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ABSTRACT 

Concrete-filled FRP tubes (CFFTs) are an attractive form of hybrid compression members 

incorporating FRP. CFFTs have several advantages over traditional column forms, including 

their excellent corrosion resistance and ductility. Much research has been conducted on 

CFFTs over recent years, but no systematic experimental study has been concerned with the 

cyclic axial compressive behavior of CFFTs with a filament-wound FRP tube; such studies 

are needed for the development of a cyclic stress-strain model for the concrete in CFFTs. This 

paper therefore presents an experimental study on the behavior of circular CFFTs under 

cyclic axial compression. The experimental program included the strength of concrete as a 

key variable so that it also provides a much needed supplement to the very limited existing 

research on the cyclic compressive behavior of FRP-confined high strength concrete (HSC). 

The test results are compared with a monotonic stress-strain model and a cyclic stress-strain 

model for FRP-confined concrete, both of which have been based on test databases which are 

limited to concrete confined with an FRP wrap and include only a small number of tests for 

HSC. The test results show that the cyclic axial stress-strain behavior of concrete in CFFTs is 

generally similar to that of concrete confined by an FRP wrap. The test results also show that 

the monotonic stress-strain model perform reasonably well for HSC in CFFTs, but revisions 

                                                              
 



to the cyclic stress-strain model are needed before it can provide accurate predictions for 

HSC in cyclically loaded CFFTs. 

 

Keywords: FRP; confinement; concrete; filament-wound tubes; cyclic loading; high-strength 

concrete; stress-strain behavior 

 

INTRODUCTION 

 

Concrete-filled FRP tubes (CFFTs) (Mirmiran and Shahawy 1997; Fam and Rizkalla 2001a, 

b) are an attractive form of hybrid compression members combining FRP and concrete in an 

optimal manner. A CFFT consists of an outer FRP tube filled with plain or steel-reinforced 

concrete. The FRP tube is typically manufactured through a filament-winding process (i.e. 

filament-wound FRP tube). When a concrete-filled FRP tube is under compression, the 

axially-compressed concrete is also subjected to lateral confinement from the FRP tube which 

is in tension in the circumferential (or hoop) direction. This lateral confinement from the FRP 

tube can increase both the strength and the ductility of the concrete significantly. As a result, 

a highly ductile compression member can be formed from the two brittle materials, namely, 

FRP and concrete, even when steel reinforcement is completely absent. In addition to 

excellent ductility and thus excellent seismic resistance, the advantages of CFFTs include 

their excellent corrosion resistance and the lightweight nature of FRP tubes compared to steel 

tubes. With these advantages, concrete-filled FRP tubes are attractive for use as bridge 

columns and piles, both of which are commonly exposed to severe outdoor environments (e.g. 

sea water). Many studies have been conducted on CFFTs over recent years, and they have 

been focused on different aspects such as axial compressive behavior (e.g. Mirmiran and 

Shahawy 1997; Zhang et al. 2000; Fam and Rizkalla 2001a, b; Ozbakkaloglu and Oehlers 



2008), flexural behavior (e.g. Burgueño and Bhide 2006), seismic behavior (e.g. Zhu et al. 

2006; Zohrevand and Mirmiran 2013), fatigue behavior (e.g. Ahmad et al. 2008), fire 

resistance (e.g. Ji et al. 2008), as well as design procedures (e.g. Yu and Teng 2011). 

 

As a structural form with great potential for use in seismic regions, the behavior of CFFTs 

subject to cyclic loading is of particular importance. The stress-strain behavior of the 

confined concrete in CFFTs under cyclic axial compression is particularly important for the 

accurate modeling of such columns under seismic loading. A number of experimental studies 

(Rousakis 2001; Ilki and Kumbasar 2003; Shao et al. 2006; Lam et al. 2006; Abbasnia and 

Ziaadiny 2010; Ozbakkaloglu and Akin 2012; Abbasnia et al. 2012, Abbasnia et al. 2013; Bai 

et al 2013) have been conducted on the cyclic stress-strain behavior of concrete confined by 

an FRP wrap with fibres oriented in the hoop direction only (referred to as “FRP wrap” 

hereafter) using cyclic axial compression tests, but no systematic experimental study has been 

concerned with the confined concrete in CFFTs with a filament-wound FRP tube. To the best 

of the authors’ knowledge, the only existing cyclic axial compression test on concrete-filled 

filament-wound FRP tubes was conducted by Mirmiran and Shahawy (1997), where only one 

specimen was tested. The behavior of the concrete in CFFTs is complicated by the significant 

axial stiffness and Poisson’s effect of the FRP tube, and the failure mode of such an FRP tube 

is also different from that of an FRP wrap with only hoop fibres. In addition, the shrinkage of 

the concrete infill in CFFTs may lead to a small initial gap between the FRP tube and the 

concrete, which can also have adverse effects. Against this background, this paper presents an 

experimental study on the behavior of circular CFFTs under cyclic axial compression. The 

experimental program included the strength of concrete as a key variable, as CFFTs offer an 

ideal opportunity for the use of high strength concrete (HSC) because of the confinement 

from the tube. The experimental program is thus also a much needed supplement to the very 



limited existing research on the cyclic compressive behavior of FRP-confined HSC. Only two 

studies by Rousakis (2001) and Ozbakkaloglu and Akin (2012) where FRP wraps were used. 

 

EXPERIMENTAL PROGRAM 

Test Specimens 

 

A total of 15 concrete-filled filament-wound FRP tubes were prepared and tested. All the 

specimens had a characteristic diameter of 200 mm (diameter of the concrete core) and a 

height of 400 mm. These columns were cast in 3 batches (batches 1 to 3) with 3 different 

concrete mix ratios respectively to produce 3 different concrete grades. Each batch included 

two groups of specimens which were confined with two different types of filament-wound 

FRP tubes respectively. Each group included two or three nominally identical specimens 

among which one was tested under monotonic compression while the other one or two were 

tested under cyclic compression. For the group with two cyclically loaded specimens, two 

different loading schemes were used as discussed later. In the preparation of these specimens, 

the FRP tube was used as the mold for casting the concrete. A 25 mm wide carbon FRP 

circumferential strip was added near each end of each CFFT specimen to avoid unexpected 

failure there.  

 

Each specimen was given a name, which starts with the letter “S” to represent “specimen”, 

followed by a two- or three-digit number to represent the unconfined concrete strength, and 

then a number which defines the thickness (in mm) of the FRP tube, together with two letters 

“FW” indicating that the tube is made through a filament-winding process. This is then 

followed by a letter “M” or “C” to represent “monotonic” or “cyclic” compression. The last 

number “1” or “2” in some specimens is used to differentiate two nominally identical 



specimens which were tested under two different cyclic loading schemes respectively. The 

details of all specimens are summarized in Table 1.  

 

Material Properties 

 

Self-compacting concrete was used for all the specimens. A previous study by the authors’ 

group (i.e. Yu et al. 2013) has demonstrated that the behavior of FRP-confined 

self-compacting concrete is generally similar to that of FRP-confined normal concrete. In 

Batch 1, the concrete was prepared with ordinary Portland cement, fly ash, super plasticizer 

(S.P.), river sand, and granite aggregate with a maximum nominal size of 10 mm. In Batches 

2 and 3, silica fume was added to achieve the high strengths required. The mix proportions 

used were designed following Lam et al. (1998) and are summarized in Table 2. Three plain 

concrete cylinders (152.5 mm x 305 mm) were tested for each batch to determine the 

concrete properties. The elastic modulus ( c
E ), compressive strength (

'

co
f ) and compressive 

strain at peak stress ( co
 ) of the concrete averaged from the concrete cylinder tests are given 

in Table 1.  

 

Three types of prefabricated filament-wound glass FRP (GFRP) tubes were used in the 

present study. These tubes were manufactured using the same batches of raw materials (i.e. 

fibres and resin), and were designed to have the same nominal volume fraction and the same 

angles of fibres (i.e. ±80 degrees to the longitudinal axis of the tube respectively), for the 

same mechanical properties. The only difference among the three types of GFRP tubes is in 

their thicknesses, which were measured to be 2.2 mm, 4.7 mm and 9.5 mm, respectively. 

Based on their actual thicknesses, the actual fibre volume fractions in the three types of tubes 

were found to be slightly different (i.e. 0.452, 0.466 and 0.482 respectively). In the present 



study, only selected tubes were tested under hoop tension and axial compression respectively. 

Appropriate small adjustments were made to the mechanical properties obtained from tests to 

consider the difference in the actual fibre volume fraction when these values were used for 

other types of tubes. 

 

Tensile split-disk tests on 5 FRP rings were conducted following ASTM D2290-08 (2008) as 

shown in Figure 1. The 5 FRP rings, each having a uniform height of 35 mm, were cut from 

the same FRP tube with a thickness of 4.7 mm. Six hoop strain gauges with a gauge length of 

20 mm were installed, among which two were centred at the two gaps, whereas the nearer 

edges of the other four gauges were located at 15 mm away from the gaps. The readings of 

the two strain gauges at the gaps were found to be lower due to the effect of bending there. 

The experimental tensile stress-strain curves are shown in Figure 2, where the tensile stress 

was obtained by dividing the applied tensile force by two times the cross-section area of the 

ring, while the tensile strain was averaged from the four hoop strain gauges away from the 

gaps to eliminate any effects from local bending at the gaps. Figure 2 shows that the FRP 

tube has a linear stress-strain relationship in the hoop direction. The average rupture strain 

and secant elastic modulus at failure are 1.49% and 45.9 GPa, respectively. 

 

Compression tests on 5 FRP rings were conducted following GB/T5350-2005 (2005) as 

shown in Figure 3. The 5 FRP rings all had a height of 60 mm and were cut from the same 

FRP tube with a thickness of 9.5 mm. They were tested on an MTS machine with a 

displacement control rate of 0.036 mm/min. Figure 4 shows the experimental stress-strain 

curves. The stress is shown to increase linearly with the strain until an axial strain of around 

0.004, after which the FRP tube segment exhibits significantly nonlinear behavior before the 

final failure of the tube segment due mainly to failure of the resin matrix. The average secant 



elastic modulus at an axial strain of 0.004, which represents the slope of the approximately 

linear initial portion, was found to be 15.6 GPa and is referred to as 1secE . The average 

ultimate axial stress, ultimate axial strain and secant elastic modulus at failure (referred to as

2secE ) are 95.1MPa, 0.95% and 10.0 GPa respectively. The large difference between 1secE

and 2secE indicates the significant nonlinearity of the stress-strain curves. 

 

Experimental Set-up and Instrumentation 

 

For each specimen, eight axial strain gauges, among which four had a gauge length of 20 mm 

while the other four had a gauge length of 100 mm, were installed at the mid-height of the 

FRP tube (Figure 5). The use of two different gauge lengths was to clarify any possible effect 

of the gauge length on the measured axial strains. Three groups of hoop strain gauges with a 

gauge length of 20 mm were installed at 3 different heights of the FRP tube respectively: 

mid-height; 100 mm lower than the mid-height; 100 mm higher than the mid-height. Each 

group included four hoop strain gauges evenly distributed over the circumference (Figure 5). 

In addition, 4 LVDTs were used to obtain the total axial shortening of each specimen. All 

compression tests were carried out using a column testing facility with a displacement control 

rate of 0.24 mm/min. The axial load was applied on both the FRP tube and the concrete 

simultaneously. All test data, including the strains, loads, and displacements, were recorded 

simultaneously by a data logger. 

 

Loading Scheme 

 

For the groups (i.e. S54-2FW, S54-4FW and S104-4FW) with two cyclically loaded 

specimens, one was subjected to type C1 loading while the other was subjected to type C2 



loading. Both the type C1 and type C2 loading schemes were designed for full 

unloading/reloading cycles where the unloading of each cycle was terminated at a zero load 

and the reloading of each cycle was terminated at the unloading displacement of the same 

cycle (i.e. where the unloading starts) or after reaching the envelope curve. For type C1 

loading, a single unloading/reloading cycle was applied at each of several prescribed 

unloading displacement values before failure. For type C2 loading, a number (9-12) of 

repeated unloading/reloading cycles were applied at a single prescribed unloading 

displacement value (see Table 3). For the groups (i.e. S84-4FW, S84-9FW and S104-9FW) 

with only one cyclically loaded specimen, the specimen was subjected to a combination of 

type C1 and C2 loading: a single unloading/reloading cycle was applied at each of the first 

several prescribed unloading displacement values while a number (9-12) of repeated cycles 

were applied at the last prescribed unloading displacement value. All the loading schemes 

were executed manually with the use of the displacement averaged from the 4 LVDTs (Figure 5) 

and the load readings of the column testing facility as the controlling parameters. Details of the 

loading schemes are summarized in Table 3. 

 

TEST RESULTS AND DISCUSSIONS 

Test Observations 

 

All the specimens were tested to failure except for the specimens with a 9 mm FRP tube (i.e. 

groups S84-9FW and S104-9FW). The tests for these specimens were terminated at an axial 

load of 8000 kN because of the loading capacity limitation of the column testing facility. 

Typical failed specimens (i.e. specimens S54-2FW-C2 and S84-4FW-C) are shown in Figure 

6. 

 



The failure processes of all other specimens were similar, indicating that different loading 

schemes had little effect on this process. As the loading process progressed, white patches 

along the fibre directions appeared on the outer surface of the tube, indicating local damage 

in the resin because of the dilation of the concrete inside. These white patches normally 

started to appear after the axial strain exceeded co , and developed continuously until the 

rupture of fibres which occurred nearby. It is worth noting that the rupture of fibres, starting 

from the outermost ply, was a progressive process accompanied with continuous snapping 

noises. This is different from the sudden failure of concrete confined with a wet-layup FRP 

wrap with unidirectional fibres in the hoop direction. 

 

Axial Strain 

 

There are three ways to obtain the axial strain of a specimen: (1) the average reading from the 

four 20 mm axial strain gauges at the mid-height (referred to as the SG-20 axial strain); (2) 

the average reading from the four 100 mm axial strain gauges at the mid-height (referred to as 

the SG-100 axial strain); and (3) the average strain over the whole height of the specimen 

based on the average overall axial shortening of the three LVDTs (referred to as the nominal 

axial strain).  

 

Figure 7 shows a comparison between the axial strains obtained in the three different ways 

for the specimens tested under axial monotonic compression. The SG-20 and the SG-100 

axial strains shown in Figure 7 were all averaged from the readings of four axial strain gauges 

except for specimen S104-9FW-M. In specimen S104-9FW-M, one of the 100 mm axial 

strain gauges was damaged, so the SG-100 strains for this specimen were from the three 

surviving axial strain gauges.  Figure 7a shows that the SG-20 and the SG-100 axial strains 



are generally in close agreement. For the specimens with the lowest concrete strength (i.e. 

specimens in the S54 series), the nominal axial strain also agrees closely with the SG-20 and 

the SG-100 axial strains (Figures 7b and 7c). However, for the specimens in the other two 

series (i.e. specimens in the S84 and S104 series), such agreement is only observed before a 

threshold strain value (around 0.004 for the S84 series and around 0.005 for the S104 series), 

beyond which the nominal axial strain becomes significantly larger than the axial strain 

gauge readings (i.e. both the SG-20 and the SG-100 strains), indicating that significant 

localized deformation occurred outside the 100 mm mid-height region of the column. This 

observation is probably due to the brittleness of HSC, which led to more localized and 

non-uniform damage of concrete. 

 

As the axial strain gauges were attached on the external surface of the FRP tube, and 

significant slips may have existed between the FRP tube and the concrete especially after the 

development of significant localized deformation of concrete, the axial strain gauge readings 

cannot simply be assumed to closely reflect the strain state of the confined concrete. In the 

subsequent sections, the nominal axial strain is used to represent the axial strain of the 

confined concrete. It should be noted that the nominal axial strain represents the average 

deformation of the concrete over the column height, where the deformation near the ends is 

expected to be different from that near the mid-height because of the lateral constraints from 

the two ends. The existence of such differences, as well as the other possible deformation of 

the loading system, generally leads to slightly larger strains as measured by LVDTs especially 

in the initial stage of loading. However, this effect is believed to be small, given the fact that 

the nominal axial strain agrees closely with the mid-height axial strain gauge reading for the 

specimens in the S54 series (Figure 7). 

 



Hoop Strain 

 

Making use of readings from the three groups of hoop strain gauges located at 3 different 

heights of the FRP tube, the hoop strain distributions at the ultimate state of all the 15 

specimens are shown in Figure 8, except for specimens in groups S84-9FW and S104-9FW 

which were not tested to failure as mentioned earlier. For these specimens, the hoop strains at 

the time when the tests were terminated are shown in Figure 8. It is evident that a 

considerable scatter exists in the hoop strain readings. Such scatters appear to be less 

pronounced for the mid-height section than the other two sections (sections 1 and 3 in Figure 

5), indicating that the lateral expansion of concrete is more uniform in the mid-height region. 

While the maximum hoop strain and the minimum hoop strain were found to be typically not 

at the mid-height section, the average hoop strain reading at the mid-height section ( , 2
h rup ) is 

very close to and generally slightly higher than the average reading of the three groups of 

hoop strain gauges ( , 1
h rup ) (see Table 4). The average hoop rupture strain appears to be 

smaller for specimens with a higher concrete strength and/or a weaker tube. 

 

Axial Load-Axial Strain Behavior 

 

The key test results of all 15 specimens are summarized in Table 4. In this table, allF  is the 

peak axial load of the specimen from the test; cF  is the peak axial load taken by the 

concrete; 
'

cc
f

 
is the peak axial stress of the confined concrete; cu

 
is the ultimate axial 

strain of the concrete at the rupture of the FRP tube. The peak stress 
'

co
f  and the strain at 

peak stress co
 
of unconfined concrete are used to normalize the ultimate axial stress and 

the ultimate axial strain, respectively. 



 

Typical axial load-axial strain curves of the CFFT specimens are shown in Figure 9. Figure 9 

shows that all the specimens had an approximately bilinear load-strain curve (for 

monotonically loaded specimens) or envelope curve (for cyclically loaded specimens), but for 

some specimens with a very high strength concrete (e.g. specimen S104-4FW-M), there is a 

slight drop in the load in the transition zone between the two approximately linear portions of 

the curve. Such a slight load drop, however, was not found in specimens with a relatively low 

concrete strength (e.g. specimen S54-2FW-M), or specimens with a very strong FRP tube (e.g. 

specimen S104-9FW-M). It is thus believed that such a load drop is due to the brittleness of 

HSC when it is subjected to insufficient confinement. It does not appear to be caused by the 

less intimate contact between the concrete and the FRP tube in a CFFT, as such a load drop is 

also a common observation in HSC confined with an FRP wrap (Cui and Sheikh 2009; 

Ozbakkaloglu and Akin 2012).   

 

Axial Stress-Axial Strain Curves of Concrete 

 

The axial stress-strain curves of the FRP-confined concrete in CFFTs are shown in Figure 10 

for all the specimens, where those of cyclically loaded specimens are compared with the 

curve of the corresponding specimen under monotonic compression. The axial stress of the 

concrete was found as the load carried by the concrete section divided by its cross-sectional 

area. The load carried by the concrete section is assumed to be equal to the difference 

between the load carried by the specimen and the load carried by the FRP tube at the same 

axial strain. One main difference between the FRP tube in a CFFT and an FRP wrap is that 

the former generally has a considerable axial stiffness and its direct contribution to the axial 

load capacity cannot be ignored. In the present study, the load carried by the FRP tube in 



CFFTs was found from axial compression tests on hollow FRP tubes. When the axial strain of 

a specimen exceeds the ultimate strain of the corresponding hollow FRP tube tests, it is 

assumed that the load resisted by the FRP tube is equal to its ultimate load because of the 

support from the concrete core (Figure 9a). It is further assumed that in the unloading process, 

the load taken by the FRP tube reduces proportionally to the total axial load acting on the 

specimen, and reaches zero at the same time as the total load becomes zero (Figure 9b). 

While these assumptions may lead to small errors in the estimated load taken by the FRP tube, 

such small errors are believed to have negligible effects on the obtained axial stress-strain 

curve of the confined concrete, due to the much smaller cross-sectional area of the FRP tube. 

 

It is evident from Figure 10 that the envelope curves of all the specimens subjected to cyclic 

axial compression are almost the same as the corresponding monotonic axial stress-strain 

curves. This observation is consistent with that from Lam et al.’s (2006) tests on 

FRP-confined NSC, where FRP wraps formed via a wet-layup process were used. Similar to 

the axial load-strain curves, Figure 10 also shows that all the monotonic stress-strain curves 

have an approximately bilinear shape with a second ascending branch, except for the 

specimens with HSC and a 4.0 mm GFRP tube (i.e. S84-4FW-M and S104-4FW-M). For 

these two specimens, there is a slight fluctuation in the stress-strain curve at an axial strain of 

around 0.006, which is associated with a sudden increase in the hoop strain (Figure 11). This 

phenomenon, as discussed above, is believed to be due to the brittleness of HSC and the use 

of a FRP tube which is not sufficiently stiff in the circumferential direction.  

 

Figure 10 also shows that the cyclic stress-strain curves of concrete in CFFTs possess the 

following key characteristics, which are the same as those of concrete confined with an FRP 

wrap (Lam and Teng 2009): (1) the loading history has a cumulative effect on both the plastic 



strain and stress deterioration; (2) the unloading path is generally nonlinear with a 

continuously decreasing slope while the reloading path is approximately linear.   

 

COMPARISON WITH EXISTING STRESS-STRAIN MODELS 

General 

 

It has been shown in Figure 10 that the envelope curves of specimens subjected to cyclic 

axial compression are almost the same as the axial stress-strain curves of the corresponding 

specimens subjected to monotonic compression. In this section, the experimental envelope 

stress-strain curves are compared with predictions from an accurate monotonic stress-strain 

model proposed by Teng et al. (2009). Teng et al.’s (2009) model is a refined version of a 

well-recognized model developed by the same research group (Lam and Teng 2003). The test 

database, on which Lam and Teng’s (2003) and Teng et al.’s (2009) models have been based, 

is however generally limited to normal strength concrete (with only one group of specimens 

having the maximum unconfined strength of 55.2 MPa) and concrete confined with an FRP 

wrap. The comparison presented in this section thus allows a quantitative assessment of the 

differences which may be caused by the use of HSC and/or a filament-wound tube in the 

monotonic behavior of FRP-confined concrete.   

 

The experimental results are also compared with a cyclic stress-strain model proposed by 

Lam and Teng (2009), which is again based on test results of concrete confined with an FRP 

wrap. Lam and Teng (2009) mentioned that their model is expected to be applicable to HSC 

in terms of the unloading/reloading paths, but the calibration of the model for HSC was based 

on limited test data from one single study (i.e. Rousakis 2001). The comparison presented in 

this section thus allows further examination of the applicability of this model to HSC and 



when HSC is confined by an FRP tube. It should be noted that in Lam and Teng (2009), Lam 

and Teng’s (2003) stress-strain model is used to predict the envelope stress-strain curve. In 

the present study, the comparison with Lam and Teng’s (2009) model is limited to the 

unloading/reloading paths. 

 

Comparison with Teng et al.’s (2009) Model 

Teng et al.’s (2009) model 

 

Teng et al.’s (2009) model consists of a parabolic first portion and a linear second portion. 

Compared with Lam and Teng’s (2003) model, the 2009 model includes more accurate 

expressions for the ultimate axial strain and the compressive strength. These new expressions 

allow the effects of confinement stiffness and the jacket strain capacity to be separately 

reflected and account for the effect of confinement stiffness explicitly instead of reflecting it 

through the confinement ratio. Readers may refer to Teng et al. (2009) for more details of the 

model. It should be noted that Teng et al. (2009) proposed two versions of the model, but 

both versions predict the same stress-strain curves for concrete without a descending branch 

in the stress-strain curve. Predictions of the two versions are thus the same for the specimens 

tested in the present study. 

 

Comparison 

 

Comparisons between the predictions of Teng et al.’s (2009) model and the test results are 

given in Figure 12. In making the predictions, the material properties summarized in Table 1 

were used and , 1
h rup  was adopted as the FRP hoop rupture strain. It is evident that the 

predictions agree very well with the experimental results except for the initial slope for some 



specimens. The difference in the initial slope is due to the use of strains calculated from the 

total axial shortenings (i.e. LVDT readings) in establishing the experimental curves. As 

explained earlier, the strains from LVDTs are generally larger than those at mid-height in the 

initial stage of loading. If the actual axial strains of concrete at mid-height are used, it can be 

expected that the predicted initial slopes will be in closer agreement with the experimental 

results.  

 

The above comparison suggests that there is no obvious difference between the stress-strain 

behavior of concrete confined with an FRP wrap and that in a CFFT. The comparison also 

suggests that Teng et al.’s (2009) model, although developed based on test data of normal 

strength concrete, can provide accurate predictions for FRP-confined HSC with sufficient 

confinement. Despite the overall good performance of Teng et al.’s (2009) model for HSC, it 

is also noted that this model fails to predict the slight stress drop in the transition zone 

between the two portions of the stress-strain curve for some specimens (e.g. Figures 12b and 

12c). Considering that the magnitude of this stress drop may become greater when the 

circumferential stiffness of the confining FRP wrap/tube becomes smaller (Cui and Sheikh 

2009; Ozbakkaloglu and Akin 2012), the applicability of Teng et al.’s (2009) model needs to 

be further examined for HSC confined by a weak FRP wrap/tube.  

 

Comparison with Lam and Teng’s (2009) Model 

Lam and Teng’s (2009) model 

 

Lam and Teng’s (2009) model provides explicit equations to describe the cyclic stress-strain 

history of FRP-confined concrete. In Lam and Teng’s (2009) model, the unloading curves, 

being the paths experienced by the concrete when its strain reduces, can be divided into 



envelope unloading paths (i.e. unloading paths starting from the envelope curve) and internal 

unloading paths (i.e. the previous reloading path does not reach the envelope curve). 

Envelope unloading paths depend only on the unloading stress and the unloading strain, while 

internal unloading paths depend also on the prior loading history. The reloading curves, being 

the paths experienced by the concrete when its strain increases, may or may not reach the 

envelope curve. When unloading/reloading cycles are repeated within the envelope curve, 

they are defined as internal cycles and are numbered so that the effects of previous internal 

cycles on subsequent cycles can be considered. 

 

In Lam and Teng’s (2009) model, empirical equations are also given for the key parameters 

determining unloading/reloading curves, including the stress deterioration rule and the plastic 

strain which is defined as the strain value at the intersection of an unloading path and the 

strain axis. The cumulative effect of the loading history is considered in these equations. 

Readers may refer to Lam and Teng (2009) for more details of the model. 

 

Comparison 

 

Predictions from Lam and Teng’s (2009) model are compared with the present test results in 

terms of the envelope unloading/reloading behavior in Figure 13. In making the predictions, 

the experimental envelope curves were used together with Lam and Teng’s (2009) model, so 

that any difference between the predictions and the experimental unloading/reloading cycles 

comes only from the cyclic stress-strain model.  

 

Figure 13 shows that predictions from Lam and Teng’s (2009) model generally deviate from 

the experimental results, and it is evident that such deviations become much more 



pronounced for concrete with a higher strength. Considering that the predictions for the S54 

series still appear to be reasonable, it may be concluded that Lam and Teng’s (2009) model is 

applicable to normal strength concrete filled FRP tubes, but not CFFTs with HSC. This is 

probably due to the fact that the development of Lam and Teng’s (2009) model relied heavily 

on the experimental results by Lam et al. (2006) which only covered a small range of 

concrete strengths (i.e. 38.9 MPa and 41.1 MPa). A recent experimental study by 

Ozbakkaloglu and Akin (2012), where concrete cylinders confined with an FRP wrap were 

tested under cyclic axial compression, also showed that the performance of Lam and Teng’s 

(2009) model for HSC is not as good as its performance for normal strength concrete. 

Apparently, revisions are needed before Lam and Teng’s (2009) model can accurately predict 

the envelope unloading/reloading curves of FRP-confined HSC. 

 

Predictions from Lam and Teng’s (2009) model are compared with the present test results in 

terms of the repeated unloading/reloading cycles in Figure 14. For a clearer comparison, each 

experimental cycle was plotted against the prediction individually. Only comparisons for the 

1
st
, 4

th
, 7

th
 and the last cycles are shown in Figure 14, as comparisons for other cycles are 

similar. In making the predictions, the envelope unloading strain ,
un env  and the envelope 

unloading stress ,
un env , as well as the experimental plastic strains of envelope cycles ,1

pl  

were used so that the comparisons in Figure 14 reflect only the accuracy of the model for 

predicting the cumulative effect of loading history. It is evident that Lam and Teng’s (2009) 

model generally provides reasonable predictions, but the performance of the model becomes 

slightly worse for specimens with a higher concrete strength.  

 

CONCLUSIONS 

 



This paper has presented an experimental study on the cyclic axial behavior of CFFTs, where 

the strength of concrete is a key variable. The test results have also been compared with a 

monotonic stress-strain model and a cyclic stress-strain model, both of which have been 

based on test databases which are limited to concrete confined with an FRP wrap and include 

only a small number of tests for HSC. The results and discussions allow the following 

conclusions to be drawn: 

 

(1) The rupture of fibres in a filament-wound FRP tube, starting from the outermost ply, is a 

progressive process which is different from the failure of concrete confined with an FRP 

wrap.  

(2) The cyclic axial stress-strain behavior of concrete in CFFTs is generally similar to that of 

concrete confined with an FRP wrap. 

(3) Teng et al.’s (2009) monotonic stress-strain model is capable of providing accurate 

predictions for HSC in CFFTs, given that the FRP tube has a sufficient circumferential 

stiffness.   

(4) Lam and Teng’s (2009) cyclic stress-strain model may be applicable to normal strength 

concrete in CFFTs, but not HSC in CFFTs.  
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Table 1: Details of Specimens 

 

Specimen 
Loading 

Type 

FRP tube thickness Concrete Properties 

frp
t  (mm) '

cof  (MPa) cE  (GPa) 
co  (%) 

S54-2FW-M Monotonic 
2.2 

Batch-1 

54.1 
27.8 0.251 

S54-2FW-C1,2 Cyclic 

S54-4FW-M Monotonic 
4.7 

S54-4FW-C1,2 Cyclic 

S84-4FW-M Monotonic 
4.7 

Batch-2 

84.6 
33.1 0.275 

S84-4FW-C Cyclic 

S84-9FW-M Monotonic 
9.5 

S84-9FW-C Cyclic 

S104-4FW-M Monotonic 
4.7 

Batch-3 

104.4 
36.5 0.311 

S104-4FW-C1,2 Cyclic 

S104-9FW-M Monotonic 
9.5 

S104-9FW-C Cyclic 

 

  

Table
Click here to download Table: Experiment_FCSCs_Cyclic_Table_Revised_Final.docx 

http://www.editorialmanager.com/jrncceng/download.aspx?id=119025&guid=ce832ed5-02c9-41d1-a1df-da7d3756bc81&scheme=1


 

Table 2: Mix proportions of concrete 
 

Specimen 

batch 

Water 

cement 

ratio 

Water Cement Fly ash 
Silica 

fume 

Super 

plasticizer* 

Coarse 

aggregate 
Sand 

(kg/m
3
) 

Batch-1 0.35 175 300 200 --- 9 829 796 

Batch-2 0.29 174 377 203 29 11 793 762 

Batch-3 0.23 155 442 170 68 16 819 712 

*The brand of the super plasticizer is "Grace HK", and the product model is "ADVA109". 

 

 

  



 

Table 3: Loading schemes for specimens under cyclic axial compression 
 

Specimen 
Unloading displacement (mm) found from LVDTs 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 

S54-2FW-C1 0.94 1.94 2.91 3.92 4.91 5.93 6.94 --- --- 

S54-2FW-C2 5.96(10) * --- --- --- --- --- --- --- --- 

S54-4FW-C1 1.09 2.01 4.09 6.11 8.13 10.11 12.09 14.12 16.18 

S54-4FW-C2 12.14(10)* --- --- --- --- --- --- --- --- 

S84-4FW-C 1.05 2.07 3.13 4.26 5.10 6.27(11) * --- --- --- 

S84-9FW-C 1.03 2.03 4.09 6.20 8.42 10.43(9) * --- --- --- 

S104-4FW -C1 1.03 1.97 2.95 4.11 5.13 6.10 7.10 8.22 9.49 

S104-4FW -C2 7.05(12) * --- --- --- --- --- --- --- --- 

S104-9FW-C 1.03 2.02 4.07 6.08 8.47(10) * --- --- --- --- 

*The number in the bracket is the number of repeated cycles imposed at that prescribed unloading displacement. 

 

  



 

Table 4: Key test results 

 

Specimen 
allF  

(kN) 

cF  

(kN) 

'

ccf  

(MPa) 

cu  

(%) 

'

cc

co

f

f
 cu

co




 
, 1h rup

  

(%) 

, 2h rup  

(%) 

S54-2FW-M 3312 3179 101.3 2.25 1.87 8.73 1.43 1.61 

S54-2FW-C1 2833 2700 86.0 1.76 1.59 6.83 1.08 1.12 

S54-2FW-C2 2917 2785 88.7 1.89 1.64 7.33 1.11 1.18 

S54-4FW-M 5734 5447 173.5 4.93 3.21 19.1 1.95 2.01 

S54-4FW-C1 5366 5078 161.7 4.42 2.99 17.2 1.68 1.82 

S54-4FW-C2 5294 5006 159.4 4.43 2.95 17.2 1.69 1.76 

S84-4FW-M 5189 4901 156.1 2.20 1.85 8.00 1.17 1.27 

S84-4FW-C 5069 4782 152.3 2.39 1.80 8.69 1.10 1.08 

S84-9FW-M 8011 7417 236.2 3.17 2.79 11.5 1.12 1.21 

S84-9FW-C 8012 7418 236.2 3.22 2.79 11.7 1.05 1.18 

S104-4FW-M1 6215 5927 188.8 2.64 1.81 8.48 1.19 1.21 

S104-4FW-C1 5927 5640 179.6 2.58 1.72 8.29 1.32 1.44 

S104-4FW-C2 5551 5263 167.6 2.38 1.61 7.64 1.09 1.13 

S104-9FW-M 8019 7424 236.4 2.61 2.26 8.38 0.94 0.91 

S104-9FW-C 8019 7424 236.4 2.61 2.26 8.38 0.93 0.91 
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