a test run. For example,

to test head nodding, the camera should be positioned close to and to the side of the

virtual human’s face. Also, randomness during simulations, such as reliance on real-

time clocks, needs to be eliminated in order to generate repeatable results. Different

platforms and graphics drivers will also tend to produce similar, but not identical

results. This problem can often be mitigated by setting a sufficiently high image

comparison threshold. Changes in functionality will often change the results of the

test images that are desirable. If this happens, the tester should then create a new set

of baseline test images based on the new functionality. Authoring such a graphical

test thus involves choosing a certain simulation, defining a set of important times

to check for image differences, defining a camera position and setting an image

comparison threshold (using the default value often suffices).

SmartBody’s test program goes beyond the tests performed by RealizerTester by

checking if the correct motion is generated, rather than by checking if the Reali-

zer sends the correct signals. However, unlike RealizerTester, SmartBody’s testing

system is Realizer specific and limited to provide only regression (and not accep-

tance) testing functionality. This testing method is thus complementary to testing
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(a) (b) (c)

Figure 9.4: Fig. 9.4a: The simulation run differs from its baseline mostly by subtle differences
in the position of the triangular mesh that represents the virtual human’s body parts.
These differences should not surpass the comparison threshold and should result in
a successful test. Fig. 9.4b: The character on the right differs from the baseline in
the amount of forward lean towards the gaze target. This difference should exceed
the comparison threshold and result in a failed test. Fig. 9.4c: A test of SmartBody’s
locomotion system on uneven terrain. The baseline is shown on the right, the results
from the new test (with a different parameter configuration for e.g. walking velocity)
is shown as a silhouette of the virtual human on the left.

by RealizerTester.

Therefore, RealizerTester is also used to test SmartBody. To this end, Smart-

Body has been extended to allow the feedback messages required by RealizerTester,

and our (draft 1.0) test scripts have been converted to the Vienna draft BML stan-

dard used in SmartBody. Allowing SmartBody to be tested with RealizerTester in-

volved creating a SmartBody Specific Testing Framework and a SmartBody adapter

of RealizerPort (see also Section 9.3.1). This was a relatively simple effort, taking

roughly one day of programming. The BML standard only specifies the information

that should be contained in the feedback, but does not specify the exact form/syntax

of feedback. As a result, much of the implementation effort was spent in parsing

SmartBody feedback and converting it to a suitable form for RealizerTester. The

process of connecting RealizerTester to a new realizer is similar to connecting any

behavior planner to a new realizer. This means that behavior planner developers

have to implement error prone and somewhat elaborate feedback parsing for each

realizer they connect their behavior planner to. We strongly suggest the incorpora-

tion of a standard syntax (for example in XML) for feedback in the BML standard

to alleviate this issue. By testing SmartBody with RealizerTester, some minor imple-

mentation issues in SmartBody were discovered. We did not find any interpretation

differences in the constraint satisfaction between SmartBody’s and Elckerlyc’s re-

alization of the test scripts. A minor difference in message flow was found. In

Elckerlyc, sync-point progress feedback messages are guaranteed to be sent in order

(first start, then ready, then stroke start, then stroke, then stroke end, then relax,

finally end). The performance start messages of a BML block is guaranteed to oc-

cur before all sync-point progress feedback messages of the behaviors in the block.

The performance stop message of the BML block is guaranteed to occur after all

sync-point progress feedback messages are sent. SmartBody does not enforce such
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a message order; sync-point progress feedback messages and/or performance start/

stop feedback messages that occur at the same time are sent in an undefined order.

9.6 Conclusion and Discussion

We have provided a corpus of BML behaviors and video material of their realization

in two Realizers, and a corpus of BML test cases. The test corpus and the visual

comparison movie and script corpus are available online under a creative commons

license.7

Preliminary inspection of the video corpus shows some expressivity issues in the

BML standard, but also shows that several behaviors are executed on the two differ-

ent Realizers in a semantically equivalent manner. More importantly, the process of

creating the corpus created healthy competition between different groups building

Realizers, each trying to enhance the animation quality of their Realizers to outdo

the other. It also motivated them to move toward more compliance to the BML

standard.

The modularity proposed by the SAIBA framework not only allows the reuse of

existing Realizers with new SAIBA Behavior Planners, but also reuse of test function-

ality and test cases for different Realizers. The same modularity that allows one to

connect a SAIBA Behavior Planner to any Realizer, also allows RealizerTester to test

any Realizer. RealizerTester and its test cases provide a starting point for a test suite

that can test the BML compliance of Realizers. Such compliance tests are common

for software that interprets XML.8

When designing BML test scripts and their corresponding test assertions we ran

into several cases in which the BML specification lacked detail, was unclear, or was

unfinished. For example, the current BML specification does not state whether two

posture behaviors (using different body parts) could be active at the same time, if

gaze can be a persistent behavior, or how custom sync points in a behavior are to be

aligned in relation to its default BML sync points. The process of designing a test set

of BML scripts and their corresponding test assertions can significantly contribute to

the improvement of the BML standard itself by highlighting such issues.

Currently each test case consists of a BML script (in a separate XML file) and a

test function in RealizerTester. It would be beneficial to merge the test function itself

into the BML script, so that new tests can easily be authored without modifying the

source code of RealizerTester itself. For many BML scripts (e.g. those that do not

deliberately introduce error feedback or change the behavior flow), it should even

be possible to automatically generate test assertions directly from the script rather

than authoring them by hand.

The BML standard contains several open issues and its interpretation may vary

between Realizer developers. If adapted by multiple Realizers, RealizerTester can

contribute to the formalization of the BML standard (by providing BML test scripts

7http://sourceforge.net/projects/realizertester/
8For example, for COLLADA (http://www.khronos.org/collada/adopters/) or XHTML (http:

//www.w3.org/MarkUp/Test/) interpreters.

http://sourceforge.net/projects/realizertester/
http://www.khronos.org/collada/adopters/
http://www.w3.org/MarkUp/Test/
http://www.w3.org/MarkUp/Test/
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and a formal description of their constraints, as expressed in test assertions) and

help identify and resolve execution inconsistencies between Realizers. A Realizer

does not need to be fully BML compliant to be tested by RealizerTester; supporting

feedback and some BML behaviors is sufficient.



Chapter 10

Elckerlyc in Practice

Elckerlyc features a modular and flexible design, which allows continuous interac-

tion. This chapter illustrates how this design has worked out in practice so far, and,

at the same time, illustrates how Elckerlyc’s design was partly motivated by the

needs of its users. These needs often form the requirements of the several virtual

human applications, tools, and user experiments created by them.

In this chapter, I discuss several extensions and tools that make use of Elckerlyc’s

modularity and flexible input/output connectivity. I also show how Elckerlyc has

been employed in several virtual human applications and was used as a research

tool in experiments. Providing up-to-date and accurate user documentation is an

ongoing challenge. I discuss how Elckerlyc’s documentation strategy aims to pro-

vide relevant, up-to-date and concise documentation that has a high priority for

Elckerlyc’s users.

10.1 Modularity

Elckerlyc is designed to be very modular. It allows flexible input handling which

provides connectivity through different input channels, and makes it possible to fil-

ter or record the BML stream. Elckerlyc can be configured to be used with custom

Embodiments and environments. It is also designed to allow one to add custom

behavior types and output modalities (through new Engines). This section illus-

trates these capabilities by showing how they made several extensions of Elckerlyc

possible.

10.1.1 Pipes and Adapters

Elckerlyc’s BML RealizerPort (see Chapter 8.16.3) allows one to set up and change

the ‘wiring’ between Elckerlyc and a SAIBA Behavior Planner, without modifying

the source code of either. Elckerlyc directly implements the RealizerPort and can

therefore be used directly (through function calls) by a SAIBA Behavior Planner

that uses a RealizerPort to communicate with a Realizer. The SEMAINEToBMLReal-

izerAdapter and BMLRealizerToSEMAINEAdapter (Figure 10.1) were implemented
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to allow connectivity between Elckerlyc and a SAIBA Behavior Planner using the SE-

MAINE messaging API. The TCPIPToBMLRealizerAdapter and BMLRealizerToTCPI-

PAdapter allow connectivity between Elckerlyc and a SAIBA Behavior Planner using

a custom TCP/IP protocol. When building and deploying applications with Elckerlyc

it was often useful to switch to an alternative wiring. A function call connection be-

tween the SAIBA Behavior Planner and Realizer is useful during development of an

application, when both the Realizer and BehaviorPlanner run on the same computer.

In interactive demos however, the SAIBA Behavior Planner and Realizer often run

on different computers to ensure that they both run smoothly. In such a setup one

of the other connection types (SEMAINE, TCP/IP) is used.
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Figure 10.1: The SEMAINE Adapters.

Pipes are used to intercept BML and feedback, allowing one to measure them, let

them go through slightly modified, or at a different rate. Pipes were implemented

for logging and asynchronous communication with a RealizerPort. The RealizerPort

directly connect to Elckerlyc implements the handling of a BML block synchronously,

that is, it blocks until the BML block is scheduled. The BlockingQueuePipe can

be connected to a RealizerPort to allow asynchronous communication. Scheduling

feedback messages (indicating that scheduling has started or is finished on a block,

see also Chapter 6.7.1) provide the matching callbacks for such asynchronous com-

munication. The LogPipe (Figure 10.2) is used to log the BML and feedback passing

through it. A custom SAIBA Behavior Planner was built to replay these logs. Such

playback allows one to carefully analyze recorded user interaction. It can also be

used as fake user input during development of a virtual human application, for ex-

ample, to avoid having to go into a full interaction with the whole system for a quick

test of the behavior realization part.
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Figure 10.2: The LogPipe.

The Realizer testing framework RealizerTester (see Chapter 9) also makes use of

the RealizerPort. RealizerTester is implemented as a SAIBA Behavior Planner that

interfaces with a Realizer through its RealizerPort. Allowing RealizerTester to test

a Realizer entails creating an adapter that connects this Realizer to the RealizerPort

(see Figure 10.3).
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Figure 10.3: Using an adapter to connect RealizerX to the RealizerTester.

10.1.2 Embodiments and Environments

Elckerlyc’s Engines set control primitive values on Embodiments, using the specific

Embodiment interfaces for the Embodiments they control (e.g. FaceEmbodiment,

SkeletonEmbodiment, AudioEmbodiment). New Embodiment implementations can

thus be coupled to an Engine that uses the Embodiment interface they implement.

Several Embodiments are implemented in Elckerlyc’s default setup. Here I discuss

ongoing and realized work that connects Elckerlyc to new Embodiments.

Elckerlyc’s FaceEngine can steer an Embodiment for the face, using MPEG-4 con-

trol primitives. This allows Elckerlyc to steer any face that supports the MPEG-4

standard. An example MPEG-4 Embodiment implementation is provided for one

such face: the XFace [15] talking head.

The ThriftSkeletonEmbodiment (see also Chapter 8.16.5) was developed to in-

tegrate a SkeletonEmbodiment with any desired rendering environment. Ongo-

ing work aims at integrating Elckerlyc with re-lion’s Small Unit Immersive Training
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(SUIT)1 environment. SUIT provides an immersive (using a head mounted display,

instrumented weapon, sensor suit, and wifi laptop) training environment for law

enforcers and soldiers. The need for this integration motivated the design of the

ThriftSkeletonEmbodiment. A proof-of-concept implementation of the ThriftSkele-

tonEmbodiment is currently available for the Ogre rendering environment.2

10.1.3 Engines

Elckerlyc allows one to flexibly set up the set of Engines that execute certain BML be-

haviors. This section discusses how this flexibility was employed in custom Engines

for the execution of gesture and facial animation.

10.1.3.1 Elckerlyc on a Mobile Phone: The PictureEngine

Mobile phones do not always have the processing power to run the full 3D en-

vironment that is used by default by Elckerlyc. This motivated the design of the

PictureEngine (Figure 10.4). Rather than rendering gestures and facial expressions

on a 3D body, the PictureEngine uses pictures, or sequences of pictures, to display

these behaviors.
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Figure 10.4: The PictureEngine.

10.1.3.2 Nabaztag Integration: the Nabaztag Engine

The Nabaztag is a robot rabbit with ears that are controlled by servomotors and a

body on which colored led lights are displayed. The SERA demo (see Section 10.3.5)

required control of this rabbit using BML, without encumbering Elckerlyc itself with

Nabaztag specific code and libraries. The Nabaztag Engine (Figure 10.5) is designed

to achieve this. It is registered for handling all non-speech behaviors. For example,

head nods are mapped in the Nabaztag Engine to a NabaztagPlanUnit that would

move the ears shortly forward and back again; a sad face expression is mapped to a

NabaztagPlanUnit that let the ears droop; et cetera.

1http://www.re-lion.com/products/suit
2http://www.ogre3d.org/

http://www.re-lion.com/products/suit
http://www.ogre3d.org/
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Figure 10.5: The Nabaztag rabbit and the Engine steering it.

The control primitives for the Nabaztag robot are (1) move the ears of the

robot to a specified position, (2) move the ears forward or backward by a speci-

fied amount, and (3) set one of the LEDs to a certain color. So far, two PlanUnit

types have been implemented. The ‘MoveEarTo’ PlanUnit moves the ears of the

robot to a specified position by linear interpolation during the duration of the Plan-

Unit. The “WiggleEarTo” PlanUnit interpolates the ear from its current position to

the specified target position and back to the starting point, during the duration of

the PlanUnit, using a sinusoid interpolation. Given these PlanUnits, and a Nabaz-

tagBinding for mapping BML behaviors to Nabaztag PlanUnits, the Nabaztag Engine

is constructed using the standard available Engine components (see Figure 10.5).

The Nabaztag extension was achieved in a matter of days and did not require

any changes in Elckerlyc’s source code.

10.2 Asset Creation

Elckerlyc comes with a virtual character and a set of body and facial animations.

New applications typically require the use of their own virtual character and a set

of application specific animations. Here I discuss what needs to be done to make

such a virtual character compliant with Elckerlyc, and how new animations can be

authored using custom tools or commercial animation software.

10.2.1 Hooking up Elckerlyc to a New Virtual Human Mesh

Often, virtual applications require a custom-built virtual human body. Elckerlyc’s

default render environment can import meshes in the royalty free XML format COL-

LADA.3 COLLADA is the industry standard format designed to allow exchange of as-

sets between different applications in the 3D industry and is thus widely supported

by different vendors. For performance reasons (e.g. loading time), a COLLADA

mesh can be exported to a custom binary format.

If one wants to make use of physically simulated animation, it is necessary to

design a model of the physical body of the virtual human. This model describes the

set of rigid bodies that compose the physical body and the joints that connect these

3https://collada.org/

https://collada.org/
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rigid bodies. Each rigid body is described by its mass, inertia tensor, center of mass

and collision shape. Each joint is described by its degrees of freedom and the joint

limits on these degrees of freedom. Elckerlyc’s physical human editor (Figure 10.6)

provides the functionality to author a physical humanoid. Convenient defaults for

the joint rotation limits of males and females (based on the human factors literature

[310]) are provided for each joint. A simple (and thus fast to simulate) collision

shape or combination of shapes can automatically be fitted to the (sub)mesh cor-

responding with each rigid body. The center of mass, inertia tensor and mass of

rigid bodies are automatically set (using [195]) by importing the custom mesh of

the rigid body and setting its density. The physical human editor provides default

densities for each body part based on [307] and [67]. The custom mesh of each

rigid body has to be constructed manually from the original mesh of the virtual hu-

man. This is done by segmenting the mesh of the original virtual human, adapting

it to be skintight, and closing the gaps in the resulting segments.

In order to have full control of the virtual human’s face expressions, one needs

to make the face MPEG-4 compliant using Elckerlyc’s face editor (see Figure 10.7).

For each of the standard MPEG-4 control points of a face, one needs to define their

effect on the mesh.

Figure 10.6: The physical human editor.
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Figure 10.7: The MPEG-4 face editor.

10.2.2 Authoring Animation

10.2.2.1 Motion Capture and Keyframe Animation

Elckerlyc provides an XML format to store keyframe animation. Animations (or

motion capture) created with Autodesk MotionBuilder4 can be converted to this

XML format using a custom plugin. Simple animations (for e.g. hand poses, see

Figure 10.8) can be written manually in a relatively easy manner.

10.2.2.2 Creating Procedural Animation

Elckerlyc provides a specialized editor to author procedural animation (see Fig-

ure 10.10). It provides functionality to specify the key times of an animation, add

animation parameters, import motion capture animation, author the movement

path of end effectors (e.g. the wrist, feet) and author the rotation path of joints.

These movement and rotation paths are authored using mathematical formulas of

time and the specified parameters.

Simple procedural animations (e.g. those dealing with a small number of joints/

end effectors) have also been created by manually editing their XML files. Fig-

ure 10.9 shows an example of a procedural animation that was created in this man-

ner.

4http://usa.autodesk.com/

http://usa.autodesk.com/
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<SkeletonInterpolator rotationEncoding="axisangles" encoding="R" parts="r_thumb1

r_thumb2 r_thumb3 r_pinky1 r_index1 r_middle1 r_ring1 r_pinky2 r_middle2

r_index2 r_ring2">

0 1 0 0 0.6 1 0 0 0.6 1 0 0 0.4

0 0 1 1.57 0 0 1 1.57 0 0 1 1.57 0 0 1 1.57

0 0 1 1.57 0 0 1 1.57 0 0 1 1.57 0 0 1 1.57

1 1 0 0 0.6 1 0 0 0.6 1 0 0 0.4

0 0 1 1.57 0 0 1 1.57 0 0 1 1.57 0 0 1 1.57

0 0 1 1.57 0 0 1 1.57 0 0 1 1.57 0 0 1 1.57

</SkeletonInterpolator>

Figure 10.8: A keyframe animation of a static clenched fist. Contains two keyframes, (at time 0
and 1). Each joint rotation is described by a rotation axis and a rotation angle.

<ProcAnimation prefDuration="1.0" minDuration="0.8" maxDuration="1.5">

<Rotation rotation="if(t < 0.1,0,a * sin((t-0.1) / 0.9 * pi * r));

a * 0.5 * sin( t * pi * r);

if (t < 0.1,0, 0.25 * -a * 0.5 * sin((t-0.1) / 0.9 * pi * r))"

target="vc4"/>

<Rotation rotation="if(t < 0.1,0,a * sin((t-0.1) / 0.9 * pi * r));

a * 0.5 * sin( t * pi * r);

if (t < 0.1,0, 0.25 * -a * 0.5 * sin((t-0.1) / 0.9 * pi * r))"

target="skullbase"/>

<Parameter sid="a" description="magnitude" value="0.25"/>

<Parameter sid="r" description="repeats" value="1"/>

<KeyPosition id="ready" time="0.3" weight="1.0"/>

<KeyPosition id="relax" time="0.7" weight="1.0"/>

<KeyPosition id="stroke" time="0.5" weight="1.0"/>

</ProcAnimation>

Figure 10.9: A hand authored procedural animation: a head nod that is inclined to the left.
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Figure 10.10: The procedural animation editor.
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10.3 Applications

Elckerlyc has been used in several applications with different interaction require-

ments, ranging from no interaction (video playback) to continuous interaction. In

this section, I provide an overview and discuss how these applications have influ-

enced and motivated Elckerlyc’s design process.

10.3.1 DirectLife Integration

Philips’ DirectLife program5 aims at increasing the daily activity level of its users.

It keeps track of the physical activity of a user wearing an activity sensor. It helps

in setting activity goals and tracks progress. In a current prototype, Elckerlyc is

connected to DirectLife to provide users with information on their activity progress

and suggestions to become more active. Here Elckerlyc is used in a non-interactive

setting: information on activity progress is translated into BML and shown to users

in a video (see Figure 10.11).

Figure 10.11: Elckerlyc used in DirectLife.

10.3.2 SimQuest Integration

SimQuest [127] is an inquiry based learning environment, in which students ac-

tively discover information by allowing them to experimenting freely with parame-

ters in a computer simulation. For example, students can change the mass of two

5http://www.directlife.philips.com/

http://www.directlife.philips.com/
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Figure 10.12: Elckerlyc used in SimQuest.

people and their distance from the center of a seesaw and discover the effect on the

momentum.

Elckerlyc is integrated with this environment as a talking head (see Figure 10.12).

Currently it is used to explain the ongoing experiment or to give hints or other feed-

back on it. Later work could employ Elckerlyc’s continuous interaction capabilities

to provide feedback that is tightly coupled with an ongoing simulation and/or user

actions.

10.3.3 Griet: the Girl with a Pearl Earring

Griet: the girl with a pearl earring (Figure 10.13), is an interactive demo using

Elckerlyc, demonstrated at the New Technology Conference in Amsterdam. Griet,

painted by Johannes Vermeer as the girl with a pearl earring (1665), tells about her

life as a maid in Vermeer’s house in Delft. Moreover, visitors can ask her questions

about her life in the 17th century. Griet features gazing and gestural behavior: Griet

follows you with her eyes, and makes gestures at appropriate times. By embodying

historic people, and by providing interaction with them, this demo aims to more

actively engage the audience in the history of these people. Users can interact with

Griet through selections in a multiple choice menu, which is updated after each

‘turn’ in the conversation (this is similar to the conversation mechanism employed

in [30]).
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Figure 10.13: Interaction with Griet

10.3.4 Psychometer

The psychometer [34] is a validated instrument for the measurements of personality

traits of a human being. To determine the personality of the user, the psychometer

asks a set of questions to which the user can answer on a scale of 1 to 5. The

psychometer was later extended to allow question answering using natural language

[289]. This version of the psychometer allows users to ask for clarifications of the

question and asks follow-up questions if the answer from the user cannot readily be

classified in one of the 5 categories it needs. The latest version of the psychometer

[275] is implemented as a talking head using Elckerlyc. This talking head makes

use of gaze behavior (e.g. gaze away to mark the start of the sentence and gaze up

to mark ‘thinking’) and speech synthesis. The psychometer uses a simple form of

behavior interruption. While the user is typing an answer, the talking head executes

some idle behavior. This idle behavior is interrupted as soon as the sentence is typed

in completely, after which the talking head responds with a clarification, a follow-up

question or a new question.

10.3.5 SERA Demo

Deliverable 3.3 of the Social Engagement with Robots and Agents (SERA) project

[5] provides a demo that integrates Elckerlyc with a dialog system that was designed

using a combination of Hierarchical State Machines and the Information State com-

ponent Flipper [180]. Output is generated through the Nabaztag rabbit (see also

Section 10.1.3.2). Users can interact with the demo using user interface buttons

with a predefined function (e.g. yes, no, don’t know, repeat, change topic. See also

Figure 10.14). Input from the user may change the dialog state and interrupt ongo-

ing utterances. The dialog manager needs to keep track of the realization status of

the behavior it has requested from Elckerlyc (using Elckerlyc’s feedback messages),

both to keep track of what information was delivered to the user and to interrupt

ongoing behavior in an elegant manner. This demo motivated the Nabaztag inte-

gration discussed in Section 10.1.3.2. It also illustrates how adding interruption

capabilities to a SAIBA Behavior Planner (in this case a dialog manager) requires it
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Figure 10.14: User interface and visualization of the dialog state in the SERA Demo.

to keep track of the realization status of the multimodal plan it composed.

10.3.6 Reactive Virtual Trainer

The scenario of the Reactive Virtual Trainer (RVT) describes a virtual human capable

of presenting physical exercises that are to be performed by a human, monitoring

the user and providing feedback [247, 248]. The reactivity of the RVT is mani-

fested in natural language comments, readjusting the tempo, pointing out mistakes

or rescheduling the exercises. Such exercises can be performed at the beat of a

user’s favorite music. Exercises describe a mix of behaviors on different modalities,

including exercise movement, sound (such as clapping, feet tapping), speech and

music. This scenario is similar in certain ways to the virtual conductor described in

Chapter 8.1.2. The RVT can do the exercises along with the user, adapting its tempo

to the performance of the user, or attempting to lead the user when his/her tempo

is lagging.

The RVT Trainer has been one of the first applications informing Elckerlyc’s de-

sign requirements for continuous interaction. Several trainer prototypes have been

designed and implemented [247, 248]. The latest version of the trainer [66] can ex-

plain exercises and execute them in coordination with a human. The trainer makes

use of Elckerlyc’s Anticipator specification and a custom ExcerciseAnticipator that

predicts key times of user movement in his/her exercise. This ExcerciseAnticipa-



218 | Chapter 10 – Elckerlyc in Practice

tor makes use of a Nintendo WiiMote sensor.6 This sensor provides acceleration

measurements. Acceleration peaks were found to coincide with key times of user

exercises. The ExcerciseAnticipator predicts upcoming exercise key times, using the

history of detected acceleration peaks (see [66] for implementation details). These

time predictions are typically aligned with key time moments in the exercise of the

RVT. The exact alignment strategy is determined by the intent of the trainer (for

example, the RVT could move slightly ahead of the user, to make him move faster).

10.3.7 The Attentive Speaker

In the eNTERFACE project on continuous interaction, a first design and implemen-

tation for an attentive speaker that uses Elckerlyc was made [228]. The attentive

speaker is a virtual human that is able to attend to its interaction partner while it

is speaking and modifies its communicative behavior on the fly based on what it

observes in the behavior of its partner. Continuous interaction is one of the funda-

ments underlying attentive speaking.

An attentive speaker has several turn-taking and listener response management

capabilities. Depending on the response from a listener, the attentive speaker might

fluently interrupt her ongoing speech, attempt to keep the turn (for example by

increasing the speech volume), delay her speech for a bit to allow the listener to

finish an assessment, or continue speaking before a listener finishes a continuer.7

These attentive speaking capabilities have motivated the BMLT specifications for

pre-planning, interruption and parameter value changes. To guide these attentive

speaking capabilities, a rapid interpretation of listener behavior is important. To

this end, the eNTERFACE project has contributed the predictive (defined as within

a minimal perceptible speech pause) classification of incoming listener speech in

Listener Responses and non-Listener Responses.

10.4 Elckerlyc in User Experiments

Elckerlyc was used as a research tool in a series of experiments on listener responses

at HMI [148, 223, 224]. All these experiments involved evaluations by test subjects

of movies of a (fake) interaction between a human speaker and a virtual listener

steered by Elckerlyc. The listening behavior of the virtual listener was either based

on annotated behavior of a real listener that interacted with the speaker, on the basis

of a listener response model, or set up with some random parameters. It involved

head nods, eye blinks and vocalizations (e.g. uh-huh). Since generating vocalized

listener responses using text-to-speech systems is still an open research area [214],

these experiments used recorded listener responses that can be performed with a

closed mouth instead. This need for playback of recorded audio motivated the

6http://www.nintendo.com/wii
7see Chapter 5.1 for more detail on speaker / listener interaction in turn taking and listener

responses

http://www.nintendo.com/wii
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design of Elckerlyc’s AudioEngine and the corresponding BMLT audio behavior (see

Chapter 8.11).

Other experiments were performed to inform or test the design of some of the

applications discussed in Section 10.3. User experiments with the virtual trainer

show that it can successfully speed up the movement of users by moving slightly

faster than them (see also the scenario in Chapter 6.5.1) [66]. Two experiments

were performed with Elckerlyc in the context of the Attentive Speaker application.

The experiments and their results are discussed in detail in [228], here I give a brief

overview of the Elckerlyc functionality used in them. The first experiment evaluated

the effectiveness of different listener responses elicitation strategies. To give subjects

the impression that the virtual human could understand their responses, the virtual

human asked explicitly for a response at the start of the experiment (e.g. “are

you ready?”) and appeared to wait for a response (using a Wizard of Oz setup).

Other than the explicit acknowledgement request at the start of the experiment, the

virtual human did not react to the behavior of the subject. In this experiment, the

illusion of Attentive Speaking was broken whenever the Attentive Speaker resumed

its speech while the subject was uttering a longer response. The second experiment

was set up to allow the Attentive Speaker to wait for longer listener responses.

This was done by aligning the start of each utterance of the Attentive Speaker to

the release event of a Spacebar Anticipator. The wizard would press the spacebar

while the participant was speaking and release it when the participant stopped. The

experiments with the Attentive Speaker resulted in several generic tools that can

be used for user experiments with Elckerlyc, including a framework for the design

of Wizard of Oz tests, the LogPipe and the Spacebar Anticipator. The first two are

discussed below, the latter in Chapter 8.5.1.

10.4.1 The Wizard of Oz Testing Framework.

A testing framework was designed to allow the simple authoring of Wizard of Oz

user experiments in Elckerlyc. Such experiments are designed using an XML de-

scription (Figure 10.15, bottom). This XML description binds a user interface but-

ton to a list of BML scripts (see Figure 10.15, top for an example of the resulting

user interface). Whenever a button is pressed by the wizard, the associated BML

scripts are sent to Elckerlyc. The user interface also allows the wizard to inspect

Elckerlyc’s execution, planning and warning feedback. Using this simple test setup

in combination with Elckerlyc’s continuous interaction capabilities, very powerful

interaction scenarios can be designed. Buttons can be bound to scripts that pre-plan

BML blocks, activate preplanned BML blocks, interrupt ongoing behavior or change

parameter values in ongoing behavior.

The example script in Figure 10.15 is a test scenario for the Attentive Speaker.

It uses the “prepare initial scripts” button to pre-plan some BML blocks. The other

three buttons are used to instantly activate the pre-planned behavior. The “start

intro” starts the experiment with an explanation of the experiment by the virtual

human. At the end of this explanation, the virtual human asks the test subject if

he/she is ready for the experiment. After a confirmation by the test subject, the
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<elckerlycmultiblocktester>

<scriptlist name="prepare initial scripts">

<script filename="experiment2_intro_gaze.xml"/>

<script filename="experiment2_wait_gaze_a_nowait.xml"/>

<script filename="experiment2_route1_startingpoint_gaze.xml"/>

<script filename="experiment2_wait_gaze_b_nowait.xml"/>

<script filename="experiment2_route1_combined_2_outside_left.xml"/>

...

<script filename="experiment2_route1_combined_9_street_right.xml"/>

<script filename="experiment2_wait_gaze_9.xml"/>

<script filename="experiment2_conclusion_gaze.xml"/>

</scriptlist>

<scriptlist name="start intro">

<script filename="fire_experiment2_intro_gaze.xml"/>

</scriptlist>

<scriptlist name="check startingpoint">

<script filename="fire_experiment2_route1_startingpoint_gaze.xml"/>

</scriptlist>

<scriptlist name="continue">

<script filename="fire_experiment2_route1_combined_with_pause.xml"/>

</scriptlist>

</elckerlycmultiblocktester>

Figure 10.15: The Wizard of Oz interface and the XML configuration that created it.
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wizard presses the “check starting point” button, which starts an explanation of the

starting point. This explanation ends with “Do you remember?”. After a confirma-

tion by the test subject, the wizard presses the “continue” button, which starts the

final part of the experiment: an explanation of the route.

10.4.2 Experiment Logging and Replay

When running experiments with an interactive virtual human (interactivity might

be achieved using a Wizard of Oz setup), the behavior of the virtual human is not

fully predictable beforehand. It is therefore useful to keep track of exact behavior

executed by the virtual human for further analysis and/or replay. The LogPipe was

designed specifically for this purpose. It is placed between the BMLRealizerPorts of

the SAIBA Behavior Planner and Elckerlyc and captures all communication between

them (BML and feedback). A specialized SAIBA Behavior Planner was designed to

replay the recorded execution logs.

10.5 Documentation

Outdated and/or lacking documentation plagues most, if not all, other Realizers.

While their source code is continuously updated, the documentation of the open

source Realizers Greta [104], SmartBody [280] and EMBR [111] has not been up-

dated for at least a year. The manual of the closed source Realizer MARC [64] is

listed as ‘in development’ and currently only provides a one page installation docu-

ment.8 Other software engineering projects typically also fail to achieve high quality,

up to date and complete documentation [26, 40]. Some software development pro-

cesses have tried to solve this documentation problem.

Extreme Programming [25] is a lightweight software development process that

proposes to omit software documentation. The software is instead documented

using:

1. Test cases: acceptance tests capture the requirements specification, unit tests

can explain the interface of classes.

2. Clearly written source code

3. Face to face communication. Programmers work in changing pairs, thus spread-

ing knowledge through the organization. In addition to that, the software de-

velopment team is small and works in one room, so it is easy to ask questions

about the software of a coworker.

Elckerlyc’s documentation is in part provided in source code examples. Soft-

ware development processes that use test driven development (including Extreme

Programming) propose to use test cases as source code examples [193]. Elckerlyc

8Documentation as provided on the respective web sites of these Realizers, visited at May 19,
2011.



222 | Chapter 10 – Elckerlyc in Practice

uses a slightly different setup in which test cases automatically execute and test all

provided examples. This allows one to easily reuse and execute the examples with-

out being dependent on the testing framework used. The GUI testing framework

fest9 is used to run example programs, execute some user interface actions on them

and verify the results. A visual testing tool such as that used by SmartBody (see

Chapter 9.5) could be developed for automatic visual verification of the examples.

The examples and their test cases are compiled and tested on Elckerlyc’s continu-

ous integration server (see also Chapter 9.4). This ensures an early notification of

compilation errors or test failures of the examples. Such errors indicate that the

example is no longer up-to-date with Elckerlyc’s source code and should either be

fixed or removed. By making sure that all examples keep on passing their tests and

removing examples that are no longer relevant (typically after they fail to compile

or they fail a test), the example set remains up to date and concise.

Virtual human applications using Elckerlyc were so far mostly written by stu-

dents. While they did not share a room with Elckerlyc developers, or pair pro-

grammed with them, Elckerlyc’s working was often explained to them most easily

in a face-to-face manner. Unfortunately, Elckerlyc developers (like most research-

ers) are not always available to answer questions on their software. Furthermore,

face-to-face communication will become harder once Elckerlyc is used within other

research groups. Face-to-face communication does not suffice as a documentation

strategy for Elckerlyc; some written documentation should also be provided.

Berglund and Priestly [26] provide some insights on how to set up written doc-

umentation in such a way that relevant information of high priority is available for

users. They argue that software developers will have to accept that documentation

is inherently incomplete. They propose that the focus of documentation should be

on providing customers with answers to their questions rather than with providing

complete documentation of their software. To this end, they propose a documen-

tation process that is similar to open source software development. Open source

software development is characterized (amongst other things) as a development

process that is ‘user driven’ and ‘just in time’. Or, in other words, what gets devel-

oped is what the users want when they want it badly enough. These two aspects

capture both relevance and priority. In a ‘user driven’ documentation approach, it is

essential that users are allowed to contribute to the documentation. Such contribu-

tions can come in the form of manuals, questions on a discussion forum or mailing

list, through annotation of (online) manuals, and so on. Rather than writing docu-

mentation, the task of technical writing staff becomes one of organizing and editing

user-provided documentation. The writing staff should also provide a first prototype

of the documentation.

Several users of Elckerlyc were willing to contribute pieces of documentation,

ranging from one page ‘to achieve X I sent this BML’ descriptions to a fully fledged

beginners’ guide. Berglund and Priestly’s documentation process thus seems fea-

sible for Elckerlyc. It is employed on Elckerlyc’s web site.10 The first prototype

of Elckerlyc’s online manual was set up using documentation from the developers,

9http://code.google.com/p/fest/
10http://elckerlyc.ewi.utwente.nl/

http://code.google.com/p/fest/
http://elckerlyc.ewi.utwente.nl/
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augmented with user documentation. Elckerlyc’s manual supports user annotations.

The forums are used for user support, and the answers to user questions and user

annotations of the manual are to be integrated regularly with the manual.

10.6 Conclusion

Preliminary versions of Elckerlyc were used by several experimenters and virtual hu-

man application designers. These users of Elckerlyc appreciated its flexible design

and continuous interaction capabilities. Elckerlyc’s users are most critical over the

documentation that comes with Elckerlyc. The publicly released version of Elckerlyc

improves upon the documentation in the preliminary versions by using a combina-

tion of automatic testing of source examples and a process of ‘user driven’, ‘just in

time’ documentation creation. This should provide relevant, up-to-date and concise

documentation that has a high priority for Elckerlyc’s users.

The flexibility and modularity of Elckerlyc’s design is illustrated by the several

extensions that employ it. Elckerlyc was used in applications with varying interac-

tivity needs. Some of these applications demonstrate Elckerlyc’s continuous interac-

tion capabilities, and, at the same time, often motivated new requirements or minor

improvements in Elckerlyc’s functionality. For example, the design of several ap-

plications requiring different forms of continuous interaction (the Reactive Virtual

Trainer, the Attentive Listener, the Interactive Virtual Conductor, and the Interactive

Virtual Dancer) have contributed in shaping Elckerlyc’s continuous interaction re-

quirements and design. Elckerlyc has also been used as a research tool in several

experiments. The flexibility of its input ‘wiring’ allowed the implementation of valu-

able generic user testing tools such as the Wizard of Oz testing framework and the

experiment logging and replay tool.
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Chapter 11

Conclusion

I have defined three research goals that motivated Elckerlyc’s modular design, its

continuous interaction capabilities and its adjustable trade-off between motion nat-

uralness and control. Here I discuss the contributions made by this thesis on these

topics.

11.1 Enabling Collaboration and Competition in Vir-

tual Human Design

Designing a virtual human is a massive software engineering task that can profit

from modular design, in which interfaces are shared by different research groups.

The SAIBA framework provides a first step towards shared interfaces for ‘standard’

components in virtual human architectures. Standardization of the interface of

these components allows their reuse by different research groups and allows easy

comparison (and thus competition) between research groups that create the same

types of components. This thesis contributes to both the definition and formaliza-

tion of one of the SAIBA interfaces (BML) and provides an implementation of the

component that implements it: the Behavior Realizer Elckerlyc. Elckerlyc’s modular

design enables collaboration opportunities beyond those offered by implementing

the SAIBA interface. This design makes it possible for other research groups to eas-

ily connect Elckerlyc to their SAIBA Behavior Planner, to add specific modularities

(e.g. to control a robot) or to connect it to their own rendering environment or vir-

tual human. Below I discuss the contributions to the BML standard and Elckerlyc’s

modular design in more detail.

I contributed the first formal definition of the explicit, implicit and cluster sche-

duling constraints implied by a BML block. I aimed to promote and test the SAIBA

compliance of BML Realizers. Work towards this goal was done in a joint effort

with the SmartBody authors. We contributed a corpus of example BML scripts and

videos of their execution by different Realizers. The video corpus demonstrates

the semantic equivalences and differences in execution of BML scripts by Elckerlyc

and SmartBody. I also contributed a tool called RealizerTester that can be used to
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formally test and maintain the adherence of any Realizer to the BML standard. Re-

alizerTester can 1) help in maintaining the stability and extensibility that is crucial

for Realizers, and 2) contribute to the formalization of the emerging BML standard,

both by providing test scripts and a formal description of their constraints and by

identifying and resolving execution inconsistencies between Realizers.

Elckerlyc was designed to offer modularity beyond that offered by implement-

ing the SAIBA Realizer interface. Elckerlyc provides flexible ‘wiring’ with a SAIBA

Behavior Planner. This wiring allows one to easily change the connection type (e.g.

function calls, TCP/IP) and to filter or record the BML stream. Elckerlyc allows one

to easily configure and change the Embodiments its Engines steer by alternative Em-

bodiments that implement the same interface. For example, Elckerlyc’s FaceEngine

can steer any Embodiment that implements the MPEG4Embodiment interface. New

Engines can be added to steer new Embodiments (for example a Nabaztag robot

rabbit). Bindings, specified in XML, allow one to easily configure the mapping from

BML behaviors to units on the plan of a specific Engine. For example, the Gesture-

Binding can be used to easily hook up a custom animation to a specific BML gesture.

Elckerlyc’s BML scheduling algorithm is strictly separated from its BML parsing and

multimodal plan management. This should allow one to easily replace Elckerlyc’s

default scheduling algorithm with a different one. All this functionality is achieved

without requiring compile time dependencies of Elckerlyc (or the Behavior Planner)

on the custom components that extend it. Other Realizers have implemented al-

ternative and more elaborate scheduling algorithms, or provide motor control on

modalities that are not present in Elckerlyc (e.g. blushing), or specialized behav-

ior elements (e.g. walking). Elckerlyc’s extensibility allows one to easily use such

specialized behaviors on existing or new modalities. Most aspects of Elckerlyc’s

modular design are demonstrated in several virtual human applications and generic

tools for testing or user experiments. The sole exception is Elckerlyc’s ability to al-

low new scheduling algorithms; the feasibility of this design feature has yet to be

demonstrated.

11.2 Designing a Virtual Human that Allows Contin-

uous Interaction

Humans execute motor behavior (speech, gesture, facial expression, etc.) using sev-

eral body parts. This movement of the body should not be seen as a process of

executing a set of completely independent ‘behaviors’ steering separate body parts.

Instead, behaviors are tightly coordinated. BML provides the means for the spec-

ification of both the behaviors that are to be executed, and their coordination (in

the form of time constraints) between them. The coordination of behaviors is not

limited to one’s own body; tight coordination is observed between the ‘behaviors’

of interacting humans. I contribute the specification of such coordination using the

BML extensions BMLT. Continuous interaction requires that a virtual human has a

flexible behavior plan, which can be adjusted while it is being executed. Elckerlyc

contributes such a flexible behavior plan representation.
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In this thesis, I have highlighted the requirements of virtual humans to achieve

tight coordination with the behavior of their interlocutor, both through a literature

overview of continuous interaction in human-human communication and through

requirement analysis of virtual human applications that already use some form of

continuous interaction, or that require its use. Continuous interaction requires the

specification of 1) the synchronization of (ongoing) behavior to predicted events

originating from the environment or the virtual human’s interlocutor, 2) instant

interruption and fluent (alternative) continuation of ongoing behavior, 3) modifi-

cations in the shape of ongoing behavior, and 4) immediate execution of behavior,

allowing apparent opportunistic planning.

The synchrony between the behavior of different humans relies on the very same

synchronization mechanisms that exist between modalities (e.g. speech, gesture)

within ones own body. Therefore, it makes sense to allow the specification of syn-

chronization to behavior of an interlocutor in the same fashion as synchronization

of modalities within ones own body. In BML, synchronization between behaviors

of a virtual human on different modalities (e.g. speech, gesture) is specified as the

alignment of the synchronization points of these behaviors. If synchronization to

an interlocutor is to be handled in an analog fashion, it should be possible to spec-

ify synchronization of a virtual human’s behavior to (predicted) synchronization

points of the behavior of its interlocutor. In such a specification, multimodal behav-

ior is described as part of a joint action, rather than as a completely autonomous

act. I contribute BMLT, an extension of BML that satisfies the specification require-

ments of continuous interaction. It allows the specification of the synchronization

to predicted interlocutor behavior, graceful interruption of ongoing behavior, the

specification of parameter value changes in ongoing behavior and the pre-planning

of behavior that can be instantly activated at a later stage. Elckerlyc can execute

behavior specifications in BMLT.

In a Realizer that supports continuous interaction, the execution of behaviors

should not be ballistic. Instead, it should be seen as a continuous process that of-

fers rapid and fine-grained interruption and allows one to make microadjustments

on the timing or shape of ongoing behaviors. These microadjustments in ongoing

behavior should however not violate the timing constraints posed in the BML that

constructed it. Elckerlyc contributes a flexible behavior plan representation that

supports these requirements. Such a flexible plan requires PlanUnits that support

microadjustments in timing and shape. I contribute an interface for such Plan-

Units and provide several implementations for different types of behavior (gesture,

speech, gaze, etc.).

Continuous interaction has consequences for the interpretation of the SAIBA

planning ‘pipeline’. To allow continuous interaction, this pipeline should not be

seen as a unidirectional pipeline of intent planning, behavior planning and behavior

realization. Instead, intent planning, behavior planning and behavior realization

should be seen as parallel processes which share an ongoing behavior plan and

incrementally modify and update it. I show that such a shared plan representation

can already be achieved in the SAIBA framework, if SAIBA’s feedback messages

(communicating ‘backward’ in the pipeline) between the planning processes are
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implemented.

11.3 Leveraging Computer Animation Knowledge for

Interactive Virtual Human Applications

This thesis contributes a survey that provides an overview of naturalness and control

trade-offs between different animation techniques. Choosing the right technique de-

pends on the requirements of the application it is used in. Motion (capture) editing

techniques employ the detail of captured motion or the talent of skilled animators,

but they allow little deviation from the captured examples and can lack physical

realism. Procedural motion offers detailed and precise control using a large number

of parameters, but lacks naturalness. Physical simulation provides integration with

the physical environment and physical realism. However, physical realism alone is

not enough for naturalness and physical simulation offers poor precision in both

timing and limb placement. Hybrid animation techniques combine and concatenate

motion generated by different animation paradigms to enhance both naturalness

and control.

Elckerlyc has pioneered the use of physical simulation in a real-time multimodal

virtual human platform. It combines the physical naturalness provided by physically

realistic animation with the control provided by procedural animation. To this end it

contributes a hybrid animation technique: mixed dynamics. It builds on the notion

that the requirements of physical integrity and tight temporal synchronization are

often of different importance for different body parts. For example, for a gesturing

virtual human, tight synchronization with speech is primarily important for arm and

head movement. At the same time, a physically valid balancing motion of the whole

body could be achieved by moving only the lower body, where precise timing is less

important. Mixed dynamics allows one to mix procedural arm and head gestures

with physical simulation of the rest of the body. The forces generated by the gestur-

ing body parts are transfered to the physically simulated body parts, thus creating

whole body animation that appears to respect the laws of physics in a believable

manner and that is internally coherent (that is: the movement of the physically

steered body parts is affected by the movement of the procedurally steered ones).

This provides physically coherent whole body involvement, a naturalness feature

that is lacking in virtual human platforms that solely use procedural animation.



Chapter 12

Discussion

Interactions between humans are characterized by continuous interpersonal coordi-

nation. Interactants align their behaviors in form, content or timing. In this thesis,

I have focused on allowing the coordination of form and timing. Interpersonal co-

ordination can be categorized in behavior matching and interactional synchrony.

Interactional synchrony includes alignment of movement rhythm, synchronization

of behavior between interlocutors and smooth meshing/intertwining of behavior.

Elckerlyc is the first multimodal virtual behavior generation platform that has been

designed to support all of these aspects of interactional synchrony.

Other work has focused on several other aspects of interpersonal coordination.

Recent work on Behavior Planners provides the alignment of content and form (and

thus behavior matching) in virtual humans [29, 43, 97, 116]. Some other mul-

timodal synthesis systems provide incremental synthesis algorithms specialized for

the generation of gesture and speech [105, 155]. These algorithms allow gesture

co-articulation, which currently cannot be easily expressed in BML. Several input

systems allowing continuous interaction have recently been developed. These sys-

tems provide incremental and predictive input processing. Such incremental output

generation and input prediction contributes to achieving smooth meshing and in-

tertwining of behavior with that of the interlocutor.

To achieve interpersonal coordination, a virtual human should be able to exhibit

behavior matching and interactional synchrony. In this Chapter, I illustrate how my

work might be integrated with the efforts in behavior planning, behavior realization

and input processing mentioned above to design a virtual human that truly exhibits

interpersonal coordination.

12.1 Gesture Co-Articulation in a BML Realizer

Some non-BML1 virtual human platforms have implemented scheduling algorithms

that are specialized for scheduling synchronized speech and gesture. These algo-

rithms allow biologically inspired gesture co-articulation. For example: they will

1The authors of these systems are part of the SAIBA initiative. It is their intent to make their
platforms BML compliant in the future.
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skip the retraction of a gesture if it is immediately followed by another gesture. In

this Section I illustrate how this co-articulation is implemented in Greta and Max.

I discuss the required additions to BML to allow the specification of gesture co-

articulation in incremental speech-gesture production and illustrate how it could be

implemented in Elckerlyc.

12.1.1 Greta: Speech-aligned Scheduling

In Greta’s scheduling algorithm [105], gesture timing is solely determined by speech

timing. The end of the gesture stroke is aligned with the emphasized word. The

retraction and preparation phases of gestures can be stretched or skewed. The

maximum stretch and skew of preparation and retraction are annotated with each

gesture. If the preparation phase of a gesture is to be skewed beyond its minimum,

the gesture is dropped. If an extended period of time separates two gestures, a

rest pose is inserted between them. Using this mechanism scheduling is completely

deterministic and all time constraints can be determined beforehand.

12.1.2 Max: Chunk-based Scheduling

The Max system [155] is the first virtual human system that simulates the mu-

tual adaptations between the timing of gesture and speech that humans employ

to achieve synchrony between the co-expressive elements in those two modalities.

It also pioneers the incremental scheduling of multimodal behavior for virtual hu-

mans.

Max’s incremental speech-gesture production model is based on McNeill’s seg-

mentation hypothesis [189]: speech and gesture are produced in successive chunks.

Each chunk contains one tone unit in speech and one co-expressive gesture phrase.

Within each chunk, the prominent concept is concertedly conveyed by a gesture and

an affiliated word or sub phrase (in short, affiliate). Each tone unit has exactly one

primary pitch accent, which is called the nucleus.2

The gesture phrase is aligned to the tone unit in such a way that the stroke phase

of the gesture starts before (in Max this is 0.3s or one syllable) the affiliate in speech

and frequently spans it, optionally by inserting a dedicated hold phase. If one of the

affiliated words is prosodically focused (for emphasizing/contrasting purposes) the

gesture stroke starts exactly at the nucleus.

Gesture movement between the successive strokes of two gestures (in two suc-

cessive chunks) depends on their timing, it may range from moving to an inbetween

rest position to a direct transition movement. A silence might need to be inserted be-

tween the tone units in successive chunks, depending on the duration of the prepa-

ration phase of the second gesture. To achieve this production flexibility, Max uses

an incremental scheduling algorithm that plans part of the chunk in advance. It

2See Chapter 4.3.2 for a more extensive overview of the hierarchical composition and synchro-
nization of gesture and speech.
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refines this plan at a later stage (when the chunk is actually started) by setting up

each chunk’s inter-chunk synchrony with its predecessor (see Inset 1).

The incremental speech-gesture scheduling algorithm in Max [155] plans speech

and gesture as sequences of chunks containing one gesture phrase and one tone

unit. The chunks move through the following phases:

• InPrep The speech synthesis system synthesizes the tone unit and provides its

timing at phoneme level. The gesture planner selects a lexicalized gesture

template, allocates body parts, expands abstract movement constraints and

resolves deictic references.

• Pending Set once InPrep is completed

• Lurking If a chunk can be uttered, i.e. when the preceding chunk is subsiding,

the scheduler sets up the inter-chunk synchrony between the two chunks.

• InExec Set once Lurking is completed, executes the chunk.

• Subsiding Retraction phase of the gesture, speech finished.

• Done Finished executing the chunk.

Note that new chunks are prepared while their preceding chunk is still executing.

Inset 1: The scheduling algorithm used in Max.

12.1.3 Specifying Chunk-based Concatenation in BML

Chunk based scheduling requires that the multimodal behavior plan is built up in-

crementally, with each chunk potentially modifying the timing and execution of the

previous chunk (e.g. by skipping the retraction phase in its gesture). A chunk starts

when the previous chunk is subsiding, that is, when its gesture is in or past the

retraction phase and the speech is finished. BML blocks are the incremental blocks

that construct the behavior plan of a Realizer. It would therefore make sense to

specify each chunk in a BML block (as in BML Example 32).

BML Example 32 A chunk expressed in BML.

<bml id="bml1">

<speech id="speech1"><text>... <sync id="sync1"> ... </text></speech>

<gesture id="g1" type=.. stroke="speech1:sync1"/>

</bml>

However, BML does not currently allow relations between blocks other than ap-

pending one block at the end of another block. A natural way to extend the synchro-

nization between BML blocks is to allow a block to synchronize to synchronization
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points of another block and thus to define synchronization points of the BML block

itself. The start, ready, relax and end of a BML block could be defined as follows:

• start: start of the first behavior in the BML block

• ready: ready of the first behavior in the BML block

• relax: relax of the last behavior in the BML block

• end: end of the last behavior in the BML block

BML Example 33 shows how the bml2 is started at the relax phase of bml1, thus pro-

viding a concatenation of BML blocks that is similar to chunk based concatenation.

BML Example 33 Synchronizing the start of BML Block bml2 to the relax of bml1.

<bml id="bml2" start="bml1:relax">

...

</bml>

Note that this notation can also express the append-after (but not the append)

scheduling attribute (see BML Example 34).

BML Example 34 This constraint requires bml4 to start after bml1, bml2 and bml3.

<bml id="bml4">

<constraint id="s1">

<before ref="bml4:start">

<sync ref="bml1:end"/>

<sync ref="bml2:end"/>

<sync ref="bml3:end"/>

</before>

</constraint>

...

</bml>

Potentially, it can also be used to define the sync points of a BML block in relation

to its internal behavior (see BML Example 35).

BML Example 35 Defining the stroke of bml1 as the stroke of its behavior g1.

<bml id="bml1" stroke="g1:stroke">

<speech id="speech1"><text>... <sync id="sync1"> ... </text></speech>

<gesture id="g1" type=.. stroke="speech1:sync1"/>

</bml>
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12.1.4 Chunk-based Scheduling in Elckerlyc

In addition to requiring the start sync of one BML block to synchronize with the

relax sync of another, chunk-based scheduling requires a flexible adaptation of the

timing of the next BML block (which is already partly scheduled). The timing of the

next BML block is dependent on the duration of the preparation phase of the gesture

in this BML block, which is in turn dependent on the position of, for example, the

hand at the relax sync of the previous BML block. This hand position (and thus

this timing) is known as soon as the BML block starts. Just before the chunk starts,

the timing of the stroke of the gesture (and thus the connected nucleus in speech)

should thus be adjusted in such a way that the gesture has the preferred preparation

duration. Scheduling a chunk in Elckerlyc results in a behavior plan in which the

nucleus of the speech in the chunk and the stroke of the gesture in the chunk are

connected to the same TimePeg (see Figure 12.1).
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Figure 12.1: Updating the timing of a scheduled chunk to set a preferred preparation duration.

The start sync of the gesture (determined by its default preparation duration)

and the start sync of the speech segment are both connected with an OffsetPeg

to this TimePeg. Before the chunk is started, the desired preparation duration of

the gesture can be achieved by modifying the timing of both this TimePeg and the

time offset of the OffsetPeg of the gesture (see Figure 12.1). Elckerlyc’s behavior

plan supports the application of such timing modifications. Implementing chunk

based scheduling in Elckerlyc thus entails implementing some mechanism that, at

the appropriate time, applies this timing modification to a chunk. The exact form

of this ‘mechanism’ and its combination with/generalization to BML blocks that are

not chunks is an open research question.

12.2 Continuous Input

Elckerlyc provides continuous output generation. In most interactive applications

using Elckerlyc input handling was achieved using a Wizard of Oz setup. An au-
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tonomous virtual human that allows continuous interaction with its interlocutors

requires not only continuous and incremental output generation but also continu-

ous and incremental input processing. This input processing is often required to

provide not only the detection, but also the prediction of interlocutor and/or world

events. The Reactive Virtual Trainer is a prime example of an autonomous virtual

human application using Elckerlyc’s continuous interaction capabilities. It makes

use of predictions of the user’s movement using the ExcerciseAnticipator. Recently,

progress has been made in incremental and/or predictive input processing in con-

versational settings. Using this work, Anticipators could be implemented that allow

the design of a virtual human that uses Elckerlyc’s continuous interaction capa-

bilities autonomously within a conversation. This section illustrates some of the

state-of-the-art work on incremental and/or predictive input processing that can be

applied in a conversational setting.

12.2.1 Incremental Speech Recognition

Traditionally, automatic speech recognition systems are used to recognize speech

in segments containing roughly one sentence at a time. Many speech recognizers,

including Sphinx-4 [300] and SHoUT3 may be used in an incremental mode. In such

an incremental mode, the speech recognizer provides a new hypothesis of the words

spoken after each input frame (often every 10ms) [21]. Bauman et al. [21] shows

that incremental speech recognition allows prediction, that is, the first hypothesis

on a word becomes available before the speaker has finished speaking it.

12.2.2 End-of-Turn Prediction

Traditionally, spoken dialog systems have used pause length (between 0.5s and 1s)

as a cue for taking the turn [252].4 In human-human conversation, turn-taking is

much more fluent: one interaction participant starts speaking immediately after (or

even before) the previous speaker finishes his turn (as discussed in Chapter 5.1.3).

Schlangen argues that to achieve such more human-like and fluent turn-taking, pre-

diction of rather than reaction to the end of turn is required. He provides a classifier

that uses prosodic and syntactic information that detects whether a certain word

in speech is the end of a turn or not. Later work improves the performance of the

classifier [12]. De Kok and Heylen [147] contribute an end-of-turn predictor that

uses a multimodal set of annotated input features in a multi-party meeting. Their

end of turn predictor makes use of dialogue acts, focus of attention, head gestures

and prosody.

Jonsdottir et al. [130] contribute a talking agent that can learn fluent turn-

taking behavior during an interaction. Using online machine learning with prosodic

3http://shout-toolkit.sourceforge.net/
4A notable exception is the Rea system [48] which uses a combination of detected phrase type

(imperative, interrogative of declarative), user gesture and (when needed, depending on phrase
type) pause length as turn-taking cues. This effectiveness of this approach has never been evaluated
[130].
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features as input, the agent learns to time the start of its turn in such a way that

silence between turns is minimized. The effectiveness of this approach is demon-

strated by making the agent talk with a copy of itself. In later work, the agent is

employed as an interviewer that interviews a human interlocutor [129].

12.2.3 Listener Response Relevant Moment Prediction

To allow a virtual human to provide listener responses at the appropriate time, it

should be able to predict, or at least detect, the relevant moments to do so during an

ongoing utterance from its interlocutor. Real-time detectors for relevant moments

to generate generic listener responses have been developed using surface features

of speech and gaze. J. Jr [282] and Rea [48] determine appropriate moments to

generate generic listener responses on the basis of silence durations of ongoing ut-

terances. Maatman et al. [182] provide a more elaborate model to detect relevant

moments for generic listener responses. It makes use of both pause durations in

and acoustic features of ongoing speech. Morency et al. [197] provide a multi-

modal detector for relevant moments for generic listener responses, making use of

gaze, prosody, words uttered and pause durations. Jonsdottir et al. [128] con-

tribute a system that can detect appropriate moments for specific listener feedback

(and generates them), within a limited domain. It selects appropriate specific lis-

tener responses and response moments on the basis of keywords spotted in ongoing

speech.

12.2.4 Online Speech Classification

When determining how to respond to incoming speech from a user, it is crucial that

a virtual human knows whether the incoming user utterance is a listener response

or some other speech act. Most listener responses are generic listener responses

[23]. When receiving such a generic listener response, it is typically appropriate for

the virtual human to simply continue speaking (see also Chapter 5.1.4). Specific

listener responses or other utterances from a user often require retiming, reparam-

eterization or interruption of ongoing behavior. Neiberg and Truong [208] provide

a classifier that can, on the basis of acoustic features of online speech, determine

whether incoming speech is a listener response or not. This classifier can be config-

ured to provide a classification result after a maximum latency. This latency can be

adjusted to provide a trade-off between responsivity and classification accuracy. In

a virtual human system that allows incremental output, it can be useful to run mul-

tiple classifiers (each with a different latency) in parallel. This allows the virtual hu-

man to generate behavior based on early classifications, which can —if necessary—

be modified, when a later and more accurate classification becomes available.
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12.3 Interactional Synchrony

Elckerlyc is the first multimodal virtual human generation platform that is designed

to support all aspects of interactional synchrony: interpersonal behavior synchro-

nization, rhythmic alignment and smooth meshing of behavior with that of an inter-

locutor. This is achieved by 1) support for the specification of behavior alignment to

predicted and changing time events from the interlocutor, 2) a flexible multimodal

behavior plan representation that allows plan modification while retaining the con-

straints defined within it, and 3) flexible PlanUnits within the behavior plan that

allowing changes to their timing even while they are being executed.

Elckerlyc’s interpersonal behavior synchronization capabilities are currently used

in the Reactive Virtual Trainer, to synchronize exercise motion with that of a user.

Here, interactive synchrony entails synchronizing key time moments in an exercise

motion to predicted key time moments of a user. Similar synchronization can be

used in a conversation, for example for interpersonal synchronization of gestures.

Rhythmic alignment, for example the entrainment of postural sway, does not re-

quire synchronization of specific time moments in specific behaviors, but might be

better described with synchronization tendency parameters (in-phase, anti-phase,

variability, etc.). Currently Elckerlyc does not contain the specification mechanisms

to handle this kind of synchronization. However, Elckerlyc’s multimodal behavior

plan and its PlanUnits are flexible enough to be able to handle the behavior execu-

tion and on-the-fly plan modification required for it.

12.4 Towards Interpersonal Coordination with Virtual

Humans

Interactions between humans are characterized by continuous interpersonal coordi-

nation. Interactants assimilate their behaviors in form, content or timing. Elckerlyc

focuses on allowing the coordination of form and timing. Other work on interper-

sonal coordination using virtual humans has focused on the alignment of content

and form [29, 43, 97, 116], which is typically achieved at the SAIBA Behavior Plan-

ner level. This includes behavior matching, for example the alignment of lexical

items, the alignment of syntactic structures, the alignment in gesture use or uncon-

scious mimicry. These approaches can provide behavior plans (in BML) that can be

executed by Elckerlyc. Elckerlyc thus complements the interpersonal coordination

capabilities of these approaches, contributing form and timing matching at Realizer

level.

Several interpersonal coordination phenomena require the alignment of behav-

ior to predicted events of interlocutor behavior. Furthermore, to allow timely output

generation, incremental input processing is required. As discussed in Section 12.2,

recent work has contributed several incremental and/or predictive input processing

modules that can be used in the context of conversations with a virtual human.

A virtual human that truly exhibits interpersonal coordination, including behav-

ior matching, interactional synchrony (including interpersonal behavior synchrony,
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rhythmic alignment, and smooth meshing and intertwining of behavior with that of

the interlocutor) can potentially be designed using a combination of all work men-

tioned above. The exact execution (e.g. the timing, the shape and the amount)

of interaction coordination can influence the perceived personality and emotional

state of a (virtual) human in subtle, context dependent ways. To achieve natu-

ral interaction, one should thus not aim for a virtual human that exhibits as much

coordination with its interaction partner as possible, but rather for coordinative be-

havior that matches the virtual human’s personality, its emotional state, the current

interaction context, and so on. A remaining interesting question is then how such

parameters should exactly configure the interactional coordination that is applied

to a virtual human.
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Language. In H. Prendinger, J. C. Lester, and M. Ishizuka, editors, Proceedings of the 8th International Conference on
Intelligent Virtual Agents, volume 5208 of Lecture Notes in Artificial Intelligence, pages 270–280. Springer, 2008.

[114] J. K. Hodgins and N. S. Pollard. Adapting simulated behaviors for new characters. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive techniques, pages 153–162. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1997.

[115] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and J. F. O’Brien. Animating human athletics. In SIGGRAPH ’95: Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques, pages 71–78. ACM Press, New York, NY,
USA, 1995.

[116] D. H. W. Hofs, M. Theune, and R. op den Akker. Natural interaction with a virtual guide in a virtual environment: A
multimodal dialogue system. Journal on Multimodal User Interfaces, 3(1-2):141–153, March 2010.
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[129] G. R. Jonsdottir and K. R. Thórisson. Teaching Computers to Conduct Spoken Interviews: Breaking the Realtime
Barrier with Learning. In Z. M. Ruttkay, M. Kipp, A. Nijholt, and H. H. Vilhjálmsson, editors, Proceedings of the 9th
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J.-C. Martin, E. André, G. Chollet, K. Karpouzis, and D. Pelé, editors, Proceedings of the 7th International Conference
on Intelligent Virtual Agents, volume 4722 of Lecture Notes in Computer Science, pages 139–146. Springer Berlin /
Heidelberg, 2007.

[154] S. Kopp and I. Wachsmuth. Model-based Animation of Coverbal Gesture. In Computer Animation, pages 252–260.
2002.

[155] S. Kopp and I. Wachsmuth. Synthesizing multimodal utterances for conversational agents. Computer Animation and
Virtual Worlds, 15(1):39–52, 2004.

[156] L. Kovar and M. Gleicher. Flexible automatic motion blending with registration curves. In SCA ’03: Proceedings of the
ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 214–224. Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 2003.

[157] L. Kovar and M. Gleicher. Automated extraction and parameterization of motions in large data sets. In ACM Transac-
tions on Graphics, volume 23, pages 559–568. ACM Press, New York, NY, USA, 2004.

[158] L. Kovar, M. Gleicher, and F. H. Pighin. Motion graphs. In ACM Transactions on Graphics, volume 3 of 21, pages
473–482. ACM, 2002.

[159] L. Kovar, J. Schreiner, and M. Gleicher. Footskate cleanup for motion capture editing. In SCA ’02: Proceedings of
the ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 97–104. ACM Press, New York, NY, USA,
2002.

[160] R. M. Krauss, P. D. Bricker, L. E. McMahon, and C. M. Garlock. The role of audible and visible back channel responses
in interpersonal communication. Journal of Personality and Social Psychology, 35(7):523–529, 1977.

[161] K. Kuiper. Smooth talkers: The linguistic performance of auctioneers and sportscasters. Everyday communication: Case
studies of behavior in context. Lawrence Erlbaum Associates Inc, Mahwah, NJ, USA, 1995.

[162] D. Lakens. Movement synchrony and perceived entitativity. Journal of Experimental Social Psychology, 46(5):701–708,
2010.

[163] D. Lakens and M. Stel. If they move in sync, they must feel in sync: Movement synchrony leads to attributed feelings
of rapport. Social Cognition, 29(1), 2010.



Bibliography | 247

[164] J. L. Lakin, V. E. Jefferis, M. Cheng, and T. L. Chartrand. The Chameleon Effect as social glue: Evidence for the
evolutionary significance of nonconscious mimicry. Journal of Nonverbal Behavior, 27(3):145–162, 2003.

[165] B. J. Lance and S. C. Marsella. A Model of Gaze for the Purpose of Emotional Expression in Virtual Embodied Agents.
In AAMAS ’08: Proceedings of the 7th International Conference on Autonomous Agents and Multiagent Systems, pages
199–206. International Foundation for Autonomous Agents and Multiagent Systems, 2008.

[166] M. Lau, Z. Bar-Joseph, and J. Kuffner. Modeling spatial and temporal variation in motion data. ACM Transactions on
Graphics, 28(5):171:1–171:10, December 2009.

[167] J. Lee. Representing Rotations and Orientations in Geometric Computing. IEEE Computer Graphics and Applications,
28(2):75 –83, march-april 2008.

[168] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard. Interactive Control of Avatars Animated With Human
Motion Data. ACM Transactions on Graphics, 21(3):491–500, July 2002.

[169] J. Lee and K. H. Lee. Precomputing avatar behavior from human motion data. Graphical Models, 68(2):158–174,
2006.

[170] J. Lee and S. Y. Shin. A hierarchical approach to interactive motion editing for human-like figures. In SIGGRAPH
’99: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pages 39–48. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, 1999.

[171] P. Lee, S. Wei, J. Zhao, and N. I. Badler. Strength guided motion. In SIGGRAPH ’90: Proceedings of the 17th annual
conference on Computer graphics and interactive techniques, pages 253–262. ACM, New York, NY, USA, 1990.
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[298] H. H. Vilhjálmsson, N. Cantelmo, J. Cassell, N. E. Chafai, M. Kipp, S. Kopp, M. Mancini, S. C. Marsella, A. N. Marshall,
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Appendix A

Kinematics and Physics

Kinematic technologies can be used to control or analyze information of a kine-

matic nature, such as joint angles, joint angle velocity or joint angle acceleration.

Forward Kinematics (FK) is the process of determining the position and/or rotation

of an end effector (the joint at the end of a chain of joints) s given the rotations and

translations q of all joints in the chain. Inverse Kinematics (IK) specifies the inverse

problem: finding q, given s. Often this problem of finding joint rotations is under-

specified, that is, there are multiple combinations of joint DoF values q that put the

end effector in the right location. Several techniques exist to solve this problem.

The IKAN toolkit [287] finds all joint configurations that solve the IK problem for

an arm or leg. For larger chains numerical solutions are necessary. If these numer-

ical techniques start out in a natural pose in which the end effector is already close

to the goal, a natural pose will often be achieved. Boulic and Kulpa [37] provide

an overview of commonly used numerical methods that solve the IK-problem and

discuss the trade-offs made in naturalness and calculations speed in these different

methods.

Kinematic based systems are intuitive, but do not explicitly model physical in-

tegrity. As a result, kinematic animation does not always seem to respond to gravity

or inertia. Physical simulation models the body of the virtual human as a system of

rigid bodies, connected by joints. Each of these rigid bodies has its own mass, inertia

and possibly other physical properties. Forward dynamics is the animation process

that moves a virtual human when the torques on its joints and its contact forces and

impulses with the environment (through friction and collision) are provided. Inverse

dynamics (ID) is the process of finding the torques and forces on the joints in a body

given the movement of its segments. It can be used to predict torques needed for

kinematically specified movement and to check if joint torques exceed strength lim-

its. Several software toolkits can be used for forward dynamics and/or impact and

friction handling. Boeing and Bräunl [35] provide a recent comparison of physics

engines. Their benchmark software is available online and kept up to date with the

latest physics engines. For real-time virtual human simulation, the accuracy and

stability of the constraint satisfaction and the calculation time is important, but de-

pending on the application the virtual human is used in, other simulation aspects,

such as the accuracy of collision detection and friction handling could also play an
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important role.



Appendix B

Conversion of Featherstone’s

6D-vectors to traditional 3D vectors

Spatial velocity v̂ from velocity v and angular velocity ω:

v̂ =

[

ω
v

]

(B.1)

Spatial acceleration â:

â =

[

ω̇
v̇ − ω × v

]

(B.2)

Spatial force f̂ from torque n and force f :

f̂ =

[

n

f

]

(B.3)

The spatial inertia tensor Î of a rigid body is a 6 × 6 vector, constructed from the

inertial tensor at the CoM Icm, the mass m and the offset c of the CoM from the

bodies origin.

Î =

[

Icm −mc× c× mc×
−mc m1

]

c× =





0 −cz cy
cz 0 −cx
−cy cx 0



 (B.4)

Spatial cross product of force and velocity:

v̂ ×∗ f̂ =

[

ω × n+ v × f

ω × f

]

(B.5)
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Appendix C

The BMLT Specification

The BML Twente (BMLT) extension adds the specification of physical controllers,

procedural animation, transition animations and continuous interaction capabilities

to BML. Here I present an overview of the BMLT tags and their syntax. The names-

pace for BMLT is http://hmi.ewi.utwente.nl/bmlt, I use bmlt as the prefix for

that namespace throughout this appendix. The most recent version of the BMLT

specification can be found at http://elckerlyc.ewi.utwente.nl/wiki/BMLT.

C.1 The BMLT Elements

C.1.1 <bmlt:parameter>

Used to pass parameter values to other BMLT elements, such as <bmlt:controller>,

<bmlt:procanimation>, <bmlt:keyframe> or <bmlt:transition>.

Attribute Type Use Description

name string required parameter name

value string required parameter value

Table C.1: Attributes of the <bmlt:parameter> element.

C.1.2 <bmlt:keyframe>

Describes a keyframe (or mocap) animation. Parameter values can be set using

<bmlt:parameter>. The joints parameter selects the joints the animation should

act upon. This is useful to subtract motion on a subsection of the body from full

body mocap. The mirror parameter (default false) mirrors the animation in the

mid-sagittal plane. Mirror is always applied before joint selection.

http://hmi.ewi.utwente.nl/bmlt
http://elckerlyc.ewi.utwente.nl/wiki/BMLT
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Attribute Type Use Description

name string required name of the keyframe animation

Table C.2: Attributes of the <bmlt:keyframe> element.

BML Example 36 An example of the use of a bmlt:keyframe behavior.

<bmlt:keyframe id="v1" name="plain_rhand">

<bmlt:parameter name="joints" value="r_shoulder r_elbow r_wrist"/>

<bmlt:parameter name="mirror" value="false"/>

</bmlt:keyframe>

C.1.3 <bmlt:audiofile>

Behavior that plays an audio file. Useful to, for example, play a sound effect when

the virtual human claps his hands.

Attribute Type Use Description

filename string required name of the file containing the audio

Table C.3: Attributes of the <bmlt:audiofile> element.

BML Example 37 An example of the use of a bmlt:audiofile behavior.

<bmlt:audiofile id="v1" filename="audio/clap.wav" start="3"/>

C.1.4 <bmlt:controller>

Describes a physical controller behavior. Parameters can be passed to the controller

using <bmlt:parameter>.

Attribute Type Use Description

class string required Java class name of the controller

Table C.4: Attributes of the <bmlt:controller> element.

BML Example 38 Enable the balance controller with pelvis height at 1.3m (resulting

in a balance motion with unbend legs) and slightly increased stiffness.

<bmlt:controller id="balance1" class="BalanceController" start="0" end="10">

<bmlt:parameter name="pelvisheight" value="1.3"/>

<bmlt:parameter name="stiffnessmultiplier" value="1.1"/>

</bmlt:controller>
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C.1.5 <bmlt:procanimation>

Describes a procedural animations. Parameters can be passed using the BMLT ele-

ment <bmlt:parameter>. Like in keyframe animation, the joints parameter selects

the joints the animation should act upon. The mirror parameter (default false) mir-

rors the animation in the mid-sagittal plane. Again, mirror is always applied before

joint selection.

Attribute Type Use Description

name string required name of the procedural animation

Table C.5: Attributes of the <bmlt:procanimation> element.

BML Example 39 Conduct a procedural 3 beat gesture with amplitude 5.

<bmlt:procanimation id="beat1" name="3-beat" start="3">

<bmlt:parameter name="a" value="5"/>

</bmlt:procanimation>

C.1.6 <bmlt:transition>

Creates a transition animation. The start and end pose of the transition are deter-

mined automatically from its surrounding motions.

Attribute Type Use Description

class string required Java class name of the transition used

Table C.6: Attributes of the <bmlt:transition> element.

BML Example 40 Create a simple slerp transition on the arm’s rotations, moving

from the neutral pose toward the start arm pose of the conducting gesture.

<bmlt:transition id="trans1" class="SlerpTransition" start="1" end="2">

<bmlt:parameter name="joints" value="r_shoulder,r_elbow,r_wrist,

l_shoulder,l_elbow,l_wrist"/>

</bmlt:transition>

<bmlt:procanimation id="beat1" name="3-beat" start="trans1:end"/>

C.1.7 <bmlt:noise>

Generates a noise (typically Perlin noise) animation on a joint, specified by the type

of noise, joint id and custom parameters.
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Attribute Type Use Description

joint string required joint id

type string required type of the noise

Table C.7: Attributes of the <bmlt:noise> element.

BML Example 41 Example of bmlt:noise.

<bmlt:noise id="noise1" type="perlin" joint="vl5" start="0" end="100">

<bmlt:parameter name="basefreqx" value="0.5"/>

<bmlt:parameter name="baseamplitudex" value="0.05"/>

</bmlt:noise>

Perlin noise behaviors have the following parameters:

• basefreqx, basefreqy, basefreqz

• baseamplitudex, baseamplitudey, baseamplitudez

• persistencex, persistencey, persistencez

Their values can be set using bmlt:parameter.

C.1.8 <bmlt:facemorph>

Directly controls a face morph target defined on the avatar mesh.

Attribute Type Use Description

targetname string required name of morph target

intensity float required amount to which the morph target is activated

Table C.8: Attributes of the <bmlt:facemorph> element.

BML Example 42 Example of bmlt:noise.

<facemorph id="face1" targetname="Body_NG-mesh-morpher-Smile01-9" start="0"

intensity ="0.5" end="5"/>

C.1.9 <bmlt:interrupt>

The bmlt:interrupt behavior provides the capability of specifying precisely when

specific running or scheduled behaviors should be interrupted.
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Attribute Type Use Description

target string required id of the target BML block to inter-

rupt

include comma separated list

of strings

optional set of behaviors to interrupt in the

target BML block (unspecified is

all)

exclude comma separated list

of strings

optional set of behaviors NOT to interrupt

in the target BML block (unspeci-

fied is none)

Table C.9: Attributes of the <bmlt:interrupt> element.

BML Example 43 Interrupt all behaviors in BML, except bml1:speech1 and

bml1:gesture1.

<bmlt:interrupt id="i1" target="bml1" start="shake1:stroke"

exclude="speech1,gesture1"/>

C.1.10 <bmlt:parametervaluechange>

The parametervaluechange behavior allows the modification of certain parameter

values of ongoing behavior.

Attribute Type Use Description

target string required id of the behavior the parametervaluechange targets

paramId string required id of the targeted parameter

Table C.10: Attributes of the <bmlt:parametervaluechange> element.

BML Example 44 Change the volume of bml1:speech1.

<bmlt:parametervaluechange target="bml1:speech1" paramId="volume"

start="bml1:speech1:sync1" stroke="bml1:speech1:sync1+1">

<bmlt:trajectory type="linear" targetValue="90"/>

</bmlt:parametervaluechange>

The bmlt:parametervaluechange behavior contains a bmlt:trajectory element

that specifies the trajectory and value of the parameter that is changed.

The bmlt:parametervaluechange behavior sets the parameter value on the tar-

get behavior according to the trajectory, in such a way that the targetValue is reached

at the stroke of the bmlt:parametervaluechange behavior. It is not allowed to con-

strain the end sync of the bmlt:parametervaluechange behavior; it ends automati-

cally when the target value is achieved.
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Attribute Type Use Description

targetValue float required target value of the parameter

type string required type of the trajectory (e.g. linear, instant)

initialValue float optional start value of the parameter, if omitted the start

value is obtained from the targeted behavior

Table C.11: Attributes of the <bmlt:trajectory> element.

C.2 Pre-planning and Activation

Scheduling a BML block typically takes a non-negligible amount of time, especially

if the timing of speech is to be obtained through speech synthesis software. This is

problematic for developing highly responsive virtual humans. BMLT provides pre-

planning as a mechanism to construct a behavior plan that can be activated later on.

In a typical usage scenario of pre-planning, the SAIBA Behavior Planner already

knows what behavior to execute, and wants to have it ready for (near) instant

execution, for example in reaction to some event such as an incoming response from

the user. Pre-planning is set up for a BML block, using the BMLT pre-plan attribute in

that block. Pre-planned BML blocks can be activated using a BMLT activate behavior.

The pre-planned BML block is activated as soon the activate behavior starts.

BML Example 45 Pre-plan bml1.

<bml id="bml1" bmlt:preplan="true">

...

</bml>

C.2.1 <bmlt:activate>

The bmlt:activate behavior activates a pre-planned block.

Attribute Type Use Description

target string required id of the target block to activate

Table C.12: Attributes of the <bmlt:activate> element.
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BML Example 46 Activate pre-planned block bml1.

<bmlt:activate id="a1" target="bml1"/>

C.3 Synchronization to Predicted Events

BMLT allow synchronization to external, possibly predicted events. This does not

require an extension of BML, other than allowing a synchronization to reference ids

that are not in the BML script.

BML Example 47 Link conducting beat 1, 2 and 3 of a procedural conducting to

tick 1, 2 and 3 of a metronome.

<bmlt:procanimation id="conduct1" name="3-beat"/>

<constraint id="c1">

<synchronize ref="conduct1:start">

<sync ref="anticipators:metronome1:tick1"/>

</synchronize>

<synchronize ref="conduct1:beat2">

<sync ref="anticipators:metronome1:tick2"/>

</synchronize>

<synchronize ref="conduct1:beat3">

<sync ref="anticipators:metronome1:tick3"/>

</synchronize>

</constraint>

C.4 Persistent BMLT behaviors

Some BMLT behaviors are persistent (currently just bmlt:controller). They adhere

to the same persistent patterns as gaze and posture in core BML.

BML Example 48 Specification of a persistent balance controller.

<bml id="bml1" xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt">

<bmlt:controller id="balance1" class="BalanceController" start="1"/>

</bml>

C.5 Mutually exclusive behavior using replacement

groups

Each BML behavior can be assigned a replacement group using a bmlt:parameter.

Elckerlyc ensures that at most one behavior of each replacement group is played at
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the same time. The played behavior is the behavior with the most recent start time.

BMLT behaviors can overwrite persistent core BML behaviors by using their name

BML Example 49 Balances with stretched knees (pelvisheight = 1.2m) from time

= 0 till time = 4, balances with bend knees (pelvisheight = 0.8m) from time = 4

till time = 8, then balances with stretched knees again.

<bml id="bml1" xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt">

<bmlt:controller id="balance1" class="BalanceController">

<bmlt:parameter name="pelvisheight" value="1.2"/>

<bmlt:parameter name="replacementgroup" value="balance"/>

</bmlt:controller>

<bmlt:controller id="balance1" class="BalanceController" start="4" end="8">

<bmlt:parameter name="pelvisheight" value="0.8"/>

<bmlt:parameter name="replacementgroup" value="balance"/>

</bmlt:controller>

</bml>

as replacement group.

BML Example 50 A bmlt:controller overwriting a persistent posture behavior.

<bml id="bml1" xmlns:bmlt="http://hmi.ewi.utwente.nl/bmlt">

<posture id="pose1" stance="standing" shape="open" part="lower"/>

<bmlt:controller id="balance1" class="BalanceController" start="4">

<bmlt:parameter name="pelvisheight" value="0.6"/>

<bmlt:parameter name="replacementgroup" value="posture"/>

</bmlt:controller>

</bml>

C.6 BMLT description extensions

Most BMLT behaviors may also be used as a description extension for a core BML

behavior. For example, bmlt:procanimation can be used as description extension

for gesture and bmlt:controller can be used as description extension for posture.
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BML Example 51 A bmlt:procanimation behavior used as a description extension

for a gesture.

<gesture start="3" id="beat1" type="LEXICALIZED" lexeme="conduct-3-beat"

hand="RIGHT">

<description priority="1" type="bmlt:procanimation">

<bmlt:procanimation id="beat1" name="conduct-3-beat" start="3">

<bmlt:parameter name="a" value="5"/>

<bmlt:parameter name="hand" value="RIGHT"/>

</bmlt:procanimation>

</description>

</gesture>

C.7 Speech Description Extensions Implemented by

Elckerlyc

BMLT supports several speech description extensions, including SSML, Microsoft

SAPI and various MaryTTS specifications.

BML Example 52 A description extension of speech, using Microsoft Speech API.

<bml id="bml1">

<speech id="speech1" start="5">

<text>I’m speaking BML.</text>

<description priority="1" type="application/msapi+xml">

<sapi>I’m speaking <spell>BML</spell>.</sapi>

</description>

</speech>

</bml>

BML Example 53 A description extension of speech, using SSML.

<bml id="bml1">

<speech id="speech1" start="5">

<text>I’m speaking BML.</text>

<description priority="1" type="application/ssml+xml">

<speak xmlns="http://www.w3.org/2001/10/synthesis">

I’m <prosody pitch="high">speaking</prosody> BML.

</speak>

</description>

</speech>

</bml>
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BML Example 54 A description extension of speech, Mary TTS.

<bml id="bml1">

<speech id="speech1" start="5">

<text>I’m speaking BML.</text>

<description priority="10" type="maryxml">

<maryxml xmlns="http://mary.dfki.de/2002/MaryXML">

I’m speaking BML.

</maryxml>

</description>

</speech>

</bml>

C.8 BMLT Feedback

In addition to the feedback specified in core BML, Elckerlyc provides global time

stamps in all its feedback messages and additionally a local time stamp (time in

seconds since start of the BML performance) for Sync-Point Progress Feedback.

Elckerlyc also provides information on the scheduling status of a BML block, us-

ing Planning Start and Planning Finished feedback.

C.8.1 Scheduling Start Feedback

Notifies the behavior planner that scheduling of a requested BML performance has

begun. The message includes:

• a BML block identifier

• a global timestamp

• the predicted start time of the BML block

C.8.2 Scheduling Finished Feedback

Notifies the behavior planner that scheduling of a requested BML block is finished.

The message includes:

• a BML block identifier

• a global timestamp

• the predicted start time of the BML block

C.9 The BMLT BML attributes

In addition to the preplan attribute, BMLT provides several other attributes that are

applied in the bml element itself.
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C.9.1 append-after

append-after(X) scheduling attribute instructs the Realizer to execute the new BML

block immediately after all behaviors from the prior BML blocks on list X have fin-

ished.

BML Example 55 bml4 is to be appended after bml2 and bml3.

<bml id="bml4" scheduling="append-after(bml2,bml3)">

...

</bml>

C.9.2 allowexternalrefs

The allowexternalrefs attribute is used to indicate that a BML block may con-

tain time constraints that refer to behaviors in other (external) BML blocks. Such

references are of the form bmlid:behaviorid:syncid.

BML Example 56 A bmlt:parametervaluechange that refers to speech1 in bml

block bml1.

<bml id="bml2" bmlt:allowexternalrefs="true">

<bmlt:parametervaluechange id="pvc1" target="bml1:speech1"

paramId="volume" start="bml1:speech1:sync1" stroke="bml1:speech1:end">

<bmlt:trajectory type="linear" initialValue="0" targetValue="100"/>

</bmlt:parametervaluechange>

</bml>

C.9.3 The interrupt shorthand

The interrupt attribute is a shorthand for the SAIBA Behavior Planner to remove a

selected set of BML blocks from the multimodal behavior plan before scheduling the

content of the BML block it is in.
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BML Example 57 Interrupt all behaviors in bml1, bml2, .., bmln before scheduling

bmlNew. Top: the BMLT shorthand; bottom: an outline of the SAIBA Behavior Plan-

ner functionality it represents.

(a) Interrupt shorthand.

<bml id="bmlNew" bmlt:interrupt="bml1,bml2,..,bmln">

bmlNew content

</bml>

(b) SAIBA Behavior Planner functionality implemented by the interrupt shorthand.

1. Send a BML block to the Realizer that interrupts bml1..bmln:

<bml id="bmlInterrupt">

<bmlt:interrupt id="interrupt1" target="bml1"/>

<bmlt:interrupt id="interrupt2" target="bml2"/>

..

<bmlt:interrupt id="interruptn" target="bmln"/>

</bml>

2. Wait for block end feedback of bmlInterrupt (to make sure bml1..bmln are properly removed from
the multimodal behavior plan).
3. Send the new BML block bmlNew:

<bml id="bmlNew">

bmlNew content

</bml>
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