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The Behavior of a Stiff Clay behind Embedded Integral 

Abutments 

           

Ming Xu 1, Alan G. Bloodworth 2 and Chris R.I. Clayton 3 

 

Abstract 

Integral bridges can significantly reduce maintenance and repair costs 

compared with conventional bridges. However, uncertainties have arisen in 

the design as the soil experiences temperature-induced cyclic loading behind 

the abutments. This paper presents the results from an experimental 

programme on the behavior of Atherfield Clay, a stiff clay from the UK, behind 

embedded integral abutments.  Specimens were subjected to the stress paths 

and levels of cyclic straining that a typical embedded integral abutment might 

impose on its retained soil. The results show that daily and annual 

temperature changes can cause significant horizontal stress variations behind 

such abutments. However, no build-up in lateral earth pressure with 

successive cycles was observed for this typical stiff clay, and the stress-strain 

behavior and stiffness behavior were not influenced by continued cycling. The 

implications of the results for integral abutment design are discussed. 

 

CE Database subject headings: Abutments; Clays; Stress strain relations; 

Young’s modulus; Cyclic loads; Triaxial tests. 
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The Behavior of a Stiff Clay behind Embedded Integral 

Abutments 

 

Ming Xu, Alan G. Bloodworth and Chris R.I. Clayton 

 

INTRODUCTION 

A traditional road bridge comprises a superstructure supported by abutments 

at each end and possibly also by intermediate piers.  To accommodate the 

superstructure length change caused by daily and annual temperature 

variation, the superstructure is isolated from the abutments by means of 

expansion joints and bearings. 

 

Since the 1970’s, the disadvantages of this approach of using expansion 

joints and bearings have become apparent to bridge engineers.  A survey of 

200 concrete bridges in the UK (Wallbank 1989) showed that when deck 

movement joints leak, the resulting penetration of de-icing salts from the 

highway on to the sub-structure components is the most serious source of 

damage to these components, and that corrosion and immobilization of the 

movement joints and bearings also occurrs.  Furthermore, these joints and 

bearings are expensive to purchase, install and maintain, and have a short life 

compared to the design life of the bridge as a whole (Biddle et al. 1997). 

Replacement operations are highly disruptive to traffic flow and very 

expensive. 
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Integral bridges, which have no bearings or expansion joints, were seen as a 

solution to the above problems. Integral bridges are becoming increasingly 

popular around the world, especially in the United States, Sweden and the 

United Kingdom (Burke 1990; Hambly 1997).  For example, the UK design 

standard BD 57/95, Design for Durability (Highways Agency 1995), required 

that the integral option be considered for new bridges under 60 m span and 

with less than 30° skew.   

 

Integral abutments can be categorized into three types: shallow abutments 

(bank seats), full height frame abutments on spread footings, and full height 

embedded abutments. Shallow abutments and frame abutments normally 

retain granular backfill.  Embedded abutments (diaphragm or bored pile walls) 

are usually constructed in in-situ clayey ground, followed by bridge deck 

installation, and then by open excavation between abutments to form the 

underpass.  Compared with the other two abutment types, embedded 

abutments (Figure 1a) require less land-take and introduce less disturbance, 

making them particularly attractive in urban areas. The construction of 

embedded integral abutment bridges has become common in the UK during 

the past two decades (e.g. Barker and Carder 2000; Place et al. 2005), and is 

likely to become more attractive in other parts of the world, considering the 

increasing demand for construction of new roads or upgrading of old roads 

within expanding cities. 

 

Overconsolidated stiff clay is an important ground condition in some countries, 

e.g. the UK (Gaba et al. 2003).   Design and construction of embedded 
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integral abutments in stiff clay is frequently required (Card and Carder 1993; 

Biddle et al. 1997; Way and Yandzio 1997; Barker and Carder 2000; Place et 

al. 2005). 

 

However, with a fixed connection between the superstructure and the 

abutments, the abutments are forced to move towards or away from the soil 

they retain as daily and annual temperature variation causes deck length 

change.   As a consequence, the retained soil is subjected to horizontal cyclic 

loading. There is uncertainty amongst designers about the extent to which the 

properties of soils, e.g. stiffness, may change when subjected to this type of 

loading, and consequently also about the ultimate magnitude of the lateral 

earth pressure behind the abutments. 

 

Limited laboratory experiments on integral abutments have been conducted in 

the past decade, mainly centrifuge tests (Springman et al. 1996; Ng et al. 

1998; Tapper and Lehane 2004) and 1-g model tests (England et al. 2000; 

Cosgrove and Lehane 2003). Field monitoring has also been carried out on 

integral abutments (e.g. Broms and Ingleson 1971; Hoppe and  Gomez 1996; 

Darley et al. 1996; Barker and Carder 2000).  Most work has only considered 

granular materials.  Only Barker and Carder (2000) reported field monitoring 

of an integral bridge with abutments embedded in stiff clay.  However, lateral 

pressure was only measured for reinforced soil near the surface.  No 

measurement was made in the deeper stiff clay.  In addition, this investigation 

lasted for only about 2 years after construction, and was complicated by the 

creep and shrinkage of the concrete during and after construction. Engineers 
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therefore face significant uncertainties in the design of abutments embedded 

in stiff clay (e.g. Way and Yandzio 1997).  

 

The aim of this paper is to present a fundamental approach to determining the 

mechanical behavior of stiff clay behind an embedded integral abutment wall, 

with the aim of improving guidance for designers.   

 

 

LABORATORY STRESS PATH TESTING 

In general, the stress-strain behavior of soil is dependent on the stress path 

followed (Lambe 1967; Lade and Duncan 1976). Appropriate deformation 

characteristics may only be obtained if the appropriate stress path is followed.  

Similarly, for a given deformation or strain level, realistic stress changes will 

not be estimated unless appropriate stress paths are followed.  To obtain a 

thorough understanding of the stress-strain relationship for stiff clay in the 

integral bridge situation, geotechnical laboratory stress path testing has been 

carried out.   

 

The prototype bridge abutment under consideration (Figure 1a) has a retained 

height of 8 m, with an embedded length of 12 m. The range of deck 

expanding lengths considered was from 30 m to 90 m. A key soil element was 

considered at half the retained height, i.e. at a depth of 4 m below the top of 

the bridge deck.  
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Total Stress Path 

The effect of the wall movement is to cause a horizontal strain in the soil, 

leading to a change in horizontal stress.  The total vertical stress is constant 

and fixed by the weight of overburden (for a wall assumed to be smooth). For 

simplicity, the intermediate stress is ignored and the tests were conducted in 

the triaxial apparatus (Lambe and Marr 1979). The total stress path in the soil 

is represented in Figure 1b.  

 

Cyclic Radial Strain Range 

Both field monitoring (Barker and Carder 2000) and numerical modelling 

(Lehane 1999) have demonstrated that the retained soil can provide only 

limited restraint to deck expansion or contraction.  Assuming equal movement 

at both ends of the deck, a coefficient of thermal expansion of reinforced 

concrete α = 12×10-6/oC and an annual effective bridge temperature (EBT) 

range of 43oC in the London area (Highways Agency 2001), the total annual 

abutment displacement at the end of a 60 m concrete bridge deck is 

approximately 16 mm.   

 

Finite element analysis was carried out (Xu 2005) to investigate the cyclic 

lateral strain behind an abutment.  It was found that the change of soil 

stiffness has only a marginal effect on the cyclic lateral strain magnitude, in 

contrast to the dominant influences of the geometry of the wall and the top 

displacement.  For the abutment in Figure 1a at the end of a 60 m long deck, 

the cyclic lateral strain in the key soil element is about 0.08%. 
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This strain level is comparable to that calculated using a simplified method 

(Bolton and Powrie 1988), which considers a rigid wall (total length h) rotating 

around its toe by a top displacement δ, for which the lateral strain in the 

retained soil can be approximated as δ/h.  An embedded integral abutment is 

more likely to rotate around a pivot some distance above the toe, as observed 

in the FE analysis and in the centrifuge testing (Springman et al. 1996). 

 

Testing Equipment 

An automated triaxial cyclic loading system was developed based on Bishop 

and Wesley hydraulic triaxial apparatus. Control software was designed 

capable of performing radial strain-controlled cyclic loading tests on 100 mm 

diameter specimens along the desired stress path (Figure 1b) over long 

periods of time, with measured total vertical stress varying by less than 0.3 

kPa from the desired constant value (Xu 2005). Pressures and displacements 

were driven by GDS advanced controllers.  To avoid potential errors 

introduced by external strain measurement (Baldi et al. 1988), strains were 

measured locally over the mid third height of the specimen using submersible 

LVDTs (Cuccovillo and Coop 1997), with a resolution of about 0.00015 mm 

and with electronic noise minimized.  Deviator stress was measured by an 

internal submersible load cell, while pore water pressure was measured 

locally at the mid height using a flushable mid-plane probe with a high-air-

entry stone (Sodha 1974).   
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Materials Tested 

The stiff clay used in the testing was Atherfield Clay, originating from a depth 

of about 15~17 m at the site of a cut-and-cover tunnel at Ashford, Kent, UK 

(Richards et al. 2006). Atherfield Clay is a stiff to very stiff, closely fissured 

clay with a chocolate brown colour, about 4.5 m thick at this location and with 

a plasticity index of 20-30%.  It was deposited approximately during the 

geological period of Lower Cretaceous.  Electron micrographs demonstrate a 

very dense and anisotropic arrangement of platy particles (Figure 2).   

 

The micro-structure of natural soils has significant influence on their behavior 

(e.g. Leroueil and Vaughan 1990).  The disturbance to the micro-structure of 

surrounding soils during in situ installation of diaphragm or bored pile walls 

depends on details of construction and ground conditions, but is believed to 

be only significant within a very limited distance from the wall, e.g. a maximum 

of 0.5 m in stiff clay (Richards et al. 2006).  “Undisturbed” samples were 

therefore used. 

 

Two undisturbed Atherfield Clay specimens (AC2 and AC3) were subjected to 

cyclic stress path testing.  Another specimen (AC1) was tested under 

monotonic shearing.  AC1 and AC2 were obtained by wireline drilling, while 

AC3 was obtained by block sampling.  Both sampling methods are believed to 

be capable of obtaining high quality samples of overconsolidated clay 

(Clayton et al. 1995).  To check the inevitable disturbance during the sampling 

process, the initial mean effective stress measured in the triaxial apparatus 

was compared with the estimated in situ mean effective stress, and good 
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agreement was found for all specimens. This suggests that the overall level of 

disturbance was low.   

 

A knife was initially used to cut the samples into cylinders that were slightly 

larger than the required specimen size.  For the block sample, care was taken 

to maintain the orientation of the specimen as in situ. A soil lathe was used to 

trim the specimen surface, and a two-part metal mould was used to trim the 

ends of the specimens to ensure a right cylindrical geometry.    

 

In situ clays in the UK are usually saturated, since the water table is normally 

high (e.g. about 1~2 m below ground level at the sampling site) and the pore 

size is sufficiently small to sustain high suction without air entry occurring. The 

specimens were therefore tested in a saturated condition in this research.  

The specimens were saturated in the triaxial cell by increasing the cell 

pressure in steps with the back drainage line closed until a satisfactory B 

value of at least 0.95 was achieved. 

 

Initial Stress State 

Although the in situ earth pressure coefficient Ko in heavily overconsolidated 

clay is usually high, especially at shallow depth (Skempton 1961), the 

installation of diaphragm or piled walls will usually significantly reduce the 

horizontal earth pressure, such that the earth pressure coefficient K can drop 

to around 1 (Clayton and Milititsky 1983; Tedd et al. 1984). Excavation in front 

of the wall will further reduce the horizontal earth pressure, although this 
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effect is more difficult to predict, since it depends on the detail of the 

construction sequence.  

 

To reflect these uncertainties, different initial stress states were chosen for 

specimens AC2 and AC3.  Specimen AC2 was first swelled isotropically to an 

effective stress of about 80 kPa, which replicated the stress condition inside 

the key soil element after the installation of the diaphragm wall in stiff clay. 

Then the effect of excavation in front of the wall was simulated by reducing 

the radial stress under undrained conditions with a constant total vertical 

stress until a radial strain of 0.05% was reached.  Cyclic loading was started 

from this stress state (σh’= 74 kPa, σv’= 88 kPa). For specimen AC3, a well-

propped wall was assumed, so only the effect of wall installation was 

incorporated, giving an initially isotropic stress state of σh’= σv’= 76 kPa.  

 

Testing Procedure 

Atherfield Clay is a heavily overconsolidated stiff clay with a very low 

permeability (cv= 2.2 m2/year), while drainage is not installed behind 

embedded abutments due to the in situ construction.  The key soil element is 

therefore likely to experience lateral cyclic loading under undrained conditions, 

especially for daily cycles. 

 

Undrained radial strain-controlled cyclic loading was applied on both 

specimens (AC2 and AC3) along the total stress path shown in Figure 1b with 

a rate of 2% external axial strain per day. This rate was slow enough for pore 

water pressure to equilibrate inside the soil, as well as following the desired 
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stress path closely.  For each specimen, the smallest cyclic radial strain 

ranges were applied first, to minimise the risk of destructuring. At a particular 

radial strain range, cycling was continued until it became evident that the soil 

stress-strain relationship was no longer changing with cycling, i.e., the soil 

had entered a “resilient” state.   The cyclic radial strain range was then 

increased to a larger magnitude.  AC2 was tested under cyclic radial strain 

ranges of 0.04% (5 cycles) and 0.075% (3 cycles).  AC3 was tested under 

cyclic radial strain ranges of 0.025% (6 cycles), 0.05% (6 cycles), 0.1% (4 

cycles) and 0.15% (1 cycle).   

 

At the end of each compression and extension radial strain excursion, the 

radial strain was held constant for a rest period to reduce the effects of stress 

relaxation (creep) to an acceptable level.  This avoids continued stress 

relaxation influencing the stiffness behavior in the next excursion, especially 

at small strain levels, leading to incorrect measurements of stiffness (Clayton 

and Heymann 2001).  In this research, the deviator stress relaxation rate was 

allowed to reduce to less than 1% of the initial deviator stress increase rate 

before the next radial strain excursion was commenced.    

 

Following undrained cyclic loading, AC2 was sheared in radial extension to 

failure.  To investigate the drained behaviour of the key soil element, as well 

as stiffness at different effective stress levels, and soil strength, AC3 was 

further tested in three stages.  First, it was subjected to a single drained radial 

strain-controlled cycle.  Then the specimen was consolidated isotropically to 

po
’ = 115 kPa, at which an undrained radial strain-controlled cycle was carried 
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out.  Finally the specimen was consolidated to po
’ = 230 kPa and then 

sheared, but under a constant cell pressure. 

 

 

RESULTS AND DISCUSSION 

Undrained Stress-strain Behavior 

Both specimens, AC2 and AC3, exhibited a very similar pattern of deviator 

stress-radial strain behavior over a range of different cyclic radial strain 

ranges.  Typical deviator stress-radial strain curves for AC2 (0.075%) and 

AC3 (0.1%), as well as corresponding effective stress paths, are presented in 

Figure 3 and Figure 4 respectively.  Each radial strain excursion led to a 

change of deviator stress (and radial stress), which was reduced to some 

extent by stress relaxation during the following rest period.  During the first 

strain excursion at a particular radial strain level, the soil was slightly stiffer 

than in the previous excursion as the previous radial strain level was being 

exceeded.  However, in the subsequent strain excursions, such a pattern was 

not maintained, but instead the soil returned to follow the trend defined by the 

previous strain range, and the soil stress-strain relationship became identical 

and repeatable for each cycle.  The soil was thus deemed to have entered a 

“resilient” state. There was no perceptible accumulation of deviator stress with 

cycling.   

 

The effective stress paths for specimens AC2 and AC3 did not follow a 

constant mean effective stress (p’ ) line, which indicates a strong anisotropy in 

stiffness (Graham and Houlsby 1983) and will be discussed further later. 
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There was no sign of yielding. For specimen AC2, no obvious difference was 

found between each strain excursion, though there was a slight variation in 

the mid-plane pore water pressure. For specimen AC3, a small difference can 

be seen between the compression and extension effective stress paths, 

probably due to the stress paths crossing the isotropic line.  

 

Shearing of AC1, AC2 and AC3 at different effective stress levels reveals an 

effective friction angle φ’= 26o and an effective cohesion c’= 10 kPa. 

 

Undrained Stiffness Behavior 

Previous researchers have been concerned that the stiffness of clay behind 

an integral abutment may change due to the temperature-induced cyclic 

loading, presenting a major uncertainty for design of the structure. In this 

research, the undrained stiffness of Atherfield Clay under cyclic loading has 

been examined extensively, especially at appropriate small strain levels.  

 

As predicted, the axial strain was found to be overestimated by external 

measurement, compared with local measurement using LVDTs.  The error 

was much more significant during the initial strain excursions, but it reduced 

with increasing number of cycles, probably due to the removal of the bedding 

errors under cyclic loading. 

 

For convenient comparison with other research on soil stiffness, all stiffnesses 

are quantified in terms of secant Young’s modulus. A number of factors that 

might influence the soil stiffness have been investigated. 
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Influence of direction of radial strain excursion 

Figure 5 plots a typical pair of compression and extension stiffness-radial 

strain curves from one cycle for specimens AC2 and AC3. The stiffness of the 

soil is highly nonlinear.  For AC2, no obvious difference was observed in 

either the value of the maximum stiffness at very small strains or the rate of 

degradation of stiffness between the two curves.  For AC3, the stiffness at 

very small strains is the same in compression and extension, but between 

approximately 0.005% and 0.1% radial strain the curves diverge slightly, 

probably reflecting the small difference between the compressive and 

extensive effective stress paths (Figure 4).   

 

Influence of continued cycling 

Comparison between typical stiffness-strain curves from different cycles under 

the same cyclic strain range is made in Figure 6. It is clear that cyclic loading 

did not change the soil stiffness behavior. 

 

Influence of previous cyclic radial strain magnitude 

Typical secant stiffness-radial strain curves under different cyclic radial strain 

ranges are compared in Figure 7.  For AC2, no obvious difference was found.  

For AC3, despite the 300% increase in the strain range, the very small strain 

stiffness and the rate of degradation of stiffness with strain were almost 

unchanged, with only a very slight difference in stiffness near the end of each 

strain range. However, for practical purposes these curves may be considered 

identical.  
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Influence of initial stress states 

During undrained cyclic loading, specimen AC2 always remained above the 

isotropic line, whereas specimen AC3 was tested crossing the isotropic line 

(Figures 3 and 4). Representative stiffness–strain curves for both specimens 

are compared in Figure 8. The stiffness has not been normalised, as the initial 

mean effective stresses (p’o) for specimens AC2 (80 kPa) and AC3 (76 kPa) 

were similar. It can be seen that the two specimens exhibit almost identical 

stiffness characteristics.  

 

Evidence for stiffness anisotropy  

Figure 9 shows two curves of normalised horizontal stiffness against radial 

strain, compared with two curves of normalised vertical stiffness against axial 

strain.  The normalised horizontal stiffness is seen to be higher than the 

normalised vertical stiffness.   Further evidence of this stiffness anisotropy 

comes from the pore water pressure change against mean total stress change 

for specimens AC1 and AC3 during undrained shearing under constant cell 

pressure, and the volumetric strain against axial strain for AC3 during 

isotropic consolidation, which are shown in Figures 10 and 11 respectively, 

together with an idealized response of isotropic material superimposed 

(Graham and Houlsby 1983).  These data suggest a strong anisotropy in 

stiffness, which is an inherent consequence of the microstructure of this stiff 

clay (Figure 2). 
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Comparison with sand stiffness behavior 

The stiffness of Atherfield Clay is further compared with that of coarse sand 

(Figure 12), the behavior of which was also under investigation behind integral 

frame abutments (Xu 2005).  In contrast to the high and continuingly 

increasing stiffness of sand, the stiffness of stiff clay was much lower and 

remained unchanged with cycling.    

 

Micrographs (Figure 2) reveal that the Atherfield Clay particles have a sheet-

like shape in general, with a very dense fabric of platy particles overlapping 

each other.  Xu (2005) showed that the deformation of Atherfield Clay under 

loading is likely to be the result of recoverable platy-particle bending and 

compression; while for granular materials, the strain mainly involves sliding 

and rotation of granular particles. 

 

Drained Stress-strain Behavior 

To check whether drainage would lead to a build up of radial stress, drained 

cycling was carried out on specimen AC2.  Because of the very slow loading 

rate (0.03% axial strain per day) required, only a single cycle was performed. 

The stress path in Figure 13 shows that even at this low rate of loading, full 

drainage was not achieved at the mid-plane of the specimen. After a full cycle 

with drainage both volumetric and radial strains were recoverable (Figure 13), 

and there was no obvious accumulation in radial stress. 

 

Comparison with Field Monitoring on Propped Embedded Retaining 

Walls 
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Despite of the limited numbers of cycling compared with field conditions, the 

testing results described above strongly suggest that there would be no 

significant build-up of stresses in the long term. This is a result of the 

unchanged micro-structure of stiff clay during cycling, as indicated by the 

unchanged soil small strain stiffness (Hight et al. 1997). Further evidence 

emerges from previous long term field monitoring of the earth pressure behind 

propped retaining walls embedded in stiff clay.   

 

Carder and Symons (1990) and Carder and Darley (1999) have reported field 

monitoring of a bored-pile wall embedded in London Clay and propped 

beneath the carriageway. As with an integral abutment bridge, seasonal 

temperature variation caused expansion and contraction of the prop slab.  As 

a result, large fluctuations in the lateral earth pressures and pore water 

pressures were recorded near the retaining wall.  However, after a period of 

11 years, despite some minor redistribution of stress, there was no significant 

change in the magnitude or distribution of total lateral stresses.   

 

Clark (2006) has reported the results of field monitoring during and after 

construction of a 12m wide double-propped retaining wall. The horizontal 

pressure measured in the Atherfield Clay at the mid retained height varied 

closely with daily and annual temperature variation, but no obvious build-up of 

lateral stress has been observed in the first 4 years after construction. 
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IMPLICATION FOR PRACTICE 

Currently, no design standard or guidance has been published specifically on 

the earth pressure behind full-height embedded integral abutments in stiff clay.  

In practice, such abutments are sometimes treated as embedded retaining 

walls propped at the crest in the preliminary design, with active earth pressure 

assumed behind the wall (Gaba et al. 2003).  The test results have confirmed 

that daily and annual temperature changes cause significant horizontal stress 

variations behind such abutments.  The annual deck length change of a 

typical 60 m long concrete bridge can cause about 40 kPa variation in the 

horizontal earth pressure in the representative soil element 4 m below ground 

level (Figures 3 and 4).  For an embedded abutment constructed in the winter, 

with equal horizontal and vertical pressures assumed after wall installation, 

such an increase implies a maximum total horizontal earth pressure of 1.5 

times the total vertical pressure when the deck expands in the summer.  This 

is much higher than active earth pressure. 

 

This research has shown, however, that a build-up of horizontal earth 

pressure behind embedded integral abutments in clay over many daily or 

annual temperature cycles is not expected. This is markedly different from the 

observation on integral abutments backfilled by granular materials.  Therefore, 

different design considerations should be given for the earth pressures behind 

integral abutments retaining in situ clay from those retaining granular backfill.  

 

A more precise prediction of the magnitude and distribution of earth pressure 

behind embedded integral abutments and analysis of soil-structure interaction 
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requires numerical modelling, e.g. the finite element method.  The soil 

stiffness used in the analysis is of paramount importance.  Our research has 

demonstrated that the stiffness of stiff clay is strongly anisotropic, strain level 

dependent, and highly non-linear over the range of horizontal strains that can 

be expected behind typical embedded abutments.  Evaluation of soil stiffness 

therefore requires horizontal loading coupled with small-strain stiffness 

measurement. 

 

However, the stiffness behavior of the stiff clay examined in this research was 

found not to be obviously influenced by horizontal cyclic loading, over a wide 

range of strain levels.  Therefore, pseudo-static numerical modelling can be 

used, with a monotonic displacement applied at the top of the wall. The 

constitutive model for the soil in such a model should adequately reflect the 

nonlinear variation of soil stiffness over the strain range from 0.001% to 0.1% 

where the stiffness decreases sharply. There are two alternative methods for 

achieving this: 

(i) Use a constitutive model that faithfully reflects the degradation of 

soil stiffness with strain, such as the non-linear soil model proposed 

by Jardine et al. (1986).  

(ii) Derive stiffness values for the soil related to particular horizontal 

strain levels that are appropriate for the geometry of the integral 

bridge and the temperature-induced movement range. 

 

In this research a stiff clay was studied under saturated conditions.  It is 

recognized that in other parts of the world there are different types of soils, 
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which could also be unsaturated (Fredlund and Rahardjo 1993).   For 

simplicity the stiff clay specimens in this research were tested under triaxial 

conditions.  Behind an abutment conditions may vary from plane strain (at the 

highway centreline) to approximately triaxial (at the edge of the abutment), but 

since plane strain testing is now extremely rare in geotechnical testing 

practice triaxial testing results are generally accepted as providing a 

reasonable estimate of behaviour. 

 

This paper has concentrated on the effect of temperature-induced bridge deck 

length variation on the horizontal earth pressures behind embedded 

abutments of an integral bridge. There are other potential causes of deck 

length change, for example, in the case of a cast in situ reinforced concrete 

deck, thermal strain due to dissipation of the heat of hydration, drying 

shrinkage and creep under long-term loading. The magnitude of each of these 

effects depends on the composition of the concrete, the environmental 

conditions and the geometry of the member (Neville 1995). The construction 

sequence also has a major effect – for example if a concrete deck is cast in 

sections over a period of several days, the thermal strain will be much 

reduced, and if the deck is cast in isolation from the abutment walls, with the 

integral connection being made later, the effect of shrinkage will be reduced. 

In any case, each of these effects cause shortening the deck, moving the 

walls away from the soil, reducing the earth pressures. It is therefore 

conservative in the first instance to neglect these effects in the design. 
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NOTATION 

The following symbols are used in this paper: 

 

Euh  = undrained secant horizontal Young's modulus  

Euv  = undrained secant vertical Young's modulus  

K0  = coefficient of earth pressure in situ 

p         = mean total stress, =(σv+2σh)/3 

p’        = mean effective stress, =(σ’v+2σ’h)/3 

p’o       = mean effective stress at the start of a stress excursion  

q  = deviator stress, =σv-σh=σ’v-σ’h 

u = pore water pressure 

εa = axial strain 

εr = radial strain 

εvol  = volumetric strain 

σv = vertical total stress 

σh = horizontal total stress 

σ
’
v = vertical effective stress 

σ
’
h = horizontal effective stress 
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Figure 1. Location of the key soil element (a) and the total stress path (b)   

for key soil element behind a smooth embedded integral abutment
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Figure 2. Scanning electron micrographs of Atherfield Clay



Figure 3. Deviator stress against radial strain (a), and effective stress paths (b), for specimen AC2 

under an undrained cyclic radial strain range of 0.075% (3 cycles)
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Figure 4. Deviator stress against radial strain (a), and effective stress paths (b), for specimen AC3 

under an undrained cyclic radial strain of 0.1% (4 cycles)
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Figure 5. Comparison of the secant undrained horizontal Young’s modulus (Euh) in radial 

compression and radial extension over one typical cycle

(a) Specimen AC2

(b) Specimen AC3
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Figure 6. Comparison of the secant undrained horizontal Young’s modulus (Euh) during the first

and last radial compression under the same undrained cyclic radial strain range

(a) Specimen AC2

(b) Specimen AC3
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Figure 7. Comparison of the secant undrained horizontal Young’s modulus (Euh) 

under different cyclic radial strain ranges

(a) Specimen AC2

(b) Specimen AC3
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Figure 8. Comparison of typical undrained stiffness behavior of specimens AC2 and AC3
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Figure 9. Comparison of normalised horizontal stiffness against radial strain, and

normalised vertical stiffness against axial strain
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Figure 10. Change in pore water pressure Δu against change in mean total stress Δp

during the undrained shearing for AC1 and AC3 with a constant cell pressure
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Figure 11. Volumetric strain against axial strain for AC3 during isotropic consolidation



Figure 12. Comparison of normalised secant stiffness of Atherfield Clay and

loose Leighton Buzzard B sand
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Figure 13. Effective stress path and radial strain-volumetric strain relationship

of AC3 under a drained cyclic radial strain range of 0.15% (1 cycle)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-0.2 -0.15 -0.1 -0.05 0 0.05

Radial strain (%)

V
o
lu

m
e
tr

ic
 s

tr
a
in

 (
%

) start 

point

Idealized effective 
stress path under 

full drainage

q
 (

k
P

a
)

p’ (kPa)


