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Abstract A shock train inside a diverging duct is ana-

lyzed at different pressure levels and Mach numbers.

Nonreactive pressurized cold gas is used as fluid. The

structure and pressure recovery inside the shock train is

analyzed by means of wall pressure measurements,

Schlieren images and total pressure probes. During the

course of the experiments, the total pressure of the flow, the

back pressure level and the Mach number upstream of

the compression region have been varied. It is shown that

the Reynolds number has some small effect on the shock

position and length of the shock train. However, more

dominant is the effect of the confinement level and Mach

number. The results are compared with analytical and

empirical models from the literature. It was found that the

empirical pseudo-shock model from Billig and the analyt-

ical mass averaging model from Matsuo are suitable to

compute the pressure gradient along the shock train and

total pressure loss, respectively.

List of symbols

a Speed of sound (m/s)

c Empirical constant 0.114

D Diameter or equivalent diameter of the duct (m)

H Duct height (m)

Lp Length of the pseudo-shock (m)

Ma Mach number

Ma0 Mean Mach number of the core flow

Ma00 Mean Mach number of subsonic outer region
�Ma1 Mass averaged upstream Mach number

_m Mass flow (kg/s)

n Experimentally determined constant n = 2.2

p0 Total pressure in the settling chamber (bar)

p/p1 Ratio of local wall pressure to upstream static

pressure

Rex Reynolds number based on the distance from the

nozzle throat

Re* Reynolds number based on throat height

Reh Reynolds number based on boundary layer

momentum thickness

To Total temperature in the settling chamber (K)

u Flow velocity (m/s)

w* Crocco number at sonic conditions

w� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c� 1ð Þ= cþ 1ð Þ
p

w0 Crocco number in the isentropic core

w0 ¼ u
� ffiffiffiffiffiffiffiffiffiffiffiffi

2cpTo

p

w1,2 Crocco number upstream/downstream of pressure

rise w1;2 ¼ u1;2

�
ffiffiffiffiffiffiffiffiffiffiffiffi

2cpTo

p

x Distance downstream from the beginning of the

pressure rise (m)

Greek symbols

a1,2,3,4 Diverging half-angle of Laval nozzle (�)

d Boundary layer thickness (mm)

d* Boundary layer displacement thickness (mm)

h Boundary layer momentum thickness for

undisturbed flow (mm)

c Isentropic exponent

r Correction factor for the mass averaging pseudo-

shock model

n Correction factor for the mass averaging pseudo-

shock model

q Density (kg/m3)

l Mass flow ratio between boundary layer and core

flow
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Subscripts

1 Flow condition upstream of the shock system

2 Flow conditions downstream of the shock system

e Free stream or edge of boundary layer

1 Introduction

The recompression of supersonic gas flow is a very com-

mon flow phenomenon in modern aerodynamics and occurs

in a great number of applications for instance supersonic

ramjet or scramjet inlets, internal diffusers and supersonic

ejectors. Yet the actual mechanism of recompression can

be very different. All of them coincide with compression

shocks and shock boundary layer interaction.

Under certain conditions even one or more shocks can

appear downstream of the first shock. This series of shocks

is a so-called ‘shock train’. In contrast to other shock

systems, the supersonic flow is decelerated at first through

a shock system and followed by a mixing region as shown

in Fig. 1. Throughout the shock train region, the flow

outside the boundary layer remains supersonic, because

only at the center line region, the shocks are strong enough

to decelerate the flow below Ma = 1. Therefore, the flow

undergoes successive changes form supersonic to subsonic.

In the mixing region, the flow consists of a double tong like

supersonic flow near the center line and a subsonic outer

region. However, the supersonic flow does not exhibit any

compression shocks. In the mixing region, the transition

from supersonic to subsonic conditions is more gradual.

For the whole interaction region, Crocco (1958) have

coined the term ‘pseudo-shock’. To distinguish the actual

shock train from the mixing region is not simple. For

instance, wall pressure measurements do not exhibit sig-

nificant changes between the two regions. However, by

optical means e.g. a Schlieren system the shock train

becomes visible as well as the downstream mixing region

(see e.g. Fig. 11).

The occurrence of shock trains is a strong function of the

upstream Mach number and the boundary layer thickness.

Low Mach numbers Ma \ 1.3 and thin boundary layers

promote the formation of single normal shocks a so-called

normal shock stem. In case of higher Mach numbers, the

shock boundary layer interaction becomes stronger and

several shocks occur.

The influence of the boundary layer on the shape of the

shock train is also referred to as ‘flow confinement’ effect,

which characterizes the ratio of the undisturbed boundary

layer thickness d to the radius or half-height of the duct H.

Carroll et al. (1993) have demonstrated this effect in a

square duct with a flow Mach number of Ma = 1.6 and a

Reynolds number of Re = 3 9 106. As shown in Fig. 2,

the length of the shock train increases significantly as the

confinement level increases. The number of shocks is lar-

ger as is the distance between each successive shock, hence

the overall length of the shock train increases accordingly.

Also depicted in Fig. 2 is the fact that for a moderate

shock boundary layer interaction the Mach stem of the first

shock is clearly visible. This kind of shock system is often

referred to as k-shaped. As the confinement effect becomes

stronger, this Mach stem disappears and the first shock

consists out of two oblique shocks that intersect at the

center line of the channel. This type of shock train is

referred to as x-shaped.

The influence of the confinement level was also con-

firmed by Om et al. (1985a) who observed multiple shock

interaction and an increase in the overall length of inter-

action if the confinement was increased but the Reynolds

number and Mach number were kept constant.

Figure 3 is a good example for a flow case where the

confinement level is sufficiently small to avoid the occur-

rence of a shock train. Even at comparably high Mach

numbers e.g. Ma = 1.8 no shock system occurs but a

single normal shock with a lambda foot extends almost

across the entire height of the test section.

1.1 Pressure recovery across the pseudo-shock

In a classical pseudo-shock system inside a square duct the

pressure recovery across a shock train can be separated in

two sections. The pressure rises across the shock train itself

followed by the pressure recovery in the mixing region. In

the shock train region, the pressure rises rather rapidly and

more gradually in the mixing region. The pressure rise in

the mixing region is driven by mixing of the supersonic

layer with the surrounding subsonic flow. At some point

Shock train region Mixing region 

Pseudo-shock region 

Subsonic outer region 

Supersonic layer Ma < 1

Fig. 1 Sketch of a pseudo-

shock system
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downstream the pressure begins to decrease again because

pressure losses due to friction exceed the pressure gain due

to mixing. This point can also be used as reference point

for the length of the pseudo-shock (Crocco 1958).

Waltrup and Billig (1973) quote work from Neumann

and Lustwerk (1949) that the pressure rise inside a super-

sonic wind tunnel diffuser with multiple shocks is near to

that of a single normal shock if the boundary layer thick-

ness is reasonably small. This finding is very plausible

because in that case most parts of the flow field are com-

pressed by a strong normal shock very similarly to the flow

depicted in Fig. 3.

The overall pressure recovery along the shock train is

smaller compared to the pressure ratio across a single

normal shock wave at the same Mach number because each

shock causes a significant total pressure loss (Lukasiewicz

1953). By analyzing a great number of different

experiments, Matsuo et al. (1999) have shown that as the

shock train length the pressure recovery is not only a

function of the Mach number but must also be correlated

with the boundary layer thickness, wall friction and tur-

bulence mixing loss.

The presence of multiple shock waves cannot be

detected from the wall pressure distribution, because the

pressure peaks induced by each shock front are smeared

out due to the dissipative character of the boundary layer.

Only, flow field measurements of the static or total pressure

can resolve the existence of the multiple shock waves.

Several researches have carried out measurements of this

kind e.g. (Om et al. 1985b; Waltrup and Billig 1973; Cuffel

and Back 1976; Matsuo et al. 1990).

This article focuses on the flow characteristics of a

shock train, which is placed inside a square channel with

diverging upper and lower walls. Due to the very long and

slender nozzle shape, the confinement level is very high.

The influence of the total pressure on the shock position

and length will be discussed as well as the Mach number

effect. Analytical models for the length of the shock train

and pressure recovery are applied to the shock train at hand

and evaluated.

1.2 Experimental facility

The experiments presented in this paper have been carried

out in a shock wave reactor. This facility is specifically

designed to generate a stable shock train. Initially, the free

stream Mach number was conceived to Ma = 1.7 yet as

explained later in detail in Sect. 3 the actual free stream

Mach number upstream of the shock train was Ma = 1.5.

The distance between the nozzle throat and the compres-

sion region is 160 mm because the shock system is to be

Fig. 2 Shock train as function of confinement effect; Ma = 1.6,

d/H = 0.08, 0.14, 0.27, 0.32, 0.4, 0.49 (Carroll 1990)

Fig. 3 Spark shadowgraph of a single shock/boundary layer interac-

tion, Ma = 1.8 (Squire 1996)
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used to ignite combustible gas, which for that purpose is

injected at the nozzle throat (Grzona et al. 2007). However,

all experiments presented in this work have been carried

out with cold gas. A sketch of the test facility is shown in

Fig. 4. The reactor consists of two supersonic nozzles,

whereby the first, planar nozzle generates the supersonic

flow, therewith the shock train to be investigated and the

second, conical nozzle acts as a throttle to adapt the back

pressure. Upstream of the primary nozzle, a settling

chamber is placed to calm the incoming gas flow. A

Venturi nozzle is utilized to measure the volume flow rate

from which the mass flow can be calculated. Downstream

of the first nozzle, a subsonic diffuser and a square duct are

placed. The square duct acts as a settling chamber, which

feeds the second nozzle. In order to alternate the back

pressure inside the reactor, the throat area of the second

nozzle is adjustable by a movable central plug.

Inside the first nozzle both side walls are made from

highly transparent quartz glass to allow full optical access.

As test gas pressurized air is used that is supplied from a

standard compressor. Before the gas enters the settling

chamber the humidity is minimized by means of silica gel

filters. This is particularly important to avoid any con-

densation inside the measurements section because the

total gas temperature cannot be increased. The maximum

mass flow provided by the supply system is _m = 0.1 kg/s.

Due to the fixed cross section of the first nozzle throat

the total pressure in the reservoir chamber settles at

p0 = 4.8 bar when the facility operates at full power.

Despite the fact that a square duct tends to show three

dimensional effects for shock boundary layer interaction,

it was preferred over an axisymmetric configuration in

order to allow optical investigations of the measurement

section.

Downstream the nozzle throat the cross section increases

in order to obtain a Mach number of Ma = 1.25 followed

by a quasi parallel section with a diverging half-angle of

only a3 = 0.3�. This was deemed to account for the

boundary layer growth, thereby minimizing the pressure

gradient in flow direction. As shown in Fig. 5 along the

diverging Sect. 160 mm downstream of the nozzle throat

the upper and lower wall of the nozzle is tilted by a4 = 1.5�.

The wall angle in the compression region is increased in

order to stabilize the shock system i.e. the position of the

shock, owing to a larger pressure gradient. On the other

hand, it is limited to this value to avoid boundary layer

separation. The width of the nozzle is 15 mm and the height

of the throat 6 mm. A more detailed description of the

shock wave reactor can be found in (Grzona et al. 2007).

1.3 Measurement system

The flow inside the diverging section is investigated by

means of a boundary layer pressure probe, wall pressure

taps and Schlieren images. The boundary layer probe

consists of a single, in vertical and horizontal direction

movable tube with an outer diameter of 0.9 mm and a wall

thickness of 0.1 mm. The tip of the probe is flattened out in

order to increase its vertical resolution. The height of the

opening of the probe is 0.025 mm, the overall height of

the tip is 0.225 mm and its width amounts to 1.1 mm. At

the position of the probe tip (x = 170 mm), the cross

section of the tunnel is 8.2 9 15 mm, therefore the probe

covers between 1.75 and 4.75% of the tunnel cross section.

This tube is connected to a pressure scanner, which allows

to record up to 16 channels in parallel. Due to velocity

fluctuations in the boundary layer, about 100 samples have

been recorded at 5 Hz and later averaged. In case of

dry bed
settling 
chamber

Venturi 
nozzle

2nd settling 
chamber

1st

nozzle
subsonic 
diffusor

Toeppler Z-type
Schlieren setup

pressurised
air

2nd nozzle with 
variable throat
diameter

Fig. 4 Schematic sketch of the

test facility with Schlieren

system

diverging sectionα4 = 1.5°

quasi parallel sectionα2 = 1.5°

Ma = 1.25 Ma = 1.45

α1 = 10°

25 mm
160 mm

half height 4 mmα3 = 0.3°

   x = 0

throat half 
height 3mm

Fig. 5 Sketch of the nozzle contour
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measurements inside the supersonic boundary layer a pres-

sure scanner with a pressure range up to 17 bar is utilized.

Because of the large difference between the total and static

pressure, both values have been measured separately.

The same measurement setup is also used to measure the

wall pressure. For that purpose 0.5 mm pressure taps are

placed along the center line of the upper and lower nozzle

wall. After calibrating the system, the measurement

uncertainty was determined with 0.015%, which equals to

2.55 mbar at the upper limit of the measurement range.

As depicted in Fig. 4, a Toepler Z-type Schlieren system

is used to study the flow field inside the first nozzle. A flash

gun with 10 ls pulse width is used to illuminate the flow

field. All Schlieren images shown have been obtained with

a vertical knife edge. Expansion waves appear dark

whereas compression areas are depicted white.

2 Review of shock train models

Om et al. (1985a) brought forward a one dimensional

flow model regarding the formation of a series of normal

shocks at Mach 1.6 and a blockage or confinement level

of 2.27%, e.g. (area ratio of boundary displacement

thickness and geometric cross section). From their mea-

surements they concluded that due to the first shock the

displacement thickness of the boundary layer builds up

sufficiently to choke the flow. Therefore, the flow accel-

erates again until supersonic speed is reached, resulting in

a second normal shock. Though this model appears to be

reasonable, it can only be applied to so-called normal

shock trains. Only, when the confinement level is small,

and the Mach number is moderate normal shocks occur.

Otherwise, as explicated before a lambda or x-shape

shock system occurs.

Waltrup and Billig (1973) presented an empirical rela-

tionship (1) for the pressure distribution p(x) in the shock

train region. This equation was derived from experiments

in a constant area duct. In the course of these experiments,

the length of the duct has been varied, the Mach number

was in the range of Ma = 1.53–2.72, the total pressure

hence the Reynolds number and back pressure have also

been varied. In a first step the pressure ratio across the

shock train was plotted over the length of the shock train.

For a constant pressure ratio and Mach number Ma1, the

length of the interaction increases directly with the

boundary layer momentum thickness h1. The reverse trend

holds true for an increased Reynolds number Reh, because

the oncoming boundary layer is thinner. Also, the results of

Waltrup and Billig show that for a fixed shock train length

the pressure ratio increases in accordance with the Mach

number. Waltrup and Billig suggest that this effect can be

attributed to flow separation at the onset of the compression

region, which causes stronger shocks and therefore higher

pressure gradients.

x Ma2
1 � 1

� �

Re
1=4

h

D1=2h1=2
1

¼ 50
p

p1

� 1

� �

þ 170
p

p1

� 1

� �2

ð1Þ

The empirical Eq. 1 was found to agree well with results

obtained by Bement et al. (1990), Nill and Mattick (1996)

and Cuffel and Back (1976).

Initially, the above equation was derived from experi-

ments with circular ducts; therefore Billig (1992) has

adapted the empirical model also for square ducts given in

Eq. 2.

x Ma2
1 � 1

� �

Re
1=5

h

H1=2h1=2
1

¼ 50
p

p1

� 1

� �

þ 170
p

p1

� 1

� �2

ð2Þ

Crocco (1958) was the first author to suggest a model

that analytically describes the recompression by a shock

train. He assumed that the overall pressure ratio across the

shock train is equal to that of a normal shock. However, the

dissipative phenomenon of the shock train was considered

to reside not in the shocks but in the turbulent dissipation

region near the wall while neglecting wall friction. Starting

from the initial cross section, where the flow is still

undisturbed and supersonic the dissipative region spreads

through the isentropic core region. Neglecting any

shocks, this model is often termed shock-less model.

Unfortunately, the model does not provide any conclusions

about the length of the shock train. The pressure along the

shock train for the dissipative as well as the core region is

considered the same and determined by the following

equation, which is only a different representation of the

isentropic equation.

p

p1

¼ 1� w2

1� w2
1

� �c= c�1ð Þ
ð3Þ

Equation 3 in combination with the conservation equations

of mass, energy and momentum can be used to calculate the

flow properties across the shock system. However, the

computed static pressure rise and total pressure loss across

the shock train are equal to those derived from the normal

shock equations. This very much overestimates the pressure

level observed in the experiments.

Because Croccos shock-less model exhibits some

shortcomings in predicting the pressure ratio across the

pseudo-shock and also does not yield any pressure distri-

bution along the shock train, a diffusion model has been

developed by Ikui et al. (1974). This model takes into

account that the core region of the flow is not isentropic.

Furthermore, the length of the shock train is defined by the

distance where the velocity in the central core region

becomes equal to the velocity in the outer dissipative

region. These assumptions allow expressing the length of
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the shock train as a function of the Crocco number at sonic

conditions up- and downstream of the shock train in rela-

tion to the critical Crocco number in the nozzle throat and

the diameter of the duct (see Eq. 4),

Lp

D
¼ 2

c
sinh�1 w1 � w2

2w�

� 	

ð4Þ

with c being an empirical constant of 0.114. Ikui et al.

(1974) evaluated this equation against an equation based on

experimental data (NAVWEPS 1959), which is given in

Eq. 5. Both equations perform similarly.

Lp

D
¼ 18:75 1� 1

Ma1

� �

ð5Þ

The static pressure within the pseudo-shock can be

computed based on an empirical diffusion equation for

the flow velocity in the core flow and the conservation laws

of mass, momentum and energy, which leads to Eq. 6.

p� p1

p2 � p1

¼
w2

1 w2
1 � 2w�2

� �

þ w2
1w�2e�c x=Dð Þ
 �

1� e�c x=Dð Þ� �

w2
1 � w�2

� �2�w2
1 w2

1 � w�2
� �

e�c x=Dð Þ 1� e�c x=Dð Þð Þ
ð6Þ

Based on their earlier work Ikui et al. (1981) have also

developed a modified diffusion model, which considers the

upstream turbulent boundary layer and associated friction

losses. For that model the equation for the length of the

shock train had to be reviewed. This new Eq. 7 has been

obtained from experimental data,

Lp

D
¼ 3700ðMa 01 � 1Þ3:8l 1 ð7Þ

whereby Ma 01 is the mean upstream Mach number and l1

the mass flow ratio of the upstream boundary layer and

core flow, respectively. The pressure distribution along the

pseudo-shock is described by Eq. 8, where the double

primed Mach number is the mean Mach number of the

outer subsonic flow region.

p

p1

¼ 1� lð Þ
Ma

0 1þ c� 1

2
Ma

02

� ��1=2

þ l
Ma

00 1þ c� 1

2
Ma

002

� ��1=2
" #,

n

ð8Þ

with

n ¼ 1� l1ð Þ
Ma

0
1

1þ c� 1

2
Ma

02
1

� ��1=2

þ l1

Ma
00
1

1þ c� 1

2
Ma

002
1

� ��1=2

Compared to the aforementioned models, the mass

averaging pseudo-shock model proposed by Matsuo et al.

(1999) is more complex and rather cumbersome to apply.

The model applies to pseudo-shocks in a constant area duct

with a fully turbulent boundary layer but neglects both

friction losses and heat and mass transfer across the wall. In

order to account for the incoming boundary layer profile,

upstream flow properties are mass averaged of the cross

section height. The equations of mass, momentum, energy

conservation and the isentropic relation are applied to a

control volume, which contains the pseudo-shock. By

means of this model the flow conditions downstream of the

pseudo-shock can be derived solely from the upstream

mass averaged flow values but it is not possible to

determine the flow characteristics inside the pseudo-

shock. The static and total pressure ratios are given by

Eqs. 9 and 10, respectively.

p2

p1

¼ 1þ c n1=r1ð Þ �Ma2
1

1þ c Ma2
2

ð9Þ

p02

p01e
¼ 2þ c� 1ð ÞMa 2

2

2þ c� 1ð ÞMa2
1e

� 


p2

p1

ð10Þ

with

�Ma1 ¼
�u1

�a1

�u1 �
R

q1 u3
1dA

R

q1 u1 dA

� �1=2

�a1 �
R

a2
1q1 u1dA

R

q1 u1 dA

� �1=2

r1 �
�q1 �u1

R

q1 u1 dA
and n1 �

q1 u2
1

�u
R

q1 u1 dA

These equations are applicable to flows in cylindrical

ducts and rectangular ducts with semi-infinite span. In

order to analyze the current flow problem with this model,

the hydraulic diameter of the nozzle has been used,

because the actual geometry is better approximated by a

circular shape then a rectangular duct with semi-infinite

span. A comprehensive presentation of the mass

averaging pseudo-shock model can be found in Matsuo

and Miyazato (1999).

The models cited here are not intended to be a com-

prehensive overview of all shock train models. Only, the

most cited and applied ones are reviewed.

3 Results

In Fig. 6, theoretical and measured wall pressure plots of

the primary nozzle are shown. The first plot shows the

wall pressure as measured including the pressure rise

induced by the shock train. The second plot has been

added in order to illustrate the pressure rise that would

occur if the supersonic flow is compressed not by a shock

train but a single normal shock downstream of which the

flow decelerates further due to the increasing area ratio.

The Mach number of this single normal shock is deter-

mined with experimental values. Thirdly, the theoretical
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wall pressure is shown, which is computed from the

geometrical nozzle area ratio and therefore does not take

into account any boundary layer effects. Also, in this

case, it is assumed that the flow is compressed by a single

normal shock.

The pressure rise across the normal shock is computed

with the local ideal free stream Mach number and the

normal shock relation. In all cases downstream of the

compression region the pressure continues to rise that is

because the nozzle walls diverge. Therefore, the nozzle

acts like a subsonic diffusor. Comparing the three pressure

distributions in Fig. 6, it becomes obvious that due to

viscous effects in the mixing region but mostly because of

the structure of the shock train i.e. a series of nearly normal

shocks, the total pressure loss is considerably higher than

for a single normal shock.

The deviance between the ideal 1d, inviscid pressure

distribution, and the actual measurements is illustrated

more clearly in Fig. 7. Three Mach number plots are

depicted for the undisturbed supersonic flow upstream of

the shock system. The experimental Mach number has been

deduced from the static wall pressure measurements and

the total pressure in the settling chamber. By comparison,

the dashed line shows the Mach number distribution based

on the geometric area ratio of the nozzle. The deviation is

quite significant. Obviously, the growing boundary layer

reduces the effective area ratio; therefore the gas flow does

not expand that strongly.

In order to resolve the shortcoming of the quasi 1d-

model, the boundary layer thickness 170 mm downstream

of the nozzle throat was measured with the total pressure

probe described previously. The velocity profiles deduced

from the pressure profiles measured in the horizontal and

vertical plane of the channel are shown in Fig. 8. Because

the probe represents a blunt body in a supersonic flow a

normal shock establishes in front. In this case the local,

upstream Mach number needs to be determined iteratively

by the Pitot-Rayleigh equation for normal shocks. For

this, the density profile across the boundary layer is

approximated by the assumption of a constant total tem-

perature, which is measured in the settling chamber

upstream of the first nozzle. In flow direction, the total

temperature is considered constant because the gas is

nonreactive, and the heat flow across the nozzle wall due

to the temperature gradient is rather small. The total

temperature of the flow and wall temperature are

approximately at ambient temperature. Because of the

negligible heat transfer across the wall, the total temper-

ature change across the boundary layer is also negligible

(Shapiro 1954).

From the velocity profile, the displacement thickness

of the boundary layer has been determined with

d1
*(x = 170 mm) = 0.27 mm in the vertical plane and

d2
*(x = 170 mm) = 0.44 mm in the horizontal plane.

Assuming a turbulent boundary layer the boundary layer

displacement thickness is correlated with the distance

between the nozzle throat and the measuring point.

According to common boundary layer theory, the growth

of the displacement thickness of a turbulent boundary layer

correlates with the length of the wetted surface to the

power of 0.8 (Schlichting 1997). Hence the displacement

thickness of the undisturbed boundary layer along the

channel walls is approximated by

Fig. 6 Comparison between measurement and theoretical values,

p01 = 4.8 bar, T0 = 293 K

Fig. 7 Mach number plot along the first nozzle
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d�1 ¼ 0:27 mm
x

170 mm

� 	0:8

upper wall ð11Þ

d�2 ¼ 0:44 mm
x

170 mm

� 	0:8

side wall ð12Þ

Similarly, the momentum displacement thickness of the

upstream boundary layer have been approximated by

h1 ¼ 0:24 mm
x

170 mm

� 	0:8
upper wall ð13Þ

h2 ¼ 0:38 mm
x

170 mm

� 	0:8

side wall ð14Þ

As depicted in Fig. 7 if the displacement thickness is

taken into account to determine the effective area ratio, the

computed and measured Mach numbers agree very well,

even though Eqs. 11 and 12 are strictly valid only for

boundary layers over a flat plate.

The good agreement indicates that the weak pressure

gradient along the supersonic part of the nozzle is not

sufficiently strong to have a distinct effect on the boundary

layer growth. Figures 9a, b show the computed and mea-

sured wall pressure contours in the shock train. Of the four

different models applied the empirical model from Billig

(1992) for square ducts agrees best with the measured

values for the first part of the shock train. The model is

applied twice, firstly by using the boundary layer

momentum thickness of the upper wall and secondly by

using the boundary layer momentum thickness on the side

wall. As shown in Fig. 9a, the pressure plot that takes into

account the upper wall boundary layer coincides very well

with the measured wall pressure up to 210 mm. The

authors believe that this observation can be explained by

the fact that up to this distinct position along the nozzle

axis the height of the channel is only about half its width.

Therefore, the boundary layer on the upper wall has a

stronger effect on the pressure distribution than the side

wall boundary layers.

The results of the diffusion and modified diffusion

model are summarized in Fig. 9b. However, these models

significantly overpredict the pressure gradient. Interest-

ingly, if the conditions in the downstream settling chamber

are chosen as reference values for an isentropic flow, the

thus computed pressure only changes due to the local area

ratio and follows the experimental wall pressure fairly well

from x = 190 mm. This plot is termed isentropic com-

pression in Fig. 9a, b. The remaining deviation can be

attributed to viscous effects and shock losses.

Fig. 8 Horizontal and vertical boundary layer profile

Fig. 9 Measured and computed pressure rise along the shock train,

Ma = 1.5, Rex = 12.9 9 106, x = 170 mm
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The shock-less model and the mass averaging model are

not capable to resolve the pressure distribution along

the shock train but the pressure ratio across the entire

pseudo-shock region. Therefore, in Table 1 results of these

two shock models and of the diffusion models concerning

the total pressure ratio across the shock train are summa-

rized for the flow conditions stated in Fig. 9.

The mass averaging model and the diffusion model

perform best, predicting the total pressure downstream of

the shock train very accurately. The shock-less model on

the other hand significantly overestimates the pressure

increase. The bad performance of this model has also been

observed by others (Ikui et al. 1980; NAVWEPS 1959).

Since the mass averaging model is capable to compute

the total pressure ratio across a shock train and the

empirical model from Billig performs best in predicting the

pressure rise along the shock train, those models appear to

be suitable to compute a shock train only from the

upstream flow parameter.

Figure 10 shows experimental results for different total

pressures values. The cross section areas of the first and

second nozzle are unchanged in all three cases.

As the total pressure is reduced the throat Reynolds

numbers drops and the boundary layer becomes thicker,

which leads to an increased confinement level hence lesser

expansion and a smaller free stream Mach number.

Because of the limited variation of the Reynolds number

the wall pressure measurements do not indicate a signifi-

cant relocation of the onset of the shock train. On the

Schlieren images in Fig. 11, it can be observed that the

location of the compression region as well as the visible

length of the shock train does change. Over the range of the

pressure variation, the shock train shifts about 8 mm closer

toward the nozzle throat. Because of the current geometry

of the nozzle, the free stream Mach number cannot be kept

constant but changes with the boundary layer thickness and

the associated axial position of the first shock. Therefore, in

this case, it is not possible to make a clear distinction

between the influence of the Reynolds number i.e.

boundary layer thickness, and the free stream Mach num-

ber on the shock train position and length.

The influence of solely the Mach number onto the shock

train length is depicted in the following images in Fig. 12.

For the variation of the Mach number, the total pressure is

kept constant but the area ratio between the primary and

secondary nozzle has been changed, which leads to a

Table 1 Shock train length and total pressure ratio, Ma1 = 1.5

Model Total pressure ratio p02/p01

Normal shock 0.93

Experiment 0.68

Mass averaging model 0.66

Diff. model 0.67

Mod. diff. model 0.47

Shock-less model 0.93

Fig. 10 Normalized wall pressure

Fig. 11 Shock position at

different Reynolds and Mach

numbers
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different back pressure. As the Mach number changes from

1.46 to 1.62 the shock train becomes longer, and the tur-

bulent mixing is much stronger. For the sake of correctness

one must note that due to the relocation of the shock train

the Reynolds number Reh also changes.

However, the Reynolds number Reh changes only in the

order of 1% and the empirical Eqs. 1 and 2 quoted earlier also

show that the Reynolds number correlates with an exponent

of 0.2 and 0.25 compared to the Mach number, which

changes by the power of two. Therefore, in this case the

Reynolds number effect is deemed negligible. In order to

evaluate the performance of the empirical model of Billig

and the mass averaging model, the pressure ratio across the

shock train has been recomputed for different Mach num-

bers. The results are shown in Fig. 13 and Table 2. Because

the displacement thickness of the upstream boundary layer is

unknown, it was approximated from Eq. 13.

As shown in Fig. 13, the empirical model from Billig

reproduces the pressure gradient reasonably well in par-

ticular in the shock train region. Downstream of which in

the mixing region, the computed pressure is larger com-

pared to the measured pressure. The reason that the within

the shock train region measured pressure values do not

steadily increase is likely to be flow separation at the

beginning of the shock train.

The deviations between measurements and the theoret-

ical data can be explained by the fact that the empirical

model of Billig does not take into account the pressure

recovery by the mixing region. Furthermore, difficulties

arise in determining the lowest wall pressure value hence

the actual onset of the shock train, which is required as

input data for the empirical model. Also, the local bound-

ary layer displacement thickness, a likewise important

parameter in the model, has been determined with some

uncertainty.

In contrast to the model of Billig, which does not yield a

defined back pressure or shock train length the mass

averaging model performs well in reproducing the total

pressure downstream of the pseudo-shock. (see Table 2).

Because the pressure increase downstream of the

pseudo-shock can be approximated with the isentropic

equation, the following procedure can be applied to cal-

culate the pressure increase across the entire pseudo-shock

system. Firstly, the pressure rise in the shock train region is

Fig. 12 Influence of shock

Mach number on shock train

position and length

p01 = 4.8 bar,

Re* = 0.46 9 106

Fig. 13 Comparison of measured and computed wall pressure,

Re* = 0.46 9 106

Table 2 Comparison between measured and computed back pres-

sure, p01 = 4.8 bar

Mach number Back pressure

p02 [bar] experiment

Back pressure p02 [bar]

mass averaging model

1.34 3.28 3.4

1.44 3.19 3.29

1.5 3.17 3.12

1.53 3.05 3.02
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derived from the empirical model of Billig. Secondly, the

total pressure in the downstream settling chamber is com-

puted with the mass averaging model. By applying the

isentropic equation and taking into account the changing

cross section area, a second pressure plot describing the

changing pressure downstream of the shock train is

obtained. Both pressure curves intersect eventually, and the

overall pressure distribution is obtained. As depicted in

Fig. 14 in the present case only the flow conditions

upstream of the shock and the geometry of the wind tunnel

need be known to compute the pressure distribution along

the pseudo-shock with good accuracy.

4 Conclusions

A literature review shows that quite a number of different

shock train models have been brought forward over time. It

was found that for the shock train in a narrow rectangular

channel at moderate Mach numbers the empirical model for

square ducts of Billig reproduces the pressure rise best. The

total pressure loss across the shock train is well predicted by

the mass averaging model. A procedure was presented,

which combines both models and allows to derive the

pressure change across the pseudo-shock system solely

from upstream flow conditions and wind tunnel geometry.

This work is intended as analysis of the pseudo-shock

flow phenomenon. In a next step, the shock boundary layer

interaction is going to be manipulated by suction or

blowing in order to improve the pressure recovery across

the shock train.
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