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Behavior Measurement, Analysis, and Regime
Classification in Car Following

Xiaoliang Ma, Student Member, IEEE, and Ingmar Andréasson

Abstract—This paper first reports a data acquisition method
that the authors used in a project on modeling driver behavior
for microscopic traffic simulations. An advanced instrumented
vehicle was employed to collect driver-behavior data, mainly car-
following and lane-changing patterns, on Swedish roads. To elim-
inate the measurement noise in acquired car-following patterns,
the Kalman smoothing algorithm was applied to the state-space
model of the physical states (acceleration, speed, and position)
of both instrumented and tracked vehicles. The denoised driving
patterns were used in the analysis of driver properties in the
car-following stage. For further modeling of car-following behav-
ior, we developed and implemented a consolidated fuzzy clus-
tering algorithm to classify different car-following regimes from
the preprocessed data. The algorithm considers time continuity
of collected driver-behavior patterns and can be more reliably
applied in the classification of continuous car-following regimes
when the classical fuzzy C-means algorithm gives unclear results.

Index Terms—Car-following regime classification, driver
behavior, fuzzy clustering algorithms, instrumented vehicle,
Kalman smoothing.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) is a multidis-
ciplinary area with its focus on incorporating up-to-date

information technologies of all kinds in the field of transporta-
tion. Recent advances in intelligent and automated vehicles, and
continuous improvements of information-based road infrastruc-
tures, have propelled research to understand their interactions
and to evaluate them on a large scale. This evaluation will, in
return, provide valuable feedback not only on how to improve
the road-based information and control systems but on how
to design vehicle-based intelligent systems. Simulation has be-
come a cost-effective option for the evaluation of infrastructure
improvements, on-road traffic management systems, and in-
vehicle driver support systems due to the fast evolution of com-
putational modeling techniques. Moreover, a rapid development
of sophisticated microscopic simulation models over the past
decade has led to a tide of applications of microsimulation in
transportation engineering.
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Fig. 1. Structure of a driver-vehicle-unit model: p(t) and α(t) are driver
action outputs of pedal (brake) pressure and steering angle.

Humans play an essential role in the operation and control
of human–machine systems such as driving a car. Modeling
driver behavior has transferred human skills to intelligent sys-
tems, e.g., the adaptive cruise control (ACC) system, intelligent
speed adaption (ISA) system, and autonomous vehicles. Human
driving models are also indispensable for the performance
evaluation of transportation systems. With advances in emerg-
ing vehicle-based ITS technologies, it becomes even more
important to understand the normative behavior response of
drivers and changes under new systems. Based on Rasmussen’s
human–machine model [28], driver behavior can also be sepa-
rated into a hierarchical structure with three levels: the strategic,
tactical, and operational level. At the highest or strategic level,
goals of each driver are determined, and a route is planned
based on these goals. The lowest operational level reflects
the real actions of drivers, e.g., steering, pressing pedal, and
gearing. In the middle tactical level, certain maneuvers are
selected to achieve short-term objectives, e.g., interactions with
other road users and road infrastructures. The behavior at this
level is dominated by the most recent situations but is also
influenced by drivers’ goals at the higher level. To develop
microscopic traffic simulation of high fidelity, researchers are
often interested in imitating human’s real driving behavior
at a tactical level. That is, without describing the detailed
driver actions, driver-vehicle units (DVUs) in the simulation
are modeled to replicate their states in reality, i.e., the profiles
of vehicle position, velocity, acceleration, and steering angle.
Fig. 1 shows the model structure of a DVU in which the detailed
driver actions become internal.

Car following and lane changing are two crucial tactical-level
models for a microscopic simulation system. Car following
describes the longitudinal action of a driver when he follows
another car and tries to maintain a safe distance to the leading
car. Lane changing illustrates the lateral behavior of a driver
between two lanes of a multilane road when he intends to
escape from possible conflicts with other cars in the same lane.
Initial research on driver behavior can be traced back to the
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Fig. 2. Processes to obtain driver-behavior patterns from instrumented-vehicle-based observation and applications of the data in the calibration and development
of models in a microsimulation environment.

1950s when the basic traffic flow theory was developed and car-
following model became a crucial element. The original idea
was to design a mathematical form being able to describe the
car-following behavior exactly and, meanwhile, to replicate
macroscopic relations (e.g., flow density) appropriately. The
well-known nonlinear General Motor car-following model, also
called the GHR model, was introduced by Gazis et al. in 1961
[10] based on the early study of the stimulus-response-type car-
following models [7]. It took a mathematical form of delay-type
differential equations as follows:

an(t + τn) = α
vn(t + τn)β

Dn(t)γ
[vn−1(t) − vn(t)] (1)

where s(t), v(t), and a(t) are the position, speed, and acceler-
ation of the vehicles, Dn(t) = sn−1(t) − sn(t) − Ln−1 is the
distance headway, and Ln−1 is the length of the leading vehicle.
τn is the reaction time of the driver and always assumed to be
a fixed value for a certain driver n; α, β, and γ are constant
parameters. An intuitive hypothesis of the model assumes that
the follower’s acceleration is proportional to the speed dif-
ference term dv(t) = vn−1(t) − vn(t) and the exponent of its
own speed but being inversely proportional to that of distance
headway Dn(t). The speed difference part at the right-hand
side has always been translated as the “stimulus term,” while
the fraction between exponent of following speed and that of
distance headway is called “sensitivity term.” Besides differen-
tial equations, many other approaches were proposed such as
the psychophysical models [21], fuzzy inference systems [6],
control-based models [2], and so on. Although more factors
[19] might be involved in the follower’s decision in the real

traffic environment, the variables above show strong correlation
to the driver’s decision and are relatively easy to observe using
modern equipment.

Previously, scarcity of accurate and consistent data had been
one of the main barriers in the development of realistic driver-
behavior models. Later on, test tracks and static laboratory
simulators were used as major tools to obtain human behav-
ior data under different driving tasks. With the increasing
availability of vehicle-based ITS technologies, instrumented
cars capable of acquiring data in real traffic environments
have become an advanced means in a variety of research
applications, e.g., in [4]. As described in Fig. 2, we intend
in this research project to build a series of tools to obtain
clear and consistent driver-behavior patterns and formulate a
database from the instrumented-vehicle-based data acquisition.
The behavior patterns have been further applied to calibrate
established tactical driver models and to develop new models
using data-mining approaches. All models are intended to be
implemented in and integrated into a microsimulation system
(e.g., traffic performance on major arterial (TPMA) [20] and
[23]) in the near future. Although both car-following and lane-
changing processes were observed in our experiment, current
studies have been mainly focused on car-following behavior.

The remainder of this paper is organized as follows: In
the second section, the driver-behavior data-collection method
using an instrumented vehicle is introduced; the third section
demonstrates the principle and practice of the noise cancellation
process by Kalman smoothing; meanwhile, the denoised car-
following data was used in the identification of driver proper-
ties; the fourth section introduces a fuzzy clustering algorithm,
which can classify car-following regimes in the data surveying
procedure.
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Fig. 3. Volvo ERS logger interface with captured unenforced car following (upper left), enforced car following (upper right), cut-in (lower left), and lane
changing (lower right).

II. METHOD FOR DRIVER-BEHAVIOR DATA ACQUISITION

An instrumented car (Volvo V70 with a manual five-speed
gearbox and 2.4-L engine) in Fig. 2 developed by Volvo Tech-
nology was employed in our experiment on driver-behavior
data acquisition. A data-collection method based on a similar
equipped vehicle had been examined in our early studies on
driver behavior of ISA vehicles [26] and [24]. However, both
the hardware and software in this vehicle were recently up-
dated, and the experiment was more carefully designed for the
observation of tactical driver behavior of other vehicles in the
real traffic flow. This instrumented vehicle was equipped with
a GPS-based navigation system and an advanced on-board trip
computer. The following information can be recorded:

1) GPS-based information including coordinates, GPS
speed, etc.;

2) travel time, speed and distance, and fuel economy;
3) longitudinal and lateral acceleration rates;
4) yaw rate and steering wheel angle;
5) applied brake-pedal pressure, engine speed, etc.

Connecting with the main computer, a pair of two-dimensional
scanning lidar sensors were set up to observe, at most, four
objects in both front and rear sides and to measure their relative
range, relative range rate, relative acceleration, angle, lateral
speed, and so on. Two video cameras were also installed to
record real-time situations in both directions. The Volvo ERS
software running on a portable laptop computer can log all
information infused from those equipment at a maximum fre-
quency of 50 times per second in Hertz. Fig. 3 shows the

interface of Volvo ERS software where runtime data can be
analyzed together with the synchronal video recording and the
car-following and lane-changing situations captured by the
equipment. It is worth mentioning that the software has not
been armed with the intelligence to recognize behavior patterns
automatically regarding the complexity in the general road
environment, though this might be one of our future research
objectives. Hence, the driving patterns are mainly decided by us
based on the synchronal video recording.

In the experiment, the behavior of random vehicles behind,
especially followers observed by the lidar hiding at the rear
side, is our main interest for the car-following study. The lidar
sensor can continuously measure the range, relative range rate,
and relative acceleration to the following vehicles driven by
unknowns. Since one lidar was concealed behind, the drivers
being observed at the rear side did not know that their driving
behaviors were recorded. Therefore, we could obtain behavior
patterns of a random population of subjects. Moreover, to give
a certain variance of the driving style to our instrumented car,
five employees at our institute drove this car in turn. Since we
have one lidar sensor and a video camera in the front of the
instrumented car, not only detailed actions but the car-following
behavior of all five subjects were also logged in our database.
These could be used in our future comparison study. For the
car-following study, a multivariate time series can be obtained
from the output file of the Volvo ERS software. The time series
can be written as

x(t) = [si(t) vi(t) ai(t) D(t) dv(t) da(t)]T
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Fig. 4. Example plot of raw data outputs from the equipment of the instru-
mented vehicle: the speed profiles (upper) and the acceleration curves (lower)
of two cars.

where si(t), vi(t), and ai(t) are travel distance, speed, and
acceleration of the instrumented vehicle i, and D(t), dv(t),
and da(t) are relative distance, speed, and acceleration between
the instrumented vehicle and the observed one. Therefore, the
physical state of the observed vehicle j at time t can be
derived by





sj(t)
vj(t)
aj(t)



 =





si(t) −D(t)
vi(t) − dv(t)
ai(t) − da(t)



. (2)

All experimental runs were conducted in a 25-km-long sec-
tion of the motorway E18, north of Stockholm City. To mea-
sure broader types of car-following behavior on the highway,
the instrumented vehicle was employed to acquire data in
both double-lane and single-lane road sections. In the test
road section, there are mainly three speed limits: 70, 90,
and 110 kmi/h. In the double-lane roads, both car-following
and lane-change behavior were observed. Since followers had
opportunities to overtake us on double-lane roads, their behav-
ior mostly belonged to unforced car following. In the single-
lane road, many of the drivers with higher desired speed were
obliged to follow us, and so, they often showed more aggressive
following behavior, e.g., close following.

The measuring frequency adopted in our experiment is either
25 or 50 times per second in Hertz, which means that the time
interval was either h = 0.04 or h = 0.02 s. This high measuring
frequency should give enough resolution to our later studies on
car following. However, the affordable lidar sensor can only
continuously measure the range value on which the relative
range rate and relative acceleration are approximated by taking
numerical differentials. This means that the measuring noise
of lidar sensors (1%–5% of the range) will be amplified when
deriving its differentials. To alleviate this effect, the Volvo ERS
software integrates an online adaptive linear filtering algorithm
to give smoother readings of relative range and acceleration,
though it results in a small delay in the time series. Fig. 4

shows the measurement output: the speed and acceleration of
both the leading and following cars. From the pictures, we can
tell, however, that the measured states of both cars, especially
the observed car, show quite noisy patterns and are therefore
not appropriate for direct application in behavior modeling.
In the next section, we will introduce an offline smoothing
algorithm, which can more efficiently cancel the noise from the
measurement.

III. PREPROCESSING OF CAR-FOLLOWING DATA

Whenever the state of a system must be estimated from noisy
sensor information, some kind of state estimator is needed to
extract the data from different sensors to produce an accurate
state estimate of the true system. There are different methods
of estimating the real signal or time series from the noise-
corrupted signal or time series. Taking the moving average
values or using a low-pass filter to deal with high-frequency
noise are often used in data preprocessing in traffic engineering
[30] and other fields. In fact, these methods can be general-
ized as filtering data series with a linear time invariant (LTI)
filter [13]

y(t) =

q
∑

l=−q

φ(l)x(t− l).

However, an LTI filter assumes that the data process is station-
ary and that the filter parameters are predetermined without
optimization. These bring risks of losing information on the
real signal. Wiener filtering, on the other hand, applies the
linear filtering approach and minimizes the mean-square error,
but it has limitations in its applicability to nonstationary and
multivariate signals.

A. State Space Model

The Kalman filter [17] is an optimal linear filtering approach
that can be treated with nonstationary data processes in an
iterative way, and it is specially appropriate for the state-space
model form

X(t + 1) =F (t) · X(t) + G(t) · V(t)

Y(t) =H(t) · X(t) + W(t) (3)

where X(t) is the state vector, and Y(t) is the measurement
vector at time t. F (t) is the state transition matrix, and H(t)
is the relation matrix between measurement and state vector.
Here, we have not considered any control input in the state
equation. Furthermore, the Kalman filtering approach has been
extended to be treated with nonlinear systems using the (ex-
tended Kalman filter) EKF method [11], [29], in which the
model is linearized so that the traditional linear equations can be
applied. In this paper, however, we intend to apply the Kalman
smoothing algorithm, which is an extension from the classical
linear Kalman filter, to estimate the states of vehicles being
tracked by our equipped car. Before introducing the smoothing
algorithm, the state-space model needs to be formulated in
advance.
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Fig. 5. Autocovariance and partial autocorrelation function of the acceleration
of car n.

For a traveling car being tracked, it is natural to formulate
a state space model according to the physical state relation
as follows:

sn(t + 1) = sn(t) + vn(t)h +
1

2
an(t)h2

vn(t + 1) = vn(t) + an(t)h.

Nevertheless, we need an equation on the acceleration to
complete the state-space model. Referring to the autocovariance
function (ACF) and partial ACF of the noise corrupted time
series of the acceleration in Fig. 5, we then find an evidently
strong correlation between an(t) and an(t− 1). According to
the order selection approach of autoregressive (AR) models [5],
it is suggested to represent the acceleration time series as the
first-order AR model

an(t + 1) = φan(t) + θ(t) (4)

where θ(t) is a white noise WN(0, σ2). The time series an(t)
will be stationary AR(1) process as far as |φ| < 1. If the unit
root exists, e.g., φ = 1, the time series will be a first-order
ARI process. This model represents a random walk process in
which acceleration at the next time interval equals acceleration
at current time interval with an addition of a random noise term.
In summary, the state space equation for our problem can be
written as

X(t + 1) =F · X(t) + V(t) (5)

Y(t) =H · X(t) + W(t) (6)

where X(t) = [sn(t) vn(t) an(t)]T, V(t) = [0 0 θ(t)]T,
Y(t) = [ŝn(t) v̂n(t) ân(t)]T, H = I , and

F =





1 h h2/2
0 1 h
0 0 φ



 .

It is worth mentioning that we present a general case full-
order physical states (position, speed, and acceleration) in the
observation equation.

B. Kalman Smoothing Algorithm

Besides Kalman’s famous paper, there are many other texts
(such as [5], [11], [13], [14], and [18]) that describe the Kalman
filtering algorithm and its extensions. Different notations have
been adopted in their formulations. Here, we only summarize
the discrete Kalman algorithms based on the texts and notations
with which we are familiar.

In essence, the Kalman filter is a minimum mean square
estimator (mmse) given the linear state space model on X(t)
and the observation sequence Y(t). The basic Kalman filter as
an estimator for the state space model of (3) can be derived as
the following iterative algorithm:

X̂t|t−1 =Ft−1X̂t−1|t−1

Ωt|t−1 =Ft−1Ωt−1|t−1F
T
t−1 + Gt−1R

V
t−1G

T
t−1 (7)

and

X̂t|t = X̂t|t−1 + Γt(Yt −HtX̂t|t−1)

Ω(t|t) = (I − ΓtHt)Ωt|t−1

Γt =Ωt|t−1H
T
t

[

HtΩt|t−1H
T
t + RW

t

]−1
(8)

where X̂t|i := Pi(Xt) defines the projection of Xt on the linear
span space of Y

i := {Yk|k = 0 . . . i} according to the orthog-
onal principle. Ωt|i = E[(Xt − X̂t|i)(Xt − X̂t|i)

T], where i =
t− 1, t represents the a priori and posterior error covariance
matrices. Equation (7) illustrates the state update of the es-
timator, while (8) describes the measurement update of the
estimator. It is worth mentioning that both the process noise
V(t) and the measurement noise W(t) are assumed to be
white, and hence, RV and RW are the autocovariance matrix
of noise processes V(t) and W(t), respectively.

In the offline smoothing, the complete observation sequence
Y0, . . . ,YN is known, and therefore, noncausal information
can be used for the noise cancellation to get the optimal
solution. The Kalman fixed interval smoothing algorithm, also
called the Rauch–Tung–Striebel smoother [11], [12], was ex-
tended from the basic Kalman filter above using this principle.
It also includes a backward filtering procedure as follows:

X̂t|N = X̂t|t + Λt(X̂t+1|N − X̂t+1|t)

Ωt|N = Ωt|t + Λt(Ωt+1|N − Ωt+1|t)Λ
T
t

Λt = Ωt|tF
T
t Ω−1

t+1|t (9)

where X̂t|N := P (Xt|Y
N ) is the estimation of Xt, given

the data sequence Y0 · · ·YN ; Ωt|N = E[(Xt − X̂t|N )(Xt −

X̂t|N )T] is the error covariance matrix when the information
of the whole data series is used. In summary, the Kalman
smoothing algorithm uses both the forward estimation result
of the conventional Kalman filter and a backward filtering
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Fig. 6. Example of speed and acceleration profiles of both vehicles and the range between them before and after noise cancellation by the Kalman smoothing
algorithm (the measurement time interval is 0.02 s).

iteration. The final result should be, in principle, more reliable
than that from the forward pass.

C. Practical Results

In practice, we have implemented and applied the Kalman
smoothing algorithm to the logged data series of both the
instrumented and observed vehicles. Thanks to the short time
interval h = 0.02 or the high measuring frequency (f = 50),
the random walk model is applied for the acceleration time
series of both vehicles, i.e., φ = 1 for (4). To cancel the noise by
the Kalman smoother, the covariance matrices RV and RW for
the noise processes need to be known. Noises are assumed to be
white and uncorrelated to each other, and so, the two covariance
matrices are diagonal. Hence, we only need to know the power
levels, or variances, of the noises in both equations.

Time series of the instrumented car are smoothed at first.
Noise for the position and speed is zero, and so, only the
noise term in the random walk (4) needs to be determined.
The equipment in the instrumented car can directly estimate the
position and speed of the car, but the acceleration is derived
from the speed data. Therefore, it is not necessary to include
acceleration measurement in the observation equation, that is,
Y(t) = [ŝn(t) v̂n(t)]T, and

H =

(

1 0 0
0 1 0

)

.

Since we do not know the noise in the observation data of trav-
eling distance and speed, it becomes a filter design problem in
which we have to choose appropriate noise covariance matrices
to realize a tradeoff between tracking ability and noise rejection
capability of the filter. According to the study in [14], the
performance of the filter is mainly determined by the ratio of the
covariance matrices. By adjusting the ratio, we can obtain more

reasonable estimation of state profiles. In fact, the measurement
noise in the speed and position time series of the instrumented
car are rather small in comparison with the disturbance to the
time series of the observed objects, making estimated results
vary only within a small range.

Next, we apply the smoothing algorithm to cancel noise
in the states of the observed car. As we have discussed in
advance, the relative speed and acceleration in the measure-
ment output of the following car are in fact derived from the
distance measurement from laser beam scanning, and an online
adaptive filter is applied to smooth data. Therefore, only the
space headway measurement shall be adopted in our Kalman
smoother since online estimation of relative speed and acceler-
ation cannot improve our estimation. Then, the measurement
equation becomes a first-order form of the general equation
(6), where Y(t) = ŝn(t), and H = [1 0 0]. As far as is known,
noise for velocity and position in the state update equation are
zero, but we give them a very small value to avoid the singular
matrix. The key becomes determining the ratio between the
power of the measurement noise for distance and that of the
noise term in the random walk model of (4). Nevertheless,
the power level of the noise term for the acceleration in the
state equation can be estimated by computing the variance of
the process θ(t) = an−1(t) − an−1(t− 1), where an−1(t) is
the acceleration process of the instrumented vehicle. The noise
in the range measurement is approximately known from the
producer, and so, the parameters of the Kalman smoother can
be tested out with small adjustments.

Remarkable changes of the noise level in the range measure-
ment may appear when the time series includes a wide distance
value, e.g., from 0 to 100 m (since the larger the range, the
higher the measurement error). This indicates the nonstationary
characteristic of the system, and smoothing different parts
of the time series separately may give a better result than
smoothing the whole time series at one stroke. Fig. 6 shows
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Fig. 7. Comparison example of estimation results from a car-following time series using the Kalman filter and Kalman smoother (the measurement time
interval is 0.04 s).

Fig. 8. Example of oscillation and goal seeking in a typical approach-follow case.

one of the results of the speed and acceleration profiles of
the instrumented car and the observed car before and after
applying the Kalman smoothing algorithm. Fig. 7 illustrates the
difference between the estimation results from the Kalman filter
and Kalman smoother. The Kalman smoother gives clearer state
profiles for the following vehicle.

D. Data Validity and Driver Properties

After the data preprocessing, it is necessary to analyze the
data patterns obtained. Wu et al. in [32] adopted a concept val-
idation methodology in the comparison of their car-following

model output with real data. The concepts used in this paper
could also be used to check our data patterns. Accordingly,
one of the important criteria is to appreciate that the separation
at which the vehicle pair stabilizes is not actually constant
but oscillates within a certain range due to the misperceptions
in the decision process. This may cause overcompensation
leading to goal seeking [32]. Fig. 8 shows a typical example,
from our dataset, of oscillation and goal seeking behavior
in the “approach-follow” case. In fact, the oscillation and
goal-seeking phenomenon appears not only in this case but
also in the “acceleration-follow” and “cut-in-follow” processes.
We have examined the concept in most of our data patterns.
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Different drivers may have variations in those profiles due to
their sensitivity differences in speed and distance or separation.

Besides surveys of data at a concept level, system identi-
fication methods [16] were also applied in our in-depth car-
following data analysis. In our former study [25], the spectrum
of all the time series were plotted, and the transfer functions
between all observation inputs and the acceleration output were
estimated. It was discovered that all these data series were
narrowbanded, and the amplitude of the transfer functions
showed bandpass properties, which agreed with the expectation
that “human sensors” have bandpass properties. Moreover, it
was easy to find the phase shift phenomenon in the phase plots
of the transfer functions, and this indicates that drivers have
reaction delays during the driving task. In the former study [25],
we also showed that both the phase spectrum and coherence
spectrum methods could be applied in driver reaction time
estimation. However, they are limited in estimation accuracy
due to the common spectral leakage problems [13] and rarity of
validation methods.

IV. CLASSIFICATION OF CAR-FOLLOWING REGIMES

It is widely known that driver behavior, especially car follow-
ing, shows a property of regime adaptation due to the sensitivity
thresholds of human beings. Therefore, drivers exhibit dis-
tinct characteristics in each regime of car-following behavior.
This psychological concept has been introduced by modelers
in building more realistic car-following models. In fact, two
popular microscopic traffic simulation software (VISSIM and
PARAMICS) both adopt car-following models with definitions
of multiple regimes, although the classification of the regimes
are different (see [9] and [21]). One common disadvantage of
these models is that the regimes or thresholds are solely defined
by the knowledge or commonsense of modelers, possibly with
bias. Even though later researchers tried to calibrate some psy-
chological thresholds by real data [32], a consolidated method
has not been developed to identify the regime classifications
based on properties in real data. One possible approach is
to use supervised classification methods [31], e.g., Bayesian
classification, but it requires detailed prior knowledge in differ-
ent car-following regimes, e.g., probability distributions of the
variables. In this section, we resort to unsupervised methods to
identify the internal structure of the acquired data and separate
the car-following data into several common regimes: accelera-
tion, stable following, braking, approaching, and opening.

A. Classical Unsupervised Clustering Algorithms

K-means clustering, also known as ISODATA [1], is a widely
used unsupervised clustering algorithm to attribute multidi-
mensional data into different clusters according to certain dis-
similarity measures. In this method, the cluster number has
to be determined at first, and each data point can be either
a member of a cluster (membership degree u is 1) or not a
member of a cluster (membership degree u is 0). By randomly
determining the initial cluster centers, the algorithm searches
iteratively the optimal combination of the membership degree
matrix and cluster centers in order to minimize the summation

of dissimilarity measures of data vectors to its cluster center,
that is

J =

C
∑

i=1

∑

k,k∈Ci

D(xk, ci) (10)

where xk is the kth data vector, and ci is the cluster center
of ith cluster Ci. D(·, ·) is the measure of dissimilarity, and
the Euclidean distance D(xk, ci) = d2

ik = ‖xk − ci‖
2 is one

of the ones applied the most.
Fuzzy C-means clustering [3] generalizes the K-means algo-

rithm with adoption of the fuzzy membership degree. That is,
each data vector can be attributed to several clusters with certain
membership degrees between 0 and 1, but the summation of the
membership degrees for each data vector must be 1. Hence, the
objective function becomes

J =

C
∑

i=1

N
∑

k=1

um
ikd

2
ik (11)

with the constraint

C
∑

i=1

uik = 1, ∀i ∈ [1, N ]. (12)

Solving the optimization problem leads us to the fuzzy C-means
algorithm in the following.

1) Initialize a random membership matrix U with (12)
fulfilled.

2) Calculate C cluster centers ci for i = 1, . . . , C using

ci =

∑N
k=1 u

m
ikxk

∑N
k=1 u

m
ik

. (13)

3) Compute the objective function and check whether the
reduction is below a certain threshold.

4) Update the membership matrix U using

uik =
d
−2/(m−1)
ik

∑C
c=1(dck)−2/(m−1)

(14)

and go to step 2).

An important question in both clustering algorithms is how to
determine the number of clusters before application of them.
The David–Bouldin index [8] is a classical way to determine
the optimal clustering number. In many real-world applications,
however, domain knowledge plays an essential role in the
determination of this number, though it is sometimes necessary
to use visualization tools.

B. Fuzzy Clustering Algorithm With Time Continuity

A common weakness of K-means and fuzzy C-means algo-
rithms is that both methods exploit the homogeneity of data in
the multidimensional feature space without incorporating the
inherent ordering of the data. In our case, the collected driving
data are all time series. Therefore, a clustering algorithm with
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consideration of the time continuity of the data should be ap-
plied in our car-following regime classification. Initial ideas on
fuzzy clustering considering spatial continuity were introduced
in the area of image processing [22], [27]. Clustering of multi-
variate time series is sort of different from the image processing
application, although the common principle reformulates the
objective function of (11) with a modified dissimilarity measure
based on each data point and its neighborhood and a penalty
term discouraging sudden oscillations in the membership func-
tions. In our application, a more general objective function is
defined as follows:

Jn =

C
∑

i=1

N
∑

t=1

um
it d

2
it + α

C
∑

i=1

N
∑

t=1

um
it

l
∑

δt=−l,δt	=0

ΦδtRit,δt

(15)
with the constraint

C
∑

i=1

uit = 1 ∀t ∈ [1, N ] (16)

where

Rit,δt =

C
∑

p=1,p	=i

um
p,t+δt (17)

is the summation of the m exponent of the membership degrees
that the neighbor point at t + δt belongs to all clusters except
cluster i; α represents the impact factor of the regularization
term, and the function Φδt describes the contribution weight
from the data point’s neighborhood, which can be defined based
on, e.g., local correlations information of the time series. By
introducing this additional term, we can restrict the case that a
data vector belongs to a certain class with a high degree, but its
neighbors have a high membership degree summation to other
classes (vice versa). Therefore, the final membership function
will be somehow regularized. Based on the derivations (showed
in the Appendix), we can still apply the procedures of the fuzzy
C-means algorithm but replace (14) with

uit =

(

d2
it + 2α

∑l
δt=−l,δt	=0 ΦδtRit,δt

)−1/(m−1)

∑C
c=1

(

d2
ct + 2α

∑l
δt=−l,δt	=0 ΦδtRct,δt

)−1/(m−1)
.

(18)

C. Implementation and Numerical Experiments

Fuzzy clustering technology has been introduced in the
classification of traffic regimes and driver-behavior patterns in
some ITS applications. However, few studies considered equal-
izing the dimensional scale of data vectors before applying a
clustering algorithm. This leads to a consequence that vectors
with larger numerical values will be actually more preponderant
during the regime classification. For example, in our case,
distance headway (probably with speed of the following car)
will determine the final regimes if we do not equalize the scale
in advance. Hence, the resulting clusters and boundaries may
not reflect the internal structure of the multidimensional data

vectors. In this application, we consider two scaling methods;
the first method scale multidimensional data

[D(t) dv(t) v2(t) a1(t) a2(t)]
T

to multivariate time series with entry values between 0 and 1 by
applying

x̂(t) =
x(t) − φx

ψx − φx
(19)

where x(t) is equal to each of D(t), dv(t), v2(t), a1(t),
and a2(t), φx = min{x(t)}, and ψx = max{x(t)}; the second
method normalizes the dataset by applying

x̂(t) =
x(t) −mx

σx
(20)

where mx = E[x(t)], and σx is the standard deviation of the
time series x(t). The first scaling method hypothesizes super-
spherical clusters (that is, the vectors in each dimension are
equally important), whereas the second one assumes normal
distribution of the data population and considers the statistical
properties (variance) of the time series. Both methods are
options for our car-following data analysis. After scaling of the
data, possible cluster (regime) numbers are determined from
video images based on our prior understanding on each car-
following pattern, and one proper cluster number is chosen.
The classical fuzzy C-means method is first applied to see if
car-follow regimes can be classified from the dataset in an
understandable manner. Fig. 9 shows an example that a vehicle
accelerated from a stop behind the leading car and then en-
tered the stable following region. This procedure is qual-
itatively obvious according to the video record, but the
boundary is difficult to determine. By applying the fuzzy
C-means algorithm, we can classify the data into two con-
tinuous regimes and determine the boundary. However, fuzzy
C-means method sometimes cannot classify the continuous
regimes successfully since it assumes the independence be-
tween data points. Therefore, application of consolidated fuzzy
C-means method is necessary. Fig. 10 shows an example
where a vehicle followed a leading car after merging and then
they were separated (opening). The classical clustering method
cannot completely partition data into two continuous regimes
because the belongingness of the middle part is vague. This can
be solved by the proposed consolidated fuzzy C-means method,
and it strengthens a remarkable boundary while unraveling the
membership fuzziness between those two regimes. In another
case study, the method is evaluated in a more complicated
situation where the regimes are not so clear, even in the video
recording. In this example, a vehicle first approached, then
followed remotely behind the leading car, and then, two vehi-
cles were separated completely. The classical fuzzy C-means
method cannot solve this puzzle (on the left of Fig. 11),
but the consolidated fuzzy C-means algorithm does propose
a solution: Cluster 1 is the approaching regime, cluster 2
belongs to the following case, and cluster 3 can be attributed
to unaffected separation or opening.
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Fig. 9. Example of successful classification of a following regime (cluster 1) and an acceleration regime (cluster 2) in a car-following time series using fuzzy
C-means algorithm (m = 2 and the measurement time interval is 0.04 s).

Fig. 10. Comparison result of classifying a following regime (after merging) and an opening regime. (Left) Result using classical fuzzy C-means algorithm with
the distance headway attributing to each cluster (upper) and the membership function of each regime (lower)(m = 2). (Right ) Result using consolidated fuzzy
C-means algorithm with the distance headway attributing to each cluster (upper) and the membership function of each regime (lower) (m = 2, β = 2α = 30,
and l = 15).

It is noticeable that values of the regulation factor and num-
ber of neighbors adopted in the objective function directly affect
our final results. An appropriate regulation factor is often deter-
mined by cross-validation, that is, a small part of the dataset
is used to evaluate which factor gives the least dissimilarity
summation within that data population, and then, the regulation
factor is applied for clustering of the whole dataset. This
approach is reported to be successful in the spacial data analysis
[27]. In our study of car-following time series, cross-validation
is not practically applicable. Meanwhile, the objective is to
partition multivariate time series data into continuous regimes
by applying the regulation term. Therefore, the regulation

factor does not necessarily optimize the objective function. An
innovation in this clustering method is the consideration of
the neighborhood in the regulation term. In theory, a larger
regulation factor often makes it more difficult to optimize the
objective function, and the fuzzy clustering algorithm does not
ensure capturing the global optimum. Averaging the regulation
term by considering the neighborhood with local weights can
smooth the final objective function and then reduce the chance
of trapping into local minimum. In this application, we define
the local weight function Φδt as a simple triangular function,
i.e., the weight decreases linearly and vanishes after an interval
according to, e.g., the autocorrelation.
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Fig. 11. Comparison result of classifying a car-following time series with vague regimes. (Left) Result using classical fuzzy C-means algorithm with the distance
headway attributing to each cluster (upper) and the membership function of each regime (lower) (m = 2). (Right) Result using the consolidated fuzzy C-means
algorithm with the distance headway attributing to each cluster (upper) and the membership function of each regime (lower) (m = 2, β = 2α = 100, and l = 30).

In general, the proposed algorithm has been successfully
applied in regime classification of our collected car-following
time series whenever the fuzzy C-means algorithm gives us
confusing results. The classification by this algorithm clarifies
the boundaries between different car-following regimes and
proves our prior knowledge in those regimes in many cases.
However, the method inherits a common problem in the classi-
cal fuzzy C-means algorithm [15]: It does not ensure finding
the global optimum point under a certain regulation factor,
and the algorithm may converge to a local minimum point,
depending on the initial random guess of the cluster centers.
A further improvement of the method may apply evolution-
ary algorithms to find the global optimum as well as to op-
timize the scale factors in (19) and (20). In addition, this
algorithm is computationally expensive in comparison with
classical fuzzy C-means algorithm. To conduct extensive nu-
merical experiments, we implemented the consolidated fuzzy
C-means algorithm using the C/C++ language and compiled it
as a module, which could be called from the MATLAB/MEX
platform.

V. SUMMARY AND FURTHER RESEARCH

In this research, we employed an instrumented vehicle with
modern ITS features to acquire driver-behavior patterns in
real traffic. Car-following behavior data of randomly observed
drivers were captured for further model calibration and vali-
dation in traffic simulation. The data could also be used in
the development of ACC systems. To eliminate measurement
noise, the Kalman smoothing algorithm, which is an extension
of the conventional Kalman filter, was applied to preprocess the
measured data. The smoothed result shows clear car-following
patterns and has been applied in our model calibration study.
Meanwhile, to classify different car-following regimes, we
developed a robust fuzzy clustering algorithm in which time
continuity in the acquired dataset was considered. The applica-
tion results showed that the method could give a more reliable
classification of car-following regimes based on the regime
numbers determined by video analysis. In fact, this method

could also be utilized in the identification of the psychophysical
thresholds from driver-behavior data, but we have not applied
for that purpose in our current research. This paper has reported
three main procedures in our driver-behavior (mainly car fol-
lowing) study: data acquisition experiment, data preprocessing,
and car-following pattern classification. Further analysis of
car-following behavior in different regimes is still ongoing.
Meanwhile, new functionalities on the vision ability of the
instrumented vehicle are necessary for accurately collecting and
efficiently analyzing more car-following data and for extending
our study on lane-changing behavior.

APPENDIX

To derive an iterative algorithm for evaluation of the cluster-
ing centers and membership matrix, a zero gradient condition
can be applied with fixed values on m, C, and α. Using the
Lagrange multipliers to enforce the constraints in (12), we
reformulate the objective function as

J
′
n

=

C
∑

i=1

N
∑

t=1

um
it d

2
it + α

C
∑

i=1

N
∑

t=1

um
it

l
∑

δt=−l,δt	=0

ΦδtRit,δt

+

N
∑

t=1

λt

(

1 −

C
∑

i=1

uit

)

. (21)

Assuming the cluster centers ci are fixed, we fulfill the zero
condition to the partial derivative with respect to uit

∂J′
n

∂uit
=

∂

∂uit





C
∑

i=1

N
∑

t=1

um
it d

2
it+α

C
∑

i=1

N
∑

t=1

um
it

l
∑

δt=−l,δt	=0

ΦδtRit,δt

+

N
∑

t=1

λt

(

1 −

C
∑

i=1

uit

))

=mum−1
it



d2
it + 2α

l
∑

δt=−l,δt	=0

ΦδtRit,δt



 − λt

= 0.
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Therefore, the following equation can be derived:

uit =





m
(

d2
it + 2α

∑l
δt=−l,δt	=0 ΦδtRit,δt

)

λt





−1/(m−1)

and by applying the constraints, we get

C
∑

i=1

uit =1

=

C
∑

i=1





m
(

d2
it+2α

∑l
δt=−l,δt	=0 ΦδtRit,δt

)

λt





−1
(m−1)

.

Therefore, the following necessary condition can be obtained
by combining the equations above:

uit =
(d2

it + 2α
∑l

δt=−l,δt	=0 ΦδtRit,δt)
−1/(m−1)

∑C
c=1

(

d2
ct + 2α

∑l
δt=−l,δt	=0 ΦδtRct,δt

)−1/(m−1)
.

Next, by fixing the membership matrix U or uit, the necessary
condition on the cluster centers to minimize the objective
function is identical to the fuzzy C-means algorithm

ci =

∑N
k=1 u

m
ikxk

∑N
k=1 u

m
ik

because the additional term in our objective function is not
a function of the cluster centers ci. The derivation is similar
to that in the original development of the fuzzy C-means
algorithm [3].
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