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BEHAVIOR OF ROBUST ESTIMATORS IN THE REGRESSION
MODEL WITH DEPENDENT ERRORS

By Hira L. KouL
Michigan State University

This paper proves the asymptotic linearity in the regression parameter
of a class of linear rank statistics when errors in the regression model are
strictly stationary and strongly mixing. Besides this, several other weak
convergence results are proved which yield the asymptotic normality of L
and M estimators of the regression parameter under the above dependent
structure. All these results are useful in studying the effect of the above
dependence on the asymptotic behavior of R, M and L estimators vis-3-vis
the least squares estimator. An example of linear model with Gaussian
errors is given where it is shown that the asymptotic efficiency of certain
classes of R, M and L estimators relative to the least squared estimator is
greater than or equal to its value under the usual independent errors
model.

0. Introduction. Foreachn > 1,let{Z,, 1 < i < n}beasequenceof random
variables such that
i

(01) Zni = Axm‘ + €ni s 1 n

IA
IA

where {x,} are some real numbers, A is the parameter of interest and where, for
each n > 1, {¢,,, | <i < n}is asequence of strictly stationary strongly mixing
(s.s.s.m.) random variables with mixing number «, and has continuous joint
distribution with a continuous common marginal cdf F. (Refer to Phillip [1967,
Definition III] for the definition of strongly mixing triangular arrays.)

Here we prove the asymptotic linearity of S(A) (see (2.1) below) in A and
the asymptotic normality of R, M and L estimators of A under the model (0.1).
When errors are i.i.d. F, the asymptotic linearity of S(A) has been proved by
Koul (1969, 1970) and Jureckova (1969). Theorem 2.1 below therefore extends
these results to the above dependent model for bounded scores. A consequence
of this result is the asymptotic normality of R-estimators.

Section 1 contains some basic results about certain basic processes which in
turn are derived from the results in the appendix about weighted empirical
processes. The results of Section 1 automatically yield the asymptotic normality
of Huber’s (1973) M estimators and Bickel’s (1973) L estimator under the above
model. This is shown in Section 3. It is noted that all these three estimators
continue to have asymptotically normal distributions with the right means and
variances that reflect the dependent structure of errars. Thus one needs to com-
pare only the asymptotic variances in order to see how asymptotically robust
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the above estimators of A are when the assumption of independent errors is
weakened to the strongly mixing errors.

Recently in (1975b) Gastwirth and Rubin (G-R) have studied the effect of
A-mixing, a notion which they introduced in (1975a), on various specified
members of R, M and L estimators for location parameter. Our results here
could be considered as a generalization of their theoretical results to include
more estimators, to regression model and to strongly mixing dependence. Their
A-mixing class is smaller than strongly mixing class.

In Section 4 we consider an application of our results of Sections 2 and 3
to the model Z; = iA + ¢, {¢;} s.s.s.m. Gaussian, E(¢;) = 0, Var (¢;) = 1 and
Cov (¢, &,;) = p’ for all i, j. It is concluded that the asymptotic efficiency of
a class of R estimators (see Section 2 for the class of R-estimators) relative to
the least square estimator, when computed under the above model, is greater
than or equal to its value when computed under the model Z, = iA + ¢, {¢,} i.i.d.
MO, 1) provided 0 < p < 1. Similar conclusions hold for M and L estimators
of Section 3. These results are similar to the one given by G-R (1975b) for
the case of L estimators of location parameter.

1. Assumptions and preliminaries. To allow us some flexibility for appli-
cations we give ourselves triangular arrays of real constants {c,;,, 1 < i < n}and
{d.:» 1 £ i < n}and introduce the following basic processes. For 0 < ¢ < 1 and
|A] < b, 0 < b < oo fixed, define
(1) Vit ) = D.d[Z < H(0) + c;A) — Ls, b)),

Uu(t, ) = 2, d[l(Z; < F(1) + ¢, A) — F(F7(1) + Ac))]
where
(1.2) L(t, b)) = F(H,7'(¢) + Ac,);
Hy(y) =n7' 2, F(y + Ac), l<ign.
In this paper i in }}, and max; varies from 1 to n, y is a real number and the
subscript n in triangular arrays and other entities is not exhibited for the sake

of convenience.
About {c;} and {d;} we assume that

(1.3) limsup,_,,, n max;d? < oo, ti=Xdr=1
(1.4a) max, ¢, — 0
(1.4b) limsup, .. Y, ¢ <K< .

About {a,} we assume that for some 1 < g < 2
(1.5) limsup, .., 2350 (/ + 1)’a,7%(j) < o0 .
We begin by stating and proving

LEmMMA 1.1. Let{Z} bes.s.s.m. with mixing numbers {a,} and continuous margin-
alcdf F. Assume {d}, {c;} and {a,} satisfy (1.3), (1.4a) and (1.5) respectively. Then
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for each fixed |A| < b

(1.6) sup, [V (8, &) — Uyt, b)| = o,(1),
1.7 sup, [Uy(t, A) — Uy(t, 0)] = o,(1).
Hence ‘

(1.8) sup, |[Vu(t, &) — Vy(t, 0)| = 0,(1).

Proor. For the sake of convenience write U, V for U,, V,. Note that
U(t, A) = V(H(F~'(t)), A). But F continuous and |A| < b implies that

(1.9) SUp,,s [Hy(F7(1)) — 1| = sup, s |Hy(y) — F(y)l = o(1).

Hence (1.6) follows from (1.9) and (16) of the appendix. Consequently for
every ¢ > 0 and for A fixed

(1.10)  lim,_, lim sup, ., P(sup,_,; [U(t, A) — Us, A)| > ¢) = 0.
To prove (1.7) it is enough to prove that for each fixed A

(a) |U(t, A) — U(t, 0)] = o,(1) for each fixed 0 < r < | and
(b) for every e >0

lim,_,, lim sup,,_., P(sup,_,., |U(t, &) — U(t, 0) — U(s, A) + U(s,0)] > ¢) = 0.

But (b) follows from (1.10) when applied twice, once with fixed A and once
with A = 0. To prove (a) write

U(t’ A) - U(t’ 0) = Zi dtez
where

= [l(Z; = F7'(t) + Ac)) — KZ, < F7(1)) — F(F7(t) + Ac;) + 1],
1<i<n.
Now note that max, |§,| < 1 and

(1.11) E|&* < |F(F-1) + Ac)) — 1| .

Using the continuity of F and (1.4a) we have max, ||§,|[, — 0. Also note that
(1.5) implies (19) of Lemma A5 in the appendix. Thus Lemma AS is applicable
with the above {§,} and we have

Var (U(t, A) — U(t,0)) - 0
which entails (a) above. Hence (1.7) is proved. []

The following lemma is useful in studying the properties of Bickel’s L-esti-
mators and Huber’s M-estimators.

LeEMMA 1.2. In addition to the assumptions of Lemma 1.1 assume that F has a
bounded density f and (1.4b) is satisfied. Then

(1.12) SﬁpA_t |Ua(t, Ay — Uy(t, 0)| — O in probability as n— oo .
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Proor. Write J(t, A) = 3 d,/(Z; < F7(t) + Ac,) and J(t, A) = EJ(t, A) =
3, d, F(F~(t) + Ac;). Fix an e > 0. Choose a partition —b =4, < A, < -+
< A, = b of [—b, b] such that
(1.13) maxg e, (8; — 8, )||f |l < ¢/2K7
where K is as in (1.4). The proof of (1.12) will be divided into four cases;

() ¢=0,d,20,1<i<n,

() ¢,=20,4,L£0,1 i<,

(iii) ¢, £0,d, 20,1 5i<n,

(iv) ¢£0,d, 20,1 <i<n.

The details will be given only for case (i), the other cases being handled simi-
larly. Once the proof is given for the above cases, the proof of (1.12) for general
{d)} and {c;} will follow from these by decomposing U,(t, A) and U,(t, 0) into
the above four cases. We proceed to prove (1.12) under case (i).

Assumec; =2 0,d, 20,1 <i<n. Supposed, ;<A< A;forsomel <j=<

r. Then for such a A we have, writing U for U,,
U(t, A;y) — U, 0) + J(t, A;_) — J(t, A))
(1.14) < Ut, A) — U+, 0)
S UL A) —UE0) + Ji, A) — Jt,A;) 051,

Now since F has a bounded density f and max; |c,] — 0 we have, by the mean
value theorem, Cauchy-Schwarz inequality and the fact that 3} 4 = 1, that

(t, A) — J(t, Ay

(1.15) = (A — 4, )(Z eIl
< ¢2, 0<t<1; 1Zj<r; by(l.4b)and (1.13).

Hence from (1.14) and (1.15) we have
(1.16) sup, . |U(t, A) — U(t, 0)] < max,,, sup, |U(t, A;) — U(z, 0)| 4 ¢/2.
Therefore (1.12) follows in this case from (1.16) and (1.7). [
2. Linearity of S,(A). Define
(2.1) Si(8) = i dip(Ru/(n + 1))
where R,, is the rank of Z, — Ac, among {Z; — Ac;, 1 < j < n}, and ¢ is a non-

decreasing bounded and right continuous function on (0, 1).
Here we state and prove the following

THEOREM 2.1. For each n = 1, let {Z,,1 < i < n} be s.s.s.m. with mixing
number « satisfying (1.5). Also assume that the joint distribution of {Z,, 1 < i < n}
is continuous for each n = 1 with marginal F which has an absolutely continuous
density f such that

22) 0 < Kf)=§ (fIf)dF < 0.
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Furthermore let {c;} and {d;} satisfy (1.3), (1.4) and
(2.3) (¢ —e;)(d; —d;)) = 0

(or (¢ —c¢;)(dy —d;) =0), l<igj<sn.
Then

2.49) sup, [S;(A) — S;(0) + A 33, ¢, d;b(p, f)| = 0,(1) as n— oo,
where b(p, 1) = — 3 o(O[f'(F7'(1))/ f(F(1))] at.
Proor. Introduce, for0 << 1,
(2.5) S,(t, A) = 3, d,I(R;, < tn)
T (t, &) = Sy(t, B) — pu(t, B); uy(t, Ay = 3, d, L(t, b)

where from (1.3) it should be recalled that 3 d;> = 1. Note that S,(4) =
§ o(nt/(n + 1)) dS,(¢, A). We split the proof in several lemmas. For all the
following lemmas the assumptions of Theorem 2.1 are holding. Thus the
statements will include only the results and no assumptions. The proofs should
make clear as to which assumptions are being used.

LEMMA 2.1. For any fixed |A| < b we have
(2.6) sup, [Ty(t, 8) — Ty, 0)] = o0,(1) .
Proor. Writing T, V for T,, V,, etc. we have
(2.7)  T(t, 8) = V(H,(HN(1), B) + X d[L(H,(H,7(1), 8) — Li(t, B)]

where H,, is the empirical cumulative of {Z, — Ac,, 1 < i < n}.
Note that (2.2) implies f is bounded and that for any —oo < y, z < 40

(2-8) If») = f@F = 1y — KNSl -

Therefore we have that (2.2) implies f is uniformly continuous. This in turn
implies that

(2.9) max, sup, [,(t, A) — 1 as n— oo

where

Lt 8) = 2 Lt, B) = fUH0) + Ax)jn Do f(HH0) + Ax),  1Sis<n.

Then VO < K < o
(2.10) max, sUp;,_ysia—t ML(t, ) — Li(s, A) — (t — 5) - 1] = o(1)
as n—oo.
Writing V, for V, with d, = n~% and using (16) of the appendix with this
modification we conclude that the random variables {sup, |V(¢, A)|} are bounded

in probability. This follows from Theorems 15.5 and 15.3 (i) of Billingsley
(1968). Using this fact and (16) of the appendix one can conclude that

(2.11) sup, [M[H,(Hz4(t)) — 1] + Va(t, B)| = o,(1) .
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A proof of a statement like (2.11) is given in Koul-Staudte (1972) in con-
nection with the independent observations. It is easy to see that the same proof
carries over to prove (2.11). From here on one uses an argument similar to
one used in Koul-Staudte (1972) (which requires applying (2.9), (2.10), (2.11)
and the fact that sup, |V (¢, A)| = O0,(1) to (2.7)) to conclude that

(2.12) sup, [Ty(t, &) — K(t, b)| = o,(1) foreach [A| < b

where
Ky(t, Ay = Vy(t, A) — ntdV(t, A) .

Hence one has (2.6) holding in view of (1.3) and (1.8) once applied to V, and
once to V.. ]

LeEmMA 2.2. Assume (2.2) holds. Then (1.4) and (1.3) imply that for each fixed
Al < b
(2.13) sup, |uu(t, B) — pa(t, 0) — A(3, ¢, d))b(t, f)] — 0 as n— oo
with

b(t, f) = fAIF(1)), 0st<1.

Proor. Follows easily using uniform continuity of f(F-%). ]

Lemma 2.3.
(2.14) sup, , [Sy(t, A) — S,(t,0) — Ab,(t,f)| —,0 as n— oo
with

bu(t, ) = (i i) f(F7X(1)) -

ProorF. From the above Lemmas 2.1, 2.2 we have that for each fixed A,

(2.15) sup [S,(t, &) — S,(t, 0) — Ab(¢,f)| —,0 as n—oo.

Theorem 2.1 of Jureckova (1969) thows that (2.3) implies that S,(z, A) is a
monotone step function of A for each fixed ¢; this is just a functional statement -
and not a distributional statement. The remainder of the proof is just analo-
gous to that of Lemma 1.2.

Proor oF THEOREM 2.1. Writing
Su(B) = § (1) dSy(t,, B) ; t, = (n+ n7t,
and integrating by parts one has
Su(B) — S,(0) = —§ [Sult,s B) — S,(t,, 0)] dep(t) .
Also (2.2) implies that f(x) — 0 as x — +co and hence

VAF() dp(t) = —§ oL (F (D), f(F~(t))] at
= b(p, f) -
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Therefore
Si(A) — Sy0) + A X ¢;d;b(p, f)
= = [Sutas B) — Su(ta, 0) — A 35, dic, f(F(2,))] dp(?)
which completes the proof in view of (2.14) and the fact that sup, |, — | — 0.

Application to R-estimator. Now assume the model (0.1) holds. Consider the
R-estimator A, of A defined as the solution of the equation S,(A) = 0 where
S, (A) = X; (x, — X)o(R,,/(n + 1)) with R,, now as the rank of Z; — Ax;. We
have

COROLLARY 2.1. Assume
(2.17) lim sup, ., n* max;, |x;|/o, < oo where o, = Y, (x, — %)*.
Let {e,, 1 < i< n}and {Z,,1 < i< n} be as in model (0.1). Let F satisfy the
conditions of Theorem 2.1. Then

(2.18) oAy — A) — 8,8, (p, f)] »,0 as n—oo

where probability is computed under model (0.1) with A, being the true value of A
and where S,(A)) = 3; (x; — X)p(F(Z; — Aox,0,7)).

Proor. Since KR is translation invariant, assume without loss of generality
that Ay = 0. Then {Z,} of model (0.1) satisfies the conditions of Theorem 2.1.

Put in Theorem 2.1, d;, = (x; — X)/o, and ¢, = x,/o,. Now (2.17) obviously
implies that (1.3) and (1.4) are satisfied for these {d;} and {c,}. Hence Theorem
2.1 is applicable and one concludes in a straightforward fashion that

(2.19) 0By — 0,725,000 >,0 as n—oco.

Now use (2.12) above with A = 0, the above {d;} and the fact that ¢ is
bounded nondecreasing to conclude that

(2.20) a,78,(0) — $,(0)) »,0 as n—oo;
this is proven by writing

SA0) = § (1) dT,(1,, 0) st = (n+ D)7t o= (x, — H)o, .
On combining (2.20) with (2.21) one gets (2.18). []

THEOREM 2.2. Let {¢;, 1 < i < n} be s.s.s.m. with mixing numbers {«,} satisfy-
ing (1.5). Furthermore assume that for eachn > 1, {¢;, 1 < i < n} have continuous
joint distribution with the absolutely continuous marginal F having an absolutely con-
tinuous density f satisfying (2.2). Assume {x;} satisfy (2.17). Finally assume that

@2.21) - lim inf

fn—co

6, 7,2 >0

where
) = Var, (27 (x; — X)e(F(Z)))) -
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Then
(2.22) P, (B, — A)) > N0, b?)
with b = b(e, f).

Proor. First of all the parameter A may be assumed to be 0. By (2.21) and
Corollary 2.1 above we have
(2.23) lim, .., Fy(o,, A,) = lim, ., F(r,~5718,(0)) .
The proof of the theorem is now completed by applying Lemma A6 to the
random variables &,; = ¢(F(Z,)) with d,; = (x; — %), 1 < j < n. Observe that
(1.5), (2.17) and (2.21) above imply the conditions of the Lemma A6. []

3a. Huber’s M-estimator. Recall from Huber (1973) that the M-estimator A,
of A is defined as the solution of the equation

3.1 hA) = Y, x,(Z, — Ax;) =0
where
3.1 ¢ is aright continuous " bounded function on

(=00, +00)3 {22 d(y)dF(y) = 0.
Define, for —oco < y < + o0,
(3.2) Gy A) = T xK(Zi < y + Ax) .
Then A, is the solution of

§ $(y) dG(y, 4) = 0.
ProrosiTionN 3.1. Ler {Z;,1 < i < n}and {e;, 1 < i < n} be as in model (0.1)
and {a,} satisfy (1.5). Assume
3.3) lim sup,,_., 7 max x}*/z,’ < oo ; = Xt
Let ¢ be as in (3.1') and F satisfy (2.2). Then, if 0 is the true parameter
(3.4) 7, sup, [h(Az,™) — K(0) + Ac, d(g, f)] —,0.-
Hence, if A, is the true parameter,
(3.5) wlBy — &) — B(Ay, ) dP, f)e Y —, 0
d¢, f) = =2 ¢S () dy .

Moreover if

(3.6) liminf, ,z,7%2,2> 0

where now t,? = Var, (X, x,¢(Z,)), then

3.7) Zomlea By — A)) = NO, a9, f)) -
Proor. Let

W(y, 8) = 7,7[G(y, Az, ™) — u(y, Az, 7)]
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with

v(y,A) = X, x,F(y + x,A).
Put ¢, = x,/r, and d;, = x,/r, in the definition of U as given in (1.1). Then
(3.8) W(y, A) = U,(F(y), 4), —co L y<L oo, VIAIZS.

Note that (3.3) implies that (1.3) and (1.4) are satisfied for the above {c,} and
{d;}. Furthermore (2.2) implies F satisfies the assumptions of Lemma 1.5. Also
if 0 is the true parameter then model (0.1) implies that {Z,} are s.s.s.m. Hence
applying Lemma 1.2 one has, using uniform continuity of F,

(3.9) sup,, |W(y,d) — W(y,0)| —,0 as n—oo.

But one also has

(3-10)  sup,, 7,7 X x[F(y + Bxy7,7) — F(y) — Axo,7f(p)]l — 0
because of max; x?/z, — 0.
Combining (3.9) with (3.10) one has that if 0 is the true parameter, then

(3.11)  sup,, 7,7 G(y, Ar,”Y) — G(y, 0) — Ac, f(y)| —,0 as n—oco.

Now since ¢ is bounded and  use (3.11) to conclude (3.4) in the same
fashion as s (2.13) is used to conclude (2.4). Thus we conclude the proof of (3.4).

Again A, being translation invariant, one may assume A, = 0. Then (3.5)
follows from (3.4) in the same fashion as does (2.18) from (2.4).

Finally (3.7) follows from (3.5) and Lemma A6 applied to the random vari-
ables §,; = ¢(Z;), d,; = x;;1 < j < n. Boundedness of ¢ implies that {£, .} are
uniformly bounded. [}

REMARK. There are two ways Proposition 3.1 differs from some of the results
of Huber (1973). The first being that we have dependent data but the second
difference is that we allow ¢ which need not have derivatives. Of course this
is balanced by having F satisfy stronger conditions. If indeed ¢ did have a
derivative then

A, [y = =S¢ dy = S f)¢'(y) dy
=\ ¢'dF
which agrees with the constant given in Huber.

3b. Bickel’s L-estimator. In order to define these estimators we need to de-
compose x; = x;* — x,7, 1 < j < n and define

(3.12) G*(y,8) = X, x*H(Z, < y + Ax;);

G (y,8) = Tix~(Z, = y + Ax).
Also define

(3.13) Q*(y, 8) = (X x,H)7'GH(y, b);
Q°(3,8) = (X x7)'G(p,4), —o<y< Foo.
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Let A* be a preliminary estimator of A. Let A be the distribution function of
a finite signed measure on (0, 1) with A(1) = 1. Then Bickel (1973) defines L-
estimator of type 1 of A as
(3.14) B, = 0% 4 2, 7[(2,%,%) §3(Qu*) o, A%) dA(w)
+ (X5 x;7) §5(Q.7) o, A%) dA(w)]
[(3.14) above corresponds to (2.10) of [2] with ¢; = x,.]
Our problem here is to see under what sufficient conditions does A, continue

to have the asymptotic normality when model (0.1) above is true.
To begin with we introduce the processes

(3.15) Y, (1) = 7.7 X5 IIHZ; = F7(n) — 1/q(n) 5
9(1) = b(t, f) = fIFTND)) rsrsl—y
where 7 is fixed in 0, $).
Lemma 3.1. Let {Z,,1 £ i £ n} be s.s.s.m. with mixing numbers a, satisfying
(1.5). Assume F has continuous positive density f. Furthermore assume that
(3.16) K(t, 5) = lim

exists and that {x,} satisfy (3.3). ThenY,—= Yin D[y, 1 — r]; Y is an almost surely
continuous Gaussian process with mean function 0 and covariance function K given
by (3.16).

EY”(I)Y”(S) s r=st= 1 — 7

n—co

REeMARk. This is an analogue of Proposition 4.3 of [2].
Proor. Putting d, = |x,|/z, in Uy(t, 0) of Section 1 above yields
(3.17) Y.(t) = Uyt 0)/g(t) , r<i<l—ry.

Now because f is positive and continuous on R, we have that 1/g, is continuous,
bounded on [y, 1 — 7] and hence uniformly continuous.
Next observe that with the above {d;}, (3.3) < (1.3). Hence (1.10) is appli-
cable and one concludes that V¢ > 0
(3.18) lim,_, lim sup, ., P(SUP;;_,<; | V() — You(s)| > €) = 0.
Next apply Lemma A6 with
€= D0 [HZ, S F(ty) — 4] d;, = x;, I1<ign

to conclude, in view of (3.3) and (3.16), that
LN Sk > LAY (), 1 Sj<k) Vhk< o,

This together with (3.18) concludes the lemma. []

We next state and indicate the proof of an analogue of Theorem 2.1, part I
of [2].

THEOREM 3.2. Suppose {Z,,1 < i < n} are as in model (O.yl) above. Suppose
{x;} satisfy (3.3) and F has uniformly continuous positive bounded density f. Furth-
ermore let A* be translation invariant and t,A* be bounded in probability when 0 is
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the true parameter [= B of [2]]. Also assume A to be concentrating on [r,1 — 7]
for 0 < y < § fixed such that \§ F~'(t) dA(t) = 0. Finally let mixing numbers {a,}
satisfy (1.5). Then

lim, .. 2, (r.(8, — A))
(3.19) = lim, ., Z5(—§ Y (1) dA(r)) — £(—§ Y(1) dA(2))
= N, K(A, F))
where
(3.20) K(A, Fy = lim, §§177 K, (¢, 5) dA(¢) dA(s) = §§377 K(t, 5) dA(t) dA(s)
with K(t, s) defined by (3.16) above.

Proor. To begin with, without loss of generality, assume A, = 0 so that
{Zi1 < i < n} are s.s.s. m. Now under the above assumptions on F it may be
seen that (3.11) above is still valid. But observe that (3.11) above is the same
result as Lemma 4.1 of [2] after appropriate modifications. Also realize that
Lemma 4.1 of [2] is basic to Propositions 4.1 and 4.2 of Bickel (1973). In other
words once we have (3.11), the rest of the proof of the above theorem is similar
to that of Theorem 2.1 of Bickel (1973), except where he uses his Proposition
4.3, we use our Lemma 3.1 above. All one has to do is carry out the details
with {c;} of Bickel replaced by our {x,}. (We remark here that in (4.23) of [2]
2.; ¢; in the numerator of the right-hand side should be }] |¢,|.)

As far as interchange of limit and integral signs in (3.20) is concerned one
proceeds as follows. Let

(3.21) 9(Z;) =[IZ; < F'(t)) — 1].
Then, fory <s<t<1—7y,

(3.22) K, 9) = [9()g)]7[s(A — 1) + 22,7 2300 16X, EQ(Z:)9.(Z))]
= [9()g()][s(1 — 1) + 20nz,™* max; x;* - 31277 a,(7)]
which follows from Lemma Al applied with 4 = oo because our {g,(Z,)} are
bounded by 1. )
Now apply dominated convergence theorem to conclude (3.20) which is justi-
fied in view of the assumptions (3.3), (1.5) and that f is positive on [y, 1 — 7],

A[)’,l—r]:l.D

REMARK. Observe that all the above estimators continue to have asymp-
totically normal distributions with the right asymptotic means and variances
that reflect the dependence structure of the errors. Thus in order to compare
the effect of strongly mixing dependence on the asymptotic behavior of the
above estimators one need only compare their asymptotic variance. In the
following section we give one example of such a comparison.

4. An application. Consider the model

(4.1) Z, =iA+e,, 1<i<n
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where {¢;} is a s.s.s.m. Gaussian process with a mixing number « (note that
{e;} and & do not depend on n) satisfying

4.2) D5 (J F D M1(j) < o0 forsome 1< g<2

and where E(¢)) = 0, Var (¢;) = 1 for all i and Cov (g, ¢;,;) = o for all ¢, j.
Clearly this model satisfies the conditions of model (0.1) when x,;, = i in (0.1).
[Note that in {e;], i may vary over all negative as well as nonnegative integers.]

Observe that the constants x,, = i satisfy (3.3) and (2.17). Thus to apply the
results of Sections 2 and 3 all we need to do is to verify (2.21) for R-estimators,
(3.6) for M-estimators and (3.16) for L-estimators. We will actually derive
explicit formulas for these limits in the above model (4.1).

Notice that in all three cases covariances are involved and the underlying
functions ¢, ¢ and A are bounded and nondecreasing. We will be using the
following lemma repeatedly.

LemMA 4.1. Let G be a nondecreasing bounded function on (— oo, +co). Let
X, Y be any two random variables with a joint distribution on R X R. Then

(4.3)  Cov(G(X), G(Y))
= (I [PX < x Y < y) — P(X < )P(Y < y)] dG(x) dG(y) .

Proor. Write G(X) = { I(X < x) dG(x) + a constant, do the similar thing
with G(Y) and apply Fubini’s theorem to conclude the lemma. []

From G-R (1975a) we recall that (their Lemma 2.1)
4.4) PlZ,£x,Z;,, Sy — P(Z, £ x)P(Z;,, £ )
= 0()n(y) Zia B () He (e k)™, —oo <X,y < o0

where H, is the kth Hermite polynomial, n is the unit normal density and P, is
the probability measure given by the model (4.1) above when true A = 0.
Now consider the case of M-estimators. Here, because x, = i,

(4.5) T = 80, 4 2 15 BinH i+ 1) Cove (Y(Z)), H(Z;4))
=1, +2L,, say,
where 5,2 = 7,2 = 2,7, i%
Now recall that ¢ is nondecreasing and bounded and hence it is a priori

square integrable with respect to m(x)dx. Thus G-R conditions are satisfied
and we have, using (4.3) with G = ¢ and (4.4), that

(4.6) Cov, (9(Z,), P(Z;41)) = D=1 0¥k e,
where

| & = [§ Hya(In(x) dgp(T k=1
Observe tha’p

4.7 0/ = T afk! < oo .
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Let
(4.8) B, = L5 DG + o, nzlkz1.
Then (4.6) implies that
L, = X Bao(k)™.

Summing of various geometric series in (4.8) yields (with a = p*)
4.9) B, =a(l —a)y[n(n + 1)/2 — (1 + n(1 — a)){na(l — a)~*

—a(l —a”)(1 — a) ] + a(l — a)7'7,?, n=>1,k>1.
From (4.9) and(4.8) one has, because |p| < 1,
(4.10) S Bl = $.71Bul = lol(1 — lo)[1 + 2lel(1 — [o))7]
| + Jol(1 — lo) kzlnxz1.
From (4.9) we also get
(4.11) - lim,_, 5,7 B,, = p*(1 — p*)! foreach k>1.

Combining (4.5) through (4.11) we have proved that (using dominated con-
vergence theorem)

lim, .. 5,7, = 0,2 + 2 T, p*(1 — p5) ey (k1)

Now using expansion of (1 — p*)~! and interchanging the infinite sums one
gets

(4.12) lim,_, 5,7, = 0, + 2 25, Divo (k) ~'p*
S s

Next consider R-estimators. Here 0.’ = 7, (x, — %)' = n(n* — 1)/12 and

13)  rr=o + 23 B (i - 3 1))

x (i 4] = "F2) Covy ((FZ), 9(F(Z,) -

Carrying out calculations similar to the ones that led us up to (4.12) above one
gets (using Lemma 4.1 above with G = ¢ o F)
lim'n—wo o‘m_zfﬂ.g = o.(pz + 2 Z;o=1 Z‘;:=1 ck(k!)_l(pj)k
= Do Liba (k)T (again o) = T, (¢/k!))
where now
(4.14) ¢, = ¢(p) = [V H_(x)n(x) do(F(x)))?, (F =@ = NO, 1)cd) .

Similarly for the L-estimators one gets

(4.15) K(A, F) = 550 Sie (/K)o

where now
' ¢, = [§ Hy_y(x)n(x) dA(F(x)] k=>1.
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Now consider the case of

Least squares estimator. Here the least squares estimator is A= iz 3, i
Under the model (4.1) with the assumption (4.2) one can conclude (e.g., using
Phillips (1967) results) that

Fs.8 L) > N, %) (5,2 = T i)
where
a® = lim,_, 5,7 Var, (s,,ﬁ Ls)

~*Vary (271 iZ)) -

But since Cov,(Z,, Z,,,) = p’, we conclude using (4.9) and (4.11) with k =1
that

(4.16) =14 201 —p)t = T _. 0.

We now state a

n—ro0 sn

CorOLLARY. The asymptotic efficiency of any M estimator (within the class given
by (3.1")) relative to the least squares estimator under model (4.1) with 0 < p < 1
is greater than or equal to its value under the model

(4.17) Z, =ihte, e iid. NO,1), i>1.

Proor. The proof follows from (4.12) and Lemma 4.1 of G-R (1975a).

Since the form of the asymptotic variances of the above R and L estimators
is similar to that of the M-estimators, be it stated that the above corollary
remains valid for R and L estimators also.

An example of {¢;} satisfying the conditions of model (4.1) would be {e;}
generated by the first order autoregressive Gaussian process where G-R (1975a)
showed that a(j) < (3)(C, 0% + C,|p|’) for some constants C; and C,.

APPENDIX

Before stating the main proposition of this section we recall a lemma from
Deo (1973) and state it as

LemMma Al. Suppose foreachn = 1,{£,,;,1 < j < n}are strongly mixing random
variables with mixing number a,. Suppose X and Y are two random variables re-
spectively measurable with respect to o{§,;, -+, E} and o{pyims -+ -5 Enn)s 1 =,
m4k <n. Assume p,q and r are >p~ 4+ gt +rt=1, and ||X||, < oo,
[|Y||, < oo. Then foreach1 < m,k +m=<n
(1) |E(XY) — E(X)E(Y)| < 10 - o, 7(m)|| X |],|| Y], -

Consequently if ||X||, = B < oo then for ¢ > 1 andeach 1 < m, k + m < n
) : |E(XY) — E(X)E(Y)] < 10- &, 9(m)|[Y]], .

CoMMENT. Deo (1973) has a proof of this lemma when {¢,,} are s.s.s.m. The
same proof goes through in view of Lemma 2.1 of Phillip, page 157 (1967) for
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any strongly mixing sequences {£,;}. The stationarity assumption is not crucial
to Deo’s lemma.
Next we state and prove

ProrosiTiON Al. Foreachn = 1,let{Y,;, 1 < j < n} be a sequence of strongly
mixing tv’s in [0, 1], with mixing number a,, and the marginal cdf’s {G,;, 1 < j < n}

satisfying

3) Yt G =1, 0<r<1.
Moreover assume {d,} satisfy (1.3) and {a,} satisfy (1.5) above. Then for everyc > 0
4) Lim, o lim Sup, -, P(SUP, _yz, [Wult) — Wa(s)| = ¢) = 0

where Wy(t)y = 32, d [I(Y,, < t) — G, ()], 0 <t < 1. Recall from (1.3) that
2uidy = 1.

Proor. The proof consists of the following three lemmas. In each of these
lemmas appropriate conditions of the proposition are in action.

LEMMA A2, Fori < g<?2
%) E|Wy (1) — Wa(9)I* £ B,{3)r — s + 07|t — s[V7}
where
B, = 1040k 'k, (a, 9) 5 ku(a, q) = T35 (J + 1)a,71(j)
and k? = nmax, d>.

Proor. Without loss of generality assume 0 < s < r < 1 and write

(6) Wy(t) — Wy(s) = 2. d;§,
where
§i=dIs<Y, 1) —p,, p: = Gi(t) — G(s), 1<i<n.
One has
(7 E\Wy(t) — Wy(s)|* < 41 k'n™® 30 |E(§:€54 5650 5416 ivinr)]

where summation is over 1 < i,j,k, /< n, j+ k +1<n— i Nextobserve.
that |§;| < 1 and ||§,]|, < pY9 1 < i < n. After applying Lemma Al repeatedly
with B = 1 one gets

|E(Ez Si+i$i+j+k$i+j+k+l)|
(8) é 10 min {al—l/q(j)Pil/q, al_l/q(k)Pil/q

+ 10[a())a (Y P. Py ;40)"9> A Va(i)p;Va}
This yields that PiPi+ite) P

©)] LHS (7) < 10.4tk n=21, + 1}
where

=351 B @ ()p"; g = summation over k,[<j,
k4 lqjsn—i
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and

L =103, 3 X jase [a()a) I (piprsjin)
where the summation over k is from 1ton — i — j. One has
(10) L < 10X p o (Zis e () and

L < 3(Xapd) 255 (G 4 1)) -

Now observe that (3) above and moment inequality implies
(1) nt e pte < e — Ve
Also note that Y 2zia'~Ye(j) < B2 (j + 1)%a'V(j) = k,(@, q). Combining
this observation with (11), (10) and (9) and the fact that k,(a,q) = 1, one
concludes the proof of (5). [

Define for (i — 1)/n <t < ifn, 1 £i < n,

(12)  Z,(0) = Wali — D)n) + [t — (i = DIWlifr) — Wi — D)} -
LEMMA A3. Foranyl < ¢ <2

(13) E|Z(t) — Z,(s)|* < 144B,]t — s|V7, 05,1,

Proor. In the case where d; = 1/n* and a = 0 (independence) a proof of (13)
is given by Shorack with ¢ = 1. In view of the above inequality (5) it is clear
that the same proof goes through for general {d,} and therefore is not reproduced
here. []

LeMMmA A4.
(14) suPOStsl |Wd(t) - Zd(t)l —)P 0 M

Proor. For the moment assume d; = 0, 1 < j < n. Since Z, is a linear
interpolation of W,, we have sup, |Z,(t) — Wy(t)] £ % + # . Where
d Wy = MAaX; SUP_yy mgisim | Walt) — Wal(i — 1)/n|
an
H w2 = MAX; SUP_1ymsisim | Walt) — Wali[n)| .

Now d; > 0,1 < j < nand (3) imply that for (i — 1)/n =t < i/n
(1) [Wut) — Wi — Dn)| < [Wy(ifn) — Wil — Dfn)] + 2 max, |d] .
From (5) above we have for 1 < ¢ < 2

Tt [EW(ifn) — Wi — fn)]t < 4B, ri=e

and from (1.3) max, |d;| — 0 as n — co. Combining these observations with (14)
we observe that %7, = o,(1) as n — oo. Similarly one shows %7, = 0,(1) as
n— co. This way then (14) is proved for nonnegative {d,}. In general write
di=d+t —d~, 1 £j<n; Wy=r1,4Wys —7,-W,- and observe that because
v, =1, we have 7,4+ < 1, r,- < 1. One also has a similar decomposition for
Z, and using the above proof for each part {W,.+} and {W,-} one has the proof
of the lemma. [J
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ProoF oF PROPOSITION Al. From Lemma A3 above and assumptions (1.3)
and (1.5) it follows that {Z,} satisfy (4) above. (See Billingsley (1968), page
95.) In view of (14) {W,} must then also satisfy (4). This completes the proof
of Proposition Al. []

The following corollary is used in Section 2.

CoroLLARY Al. Let {Z, 1 < i < n} be s.s.s.m. with mixing numbers {a,} satis-
Sfying (1.5). Assume that F of model (0.1) is a continuous cdf and {d} satisfy (1.3).
Then for each fixed |A| < b
(16) lim,_, lim sup, ., P(SUp,;_y<s |Va(t, A) — Vi(5, 8)] > ) =0 Ve >0
where V; is defined by (1.1).

Proor. In Proposition Al above take Y, = H,(Z, — c,A), 1 <i < n. Then

{Z} s.s.s.m. implies {Y};} is strongly mixing. Also 0 < Y, <1 and G,(¥) =
Lt, A) and (3) is a priori satisfied. Hence (4) yields (16). {]

We also need the following

LeEMMA AS. Let {§,,, - -, §,,} be a sequence of s.m. tv’s with mixing numbers
a,. Assume (1.3) holds for {d,},

a7 max; £,/ =1, nx1
(18) max; ||§,;|l;— 0 as n— oo
and

(19) limsup,_., b, Y(j) < oo forsome 1< g< 0.
Then

(20) Var (3}, 4d,;5,)—0 as n— oo .
Proor. From Lemma Al we have, in view of (17), that
21) |2 i< did; Cov (6, €5)| < 10k, max; ||€,]], 2551 @ ™()) -
Again (17) implies that for ¢ > 1
22) [1€aslle = 11€aslls" » I=sj=sn

so that (18) implies
(23) max; ||§,;]l, — 0
Moreover in view of (1.3) we have
Var (3, d,;€;) < max; [|§,]l + 2|2:<; did; Cov (€, €5)| -

The first term on the right goes to zero by (18), whereas the convergence of the
second term to zero follows from (21), (22) and (23). []

We end this section by stating the following
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LEMMA A6. For each n = 1, let {§

a,.

29
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> »ip 1 < j < n} be s.m. with mixing number
Assume these rV’s to be uniformly bounded and

limsup, ., 3%, jPa,(j) < oo«

Further assume

(25)

and

(26)

max, d2,/t— 0

lim inf,__ 7’0, > 0

n—oo "N

where v} = Var (3,7, d,,§,,). Then

"g(fn_l Z;‘ dm;gm;) —> N(O, 1) .

Proor. This is essentially Theorem 3.1 of Mehra-Rao (1975). It is clear
from their proof that their theorem remains valid under the above slightly
general conditions. []

REMARK. It is important to note that our Proposition Al above is not con-
tained in Mehra-Rao (1975), Theorem 3.2 since in their case {Y,,} must have

the

same marginals. Being in the regression model we necessarily have rv’s

with different marginals. []
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