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ABSTRACT  

This paper focuses on axially loaded, large-scale rectangular reinforced concrete (RC) columns  

confined with fiber reinforced polymer (FRP) wrapping. Experimental tests are conducted to  

obtain the stress-strain response and ultimate load for three field size columns having different  

aspect ratios and/or corner radii. Effective transverse FRP failure strain and the effect of  

increasing confining action on the stress-strain behavior are examined. Existing strength models,  

the majority of which were developed for small-scale specimens, are applied to predict the  

structural response. Since some of them fail to adequately characterize the test data and others are  

complex and require significant calculation, a simple design-oriented model is developed. The  

new model is based on the confinement effectiveness coefficient, an aspect ratio coefficient, and  

a corner radius coefficient. It accurately predicts the axial ultimate strength of the large-scale  

columns at hand and, when applied to the small-scale columns studied by other investigators,  

produces reasonable results.    
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Keywords: FRP; rectangular column; large-scale; axial strength; axial and lateral strain;  

stress-strain response  

  

INTRODUCTION  

Confinement of concrete is an efficient technique to increase the load-carrying capacity and  

ductility of RC concrete columns. Under the lateral confining pressure provided by the  

confinement material, the concrete column is subjected to a tri-axial stress state, thereby  

increasing the ultimate stress and strain.  

Lateral confining action was initially accomplished by restraining the lateral expansion of  

concrete columns with closely spaced steel stirrups. Since then, techniques have been developed  

to upgrade and confine structures by means of FRP wrapping, independently, or in combination  

with steel stirrups.  

Investigators determined that the rectangular sections laterally confined using FRP were not  

as effective as their circular counterparts. This was attributed to the higher stress concentration  

found at the corners and the non-uniformity in confinement (Chaallal and Shahawy 2000).  

Rounding a column’s corners has now become commonplace because it helps to reduce the  

cutting edge effect on the confining sheets.  

One early model used to predict the axial strength of rectangular columns was developed by  

the International Conference of Building Officials (ICBO 1997). This model predicts the ultimate  

axial strength of confined columns (f
’
cc) and the ultimate axial strength of unconfined columns  

(f
’
co) for rectangular columns with aspect ratios (b/d) less than 1.5. Although other models have  

been developed to predict the axial strength behavior of rectangular columns, the effects of aspect  

ratio and section size on the ultimate load and stress-strain behavior have received limited  

attention. Moreover, the majority of specimens tested to verify these models are relatively small  
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with cross sectional dimensions (d, b): d = 94mm (3.7in.), 108mm (4.25in.), 150mm (5.91in.), 

152mm (5.98in.), and b = 108mm (4.25in.), 150mm (5.91in.), 152mm (5.98in.), 188mm (7.4in.), 

203mm (7.99in.) (Lam and Teng 2003). It is therefore uncertain whether the existing models 

developed to predict the axial strength characteristics of small-scale rectangular columns can be 

applied to accurately characterize the behavior of their large-scale counterparts. 

The current study focuses on two larger field-size columns 355x355mm (14x14in.) columns 

with different radii, and one 250x500mm (10x20in.) column having the same radii as one of the 

square samples confined with external FRP wrapping reinforcement. As far as the authors’ 

knowledge, these samples have the biggest size of all specimens tested by previous studies (Wang 

and Restrepo 2001). The number of samples was limited due to the difficulty in testing these 

larger structures, but the selections allow the effects of varying the aspect ratio (b/d), fiber 

thickness, and corner radius to be examined. The effect of increasing confining strength and the 

effective transverse FRP failure strain (defined as the transverse FRP strain at ultimate load εclu 

over the FRP failure strain εfum) were also investigated. 

 

RESEARCH SIGNIFICANCE 

This paper provides an evaluation of the previously published models that predict the 

ultimate axial strength and the entire stress-strain response of FRP-confined concrete and assess 

their reliability against the results obtained from large-scale columns. The effect of confinement 

on the ultimate failure strain of the FRP composite sheets is quantified. This paper should provide 

a better understanding of the behavior of fiber-wrapped or FRP confined rectangular concrete 

columns. The results presented in this paper should be used to predict the ultimate strength of 

actual-size columns in the current retrofitting projects in the field. 
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EXPERIMENTAL PROCEDURE  

Test Specimens and Material Properties  

This study concentrates on non-circular columns, and is a part of a previous study done by  

Matthys et al. (2005, 2006). The three large-scale RC rectangular columns described herein are  

referred to as K9, K10, and K11; columns K1 though K8 were circular with results reported  

elsewhere (Matthys et al. 2006), and column K1 was unwrapped. Schematic diagrams of the  

confined columns along with their wrapping configuration are shown in Figure. 1. Each column  

has a total length of 2m (6ft-7in.), a longitudinal steel reinforcement ratio of approximately 0.98%,  

and 8mm (0.31in.) diameter stirrups spaced every 140mm (5.51in.). An extra stirrup  

reinforcement is included at the columns’ ends. Columns K9 and K10 are square; K11 is  

rectangular. All three have approximately the same cross sectional area, Ag = 125,000mm
2
  

(193.75in
2
).  

The concrete used to construct the columns has a mean compressive strength at 28 days of  

38.2MPa (5.5ksi). The corners of the columns are rounded with radii of 30mm (1.18in.) (K9 and  

K11) and 15mm (0.59in.) (K10).  

CFRP (graphite) fabrics are used to confine the specimens. The ‘wet lay-up’ FRP type  

reinforcement is impregnated and cured in-situ. The CFRP consists of a SyncoTape system,  

comprised of quasi unidirectional fabric, TU600/25 (600g/m
2 

(0.1229lb/ft
2
) fibers in the main  

direction and 25g/m
2
 (0.0051lb/ft

2
) in perpendicular direction), and PC 5800 epoxy. The fabric  

has a width of 200mm (7.87in.) and a nominal thickness of 0.300mm (0.0118in.). The PC 5800 is  

a solvent-free 2-component epoxy primer consisting of a resin (Component A) and a hardener  

(Component B). The test parameters of the wrapped columns and the properties of the  

reinforcement are given in Tables 1 and 2, respectively.  
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Specimen Preparation and Test Procedure  

Test specimens and concrete quality control specimens were cast in the laboratory. The formwork  

was removed after 1 day. Concrete curing took place under plastic foil during the first 7 days and  

under laboratory conditions thereafter. Once the concrete columns were fully cured, they were  

wrapped with FRP, following the manufacturer’s recommendations outlined in the next  

paragraph.  

Before the FRP was applied, the concrete surface was cleaned. The epoxy was prepared by  

mixing 3 volumetric parts of component A (the resin) with 1 part of component B (the hardener).  

This compound was deposited liberally on both surfaces of contact by using a paintbrush. A  

uniform tensile force was applied to the fiber during application to ensure a tight wrap. Since the  

tensile force was applied by hands, this force was kept as uniform as possible. Air was forced out  

of the bonding layer using a customized roller. The FRP was applied a minimum of 7 and a  

maximum of 9 days prior to the time that the columns were tested.   

Each column was tested to failure in a displacement control mode; load was applied at a rate  

of 0.5mm/min. The axial and transverse deformations of the columns were measured both  

manually and electronically. Manual measurement relied on dial gauges having a gauge length of  

1m (3.28ft) and mechanical extensometers with gauge lengths of 200mm (7.87in.) or 50mm  

(1.97in.). Electronic measurements relied on strain gauges on the stirrups (with gauge lengths of  

200mm (7.87in.) or 80mm (3.15in.)) and strain gauges on the vertical rebars.  

  

TEST RESULTS  

Behavior at Ultimate Load  

Table 3 shows test results including the maximum load, Qmax, the maximum stress, Qmax/Ag, and  

the strength increase, Qmax/Qref, where Qref is the maximum load of unwrapped circular column  
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K1. Other quantities documented there include the axial ( c1 and cu) and transverse strains ( cl1  

and εclu) at maximum and ultimate load, respectively. The last column lists the effective FRP  

strain coefficient, (β=εclu/εfum), defined as the ratio of the transverse failure strain εclu to the  

ultimate FRP tensile strain εfum. In all cases, the strains are the mean values taken from the strain  

gauge measurements.  

Figure 2 shows how the FRP reinforcement failed on the confined concrete columns that had  

square cross sections but different radii. In both cases, the FRP reinforcement fractured just  

beside one, or more, of the rounded corners. At ultimate load, when the confinement action was  

no longer provided due to FRP fracture, the internal steel started to buckle and the crushed  

concrete fell down between the fractured FRP. A similar trend was observed on the third column  

that had the rectangular section.  

Stress-Strain Behavior and Effectiveness of Wrapping Configuration  

Figure 3 shows two sets of stress-strain curves generated while testing the columns. Both are  

based on the axial stress; one set corresponds to the axial strain, the other to the transverse strain.  

The square column with the larger corner radii (K9) has a strength increase of 1.12 (see Column 3,  

Table 3) compared to the strength increase of 1.09 in the square column with the smaller corner  

radii. Even though the rectangular column (K12) has the same corner radii as K9, it has the  

smallest strength increase of all (1.07).  

Figure 4 (ACI Committee 440 Report 2002) illustrates that the confining action occurs  

predominately at the rounded corners. Unlike a circular section, for which the concrete core is  

fully confined; for a square or rectangular section wrapped with FRP and with corners rounded  

with a radius, a parabolic arching action is assumed for the concrete core where full confinement  

is developed, which is indicating that the process of wrapping of rectangular sections becomes  
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more efficient when the corner radii are larger with corners situated closer together. Significantly  

higher strength increases, ranging from 1.70 to 1.80, have been observed by researchers while  

testing circular confined columns under axial loading (Matthys et al. 2005). Thus, it may be  

concluded that, for square or rectangular sections, the wrapping becomes more efficient as the  

cross section approaches a circular section (ACI Committee 440 Report 2002, Matthys et al. 2005  

and 2006).   

  

Behavior at Ultimate Strain and Effective FRP Strain Coefficient  

According to the experimental results obtained by Matthys et al. (2006), the effective FRP strain  

coefficient (the ratio of circumferential ultimate strain to ultimate strain of the FRP composite)  

for fully wrapped circular columns ranged from 0.55 to 0.62. The results listed in the last column 

of Table 3 reveal that this quantity is much smaller for rectangular columns.  

Because of the knife-effect, the smaller the radii are around the corner, the smaller the  

ultimate circumferential strain, and the smaller the effective FRP strain coefficient will get for the  

same composite material that has stable tensile stress. The substantial decrease in this coefficient  

for non-circular sections is attributed to the stress concentration and inhomogeneous strain that  

occur in the corners of the column. It has been noted that these effects can be reduced by  

rounding the corners; or, by locally strengthening them with strips of reinforcement prior to  

continuous wrapping (Campione et al. 2004). The researchers cited preferred the first approach,  

since it reduced the risk of fiber failure at the corners and increased the equivalent confinement  

pressure (Campione et al. 2006).  

Referring to the axes labeled on Figure 4, the maximum lateral (transverse) confinement  

pressures (flu and fly) are (Matthys 1999):  
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 cluconfx
clu

confxfumconfxlux kkkf '  (1) 

where fefxconfx Ekk  and /'

confxconfx kk  

and cluconfy
clu

confyfumconfyluy kkkf '  (2) 

where fefyconfy Ekk  and /'

confyconfy kk . 

As mentioned previously, the quantity, β, is referred to as the effective FRP strain coefficient 

(β=εclu/εfum), defined as the ratio of the transverse failure strain εclu to the ultimate FRP tensile 

strain εfum. 

The ratios ρfx and ρfy reflect the amount of transverse confining reinforcement in the x and y 

directions, respectively. These quantities can be expressed as 

 
sd

tb jf

fx

2
 (3) 

 
sb

tb jf

fy

2
 (4) 

where bf is the width of the FRP, tj is the FRP thickness (total thickness in case of multiple layers), 

and s is the center to center spacing of the FRP (s=bf for fully wrapped columns). b and d are 

longer and shorter sides of rectangular section, respectively. 

The confinement effectiveness confinement, ke, is given by 

 
c

e
e

A

A
k

)1(3

''
1

22

sggA

db
 (5) 

where Ag is the gross cross sectional area; and, ρsg is the reinforcement ratio of the longitudinal 

steel reinforcement with respect to the gross cross sectional area (ρsg=As/Ag). b’=b-2r, d’=d-2r, 

and r is corner radius.  
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Another parameter of interest is the confining stiffness defined as (Matthys et al. 2005):  

 clu

fj

conf
D

Et
k

2
 (6)  

where fumclu  (7)  

and 
)(

2

db

bd
D . (8)  

  

Stress-Strain Response Models  

Figures 5-7 show the stress-strain plots obtained for the large-scale columns K9, K10, and  

K11, respectively. The data are plotted along with behavior predicted by four models developed  

by Lam and Teng (2003), Chaallal et al. (2003), Youssef (2004), and Harajli et al. (2006). 

The three models developed by Lam and Teng, Youssef , and Harajli et al. all predicted the  

stress-strain behavior quite well. The stress-strain model developed by Chaallal et al assumes a  

tri-linear stress-strain curve and does not provide a very good representation of the experimental  

data especially at higher stress/strain levels.  

As far as strength is concerned, the model developed by Lam and Teng predicted the  

maximum stress point and the corresponding axial strain reasonably well whereas both Youssef’s  

model and the model developed by Harajli et al. predicted a lower maximum axial stress than  

obtained experimentally. Moreover, Youssef’s model did not predict the stress-strain curves after  

the transition point (when the axial strain exceeded 0.002mm/mm) and this model significantly  

overestimated the ultimate axial strain in the columns.  

Although the overall stress-strain behavior is important, the accurate prediction of strength is  

critical to the design process. As discussed next, many other models have been developed to  

pinpoint this parameter in rectangular columns confined with FRP. But these models were all  
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verified with small-scale specimens and, as the results of predicted-to-test ultimate load ratios  

shown in Table 4, may not provide accurate results when applied to the large-scale columns  

described herein.  

  

EXISTING CONFINING MODELS FOR RECTANGULAR SECTION COLUMNS   

ACI Committee 440 (ACI 440.2R 2002)  

This model predicts the compressive strength (f
’
cc) and ultimate axial strain (εcu) for  

FRP-confined rectangular concrete columns based on the arching action associated with  

rectangular FRP-confined concrete. A shape factor ke is introduced that corresponds to the  

confinement effectiveness coefficient defined in Eq. 5.  

The compressive strength of the confined concrete is predicted by an equation, originally  

proposed by Mander et al (1988) for steel-confined concrete, as:  

 254.1/2/94.71254.2 ''''''

colcolcocc ffffff  (9)  

where f
’
l is the effective lateral confining pressure:  

 lel fkf '  . (10)  

In the above equation, fl is an equivalent confining pressure given by:  

 
D

tE

D

t
f

jclufjj

l

22
 (11)  

where D is the equivalent diameter of rectangular cross section, defined by Eq. 8;  

fumclu 75.0004.0 . The ultimate axial strain εcu is:  

 
c

cocc
cu

E

ff )45(71.1 ''

 (12)  

where Ec is given by  

Journal of Composites for Construction. Submitted June 10, 2008; accepted June 11, 2009; 

        posted ahead of print June 22, 2009. doi:10.1061/(ASCE)CC.1943-5614.0000051

Copyright 2009 by the American Society of Civil Engineers



A
cc

ep
te

d 
M

an
us

cr
ip
t 

N
ot

 C
op

ye
di
te

d

 11

'4730 coc fE . (13)  

  

Mirmiran and Shahawy (1997)  

In this model, the shape factor ke is defined as:  

 
D

r
ke

2
 (14)  

where D is still the equivalent diameter of rectangular cross section, and defined as the length of  

the longest side of the rectangular section. The compressive strength is:  

 '

1

''

lcocc fkff  (15)  

where the effective lateral confining pressure, f
’
l (Eq. 10), is a function of the shape factor ke and  

the equivalent confining pressure, fl. The confinement effectiveness coefficient, k1, is defined as:  

 3.0

1 0.6 lfk  (16)  

  

Campione and Miraglia (2003)  

This model was developed exclusively for square columns with width, b, having rounded corners  

of radius, r. The nominal hoop rupture stress in the FRP jacket, σj, is:  

 
2

22
)

2

2
1( iifrpj k

b

r
kf  (17)  

where the ki is a stress reduction factor determined by regression analysis. The lateral confining  

pressure is defined in terms of the FRP thickness, tj, by:  

 
b

t
f

jj

l

2
. (18)  
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Chaallal et al. (2003)  

This model suggests a tri-linear stress-strain response consisting of three successive regions. The  

first region depicts linear elastic behavior similar to that associated with unconfined concrete.  

Very little concrete expansion occurs within this region. The second region is a transition zone  

that begins when micro-cracking first occurs due to the confining pressure created by the FRP  

wrapping. The third region reflects the point at which extensive cracking occurs in the concrete  

core. The slope of the curve that characterizes this region is highly dependent on the FRP  

stiffness.  

The ultimate compressive strength of the confined concrete is given by:  

 kff cocc

5'' 1012.4  (19)  

where the stiffness coefficient, k, is given in terms of the cross sectional area of the concrete; and,  

the elastic modulus of the fiber and concrete as:  

 
cc

ff

AE

AE
k  . (20)  

The term Af is the area of an inch-wide FRP sheet (Af=thickness x 1 in.). The ultimate axial strain  

of the confined concrete (εcc) is predicted by:  

 '23 /)1503(10 cococc fkk  (21)  

where εco is the ultimate axial strain of unconfined concrete (εco=0.002 for concrete strength of  

20.7MPa (3ksi) and 0.0024 for 41.4MPa (6ksi) concrete strength).  
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Youssef (2004) 

In this model, the stress-strain curve consists of two parts. The first portion is a polynomial curve 

extending from the initial conditions (fc,εc=0,0) to a transition point (ft, εt) loading. The second 

portion begins at the transition point and extends linearly to the ultimate compressive strength of 

the confined concrete. The curve in this region can be either ascending or descending depending 

on the amount of FRP applied to the concrete core and the cross sectional geometry. 

For stress-strain curves in which the second portion is ascending (E2>0) and determined by 

the coordinates (ft, εt and f
’
cc, εcc), 

 

1

21
1

1

n

t

c

c

ccc
E

E

n
Ef    02E  (22) 

where 0≤εc≤ εt and 

 
ttc

tc

fE

EE
n 2  . (23) 

In a case where the second portion is descending (E2<0), 

 

1

1
1

n

t

c
ccc

n
Ef  02E  (24) 

where 0≤εc≤ εt . 

The coordinates for the transition point are predicted by equations derived by regression 

analysis: 

 
4

5

'

' 1350.10.1
co

jtff

cot
f

E
ff  (25) 
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2

1

7

6

'
0775.0002.0

f

frp

co

jtff

t
E

f

f

E
 (26)  

where εjt is the strain in the FRP at the transition point (0.002) and ffrp is the tensile strength of the  

FRP sheet.  

The ultimate compressive strength (fcu) and corresponding strain (εcu) of the confined  

concrete are predicted by equations obtained from regression analysis:  

 
5

3

'

'
' 225.15.0

co

l
cocu

f

f
ff  (27)  

 
2

1

'

'

2625.0004325.0
f

frp

co

l
cu

E

f

f

f
 (28)  

where the effective lateral confining stress provided by the FRP wrapping at the ultimate  

condition (f
’
l) is given by  

 frpfel fkf
2

1'  . (29)  

  

Cusson and Paultre (1994)  

This model predicts the compressive strength of confined concrete as:  

 ])(1.21[ 7.0

'

'
''

co

l
cocc

f

f
ff  . (30)  

  

Razvi and Saatacioglu (1994)  

In this model, the compressive strength is given by the additive relation:  
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 83.0''' )(7.6 lcocc fff  . (31)  

  

Frangou et al. (1995)  

This model, used as a design tool in Eurocode 8, specifies the increase in the maximum  

compressive strength due to the applied lateral pressure as:  

 )25.1125.1(''

wcocc ff  1.0w  (32)  

 )5.21(''

wcocc ff  1.0w  (33)  

where α is a reduction factor, expressing the effectiveness of confinement, and ωw is the  

volumetric mechanical ratio.  

  

Wang and Restrepo (2001)  

This model holds for both square and rectangular columns. It is based on prior work performed  

by Mander et al. (1988) who developed a model to calculate the increase in concrete compressive  

strength due to confining pressure provided by transverse reinforcement in reinforced concrete  

columns.  

In the case of a rectangular section, the confining pressures in mutually orthogonal directions,  

flx and fly are different. The confined concrete strength is given by  

 '

21

'

cocc ff  (34)  

where   

 ]1/6.1)/84.71(8.1[25.1 ''
1 colxcolx ffff  (35)  

and ]1/8.0)/(6.0/4.1[ 2

2 lylxlxlylxly ffffff  . (36)  

  

Journal of Composites for Construction. Submitted June 10, 2008; accepted June 11, 2009; 

        posted ahead of print June 22, 2009. doi:10.1061/(ASCE)CC.1943-5614.0000051

Copyright 2009 by the American Society of Civil Engineers



A
cc

ep
te

d 
M

an
us

cr
ip
t 

N
ot

 C
op

ye
di
te

d

 16

Harajli et al. (2006)  

This model is an extension of the ACI 440 model discussed earlier. The compressive strength of  

confined concrete is given by:  

 
g

c
lslfcocc

A

A
ffkff 1

''
 . (37)  

  

The value of the confinement effectiveness coefficient, 5.0

'1 )
/

(25.1
c

gcclslf

f

AAff
k , where  

2≤k1≤7.   

  

Restrepo and Vino (1996)  

In this model, the axial compressive strength of the confined member is:  

 '

21

'

cocc ff  (38)  

with 254.1294.71254.2
''1

co

x

co

x

f

f

f

f
 (39)  

and 
'

2

2 ]8.04.1)(6.0[1
co

x

x

y

x

y

f

f

f

f

f

f
 (40)  

where flx and fly are the lateral confinement pressures induced by the FRP wrapping reinforcement  

on a square or rectangular cross-section in x and y directions, respectively.  

  

International Conference of Building Official (ICBO 1997)  

For rectangular sections with an aspect ratio (b/d) less than 1.5, the enhanced compressive  

strength is given by:  

 )cos51( 2''

fcocc ff  . (41)  
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Lam and Teng (2003)  

This design-oriented model is an extension of a stress-stain model initially developed for  

uniformly confined concrete columns having circular cross sections. For a rectangular section, the  

compressive strength and ultimate axial strain are predicted by the following equations:  

 lscocc fkkff 11

''  (42)  

 

45.0

'2275.1
co

clu

co

l
s

co

cu

f

f
kk  (43)  

where the terms ks1 and ks2 are the enhancement factors, and k1 and k2 are constant values found  

by means of regression analysis.  

  

Proposed Compressive Strength Model  

The performance of a rectangular FRP-confined concrete column depends on several parameters  

including the mechanical properties of the confining material and geometrical factors such as the  

aspect ratio (b/d) and corner radii.  

This study has shown that the overall increase in a column’s strength reduces with increasing  

aspect ratio. Square columns experience the highest strength increase while columns fabricated  

with progressively larger radii lead to higher strength gains. These trends have been observed by  

others (Matthys 1999; Lam and Teng 2003; Eugene 2005) and must be considered to accurately  

predict the compressive strength of a large-scale FRP-confined concrete column.  

To this end, a model is suggested based on the linear equation initially proposed by Richart  

et al. (1929) for uniformly confined concrete:  

 lcocc fkff 1

''  . (44)  
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In the new model, the confinement effectiveness coefficient, k1, is augmented as follows:  

 '

321

''

lcccocc fkkkff  . (45)  

The coefficients kc2 and kc3 are introduced to account for variations in corner radius and aspect  

ratio, respectively. The values of these coefficients are based on the power functions:  

 
D

r
kc

2
2

 (46)  

and  

 
b

d
kc3

   (47)  

where γ = 0.1, η = 0.13, and k1 = 4.0. The latter were determined by conducting a regression  

analysis on experimental data for sixty-two (62) non-circular columns reported herein and  

elsewhere (Matthys 1999; Lam and Teng 2003; Eugene 2005). For square columns, the value of  

kc3 is equal to 1. The lateral effective confining pressure, f
’
l, is given by Eq. 10 which includes the  

coefficient ke defined in Eq. 5.  

An expression for the maximum confining pressure provided by the FRP of an equivalent  

uniformly confined column (fl) can be derived by considering equilibrium of forces on a  

free-body diagram:  

 
D

tE
f

jjf

l

2
 . (48)  

The term εj represents the lateral strain in the FRP wrapping recorded at the point of rupture and  

equals the quantity, εclm, as defined previously. This strain is usually lower than the ultimate  

strain, εfum, recorded for a flat FRP coupon.  

In general, the effective FRP failure strain, εclu, depends on various parameters; the influence  

and interaction of which are difficult to quantify analytically. So an attempt was made to develop  
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an empirical relationship between the effective FRP strain coefficient, β and the confining  

stiffness, kconf. A plot of these parameters for all 62 columns found in the literature mentioned  

above is shown in Figure 8.   

A regression analysis was performed on this data in an attempt to obtain a simple design  

equation for the lateral confinement pressure. The analysis revealed that the optimum value of β  

was 0.43, making:  

fumj 43.0 . (49)  

The model can also be applied to an equivalent circular column having a diameter, D, given by  

Eq. 8.  

  

DISCUSSION  

Table 4 shows a comparison of the theoretical compressive strength values, predicted by all of the  

models cited above, with the experimental results taken for the large-scale columns studied  

herein. The new model predicts the axial ultimate stress of these field size columns very well.  

The new model was also applied to predict the compressive strength of the all of the  

specimens considered during its development. Figure 9 shows the results for fifty-nine  

small-scale columns and three field size columns; a good correlation is observed.  

  

CONCLUSIONS  

In this study, the existing ultimate axial strength and stress-strain models are reviewed; and,  

comparisons made with experimental data taken from large-scale rectangular columns. During  

this process, a simple design-oriented model was developed to predict the ultimate axial strength.  

The latter takes into account the confinement effectiveness coefficient, the aspect ratio, and  
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corner radii. Due to the cost and labor associated with making large size specimens, this study is  

based on a limited number of columns. More columns with number of FRP layers should be made  

to verify the results and the new developed FRP model.  

The following conclusions can be drawn for non-circular columns:  

1. Higher aspect ratios result in lower confinement strength.  

2. Confinement compressive strength increases as the corner radii increase.  

3. Models developed by Lam and Teng and Youssef are slightly underestimate the  

experimental curve except that Youssef’s model slightly overestimate the experimental  

curve in K11. Overall, all models seem to perform quite well in the pre-peak stage.  

However, the models produce great scatter in terms of predictions of the post-peak  

behavior. The models developed by Harajili et al. and Youssef have decreasing branches  

which is quite different from the experimental curve shape. It seems that these two models  

overly underestimate the test results at the ultimate state. Chaallal’s model is intended to  

over predict the experimental curve in the post-peak region. Also the three-line curve of  

Chaallal’s model does not quite fit the smooth experimental curve. Generally, Lam and  

Teng’s model perform the best among all evaluated models in terms of shape and critical  

values.  

The new model accurately predicts the ultimate axial strength for both small and large scale  

rectangular columns. However, additional testing on large-scale specimens must be done to better  

establish validity.  

  

Notation  

The following symbols are used in this paper:  
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cA  = total area of concrete; 

eA  = area of effectively confined concrete; 

fA  = area of an inch width FRP sheet; 

gA  = gross cross-sectional area; 

db,  = longer and shorter sides of rectangular section; 

'' ,db  = rddrbb 2,2 '' ; 

fb  = width of the FRP; 

D  = equivalent diameter of rectangular cross section; 

2E  = tangent of the second part of stress-strain curve in Youssef’s model; 

cE  = elastic modulus of unconfined concrete; 

fE  = elastic modulus of FRP fiber; 

lsE  = modulus of elasticity the transverse reinforcement; 

cf  = y coordinate for stress-strain curve; 

'

ccf  = maximum axial strength of confined columns; 

'

cof  = maximum axial strength of unconfined columns; 

cuf  = ultimate axial compressive strength; 

lf  = equivalent confining pressure; 

'

lf  = effective lateral confining pressure; 

lff  = lateral confining pressure exerted by the FRP; 

lsf  = lateral confining pressure exerted by the transverse steel; 
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luf  = maximum lateral confinement pressure; 

luylux ff ,  = maximum lateral confinement pressure on x and y direction; 

tf  = y coordinate of transition point; 

k  = stiffness coefficient; 

21,kk  = confinement effectiveness coefficient for stress and strain; 

2ck  = coefficient of effect of varying the corner radius; 

3ck  = coefficient of effect of aspect ratio; 

confk  = confining stiffness; 

confyconfx kk ,  = confining stiffness on x and y direction; 

'' , confyconfx kk  = effective confining stiffness on x and y direction; 

ek  = shape factor; 

ik  = stress reduction factor; 

1sk  = strength enhancement factors; 

2sk  = strain enhancement factors; 

k  = FRP efficiency factor; 

r  = corner radius; 

s  = center to center spacing of the FRP; 

jt  = FRP thickness (total thickness in case of multiple layers); 

 = reduction factor, expressing the effectiveness of confinement; 

1  = strength enhancement coefficients caused by lateral confinement pressure on x 

direction (Restrpo and Vino’s model); 
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2  = strength enhancement coefficients caused by ratio of lateral confinement 

pressure on x and y direction (Restrpo and Vino’s model); 

 = effective FRP strain coefficient; 

,  = coefficients based on regression analysis; 

c  = x coordinate of stress-strain curve; 

fum  = FRP failure strain; 

1c  = axial strain at maximum load; 

cu  = axial strain at failure load; 

1c  = circumferential strain at maximum load; 

clu  = circumferential strain at failure load; 

co  = ultimate axial strain of unconfined concrete columns; 

j  = nominal hoop rupture strain of an equivalent circular column; 

jt  = strain in the FRP at the transition point; 

o  = yield strain of ordinary transverse hoops or 0.002 if no internal confinement 

by ordinary transverse steel is available; 

t  = x coordinate of transition point; 

yt  = yield strain of ordinary transverse hoops; 

 = angle of inclination of the fibers to the longitudinal axis of the member; 

f  = quantities of transverse confining reinforcement; 

fyfx ,  = quantities of transverse confining reinforcement in the x and y direction; 
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sg  = reinforcement ratio of the longitudinal steel reinforcement with respect to the 

gross sectional area; 

j  = nominal hoop rupture stress in the FRP jacket; 

w  = volumetric mechanical ratio. 
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Table 1-Test parameters of wrapped columns  

Spec. Column shape 

[mm] 

in. 

Age at 

test 

days 

f’co 28days 

[N/mm
2
]
 

ksi 

FRP 

type 

No. of 

layers 

Width 

[mm] 

in. 

Wrapping 

K1 Ø400 

Ø15.8 

29 31.8 

(4.61) 

- - - - 

K9 355x355/r30 

14x14/r1.18 

29 39.1 

(5.67) 

TU600/25 2 200 

(7.87) 

Full 

K10 355x355/r15 

14x14/r0.59 

28 37.7 

(5.47) 

TU600/25 2 200 

(7.87) 

Full 

K11 250x500/r30 

9.8x19.7/r1.18 

29 37.7 

(5.47) 

TU600/25 2 200 

(7.87) 

Full 

   

  

  

Table 2-Mean tensile properties obtained by tensile testing  

Type Nominal 

Dimensions 

[mm] 

in. 

yf
(3)

 

[N/mm
2
] 

ksi 

tf (4)
 

[N/mm
2
] 

ksi 

Ultimate 

strain 

[%] 

E 

[N/mm
2
] 

ksi 

Rebar 

S500 

Ø8 

Ø0.31 

560 

81.2 

610 

88.5 

2.77 2x10
5
 

2.9x10
4
 

 Ø14 

Ø0.55 

560 

81.2 

630 

91.4 

9.97 2x10
5
 

2.9x10
4
 

TU600/25 

-PC5800 

200x0.30
(1) 

7.87x0.01 

- 780 

1.13x10
2
 

1.30 6x10
4(2) 

8.7x10
3
 

(1) Equivalent dry-fiber thickness  
(2) Tangent modulus at the origin  
(3)Yield strength  
(4)Tensile strength  
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Table 3-Test results of compression tests on columns  

Spec. 1 2 3 4 5 6 7 8 

maxQ  

[kN]kip 
maxQ / gA  

[N/mm
2
]ksi 

refQQ /  

[-] 
1c  

[mm/m] 
cu  

[mm/m] 

1c  

[mm/m] 
uc  

[mm/m] 
uc /

fum  

[-] 

K1 4.7x10
3
 37.3 1.00 2.8 3.1 1.7 1.8 - 

K9 

 

5.4x10
3
 

1.2x10
3
 

43.8 

6.35 

1.12

 

3.7
 

3.7
 

2.1
 

2.1
 

0.16
 

K10 

 

5.1x10
3
 

1.2x10
3
 

41.3 

5.98 

1.09 3.2 4.2 1.8 3.4 0.26 

K11 

 

5.0x10
3
 

1.1x10
3
 

40.6 

5.88 

1.07 1.8 1.9
(1)

 0.6 0.9
(1)

 0.07
(1)

 

(1) Failure of the FRP at the column end (strain measurements located in central zone)  

Qmax: maximum load;  

Qref: maximum load of unwrapped column;  
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Table 4-Comparison of difference ratio for
'

ccf between each model and experimental data 

'

ccf for Each Specimen 

'

ccf for Each Model 

K9 

43.8MPa 

6.35ksi 

K10 

41.3MPa 

5.98ksi 

K11 

40.6MPa 

5.88ksi 

ACI 440 

Harajli 

Lam and Teng 

Mirmiran 

Campione and Miraglia 

Challal 

Youssef 

Cusson and Paultre 

Razvi and Saatacioglu 

Richart 

ICBO 

Frangou 

Restrepo and Vino 

New proposed 

-4.0% 

40.9% 
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List of figures captions: 

Fig. 1 Column dimensions and wrapping configuration. 

Fig. 2 Confined concrete columns failed by fracture of the FRP after testing. 

Fig. 3 Stress-strain behavior of non-circular columns.  

Fig. 4 Effective confined region of rectangular column due to arching action. (ACI Committee 

440 Report 2002)  

Fig. 5 Evaluation of the stress-strain models against tested column specimen K9.  

Fig. 6 Evaluation of the stress-strain models against tested column specimen K10.  

Fig. 7 Evaluation of the stress-strain models against tested column specimen K11.  

Fig. 8 Effective FRP Failure Strain coefficient. 

Fig. 9 Performance of newly proposed strength model against 59 data points. 
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