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Abstract

Habitat loss and fragmentation processes strongly affect biodiversity conservation in landscapes undergoing an-

thropogenic land use changes. Many attempts have been made to use landscape structure metrics to quantify the

independent and joint effects of these processes. Unfortunately, ecological interpretation of those metrics has

been plagued by lack of thorough understanding of their theoretical behavior. We explored behavior of 50 met-

rics in neutral landscapes across a 21-step gradient in aggregation and a 19-step gradient in area using a full

factorial design with 100 replicates of each of the 399 combinations of the two factors to assess how well metrics

reflected changes in landscape structure. Metric values from real landscapes were used to determine the extent of

neutral landscape space that is represented in real landscapes. We grouped metrics into three major behavioral

classes: strongly related to focal class area �n�15�, strongly related to aggregation �n�7�, and jointly responding

to area and aggregation �n�28�. Metrics strongly related to class area exhibited a variety of distinct behaviors,

and many of these metrics have unique interpretations that make each of them particularly useful in certain ap-

plications. Metrics strongly related to aggregation, independent of class area, are particularly useful in assessing

effects of fragmentation. Moreover, metrics in this group exhibited a range of specific behaviors, highlighting

subtle but different aspects of landscape aggregation even though we controlled only one aspect of aggregation.

The non-linear behavior exhibited by many metrics renders interpretation difficult and use of linear analytical

techniques inappropriate under many circumstances. Ultimately, comprehensive characterization of landscapes

undergoing habitat loss and fragmentation will require using several metrics distributed across behavioral groups.

Introduction

Because of the fundamental reciprocal relationships

between landscape structure and ecological processes,

objectively quantifying spatial landscape structure re-

mains an important aspect of landscape ecology

�Turner 1989�. A large number of metrics and indices

have been developed to characterize landscape com-

position and configuration based on categorical map

patterns �e.g., McGarigal and Marks 1995; McGari-

gal et al. 2002�. These metrics are used to analyze

landscape structure for a wide variety of applications,

including quantifying landscape change over time

�O’Neill et al. 1997� and relating structure to ecosys-

tem �Wickham et al. 2000�, population and metapo-

pulation processes �Kareiva and Wennergren 1995;

Fahrig 2002�. Arguably the major application of

landscape structure metrics has been assessing effects

of habitat loss and fragmentation on landscape con-

nectivity �e.g., Fahrig and Merriam 1985; With et al.
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1997; Fahrig 1998; Fahrig and Jonsen 1998; Wick-

ham et al. 1999; Riitters et al. 2000�.

Fragmentation is a complex phenomenon that can

be seen both as a consequence of habitat loss and as

a process in and of itself �McGarigal and McComb

1995�. The process of fragmentation of a continuous

matrix habitat begins with reduction in habitat area

and an increase in proportion of edge-influenced

habitat. Initially, the majority of the remaining habi-

tat may continue to be connected but will become in-

creasingly perforated and incised �Jaeger 2000�.

When sufficient habitat is lost, or when the original

habitat occurs as a patch mosaic rather than a matrix

�~ 50-60% of the landscape�, remaining habitat often

becomes separated into isolated patches �Jaeger

2000�. In random landscapes, patch isolation typically

increases most dramatically in the vicinity of the per-

colation threshold �Gardner et al. 1987�. As habitat

loss continues, some of the isolated patches will

themselves be broken up into varying sized fragments

with a peak in the number of patches occurring when

the focal class comprises 15-30% of the landscape.

Eventually, some fragmented patches will be lost and

others will shrink, further isolating remnant patches.

The point along this gradient at which the landscape

actually becomes fragmented depends on the organ-

ism or process of interest. Throughout the fragmenta-

tion process, many aspects of landscape composition

and configuration are affected including patch area,

number of patches, amount of patch edge, patch shape

complexity, interpatch distances, and adjacency of

like cells; all of these characteristics affect landscape

connectivity. Further, they are affected in different

ways in different parts of the fragmentation gradient.

Given this complexity, it is not surprising that a large

number of metrics have been used to describe land-

scape responses to fragmentation and a number of

metrics have been developed specifically for the pur-

pose of assessing changes in landscape connectivity

resulting from fragmentation �e.g., aggregation index

�He et al. 2000�; landscape division, effective mesh

size, and splitting index �Jaeger 2000�; clumpiness

index �McGarigal et al. 2002�, cohesion �Schumaker

1996�, and contagion �Li and Reynolds 1993��.

The diversity of metrics available and the complex-

ity of habitat loss and fragmentation effects make it

difficult to choose an appropriate metric or suite of

metrics for a particular situation. Ultimately, metric

selection should be based on the hypotheses being

tested, on aspects of landscape structure that are rel-

evant to the organism or process of interest, and on

characteristics of the landscape itself �e.g., whether

the focal class occurs as disjunct patches or as the

matrix� �McGarigal and Marks 1995�. Informed met-

ric selection requires thorough understanding of the

conceptual and computational basis of each metric.

Meaningful interpretation of the metrics also requires

a relevant landscape classification at an appropriate

scale for a particular organism or process �Gustafson

1998; McGarigal 2002�. Jaeger �2000� has proposed

eight criteria to assess metric suitability for assessing

fragmentation: intuitive interpretation, low sensitivity

to small patches, monotonic reaction to different

fragmentation phases, detection of structural differ-

ences, mathematical simplicity, modest data require-

ments, mathematical homogeneity, and additivity. An

additional desirable metric attribute is ability to assess

changes in landscape configuration that are indepen-

dent of area. This ability is particularly important for

studies of habitat fragmentation in which disentan-

gling effects of loss of habitat area from effects of

changes in configuration �e.g., aggregation, subdivi-

sion, and isolation� of the remaining habitat has been

a major goal �e.g., Fahrig and Merriam 1985; Bender

et al. 1998; Fahrig and Jonsen 1998; Trzcinski et al.

1999; Belisle and Clair 2002�.

We argue that ecological interpretation of land-

scape structure also requires understanding of ex-

pected behavior of landscape structure metrics under

controlled conditions. Expected behavior of a number

of metrics has been examined across gradients in fo-

cal class area �Gustafson and Parker 1992; Riitters et

al. 1995; Hargis et al. 1997; Gustafson 1998; Hargis

et al. 1998�. A subset of these studies have also ex-

amined metric behavior under a limited array of dif-

ferent types of spatial dispersion �e.g., Hargis et al.

1997; Gustafson 1998; Hargis et al. 1998�. Addition-

ally, Saura and Martínez-Millán �2000� illustrated the

behavior of four metrics �Cohesion, Number of

Patches, Total Edge, and Area-Weighted Mean Shape

Index� across gradients of area and levels of

fragmentation. Despite these efforts, metric behavior

across gradients in both aggregation and area has not

been explored simultaneously for most metrics. The

purpose of the present work is to explore behavior of

55 class-level metrics �Table 1� for binary neutral

landscapes across a 21-step gradient from low to

maximum class aggregation and a 19-step gradient in

class area. It is essential to note that the only aspect

of configuration gradient we explicitly controlled was

the degree of class aggregation. Thus, evaluation of

the behavior of metrics designed to measure other as-
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pects of configuration was constrained by the degree

to which they covaried with aggregation in the neu-

tral models. The focus on class aggregation was due

in part to practical limitations �i.e., inability to create

neutral landscape gradients reflecting other aspects of

configuration with available software�, but also to the

fact that changes in class aggregation are a major

component, if not the dominant component, of the

fragmentation process.

Methods

We used the computer program RULE �Gardner

1999� to generate 256�256 cell, binary multi fractal

neutral landscapes �Figure 1�. RULE uses the

midpoint displacement algorithm �Saupé 1988� to

generate multi fractal maps where H, the degree of

spatial autocorrelation among adjacent cells, controls

the degree of aggregation in the landscape. We gen-

erated landscapes in a full factorial design across a

21-step gradient in aggregation �H � 0 � 1 in 0.05

increments� and a 19-step gradient in focal class area

Figure 1. Example neutral landscapes representing the range of aggregation and area gradients represented in the study. Gradient orientation

is the same as the orientation in graphs representing metric behavior �Figure 3-6�.
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�P � 5 � 95% in 5% increments� with 100 replicate

landscapes for each of the 399 factor combinations

�resulting in a total of 39,900 landscapes�.

Neutral landscape models generate grids of cells

that are comparable to categorical, raster-based rep-

resentations of real landscapes commonly used in

landscape structure analysis. These maps have proven

useful as null models for a wide array of landscape

ecological investigations �Gardner et al. 1987�,

including developing spatially explicit meta- popula-

tion and source-sink models �With et al. 1997; Hay-

don and Pianka 1999; With and King 2001� and

identifying fragmentation thresholds �With et al.

1997�. A major benefit of neutral landscapes is the

ability to strictly and independently control both area

included in a user-specified number of habitat classes

and the degree of spatial aggregation of those classes

�Gardner et al. 1987�. Neutral landscapes, however,

have their limitations. In particular, they can represent

only a limited range of the complex spatial patterns

that are typically found in real landscapes �e.g., they

do not adequately represent linear features such as

rivers and the associated riparian habitats� and they

do not provide a way to vary the degree of aggrega-

tion of habitat patches, only the degree of aggrega-

tion of individual cells. Schumaker �1996� has

criticized neutral landscapes as being too simplistic to

be relevant to structure measurement in real land-

scapes. However, his conclusion on this matter was

based on inappropriate comparisons of spatially ran-

dom neutral landscapes with real landscapes. For our

purposes, the level of control over area and aggrega-

tion afforded by neutral landscapes provides insight

into sensitivity of metrics to variation in landscape

composition and configuration that would otherwise

remain obscured �Gustafson 1998�.

We calculated 55 class-level landscape structure

metrics �Table 1� for each landscape using the com-

puter program FRAGSTATS 3.2 �McGarigal et al.

2002�. Some of these metrics are calculated based on

aggregate properties of the class using all cells of the

focal class without reference to individual patches.

Others are calculated for each patch and then values

for all patches of the focal class are summarized. We

included four formulations for the patch-based met-

rics: mean value �MN�, area-weighted mean value

�AM�, standard deviation �SD� and coefficient of

variation �CV�. For organizational purposes, metrics

have previously been grouped into classes based on

conceptual similarity corresponding largely to the as-

pect of landscape structure emphasized, but also to

some degree to similarity in computational approach.

These conceptual groups correspond to those de-

scribed in FRAGSTATS and include area/density/

edge, shape, core area, isolation/proximity, contrast,

contagion/interspersion, and connectivity �McGarigal

et al. 2002�.

While neutral landscapes have no associated

dimensions, we imposed dimensions that allowed us

to directly compare results from a set of real

landscapes described below. Metric calculations were

based on a 30 m cell size, a 90 m �i.e., 3 cell� edge

depth, a 500 m search radius, and an eight-neighbor

rule �for patch delineation�. Landscape boundary was

not included as edge in calculations where its inclu-

sion was optional and no border was specified. Our

choice of cell size was arbitrary and primarily affects

the magnitude of the class metrics, not the shape of

their distributions. The exact value of edge depth was

also arbitrary but was chosen to fall within the range

of edge depth effects documented for different organ-

isms in forested landscapes �e.g., Chen et al. 1995;

Demaynadier and Hunter 1998; Gehlhausen et al.

2000�. Edge depth magnitude affects all metrics re-

lated to core area. A smaller edge depth value would

result in more patches with core areas and more core

area for a given patch size with core, while a larger

edge depth value would have the opposite effect. The

search radius affects only metrics that are based on

the distribution of patches within a specified distance

of a focal patch; for our purposes, only the proximity

index is affected.

We used the programming language Perl to create

input scripts for RULE and batch files for FRAG-

STATS, to manage the RULE and FRAGSTATS out-

put files, and to calculate summary statistics �mini-

mum, maximum, mean, sample standard deviation,

and sample coefficient of variation� for FRAGSTATS

results from replicate samples within each of the 399

combinations of aggregation and area. Results were

plotted on three dimensional surface graphs using

MATLAB 6.1�The MathWorks 2001� such that mean

values for each metric at each H�P combination are

indicated by the height of the surface on the Z-axis.

We also investigated relationships between metric

values realized in neutral landscapes with those from

all classes in 428 real landscapes �2727 landscape x

class combinations� from three disjunct regions of

North America. The first region included an approxi-

mately 15,000 km2 portion of western Massachusetts

that is dominated by northern hardwood forests and

characterized by rolling hills, agricultural valleys and
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scattered urban and residential development. The

landcover map used in this analysis was created from

1999 aerial photography with a minimum mapping

unit of 0.1 acre for MassGIS, an office of the Massa-

chusetts Executive Office of Environmental Affairs.

We converted the original vector coverage into a grid

with a 30 m cell size and reclassified it into seven

cover classes to ensure adequate distribution of

classes across sub-landscapes �see below�. The seven

classes included forest, water, grassland, cropland,

urban, high-density residential, and low-density resi-

dential.

The second region was the 8,480 km2 San Juan

National Forest in southwestern Colorado. This

mountainous landscape has rugged topography and

extreme elevational relief. The landcover is zonal,

with Ponderosa pine �Pinus ponderosa� forest in the

lower elevations, mixed-coniferous and aspen �Popu-

lus tremuloides� forest in the middle elevations, and

spruce-fir forest �primarily Picea engelmannii and

Abies lasiocarpa� and treeless alpine communities at

the highest elevations. The landcover map used in this

analysis was derived from the USDA Forest Service

Integrated Resources Inventory �IRI� and Resources

Information System �RIS� database. The landcover

map was developed by the Forest Service from a

combination of information sources and processes,

including the existing RIS polygon boundaries, aerial

photo interpretation �1993, 1:24000 natural color�,

digital image analysis of Landsat Thematic Mapper

imagery, and logic written into a C program to delin-

eate and attribute polygons. We converted the vector

coverage into a grid with a 25 m cell size and reclas-

sified it into four cover classes to ensure adequate

distribution of all classes across sub-landscapes �see

below�. The four classes included forest, water, ripar-

ian, and non-forested.

The third region was an approximately 20,000 km2

area of central Idaho. This region is also mountain-

ous with zonal landcover. The landcover map used in

this analysis was developed by the Idaho Gap Analy-

sis project with 30 meter pixels. We reclassified the

map into five cover classes, including forest, rock, ri-

parian, grass, and shrub with the same goal of ensur-

ing adequate distribution of all classes across

sub-landscapes �see below�.

We clipped non-overlapping sub-landscapes each

of the three regional landcover maps using a square

grid 256 cells per side. This process resulted in 155

sample landscapes for western Massachusetts, 152

sample landscapes for the San Juan National Forest,

and 221for central Idaho.

Results from real and neutral landscapes could not

be compared directly because, while there is a value

of P for both types of landscapes, real landscapes

have no value of H. To assess the range of H occu-

pied by real landscapes, we superimposed metric val-

ues from both landscapes types �Figure 2�. Within the

neutral landscape space, we recorded the range of H

values associated with metric values from real land-

scapes at each value of P. In several cases the major-

ity of values from real landscapes occupied a

restricted part of the H gradient while a relatively

small proportion of landscapes occupied a broader

range. We noted the portion of the H gradient with

high densities of real landscape values separately

from areas with only a few landscapes to be conser-

vative in assessing application of our results in real

landscapes. The levels of aggregation represented by

both high and low densities of real landscapes were

then plotted on the surface of the three-dimensional

graphs of metric behavior. This plotting format allows

simultaneous illustration of the general magnitude of

all metrics across H�P space and assessment of the

portion of that space found in real landscapes. We

also examined the nature of overlap between real and

neutral landscapes. Our comparisons of real and neu-

tral landscapes yielded five types of relationships: 1�

real and neutral landscapes mostly overlapping; 2�

real and neutral landscapes partially overlapping; 3�

neutral landscapes being a subset of real landscapes;

4� real landscapes being a subset of neutral land-

scapes; and 5� real and neutral landscapes not over-

lapping. Five metrics �FRAC_MN, PARA_MN,

PARA_CV, SHAPE_MN, and CAI_CV� fell into this

latter category and were eliminated from further

analysis yielding a total of 50 metrics examined in

detail.

We calculated pair-wise Pearson product moment

correlation coefficients among all pairs of metrics us-

ing PROC CORR in the computer program SAS

�SAS Institute 1999� to compare the degree of simi-

larity among metric surfaces across the aggregation

and area gradients �Robinson and Bryson 1957�. By

correlating metric values at each of the sampled

points on each surface, we were able to estimate of

the degree of correspondence or overall similarity be-

tween the surfaces. Some authors �Robinson 1962;

Merriam and Sneath 1966� have suggested a slight

modification of the Pearson’s correlation coefficient

to account for dependencies among points on a grid.
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We used both approaches to calculate correlations

between a subset of metrics and found the results to

be identical so we used Pearson product-moment cor-

relation for computational simplicity. Correlation co-

efficients were squared and subtracted from 1 to

convert them to pairwise distances. The matrix of

pairwise distances among all metrics was used in a

hierarchical agglomerative cluster analysis using

Ward’s linkage method in PROC CLUSTER �SAS

Institute 1999�. We then used the results from the

cluster analysis and visual inspection of the surfaces

to assign metrics to behavioral groups. We used

PROC CORR to calculate Kendall’s � correlation co-

efficients between each metric and the H and P gra-

dients.

Results and discussion

We recognized three broad behavioral groups of met-

rics: �1� metrics that were primarily related to P and

relatively independent of H �n � 15�, �2� metrics that

were primarily related to H and relatively indepen-

dent of P �n � 7�, and �3� metrics that were related to

the interaction between H and P, many with dramati-

cally nonlinear behavior at extreme values of P or H

�n � 28� �Table 1�. This third major group contains

five loosely defined subgroups of metrics based on the

nature the interaction between P and H. We used these

groups to identify general similarities among metrics

that affect their interpretation. There of course is sub-

stantial variation within groups so it is still important

to thoroughly understand each metric.

Metric values in real and neutral landscapes were

mostly overlapping in 7 metrics and were partially

overlapping in 16 metrics �Table 1�. Values in neutral

landscapes were a subset of those in real landscapes

for 14 metrics and real landscape values were a sub-

set of neutral landscape values for 13 metrics. �Table

1�. As mentioned previously, values in real and neu-

tral landscapes did not overlap at all for five metrics.

In addition to identifying five types of relationships

between real and neutral landscapes �Figure 2, Table

1�, we recognized three categories of overlap within

neutral landscape space itself: 1� neutral metric val-

ues not represented in real landscapes; 2� neutral

metric values well represented in real landscapes; and

3� neutral metric values represented in relatively few

real landscapes �i.e., outliers�. While this approach

provides some insight into metric behavior in real

landscapes it is limited in two ways. First, more of

the H�P space would likely be represented if we

looked at more real landscapes. Second, we can only

look in detail at behavior within neutral landscape

space, we have no way to address metric behavior in

real landscapes that falls outside this space.

Metrics primarily related to class area (P)

Fifteen metrics in four conceptual groups were pre-

dominantly related to P �Table 1�, although there was

considerable variability in behavior among metrics

�Figure 3�. Because metrics in this group exhibited a

variety of distinct behavioral patterns, it was difficult

to clearly distinguish subgroups. Of the metrics in this

group, LPI, AREA_AM, GYRATE_AM, DIVISION,

and MESH were most strongly and clearly related to

P, with Kendall’s � correlations all exceeding 0.93 �p

� 0.001 for all� �Table 1�; these metrics were also

highly correlated with one another �r � 0.95, p �

0.001 in all cases�. As such, in many cases these met-

rics will not provide substantial information that is

not already provided by PLAND–which is easy to in-

terpret. None of the metrics in this group, however,

were perfectly correlated with PLAND, and the subtle

differences may be important or enlightening under

certain circumstances. Additionally, many of these

metrics have unique interpretations that make each of

them particularly useful.

For example, DIVISION and MESH have intuitive

appeal in that they represent the probability that two

individuals that are limited to the focal habitat and

placed in different areas of a landscape will find each

other �Jaeger 2000�. Specifically, DIVISION is the

probability that two randomly chosen places in a re-

gion will not be found in the same undissected area

and MESH represents the size �m2� of patches that

would result if a landscape was divided into equal

size patches with the same degree of landscape divi-

sion as the measured landscape �Jaeger 2000�.

MESH, it turns out, is functionally equivalent to AR-

EA_AM at the class level; these two metrics differ in

magnitude as a function of P �McGarigal et al. 2002�

which results in only slightly different behavior

across the H�P space. Because DIVISION, MESH

and AREA_AM are largely redundant, they would not

be used together; however, each can have utility due

to their different interpretations and units. Similarly,

GYRATE_AM �also known as correlation length� is

a useful metric for assessing connectivity in that it can

be interpreted directly as the distance that an organ-

ism that is placed and moves randomly can traverse
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and remain in the focal habitat �Keitt et al. 1997�. It

is important to note that just because these metrics

were largely redundant with P over the H�P gradi-

ents we investigated, it does not mean that these met-

Figure 3. Three-dimensional plots of 6 of the 15 metrics that are primarily related to class area. Surface height indicates the mean metric

value for 100 replicate runs for each H�P combination. Shading indicates the portion of the neutral gradient represented by values in real

landscapes. The metric surface grids represent each step in the area and aggregation gradients. Full metric names are provided in Table 1.
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rics will always be so redundant when other or more

complex configuration gradients are sampled in either

neutral or real landscapes. In addition, even though

these metrics were strongly related to P, they exhib-

ited distinct but subtle gradient responses to H. Be-

cause the magnitude of the H response was very small

compared to the P response, it was largely unnotice-

able in the surface plots �Figure 3�.

Several metrics in this group �AREA_AM, LPI,

GYRATE_AM, PROX_MN, and PROX_SD� exhib-

ited distinct asymmetry in behavior at low versus high

values of H across the P gradient, although the de-

tails varied. Specifically, they increased more or less

linearly with increasing focal class area at high H, but

exhibited nonlinear behavior associated with the per-

colation threshold �0.41� �Stauffer 1985� at low H

�Figure 3A, 3C, and 3D�. The percolation threshold

effect, even at the lowest H level, was dampened

overall compared with the effect in random land-

scapes �Gustafson and Parker 1992; Hargis et al.

1998�, and the threshold effect diminished rapidly as

H increased. Additionally, we detected a second un-

expected transition at approximately the percolation

threshold for these metrics. Below this point, metric

values for any P were larger at high H than at low H;

the trend was reversed above P � ~ 45%. This gra-

dient reversal is important to recognize because the

interpretation of these metrics with regards to class

aggregation is different when P is above versus be-

low the percolation threshold. Three core area met-

rics in this group �TCA, CORE_AM, and

DCORE_AM� also exhibited asymmetry in behavior

at low versus high values of H across the P gradient

similar to the metrics described above, but the asym-

metry was much more pronounced and the nonlinear

behavior at low H occurred at a much higher P than

the percolation threshold �e.g., Figure 3F�.

Finally, several metrics in this group �AREA_SD,

CORE_SD, GYRATE_SD, PROX_SD, and

DCAD_SD� were predominantly related to the P gra-

dient over much of their ranges, but exhibited nonlin-

ear or, in some cases, erratic behavior at very high

values of P �e.g., Figure 3E�. The first three of these

metrics had a distinctly parabolic relationship along

the H gradient at high P, while the latter three metrics

had less straightforward but nevertheless dramatic

changes in behavior at high P �primarily when values

of H were either � 0.8 or � 0.3�. Most of these met-

rics measure variability in the spatial character of

patches and reflect the increasing variability among

patches as H and P increase. Specifically, as H

increases and the class becomes more aggregated,

some patches become larger and more extensive.

However, even at the highest H, some cell clusters

remain small and disjunct. Thus, the absolute

variability among patches increases with H. Similarly,

as P increases and the class becomes more common,

some patches naturally coalesce into larger and more

extensive patches; yet some patches remain small and

disjunct, which increases the absolute variability

among patches.

Neutral landscape space was well represented by

real landscapes for ten of these metrics, however

neutral landscapes represented the range of real land-

scape behavior for only two of these metrics

�CORE_AM and DCORE_AM� �Table 1, Figure 3A-

D�. In all cases where values from real landscapes lie

outside the neutral landscape space the real landscape

values are larger. It is not possible to assess whether

the metric behavior outside the neutral landscape

space is the same as that within the space. Values of

the remaining five metrics from real landscapes oc-

cupy only a portion of the neutral landscape space,

typically the higher levels of aggregation �Figure 3E-

F�.

Metrics primarily related to class aggregation (H)

Seven metrics in three conceptual groups were pre-

dominantly related to H and were mostly independent

of class area �Table 1, Figure 4�, although there was

considerable variability in behavior among metrics in

terms of the degree of interaction. These metrics are

particularly useful in assessing the aggregation com-

ponent of fragmentation without the need for post-hoc

analyses to separate these oft confounded effects. All

of these metrics were highly correlated with the H

gradient with correlation coefficients ranging in mag-

nitude from � � 0.73 �p � 0.001� for FRAC_SD to

� � 0.93 �p � 0.0001� for CLUMPY. It is notewor-

thy that several metrics purported to be measures of

class aggregation �e.g., aggregation index �He et al.

2000�, cohesion �Schumaker 1996�, and landscape

shape index �McGarigal et al. 2002�� did not fall into

this behavioral subgroup.

Except for the clumpiness index �CLUMPY�,

which is based on like cell adjacencies, all of the

metrics in this subgroup are related to some aspect of

patch shape complexity �Table 1�. FRAC_SD,

FRAC_CV, PAFRAC, and PARA_SD are based on

perimeter area relationships. Although often not real-

ized by practitioners, the relationship between shape
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complexity based on perimeter-area relationships and

class aggregation is well established �e.g., Bogaert

2002� and thus this behavioral similarity is to be ex-

pected. However, many other metrics based on class

aggregation do not behave similarly. While the core

metrics in this subgroup �CORE_CV, CAI_SD� are

not calculated using like adjacencies or perimeter area

ratios, the amount of core area in a patch is strongly

affected by patch shape, with more convoluted

patches having less core area when size is equal.

The behavior of this group of metrics is well illus-

trated by PAFRAC, which is a measure of the rela-

tive rate of increase of patch area and perimeter.

Shape complexity increases �i.e., patches become in-

creasingly plane filling� with decreasing levels of ag-

gregation, and this relationship is largely consistent

across all levels of P �Figure 4A�. In fact, PAFRAC

is relatively unaffected by changes in class area when

5% � P � 80%. The abrupt decline in PAFRAC

across all levels of aggregation when P � 80% is

likely a statistical artifact. Because PAFRAC is cal-

culated by regressing the log of patch perimeter onto

the log of patch area, it is sensitive to sample size. As

P increases above 80%, the number of patches

becomes very small and estimates of the metric be-

come unreliable. In landscape ecological studies,

PAFRAC has been used primarily as a method for

characterizing patch shape complexity �Krummel et

al. 1987; Milne 1988; Turner and Ruscher 1988;

Iverson 1989; Ripple et al. 1991�, not habitat aggre-

gation. Specifically, it describes the power relation-

ship between patch area and perimeter, and thus

Figure 4. Four of the seven metrics that are primarily related to class aggregation and are relatively independent of class area. Surface height

indicates the mean metric value for 100 replicate runs for each H�P combination. Shading indicates the portion of the neutral gradient

represented by values in real landscapes. The metric surface grids represent each step in the area and aggregation gradients. Full metric

names are provided in Table 1.
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describes how patch perimeter increases per unit in-

crease in patch area. If, for example, small and large

patches alike have simple geometric shapes, then

PAFRAC will be relatively low, indicating that patch

perimeter increases relatively slowly as patch area in-

creases. Conversely, if small and large patches have

complex shapes, then PAFRAC will be much higher,

indicating that patch perimeter increases more rapidly

as patch area increases–reflecting a consistency of

complex patch shapes across spatial scales. If, on the

other hand, the relative complexity of patch shapes

differs substantially between smaller patches and

larger patches, then PAFRAC should be estimated

separately for each range of patch sizes. The fractal

dimension of patch shapes, therefore, is suggestive of

a common ecological process or anthropogenic influ-

ence affecting patches across a wide range of scales,

and differences between landscapes or scale ranges

can suggest differences in the underlying pattern-gen-

erating process �Krummel et al. 1987�. Our results

suggest that PAFRAC also provides a means of ef-

fectively discriminating among landscapes on the ba-

sis of class aggregation and may therefore have even

greater utility than previously realized. We should

note, however, that the program we used to create the

neutral landscapes used in this study was designed to

generate fractal landscapes. Thus, perhaps it should

not be surprising that PAFRAC behaved so nicely in

discriminating among landscapes with varying fractal

dimensions. It should be noted, however, that other

fractal metrics �FRAC_AM, FRAC_SD, and

FRAC_CV� did not behave similarly.

CLUMPY �Figure 4C� was designed explicitly as a

measure of class aggregation. Specifically, it mea-

sures how aggregated the focal class is by comparing

the observed proportion of like cell adjacencies with

the proportion expected under a spatially random dis-

tribution. CLUMPY ranges from 1 �maximally

aggregated� to -1 �maximally dispersed�, with 0 indi-

cating a completely spatially random distribution of

the focal class. Another metric that is in the parabolic

group, nLSI �Figure 5F�, also was designed to mea-

sure class aggregation and is based on a standardized

perimeter-area relationship and is normalized to range

from 0 �maximally aggregated� to 1 �maximally dis-

persed�. Both metrics are highly correlated with H ��

� 0.93, p � 0.0001 for CLUMPY and � � � 0.87,

p � 0.0001 for nLSI� and thus hold promise as mea-

sures of class aggregation largely independent of

class area. However, CLUMPY is substantially less

parabolic than nLSI and as a result may be more eas-

ily interpreted �Figure 4�. A detailed description of the

theoretical behavior and application of these metrics

is the subject of an ongoing study and will be reported

in a subsequent paper.

Two metrics in this group were coefficients of

variation and two were standard deviations of metric

values across all patches �Table 1� and thus their in-

terpretation is entirely intuitive but can be useful in

providing information regarding among-patch vari-

ability in landscapes. Their interpretation is further

complicated by the fact that they behave somewhat

inconsistently. For example, variability among

patches in perimeter-area ratio �PARA_SD� and core

area �CAI_SD� increase with increasing aggregation,

whereas variability in patch fractal dimension

�FRAC_SD,FRAC_CV� decreases with increasing

aggregation �Figure 4�. Because these metrics are all

based directly or indirectly on perimeter-area relation-

ships, it is not clear why they should behave differ-

ently.

Metrics in this group had a variety of real

landscape-neutral landscape relationships �Table 1�.

CLUMPY and PAFRAC were the most interpretable

in that values from real landscapes fell completely

within the range of neutral landscapes values. In the

case of CLUMPY, all real landscapes but one had

values comparable to H � 0.30 �Figure 4C�. In con-

trast, PAFRAC values in real landscapes tended to be

less extreme than in neutral landscapes �Figure 4A�.

The entire neutral landscape space was represented in

real landscapes for PARA_SD, FRAC_SD, and

FRAC_CV, but patches in real landscapes exhibited

higher variation then neutral landscapes. This differ-

ence is likely a function both of differences in patch

shape complexity and in the number of patches in the

two types of landscapes. Values of the two remaining

metrics �CAI_SD and CORE_CV� partially over-

lapped in the two landscape types, but differed in the

direction of the deviation �Table 1�.

Metrics related to the interaction of class area (P)

and class aggregation (H)

Twenty-eight metrics in six conceptual groups were

related to the interaction between H and P. We recog-

nized three loosely defined subgroups based on the

nature the interaction. One subgroup was distin-

guished by being related to H and having parabolic

distributions along the P gradient �Figure 5�; one sub-

group had a trend from high H and P to low H and P

�Figure 6A-B�; and the final subgroup exhibited dra-
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Figure 5. Three-dimensional plots of 6 of the 13 metrics with parabolic distributions along the gradient of focal class area. Shading indicates

the portion of the neutral gradient represented by values in real landscapes. Surface height indicates the mean metric value for 100 replicate

runs for each H�P combination. The metric surface grids represent each step in the area and aggregation gradients. Full metric names are

provided in Table 1.
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Figure 6. Six representative metrics from the three strongly non-linear distribution categories. Surface height indicates the mean metric value

for 100 replicate runs for each H�P combination. The grid on the metric surface represents each step in the area and aggregation gradients.

Shading indicates the portion of the neutral gradient represented by values in real landscapes. Full metric names are provided in Table 1.

449



matically nonlinear behavior at extreme values of H

and P �Figure 6C-F�.

Parabolic distributions along the P gradient

This subgroup included 13 metrics that share a com-

mon distributional pattern of a non-linear increase

with increasing values of P, typically with a

maximum at some intermediate value, and then a

subsequent decline �Figure 5�. The magnitude of the

maximum value of most of these metrics declined

with increasing values of H. This decreasing magni-

tude along the H gradient also provides at least some

measure of class aggregation that is independent of

class area. This subgroup of metrics is closely allied

with the subgroup of metrics which are strongly re-

lated to class aggregation �Figure 4�. While the ends

of the continuum are distinct, it could be argued that

the metrics in these two groups represent a single

group of metrics primarily affected by the H gradient

but exhibiting a gradient of responses with respect to

their non linearity along the P gradient, ranging from

nearly linear �e.g., PAFRAC� to markedly parabolic

�e.g., ED and PD�.

While the 13 metrics in this subgroup share the

parabolic shape, the point along the area gradient at

which maximum values were realized differed �Fig-

ure 4�. For example, LSI was maximum at P � 30%;

PD was maximum at P � 20% at low H and at P �

30% � 40% at higher H; ED was maximum and

nLSI was minimum at P � 50%; SHAPE_AM was

maximum at approximately P � 65%; and

DCORE_CV peaks at P � 95%. The value of P at

which DCAD reaches its maximum will vary

depending on the edge depth specified, with maxi-

mums at higher values of P as edge depth increases.

As edge depth approaches 0, the distribution of

DCAD approaches the distribution of PD.

Non-linear behavior across gradients in area makes

interpretation of these metrics problematic. In gen-

eral, they cannot be interpreted alone and require

concurrent examination of at least one other metric.

For example, ED is typically interpreted in conjunc-

tion with number of patches or class area. Also, if the

metrics are to be used in further analyses that assume

linear relationships �e.g., Pearson product moment

correlation or principal components analysis�, inclu-

sion of these metrics may be inappropriate. However,

if the landscapes being analyzed represent a relatively

small proportion of the total H�P gradient, the sur-

face may be approximately planar and thus not vio-

late assumptions of linear relationships. Additionally,

parabolic behavior was most pronounced at low H

while values in most real landscapes were comparable

to those seen for higher values of H �Figure 5B�.

ED �or the equivalent total length of edge� is the

most commonly used metric in this group in studies

quantifying effects of fragmentation. Clearly, how-

ever, using ED to quantify the amount of edge per

unit area in a landscape could be problematic due to

the markedly nonlinear response of the metric. Thus,

while edge effects have been demonstrated to be one

of the most important consequences of fragmentation

�e.g., Demaynadier and Hunter 1998; Gibbs 1998;

Bergin et al. 2000; Boulet and Darveau 2000; Burke

and Nol 2000; Gehlhausen et al. 2000; Mancke and

Gavin 2000; Euskirchen et al. 2001�, ED may not be

the best way to quantify the effects. Further, recent

studies have shown that edge effects are dependent on

landscape composition and context �e.g., contrast be-

tween focal habitat and adjacent patches and amount

of like habitat in the vicinity of fragments� �e.g.,

Heske et al. 2001�. Thus, beyond the problems asso-

ciated with nonlinear behavior, simplistic measures of

amount of edge, such as ED, are likely to be insuffi-

cient for assessing edge effects. PD has similar

behavior to ED and thus has similar problems in

quantifying the effects of fragmentation.

Trend from high H and P to low H and P

Four metrics �PARA_AM, PLADJ, AI, CAI_AM�

exhibited a slightly nonlinear trend from high H and

P to low H and P �e.g., Figure 6A-B�. Thus, these

metrics have the interesting property of representing

strong interactions of both H and P. On the one hand,

this property makes interpretation of these metrics

difficult, because it is impossible to distinguish

whether a change in the metric is due to a change in

H or P, or both. Given the importance of distinguish-

ing between habitat area and configuration in the

study of habitat fragmentation, metrics that confound

the two gradients may have limited utility. On the

other hand, simultaneous assessment of changes in H

and P may be desirable when the distinction between

area and configuration is not important. In all cases,

real landscapes occupied a subset of neutral landscape

space, typically where H � 0.15-0.35. Thus, the ob-

served non-linear behavior is potentially less severe

in real landscapes but it is still an issue.

Two closely related metrics in this group, PLADJ

and AI �He et al. 2000�, measure the degree of aggre-

gation in a focal class based on like cell adjacencies.

The difference between the two metrics is that AI
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standardizes the percent like adjacencies based on the

maximum number of adjacencies possible given the

class area. These metrics are redundant �r � 0.99, p

� 0.001� and thus would never be used in the same

study. Although AI is standardized to the maximum

amount of aggregation possible in a landscape, the

metric provides misleading results at P � 50%

because it does not account for the changing

minimum amount of aggregation as P increases.

When P � 50%, a maximally disaggregated land-

scape will have no cells with like adjacencies. When

P � 50%, minimum aggregation increases linearly

with P and thus the expected aggregation for any P

increases. Because AI does not account for the adja-

cencies that necessarily occur when P � 50%, it

overestimates the relative level of aggregation in

these landscapes. This problem can be avoided by us-

ing a normalized version of AI that accounts for both

the minimum and maximum like adjacencies possible

for any given P �McGarigal et al. 2002�.

AI is purported to be an effective measure of class

aggregation �He et al. 2000�. The authors assert that

AI is superior to several related metrics �e.g., LSI�

because it has linear behavior over gradients of ag-

gregation. Our results, however, demonstrate that AI

is not linearly related to the aggregation gradient. The

metric is linear along the P gradient under complete

spatial randomness �results not shown� but is strongly

nonlinear across all levels of aggregation, particularly

at low levels of P. Bogaert �2002� has recently criti-

cized AI as not providing any information that is not

already provided by LSI or nLSI �the normalized

form of LSI�. Our results show that the He et al.

�2000� formulation of AI is not redundant with LSI

and is redundant with nLSI only when P � 50%

�Figure 5, Figure 6�. If AI is normalized to account

for adjacencies that necessarily occur when P �

50%, it becomes completely redundant with nLSI.

Strongly nonlinear at extreme values of H and P

Eleven metrics were strongly nonlinear at extreme

values of H and P; three subgroups were distin-

guished from one another based on the portion of the

H by P gradient in which nonlinear behavior was ex-

hibited �Table 1, Figure 6�. Despite obvious differ-

ences among subgroups there are several noteworthy

observations common to all groups. First, although

distributions of these metrics tend to be relatively flat

throughout much of the H by P space, they exhibit

threshold-like behavior in a small portion of the space

at extreme values of H or P �Figure 6�. This behavior

can make these metrics difficult to interpret because a

unit change in H or P does not yield that same unit

change in the metric value throughout the H by P

gradient space. More importantly, the low variability

across much of the H by P gradient space suggests

these metrics will often be of little use in distinguish-

ing among landscapes that actually are quite different

in composition and aggregation. The proportion of

H�P space represented in real landscapes varied

among metrics �Table 1, Figure 6�. All or nearly all

of the H�P space was represented for six of the met-

rics �Table 1�. For the other metrics the degree of

overlap varied along the P gradient. For example, real

landscapes existed throughout the H gradient for

CAI_MN and CORE_MN at low P, but at high P real

landscapes were restricted to H � 0.5. Areas of prob-

lematic metric behavior were represented in real

landscapes for all metrics in this category; however,

in some cases the most extreme values were not rep-

resented �Figure 6�. It is interesting that five of the

metrics in these three subgroups are mean values of

patch-based metrics: AREA, GYRATE, CORE,

DCORE, and ENN that are without doubt the most

commonly used class-level metrics. This poor per-

formance has been noted by others. For example,

Schumaker �1996� found that AREA_MN,

CORE_MN, and ENN_MN were poor predictors of

modeled dispersal success for Northern Spotted Owls

in landscapes with different levels of connectivity

among old growth forest patches. This poor perform-

ance was attributed to sensitivity to small patches, the

effects of which are clearly demonstrated in the neu-

tral landscapes examined here. The other formula-

tions of most of these metrics �e.g., area-weighted

means and measures of dispersion� typically behave

in manners that will be much more informative.

Similarly, in a review of 74 published papers assess-

ing connectivity based on both landscape structure

and population level processes, Moilanen and Niem-

inen �2002� found that Euclidean nearest neighbor

distances were rarely correlated with individual

abundance, colonization events, or patch occupancy.

Given the relative lack of sensitivity of different for-

mulations of the Euclidean nearest neighbor metrics

throughout most of the H by P gradient, this lack of

relationship is not surprising.

COHESION �a measure of the cohesiveness of

patches in a landscape based on the ratio between the

area-weighted mean patch perimeter-area ratio and

the area-weighted mean shape index� is another

member of this group that appears to be relatively in-
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variant throughout most of the H�P space. At low H,

COHESION is relatively invariant at P � 0.6; at

higher H, COHESION is mostly invariant throughout

the P gradient. As such, our results suggest that this

metric is not likely to be useful for detecting

landscape changes when P � 0.40. This value coin-

cides with the point at which additional habitat loss

results in remaining habitat being broken up into

small pieces. Interestingly, Schumaker �1996� found

that COHESION did predict modeled spotted owl

dispersal and thus was useful in distinguishing among

different levels of landscape connectivity. At first this

result would seem contrary to the behavior of this

metric; however, the percent of the landscapes that

were occupied by the focal class in his landscapes

ranged from 5 � 33.7% �Schumaker 1996� which co-

incides with the portion of the H�P gradient in which

COHESION is sensitive �Figure 6�.

The metrics in this group also illustrate that many

class-level landscape metrics are not stable, and are

therefore difficult to interpret, at extreme values of H

and especially P. This instability is not necessarily a

problem with the metrics per se, but rather accentu-

ates the need to understand what the metrics are de-

scribing and to apply them intelligently. For example,

when the focal class dominates the landscape and

forms a matrix, it is not meaningful to measure land-

scape structure with patch-based metrics. Similarly,

when the focal class is extremely rare, patch-based

metrics do a poor job of distinguishing among levels

of configuration. In addition, extremely low values of

H are not typical in landscapes, thus erratic behavior

of metrics under those conditions will most often not

be manifested, but our results comparing real and

neutral landscape indicate that problematic conditions

are possible in real landscapes for a number of met-

rics �Figure 6�.

Conclusions and limitations

The patterns of behavioral similarities among metrics

across the H by P space supports several of our ex-

pectations. First, the similarities among metrics

within each behavioral group suggests that many

metrics are closely related, if not perfectly redundant,

and describe similar aspects of landscape structure.

This point has been shown previously by others �Ri-

itters et al. 1995; Cain et al. 1997� and thus was not

surprising. Interestingly though, the cluster analysis

and three-dimensional surface plots revealed several

close behavioral similarities among metrics that were

not intuitively obvious prior to the analysis, despite

our intimate familiarity with these metrics. Second,

the number of groups of metrics exhibiting markedly

different behavior suggests that there are many

important dimensions to landscape structure that can-

not be succinctly described with only a few metrics.

The high dimensionality of landscape structure we

observed was especially intriguing because we

explicitly varied only two aspects of structure: class

area and aggregation. It is likely that additional land-

scape structure dimensions exist and are more promi-

nent in real landscapes. While there were a number

of dimensions of landscape structure, the H and P

gradients we imposed in our study design were domi-

nant. While this limits the scope of our results, these

two gradients are considered to be fundamentally im-

portant in real landscapes �Turner 1989; Gustafson

1998�.

Our study also provided several new insights into

the behavior and utility of landscape metrics. First,

landscape structure metrics have traditionally been

organized conceptually according to the aspect of

landscape composition or configuration they suppos-

edly measure �Table 1�. It is common for practitio-

ners to choose metrics from each of the conceptual

classes in order to describe different aspects of a

landscape �e.g., Ripple et al. 1991�. Our results show

that it is also important to consider the behavioral

groupings because a number of conceptually different

metrics have similar behavior and thus are redundant.

Similarly, metrics from the same conceptual group

often exhibit widely varying behaviors indicating dif-

ferences in how they respond to attributes of

landscape pattern.

Second, our results provide insight into why it has

been difficult to find consistent relationships between

landscape structure and ecological processes. For ex-

ample, Schumaker �1996� found that fractal dimen-

sion was a poor predictor of modeled dispersal

success for Northern Spotted Owls. He indicated that

fractal dimension was well behaved in neutral land-

scapes but behaved unpredictably and non-intuitively

in real landscapes. Our results indicate that the lack

of relationship between any measure of fractal

dimension �PAFRAC, FRAC_AM, FRAC_SD, or

FRAC_CV� and modeled spotted owl dispersal

should be expected based on the behavior of these

metrics in neutral landscapes. Dispersal success was

best predicted by metrics that exhibit a strong rela-

tionship to class to area �e.g., TCA, CORE_AM,
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SHAPE_AM, PARA_AM, and COHESION� over the

range of P considered in his study �Schumaker 1996�.

None of the fractal dimension metrics show such re-

lationships. For example, FRAC_AM is parabolic

along P �Figure 5�, while FRAC_SD �Figure

4�,FRAC_CV and PAFRAC are most closely related

to the aggregation gradient. Thus, results from neu-

tral landscapes can help in interpreting patterns found

in real landscapes.

Third, our results suggest that many metrics pur-

ported to have a certain behavior may not behave in

the intended manner over the entire H by P space. In

particular, we found that some metrics purported to

be measures of class aggregation �e.g., AI� con-

founded class area and aggregation �Figure 6�. Simi-

larly, most metrics exhibited nonlinear behavior,

although the magnitude and pattern of non linearity

varied markedly among metrics. Nonlinear behavior

renders the interpretation of metric values problem-

atic because a unit change in the metric does not re-

flect that same degree of change in landscape

structure over the range of the metric. Finally, a num-

ber metrics exhibit erratic and/or unstable behavior at

very high or very low P and demonstrate that land-

scape structure is difficult to characterize at the class

level when the focal class is either dominant or ex-

tremely rare. Fortunately, quantifying configuration

may not be that relevant or interesting in such land-

scapes anyway.

Our findings must be interpreted within the context

of several limitations imposed by the use of binary

neutral landscapes in our study design. Most impor-

tantly, neutral landscapes differ from real landscapes

in many important ways. Thus, the beneficial features

of neutral landscapes in allowing strict and indepen-

dent control of certain aspects of landscape structure

also mean that many aspects of structure are not re-

flected. In particular, we evaluated a two-dimensional

landscape structure gradient space where configura-

tion was represented solely by class aggregation.

Thus, metrics were grouped based on how they be-

haved in response to changing class area and aggre-

gation, yet many metrics are purported to measure

other aspects of landscape configuration. There is no

doubt that many of the metrics reported to be partly

or wholly redundant in this study would reveal unique

behavior in relationship to other gradients of land-

scape configuration. Unfortunately, controlling class

configuration in neutral landscapes is extremely lim-

ited with available software; generating a broader ar-

ray of configurations remains an important focus for

future software development. In addition, because we

used binary landscapes, many metrics that character-

ize important aspects of landscape structure in real

landscape �e.g., edge contrast, similarity, intersper-

sion, and diversity� were not relevant and we could

not adequately evaluate their behavior. Similarly,

landscape-level metrics were not meaningful to

examine so our results pertain only to class-level

metrics. While the binary nature of the landscapes

limited the range of metrics we could evaluate, it does

not limit the applicability of these results in

landscapes with more than two classes. The class-

level metrics we present here pertain to the focal class

and ignore the class identities and patterns of the sur-

rounding mosaic �i.e., the metrics take an island bio-

geographic perspective�. This island biogeographic

perspective is commonly used in fragmentation stud-

ies because fragmentation is inherently a phenome-

non that is relevant in context of a focal class. Further

differences between real and neutral landscapes that

limit the application of these results that neutral land-

scapes tend to have larger numbers patches, particu-

larly of extremely small patches, than real landscapes

while larger patches �especially at higher P values�

tend to be more extensive and convoluted than larger

patches in real landscapes. These differences result in

values of many metrics from real landscapes falling

outside the space occupied by neutral landscapes.

Obviously, our results can most reliably be applied to

real landscapes when metric values either mostly

overlap with values from neutral landscapes or

occupy a subset of values occupied by neutral land-

scapes �groups 1 and 4, Table 1�.

Our results are also limited because we examined

only one scale of observation �i.e., grain and extent

were the same for all neutral landscapes�. Relation-

ships of metric responses to varying grain and extent

are known to be complex, with both the metric val-

ues and distributional shape being affected �e.g.,

O’Neill et al. 1996; Saura 2002; Wu et al. 2002�. For

example, in an investigation involving real land-

scapes, Wu et al. �2002� found that metrics fell into

three categories of response to changing scale;

responses were predictable in only one of these cat-

egories. Thus, while we are aware of the importance

of scale, conducting a multi-scale investigation was

beyond the scope of the present investigation and thus

our results and conclusions are limited to the scale of

our examination.

In conclusion, while landscape metrics have proven

useful for describing landscape structure and hold
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promise for broader application, they are often diffi-

cult to interpret. More importantly, links between

ecological processes and landscape pattern as mea-

sured by these metrics have sometimes been difficult

to demonstrate �Schumaker 1996; Moilanen and Ni-

eminen 2002�. We argue that understanding expected

metric behavior can aid in selecting and interpreting

metrics that are sensitive to changes resulting from a

phenomenon of interest.
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