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Abstract—We propose and analyze a behavior-rule
specification-based technique for intrusion detection of medical
devices embedded in a medical cyber physical system (MCPS)
in which the patient’s safety is of the utmost importance.
We propose a methodology to transform behavior rules to a
state machine, so that a device that is being monitored for its
behavior can easily be checked against the transformed state
machine for deviation from its behavior specification. Using vital
sign monitor medical devices as an example, we demonstrate
that our intrusion detection technique can effectively trade false
positives off for a high detection probability to cope with more
sophisticated and hidden attackers to support ultra safe and
secure MCPS applications. Moreover, through a comparative
analysis, we demonstrate that our behavior-rule specification-
based IDS technique outperforms two existing anomaly-based
techniques for detecting abnormal patient behaviors in pervasive
healthcare applications.

keywords: intrusion detection, sensor actuator networks,
medical cyber physical systems, healthcare, security, safety.

I. INTRODUCTION

The most prominent characteristic of a medical cyber
physical system (MCPS) is its feedback loop that acts
on the physical environment. In other words, the physical
environment provides data to the MCPS sensors whose data
feed the MCPS control algorithms that drive the actuators
which change the physical environment. MCPSs are often
characterized by sophisticated patient treatment algorithms
interacting with the physical environment including the
patient. In this paper, we are concerned with intrusion
detection mechanisms for detecting compromised sensors or
actuators embedded in an MCPS for supporting safe and
secure MCPS applications upon which patients and healthcare
personnel can depend with high confidence.

Intrusion detection system (IDS) design for cyber physical
systems (CPSs) has attracted considerable attention [2], [8]
because of the dire consequence of CPS failure. However,
IDS techniques for MCPSs is still in its infancy with very
little work reported. Intrusion detection techniques in general
can be classified into four types: signature, anomaly, trust,
and specification-based techniques. In this paper, we consider
specification rather than signature-based detection to deal
with unknown attacker patterns. We consider specification
rather than anomaly based techniques to avoid using resource-
constrained sensors or actuators in an MCPS for profiling
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anomaly patterns (e.g., through learning) and to avoid high
false positives. We consider specification rather than trust-
based techniques [4], [5], [19], [20] to avoid delay due to trust
aggregation and propagation to promptly react to malicious
behaviors in safety critical MCPSs.

To accommodate resource-constrained sensors and actuators
in an MCPS, we propose behavior-rule specification-based
intrusion detection (BSID) which uses the notion of behavior
rules for specifying acceptable behaviors of medical devices
in an MCPS. Rule-based intrusion detection thus far has been
applied only in the context of communication networks which
have no concern of physical environments and the closed-loop
control structure as in an MCPS. For example, Da Silva et al.
[21] propose an IDS that applies seven types of traffic-based
rules to detect intruders: interval, retransmission, integrity,
delay, repetition, radio transmission range and jamming.
Ioannis et al. [24] propose a multitrust IDS with traffic-based
collection that audits the forwarding behavior of suspects to
detect blackhole and greyhole attacks launched by captured
devices based on the the rate of specification violations.

Our contribution relative to prior work cited above is
that we specifically consider behavior rules for MCPS
actuators controlling patient treatment algorithms as well as
for physiological sensors providing information concerning
the physical environment. Further, we propose a methodology
to transform behavior rules to a state machine, so that a
device that is being monitored for its behavior can easily be
checked against the transformed state machine for deviation
from its behavior specification. Existing work [17], [22] only
considered specification-based state machines for intrusion
detection of communication protocol misbehaving patterns.

Untreated in the literature, in this paper we also investigate
the impact of attacker behaviors on the effectiveness of MCPS
intrusion detection. We demonstrate that our specification-
based IDS technique can effectively trade higher false
positives off for lower false negatives to cope with more
sophisticated and hidden attackers. We show results for
a range of configurations to illustrate this trade. Because
the key motivation in MCPS is safety, our solution is
deployed in a configuration yielding a high detection rate
without compromising the false positive probability. Our
approach is monitoring-based relying on the use of peer
devices to monitor and measure the compliance degree of a
trustee device connected to the monitoring node by the CPS
network. The rules comparing monitor and trustee physiology
(blood pressure, oxygen saturation, pulse, respiration and
temperature) exceeds protection possible by considering
devices in isolation.
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The fundamental difference in designing IDSs for safety
critical CPSs versus for other brands of systems is that
the intrusion detection is closely tied with the physical
components of the CPS, so the detection is less about
communication protocol compliance but more about behavior
compliance specific to the physical components to be
controlled in the CPS. Thus, instead of monitoring packet
routing or packet loss data for misbehavior detection
of communication protocol compliance during packet
transmission, IDSs for MCPSs may test medical sensor
measurements and actuator settings for misbehavior detection
of physical properties manifested because of attacks. For
example, a patient requesting analgesic must have a pulse
greater than some threshold, otherwise it may cause an
overdose of analgesic delivered. Thus, if a patient requests
analgesic while having a pulse below the threshold then an
intruder may be involved. The behavior rules proposed in our
work specifically address the expected behavior of individual
physical components in the MCPS. The compliance threshold
proposed in this paper specifically measures the goodness of a
physical component. A challenge is to provide a high detection
rate without introducing high false positives. We demonstrate
that our IDS design based on the compliance threshold can
effectively distinguish benign abnormalities from malicious
attacks. To the best of our knowledge, there is no prior work
discussing the difference between CPS intrusion detection and
communication systems intrusion detection.

It is necessary to build an IDS per CPS domain/application
since the behavior rules for specifying the behaviors
of physical components/devices in a CPS are inherently
domain/application specific.

In the literature, ISML [7] and T-Rex [36] are also
specification-based approaches for intrusion detection in CPSs.
However, none of them considered MCPSs. In the field of
intrusion detection for MCPSs or healthcare systems, Asfaw
et al. [3] studied an anomaly-based IDS for MCPSs. The
authors focus on attacks that violate privacy of an MCPS; in
contrast, our investigation focuses on attacks that violate the
integrity of an MCPS. They use an anomaly-based approach
while we use a specification-based approach. Asfaw et al. do
not provide numerical results in the form of false negatives or
positives which are the critical metrics for this research area;
our investigation does provide these results.

Venkatasubramanian and Gupta [33] survey security
solutions for pervasive healthcare applications. Like [3], the
authors focus on attacks on a passive pervasive healthcare
system that violate patient privacy while our investigation
considers integrity attacks on an MCPS that harm a
patient. Their countermeasures focus on encryption and
authentication/access control.

Yang and Hwang [34] investigated an approach to fraud
and abuse detection in healthcare applications. In contrast,
our investigation focuses on the treatment, rather than the
administrative, domain of healthcare. The authors use an
anomaly-based approach while we use a specification-based
approach. They provide numerical results that measure internal
validity (the effectiveness of the data mining implementation)
but do not provide externally valid metrics like Receiver
Operating Characteristic (ROC) which can reveal the tradeoff
between the detection rate vs. the false positive probability.

Porras and Neumann [29] study a hierarchical multitrust
behavior-based IDS called Event Monitoring Enabling
Responses to Anomalous Live Disturbances (EMERALD)
[17] using complementary signature based and anomaly-based
analysis. The authors identify a signature-based analysis trade
between the state space created/runtime burden imposed by
rich rule sets and the increased false negatives that stem from
a less expressive rule set. Porras and Neumann highlight two
specific anomaly-based techniques using statistical analysis:
one studies user sessions (to detect live intruders), and the
other studies the runtime behavior of programs (to detect
malicious code). EMERALD provides a generic analysis
framework that is flexible enough to allow anomaly detectors
to run with different scopes of multitrust data (service,
domain or enterprise). However, Porras and Neumann did not
report false positive or false negative probability data. While
EMERALD pursues a domain-independent CPS security
solution combining anomaly and signature-based analysis, our
investigation focuses on one that is relevant for MCPSs using
specification-based analysis.

Park et al. [28] propose a semi-supervised anomaly-based
IDS targeted for assisted living environments. Their design
is behavior-based and audits series of events which they call
episodes. The authors’ events are 3-tuples comprising sensor
ID, start time and duration. Park et al. test data sets using
four similarity functions based on: LCS, count of common
events not in LCS, event start times and event durations They
control episode length and similarity function as independent
variables. The authors provide excellent ROC data which we
use for a comparative analysis.

Tsang and Kwong [32] propose a multitrust IDS called
Multi-agent System (MAS) that includes an analysis function
called Ant Colony Clustering Model (ACCM). The authors
intend for ACCM to reduce the characteristically high false
positive rate of anomaly-based approaches while minimizing
the training period by using an unsupervised approach to
machine learning. MAS is hierarchical and contains a large
number of roles: monitor agents collect audit data, decision
agents perform analysis, action agents effect responses,
coordination agents manage multitrust communication, user
interface agents interact with human operators and registration
agents manage agent appearance and disappearance. Their
results indicate ACCM slightly outperforms the detection rates
and significantly outperforms the false positive rates of k-
means and expectation-maximization approaches. Like [29],
MAS pursues a domain-independent CPS security solution
using anomaly-based analysis; our investigation focuses on
MCPS-specific IDS using specification-based analysis.

We will use Park et al. [28] and Tsang and Kwong [32] as
base schemes against which BSID will be compared because
no others provide meaningful pfp/pfn data for a comparative
analysis.

Our study of IDS warrants distinct treatment for medical
versus generic CPSs because the behavior rule set we propose
is application specific. CPSs in other domains will not
have temperature sensors, medication dispensers or actuators
supporting cardiac function. Furthermore, each CPS domain
will have a unique environment: For example, while the
population in an MCPS may be around 1000 based on the
number of beds in a hospital, the population for a smart grid
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CPS may be in the millions. Also, while the geography of a
MCPS may span a single square kilometer based on the size
of a medical campus, the area of operation for a unmanned
air vehicle (UAV) may be thousands of km2.

II. SYSTEM MODEL

A. Reference MCPS

Fig. 1. Medical Physical Components in the Reference MCPS.

We consider a pervasive health monitoring system
embedding medical devices as our MCPS reference model
as illustrated in Figure 1. For ease of disposition, we are
particularly concerned with three types of sensor/actuator
devices embedded in this MCPS: vital sign monitor (VSM),
patient controlled analgesia (PCA) and cardiac device (CD).
Many healthcare examples exist with these three devices.
An example is an automated anesthesiologist where vital
sign monitors (VSMs) sense patient physiology and control
intravenous delivery of sedative. Specifically, VSMs sense
respiration (Hz), oxygen saturation (SpO2), heart rate (Hz)
and temperature (C). Another example is patient controlled
analgesia (PCA) where patient analgesic requests and
physiological sensor readings from VSMs drive infusion
pumps [25]. A third example is an intensive care situation
where the cardiac device (CD) frequency and pulse readings
from VSMs drive biomedical devices such as a ventilator
or automatic external defibrillator. The Welch Allyn Connex
6000 is the real system we base this investigation on. It has a
11.1 V 3.80 Ah (42 Wh) or 10.8 V 6.75 Ah (73 Wh) Li-ion
battery, blood pressure sensor, thermometer, oxygen saturation
sensor and two pulse rate sensors (one each integrated with
blood pressure and oxygen saturation sensors). It uses USB
for internal communication and IEEE 802.11 for external
communication. It is reasonable to assume many medical
devices use wireline communication, including PCA units.
However, the VSM we consider in depth uses wireless
communication. The CDs we consider in broad terms cannot
use wireline communication, as they would permanently tether
ambulatory, independent patients.

The IDS function is implemented in a distributed manner:
every device is being monitored by other devices. There is

no designated monitor node, so there is no single point of
failure. For example, a VSM is being monitored by one
or more peer VSMs which are themselves being monitored
by other peer VSMs for security. (See Table I for monitor-
trustee relationships.) The observations are collected by
extracting audit data from logs generated by the relevant
sensor or actuator drivers. This paper concerns peer-to-peer
intrusion detection through behavior rule specification-based
monitoring. The results obtained in this paper may be further
used to implement a voting-based IDS to cope with node
failure or colluding attacks [1], [12], [18], [27].

B. Threat Model
We focus on defeating inside attackers that violate the

integrity of the MCPS with the objective to disable the MCPS
functionality. Our design is also effective against attacks such
as subtle manipulations that change medical doses slightly to
cause long term harm to patients or medical or billing record
exfiltrations which violate privacy. There are two distinct
stages in an attack: before a node is compromised and after
a node is compromised. Before a node is compromised,
the adversary focuses on the tactical goal of achieving a
foothold on the target system. Specifically, the adversary
may use shellcode, code injection and capture attacks to
compromise a physical component such as a VSM, PCA or
CD. After a node is compromised, the now-inside attacker
refocuses on the strategic goal of disabling the MCPS.
Specifically, a compromised node may use data modification,
forgery, greyhole/blackhole and replay attacks. In particular,
a compromised sensor may return incorrect readings (thus
performing modification attacks), and a compromised actuator
may ignore control input (blackhole attacks), replay the
previous command (replay attacks) or execute incorrect
commands (forgery attacks).

We differentiate temporary system or environment
abnormalities from malicious attacks by introducing a
parameter, perr, to model the probability of a monitoring
node misidentifying the state of a monitored node due to
ambient noise. perr varies significantly depending on the
exact system being analyzed; it is an input parameter to
reflect the level of ambient noise in the system. Based on
the MCPS environment, the range of perr can be measured a
priori before the MCPS is put into operational use. perr can
vary based on location: It may be higher in outdoor MCPS
environments in developed areas due to their significant
cultural noise (e.g., terrestrial radio, mobile telephony and
WiFi). However, multipath interference may cause it to be
higher in indoor MCPS environments with RF-reflective
construction. The abnormal states could result from perr or
from malicious attacks. We demonstrate that our IDS design
based on compliance degree can effectively distinguish benign
abnormalities from malicious attacks.

Real world attacks are emerging against MCPS components
that cause node compromise. In particular, insulin pumps
and cardiac devices are vulnerable. MCPS attacks can occur
through over the air software updates, stack buffer overflow
exploits or logic bombs planted by third party software
providers. If over the air software updates are frequent
enough, an attacker can configure a radio with the appropriate
frequency and demodulation technique, record updates, reverse
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engineer their format, craft a software load containing malware
and deliver it to the target device. Source code analysis based
on open-source software or disassembled and decompiled
binaries can reveal stack buffer overflow vulnerabilities. If
these methods are not available, the attacker can use fuzzing
to prosecute this line of attack. Third party software logic
bombs are a less viable form of MCPS attack. Due to their
broad, unfocused distribution, the probability of detection and
probability of attribution are relatively high. Medical devices,
such as the VSM, PCA or CD we consider, detect these attacks
by recording state information for the local node and peers,
updating a state machine modeling the subject device and
generating a detection when the automaton enters a malicious
state. For example, if the heart rate component, as reported
by the VSM, of the state machine indicates normal cardiac
function, but the CD is in defibrillator mode, the IDS should
generate a detection.

The security of wireless communication is handled by
contemporary secret key technology such as PKI which
provides authentication to prevent man-in-the-middle attacks,
and the inherent unreliability of wireless communication is
modeled by perr which accounts for ambient noise and
unreliable wireless communication.

C. Attacker Archetypes
We differentiate two attacker archetypes: reckless, random

and opportunistic. A reckless attacker performs attacks
whenever it has a chance to impair the MCPS functionality
as soon as possible. A random attacker, on the other hand,
performs attacks only randomly to avoid detection. It is thus
insidious and hidden with the objective to cripple the MCPS
functionality. We model the attacker behavior by a random
attack probability pa. When pa = 1 the attacker is a reckless
adversary. Random attacks are typically implemented with on-
off attacks in real-world scenarios, so pa is not a random
variable drawn from uniform distribution U(0, 1) but rather a
probability that a malicious node is performing attacks at any
time with this on-off attack behavior. An opportunistic attacker
is the third archetype. An opportunistic attacker exploits
ambient noise modeled by perr (probability of mis-monitoring)
to perform attacks. While a random attacker’s pa is fixed, an
opportunistic attacker decides its attack probability pa based
on perr sensed. When perr is higher, the system is more
vulnerable, so its pa is higher. An opportunistic attacker can
be conservative or aggressive. We borrow from the demand-
pricing relationship in the field of Economics [11], [15], [16],
[35] to model the opportunistic attacker’s attack probability pa
as a function of perr. Specifically, pa = Cpεerr. With C > 0,
this formula covers both conservative and aggressive attack
behaviors: If ε = 1, pa increases linearly with perr; this
models a conservative opportunistic attacker; If ε < 1, pa
increases exponentially with perr; this models an aggressive
opportunistic attacker, the extent of which is modeled by ε.

D. Performance and Overhead Metrics
pfn is the false negative probability: the likelihood of

misidentifying a bad node as good. Detection rate is the
complement of false negative probability: 1 − pfn. pfp is the
false positive probability: the likelihood of misidentifying a

good node as bad. Receiver operating characteristic (ROC)
graphs plot detection rate (1 − pfn) as a function of false
positive rate (pfp).

The cost of overhead has three components: memory,
processor load and communications channel usage. Memory
is measured in terms of bytes, processor load is measured
in terms of floating-point operations per second and
communications channel usage is measured in terms of bits
per second. The issue of overhead and complexity analysis of
our IDS algorithm is not treated in this paper.

III. MCPS INTRUSION DETECTION DESIGN

Security and functional modules are isolated from one
another in our design. Vendors want to protect their intellectual
property and maintain hard-earned certifications of their
products; opening their designs and implementations threatens
the former and allowing modification threatens the latter.
The security community considers IDS isolation as the
best practice in order to minimize the risk of compromise.
Consequently, we envision a security module be added to
a medical device but isolated from the medical device’s
functional modules.

A. Behavior Rules

Behavior rules for a device are specified during the design
and testing phase of an MCPS. Our intrusion detection
protocol takes a set of behavior rules for a device as input
and detects if a device’s behavior deviates from the expected
behavior specified by the set of behavior rules. Since the
intrusion detection activity is performed in the background, it
allows behavior rules to be changed if incomplete or imprecise
specifications are discovered during the operational phase
without disrupting the MCPS operation.

Our IDS design for the reference MCPS model relies on
the use of lightweight specification-based behavior rules for
each sensor or actuator medical device. They are oriented
toward detecting an inside attacker attached to a specific
physical component, provide a continuous (versus a binary)
output between 0 and 1 (to account for transient faults and
human errors) and allow a monitor device to perform intrusion
detection on a neighboring trustee through monitoring. Here a
monitor device is itself a sensor or monitor capable of doing
intrusion detection on many trustees of different types. For
example, a sensor might need to audit dissimilar sensors or
even actuators for a small system. Therefore, a monitor device
might have several sets of behavior rules (and thus several
state machines), one for each trustee. Table I lists the MCPS
behavior rules for PCA, CD and VSM. This table specifies the
trustee and monitor devices for applying our IDS technique.

The behavior rule set specifies expected normal behaviors
for each device and can detect deviation of normal behaviors
regardless of the attacker’s patterns. It does not rely on
knowledge of known attacker patterns as in signature-based
intrusion detection. However, behavior rules for a medical
device will have to specify different acceptable parameter
ranges to reflect the physiology and responses for different
types of patients.
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B. Transforming Rules to State Machines

The following procedure transforms a behavior specification
into a state machine: First, we identify the “attack state” as a
result of a behavior rule being violated. Then, we transform
this attack state into a conjunctive normal form predicate
and identify the involved state components in the underlying
state machine. Next, for each device, we combine the attack
states into a Boolean expression in disjunctive normal form.
Then we transform the union of all predicate variables into
the state components of a state machine and establish their
corresponding ranges. Finally we manage the number of states
by state collapsing and identifying combinations of values that
are not legitimate. Below we exemplify how a state machine
is derived from the behavior specification in terms of behavior
rules for the reference MCPS model.

Unsafe states in our state machine are not those “hazardous”
states generated due to design faults (e.g., software bugs).
Such “hazardous” states, once identified, would be removed
as a result of design faults being identified and removed
during the testing and debugging phase. The unsafe states (and
safe states) in our approach are device-specific and are not
removable because they are not caused by design faults. A
CPS device will enter an unsafe state only when it is seen to
deviate from the normal behavior specified by the behavior
rule. This is the idea of our specification-based behavior rule
intrusion detection. Here we note that while transitions into
an unsafe state are not the direct result of system bugs, bugs
and open doors are often the root cause that enables attackers
to penetrate the system.

1) Identify Attack States: Attacks performed by a
compromised sensor/actuator will drive the MCPS into certain
attack states identifiable through analyzing the specification-
based behavior rules.

For the PCA device, there are 4 attack states as a result of
violating the 4 PCA behavior rules listed in Table I. No safety
critical device is going to reach the market without safeguards
in place. The behavior rules we propose for PCA do consider
built-in safeguards; our rules add value by detecting anomaly
behaviors not guarded by these built-in safeguards. The first
PCA attack state is that a patient requesting analgesic has a
pulse below some threshold. One way an attacker could exploit
this is to cause an overdose of analgesic delivered by a PCA
system. A patient will lose consciousness after receiving a
sufficient amount of analgesic; if the PCA receives additional
requests for analgesic, then an intruder is involved. The IDS
can infer consciousness from pulse data. For this attack state,
the PCA module is the trustee and the VSM is the monitor.

The second PCA attack state is that a patient requesting
analgesic has a respiration rate below some threshold. A
compromised PCA device performing this attack will drive the
MCPS into this state. One way an attacker could exploit this is
to cause an overdose of analgesic delivered by a PCA system.
A patient will lose consciousness after receiving a sufficient
amount of analgesic; if the PCA receives additional requests
for analgesic, then an intruder is involved. The IDS can infer
consciousness from respiration data. For this attack state, the
PCA module is the trustee and the VSM is the monitor.

The third PCA attack state is that an analgesic request rate
exceeds some threshold. One way an attacker could exploit
this is to cause an overdose of analgesic delivered by a PCA

TABLE I
MCPS BEHAVIOR RULES

Description Trustee Monitor
pulse above threshold during analgesic request PCA VSM
respiration above threshold during PCA VSM
analgesic request
analgesic request rate below safe threshold PCA VSM
no analgesic infusion during defibrillation PCA VSM
pulse matches pacemaker frequency CD VSM
patient is unstable before defibrillation CD VSM
trustee blood pressure matches monitor VSM peer VSM
trustee oxygen saturation matches monitor VSM peer VSM
trustee pulse matches monitor VSM peer VSM
trustee respiration matches monitor VSM peer VSM
trustee temperature matches monitor VSM peer VSM

system. It is important to distinguish physical button presses
from requests actually generated. While a patient in pain may
press the button more frequently than is safe due to pain,
the PCA module should only fulfill requests within the safe
threshold. If the PCA module fulfills requests too frequently,
then an intruder is involved. For this attack state, the PCA
module is the trustee and the VSM is the monitor.

The fourth PCA attack state is that the PCA infusion
rate, x, is in (0, 100%] and the cardiac device mode, y, is
defibrillation, yielding a state with two components. As the
device being evaluated transitions from one state (x0, y0) to
another (x1, y1), the monitor can check if (x0, y0) and (x1, y1)
are both good states. For this attack state, the PCA module is
the trustee and the VSM is the monitor.

For the CD device, there are two attack states. The first CD
attack state is that pulse average is not equal to CD frequency
when acting as a pacemaker. One way an attacker could exploit
this is to change the pacemaker frequency. If the CD frequency
when acting as a pacemaker is substantially different from the
patient’s heart rate, then an intruder is involved. The trustee in
this case is the CD. For this attack state, the CD is the trustee
and the VSM is the monitor.

The second CD attack state is that pulse average is within
a normal range when the CD enters defibrillator mode. One
way an attacker could exploit this is to defibrillate a stable
patient. If the CD enters defibrillator mode unnecessarily, then
an intruder is involved. For this attack state, the CD is the
trustee and the VSM is the monitor.

For the VSM device, there are 5 attack states in which
a trustee sensor reading (blood pressure, oxygen saturation,
pulse, respiration, or temperature) is beyond 100% of the
corresponding monitor sensor reading. A peer VSM in the
neighborhood of the trustee sensor serves as the monitor,
measuring the same physical phenomenon. In this rule there is
a variable “sensor reading % deviation” which can go from 0
to 100% in 10% increments, yielding 11 possible values. The
monitor observing a trustee sensor will check the status of this
variable. As the trustee sensor goes from one state to another,
say, from 10 to 20%, the monitor will assess the deviation of
good behaviors of the trustee by means of host IDS techniques.

2) Express Attack States in Conjunctive Normal Form:
Table II lists the attack states in Conjunctive Normal Form.

3) Consolidate Predicates in Disjunctive Normal Form:
a) PCA: ((Analgesic Request = TRUE) ∧ (Pulse < T ))

∨ ((Analgesic Request = TRUE) ∧ (Respiration < T )) ∨
(Analgesic Request Rate > T ) ∨ ((Analgesic Infusion Rate
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TABLE II
ATTACK STATES IN CONJUNCTIVE NORMAL FORM

(Analgesic Request = TRUE) ∧ (Pulse < T )
(Analgesic Request = TRUE) ∧ (Respiration < T )
Analgesic Request Rate > T
(Analgesic Infusion Rate > 0) ∧ (Mode = DEFIBRILLATOR)
(Mode = PACEMAKER) ∧ (|Pulse - Pacemaker Frequency| > δ)
(Mode = DEFIBRILLATOR) ∧ (L < Pulse < H)
|Monitor Blood Pressure - Trustee Blood Pressure| > δ
|Monitor Oxygen Saturation - Trustee Oxygen Saturation| > δ
|Monitor Pulse - Trustee Pulse| > δ
|Monitor Respiration - Trustee Respiration| > δ
|Monitor Temperature - Trustee Temperature| > δ

TABLE III
MCPS STATE COMPONENTS

Name Control or Range
Reading

Analgesic Request Reading true, false
Pulse Reading [0, 240 bpm]
Respiration Reading [0, 60 bpm]
Analgesic Request Rate Reading [0, 4/hour]
Blood Pressure Reading [0, 240 mmHg]

× [0, 160 mmHg]
Oxygen Saturation Reading [0, 100%]
Temperature Reading [32, 42 C]
Analgesic Infusion Rate Control [0, 100%]
Mode Control passive, pacemaker,

defibrillator
Pacemaker Frequency Control [0, 240 bpm]

> 0) ∧ (Mode = DEFIBRILLATOR))
b) CD: ((Analgesic Infusion Rate > 0) ∧ (Mode =

DEFIBRILLATOR)) ∨ ((Mode = PACEMAKER) ∧ (|Pulse -
Pacemaker Frequency| > δ)) ∨ ((Mode = DEFIBRILLATOR)
∧ (L < Pulse < H))

c) VSM: (|Monitor Blood Pressure - Trustee Blood
Pressure| > δ) ∨ (|Monitor Oxygen Saturation - Trustee
Oxygen Saturation| > δ) ∨ (|Monitor Pulse - Trustee Pulse| >
δ) ∨ (|Monitor Respiration - Trustee Respiration| > δ) ∨
(|Monitor Temperature - Trustee Temperature| > δ)

4) Identify State Components and Component Ranges: We
quantize continuous components at integer scale in permissible
ranges. For example, pulse is in the range of [0, 240 bpm]
and respiration is in the range of [0, 60 bpm]. Table III
shows a complete list of the permissible ranges of MCPS state
components. The resulting PCA automaton has 2×241×61×
5×101×3 = 4.454×107 states. The resulting CD automaton
has 241× 101× 3× 241 = 1.760× 107 states. The resulting
VSM automaton has 241 × 161 × 241 × 161 × 101 × 101 ×
241× 241× 61× 61× 11× 11 = 4.016× 1023 states. All of
these automata are too large; we deal with this state explosion
in the next step.

5) Manage State Space: To manage the number of states,
we reduce the size of the state machine by abbreviating the
values for some components. For the PCA device, only three
values are relevant for pulse, respiration and analgesic request
rate: normal, beyond warning threshold and beyond unsafe
threshold. Therefore, we collapse the domain for each of
these components to three values. Likewise only two values
are relevant for analgesic infusion rate: zero or nonzero.
Therefore, we collapse the domain for this component to two
values. This treatment yields a modest PCA state machine with
2× 3× 3× 3× 2× 3 = 324 states. 50 of these states are safe

because they fully comply with all of the behavior rules from
Table I. 80 are warning states because they exceed the warning
threshold for at least one behavior rule. 194 of these states are
unsafe because they violate or exceed the unsafe threshold for
at least one of the behavior rules. Rather than their values, the
VSM behavior rules only need to know whether each vital sign
trustee reading matches, is farther than the warning threshold
or is farther than the unsafe threshold from the corresponding
monitor reading. Therefore, we collapse the domain for each
of these components to three values. This treatment yields a
modest VSM state machine with 3 × 3 × 3 × 3 × 3 = 243
states. One of these states is safe because the monitor and
trustee readings match for all five components as described in
Table I. 31 are warning states because the monitor and trustee
readings differ by more than the warning margin for at least
one component but not more than the unsafe threshold for any
component. 211 of these states are unsafe because at least one
component differs by more than the unsafe threshold.

6) Behavior Rule State Machines: Here we describe how to
generate the behavior rule state machine of a medical device.
We use the VSM device as an example. The VSM state
machine consisting of one safe, 31 warning and 211 unsafe
states based on the behavior rules is generated as follows. First
we label these states as 1, 2, . . . , n = 243. Next we assign pij ,
the probability that state i goes to state j, for each (i, j) pair
in the state machine to reflect a good or bad VSM’s behavior.

A good VSM should stay in safe states 100% of the time.
This will give the compliance degree of a good VSM close
to one. However, occasionally it may be detected by the
monitor node as staying in a warning or unsafe state due
to ambient noise resulting from unexpected environment or
system condition changes, as well as wireless communication
faults. Let perr be the error probability of a monitor node
misidentifying the status of a trustee node due to ambient noise
and wireless communication faults. During the testing phase,
we seed a good VSM in the system and assign a monitor node
to observe and measure pij of the good VSM in the presence
of the error probability perr: pij is perr× 31/(31+211) when
j is one of the 31 warning states, pij is perr×211/(31+211)
when j is one of the 211 unsafe states, and pij is 1 − perr
when j is the one good state. Figure 2 illustrates the behavior
rule state machine for a good VSM in the MCPS. One dotted
slash and crossed dotted slashes over a state indicate a warning
state and an unsafe state, respectively. Transitions into states
covered with a dotted slash are valid, but their marginality is
cause for concern. Transitions into states covered with crossed
dotted slashes are invalid and cause for an alert. All transitions
are possible. Each state component represents how one of
the trustee node attributes matches its counterpart from the
monitor. For the VSM device, pulse, blood pressure, oxygen
saturation, temperature and respiration are the device attributes
of interest. Note that each device has its own state machine
with device-specific attributes being the state components of
the state machine.

For a compromised VSM, pij depends on its attacker type:
A reckless attacker presumably will stay in unsafe or warning
states 100% of the time; however, occasionally it may be
detected by the monitor node as staying in a safe state due
to ambient noise and wireless communication faults. During
the testing phase, we seed a reckless attacker in the system



7

Fig. 2. Good VSM Behavior Rule State Machine.

Fig. 3. Random Attacker VSM Behavior Rule State Machine.

following its attacker profile and assign a monitor node to
observe and measure pij : pij is 211/(211 + 31)× (1− perr)
when j is one of the 211 unsafe states, 31/(211 + 31) ×
(1 − perr) when j is one of the 31 warning states, and
perr when j is the one good state where perr of the error
probability of misidentifying the status of a reckless attacker
due to ambient noise and wireless communication faults.
For a random attacker with attack probability pa, pij is
211/(211+31)× (pa× (1−perr)+(1−pa)×perr) when j is
one of the 211 bad states, 31/(211+31)× (pa × (1− perr)+
(1− pa)× perr) when j is one of the 31 warning states, and
pa×perr+(1−pa)×(1−perr) when j is the one good state. We
note that a random attacker with attack probability pa will stop
attacking with probability 1 − pa, which will be detected by
the monitor node with probability 1−perr. Figure 3 illustrates

the behavior rule state machine for a random attacker VSM
in the MCPS.

C. Collect Compliance Degree Data
Compliance degree is the extent to which a device behaves

securely, and we propose a number of ways to measure this
property in this section. Compliance degree data is a time
series of compliance degree measurements for a device; this
is the input stream that triggers detections. We use the state
machines to collect compliance degree data of a good and a
bad medical device during the system testing and debugging
phase before deployment. The behaviors of a good and a
bad device performing random attacks are simulated and
compliance degree data are collected to allow us to predict
the false positive and false negative probabilities. While we
experimented with a range of configurations, our solution is
deployed with settings yielding a high detection rate because
the key motivation in MCPS is safety.

Specifically, we profile the analgesic request, pulse,
respiration, blood pressure, oxygen saturation, temperature,
analgesic infusion rate, cardiac device mode and pacemaker
frequency, given that they are being controlled by a good or
a bad medical device.

We model the behavior of a medical device by a stochastic
process such that it may be in state 0, 1, 2, . . . , n in a state
machine for intrusion detection of this medical device, with
pij parameterized as discussed earlier in Section III-B6. Then,
the probability that the stochastic process is in state j is given
by:

πj =

n∑
i=0

πipij (1)

Since we have n + 1 states, we have n + 1 equations above,
one for each state. This will yield infinite solutions, so we
replace one equation with:

n∑
i=0

πi = 1 (2)

The physical meaning of πj is the probability that a device is
in state j at any time.

Let c be the compliance degree of a node. With the above
formulation, it is calculated as the sum of the products of the
each state’s grade and probability:

c =
∑
j

cjπj (3)

where cj is the “grade” assignment to state j, measuring the
closeness between the observed behavior (in state j) and the
specified “good” behavior. We consider two grading strategies:
binary and distance-based. For binary grading, we assign a
value of 1 to state j if it is secure and a value of 0 otherwise:

cj =

{
1 if state j is a secure state
0 otherwise

With binary grading, the compliance degree c of a device
essentially is equal to the proportion of the time the device
is in secure states.

For distance-based grading, we still assign a value of 1 to
state j if it is secure. However, if state j is insecure, we assign
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it a value in [0, 1] representing the distance of state j from a
secure state. Therefore, cj is assigned as follows:

cj = 1− distancej/maximum distance

where distancej is the distance between state j and the nearest
secure state, and maximum distance is the longest distance
between any insecure state and the nearest secure state in
the state machine. By this assignment, if state j is secure,
distancej is zero, hence cj = 1. If state j is insecure, cj is
still close to 1 if j is close to a secure state but is close to
0 if j is far from a secure state. With cj assigned, we can
then calculate the compliance degree, c, of a node in state
machine s using Equation 3 where πj gives the proportion of
time a node stays in j over the observation period. We study
six distance-based grading strategies for measuring cj and for
computing the compliance degree based on Equation 3.

• Hamming distance, also called signal distance, applies to
a pair of multidimensional data points. This is the number
of state components that differ between two sequences:
in our application, state j and the closest secure state.
cj = 1− Hamming(j)/max(Hamming(·)). For example,
consider a system with one state component with two
possible values. This system has two states: 0, 1. Consider
state 0 safe and state 1 unsafe. Therefore, c0 = 1−0/1 =
1 and c1 = 1− 1/1 = 0. Consider a node with π0 = 0.9
and π1 = 0.1. Therefore, for this node, c = 1×0.9+0×
0.1 = 0.9.

• Manhattan distance, also called rectilinear distance,
applies to a pair of multidimensional data points.
This is the sum of the differences between state
components of two sequences: in our application,
state j and the closest secure state. cj = 1 −
Manhattan(j)/max(Manhattan(·)). For example, consider
a system with two state components with two possible
values. This system has four states: 00, 01, 10, 11.
Consider state 00 safe and the rest unsafe. Therefore,
c00 = 1 − 0/2 = 1, c01 = 1 − 1/2 = 0.5, c10 =
1 − 1/2 = 0.5 and c11 = 1 − 2/2 = 0. Consider a
node with π00 = 0.9, π01 = 0.045, π10 = 0.045 and
π11 = 0.01. Therefore, for this node, c = 1×0.9+0.5×
0.045 + 0.5× 0.045 + 0× 0.01 = 0.945.

• Euclidean distance applies to a pair of multidimensional
data points. This is the square root of the sum of the
squares of the state component differences between two
sequences: in our application, state j and the closest
secure state. cj = 1 − Euclidean(j)/max(Euclidean(·)).
For example, consider a system with two state
components with two possible values. This system has
four states: 00, 01, 10, 11. Consider state 00 safe and
the rest unsafe. Therefore, c00 = 1 − √

02 + 02/
√
2 =

1, c01 = 1 − √
02 + 12/

√
2 = 0.707, c10 = 1 −√

12 + 02/
√
2 = 0.707 and c11 = 1−√

12 + 12/
√
2 = 0.

Consider a node with π00 = 0.9, π01 = 0.045, π10 =
0.045 and π11 = 0.01. Therefore, for this node, c =
1×0.9+0.707×0.045+0.707×0.045+0×0.01 = 0.964.

• Longest common subsequence (LCS) distance, not to be
confused with longest common substring distance, applies
to a pair of time series. Longest common subsequence
differs from longest common substring because a
common subsequence does not need to be contiguous;

extra values can appear within a common subsequence.
c = LCS(monitor, trustee)/time series length. For
example, consider a system using a two point time series
with two possible values. Monitor and trustee time series
have four possible values: 00, 01, 10, 11. If we consider
a monitor time series of 00 and a trustee time series of
00, c = 2/2 = 1. If we consider a monitor time series of
00 and a trustee time series of 10, c = 1/2 = 0.5. If we
consider a monitor time series of 00 and a trustee time
series of 11, c = 0/2 = 0.

• Levenshtein distance, also called edit distance,
applies to a pair of time series. This is the
minimum number of edits required to transform
one sequence into another; Levenshtein edits
comprise insertion, deletion and substitution.
c = 1−Levenshtein(monitor, trustee)/time series length.
For example, consider a system using a three point time
series with three possible values. Monitor and trustee time
series have 27 possible values: 000, 001, 002, . . . , 222. If
we consider a monitor time series of 000 and a trustee
time series of 000, c = 1 − 0/3 = 1. If we consider a
monitor time series of 012 and a trustee time series of
120, c = 1 − 2/3 = 0.333. If we consider a monitor
time series of 000 and a trustee time series of 111,
c = 1− 3/3 = 0.

• Damerau-Levenshtein is based on Levenshtein but adds
transposition of two contiguous values to the set of
allowed edits. For example, consider a system using
a three point time series with three possible values.
Monitor and trustee time series have 27 possible values:
000, 001, 002, . . . , 222. If we consider a monitor time
series of 000 and a trustee time series of 000, c =
1− 0/3 = 1. If we consider a monitor time series of 012
and a trustee time series of 021, c = 1 − 1/3 = 0.667.
If we consider a monitor time series of 000 and a trustee
time series of 111, c = 1− 3/3 = 0.

A system manager can select the best grading strategy
based on performance results depending on the application
environment. In Section VI, we provide an example to
illustrate the utility.

D. Compliance Degree Distribution
The measurement of compliance degree of a device is not

perfect and can be affected by noise and unreliable wireless
communication in the MCPS. We model the compliance
degree by a random variable X with G(·) = Beta(α, β)
distribution [30]. In probability theory and statistics, the Beta
distribution is a family of continuous probability distributions
defined on the interval [0, 1], suitable for modeling the random
behavior of percentages and proportions. The value 0 indicates
that the output is totally unacceptable (zero compliance) and 1
indicates the output is totally acceptable (perfect compliance),
such that G(a), 0 ≤ a ≤ 1, is given by

G(a) =

∫ a

0

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx (4)

and the expected value of X is given by

EB [X] =

∫ 1

0

x
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx =

α

α+ β
(5)
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The α and β parameters are to be estimated based on the
method of maximum likelihood by using the compliance
degree history collected (c1, c2, . . . , cn) during the system’s
testing phase. The maximum likelihood estimates of α and β
are obtained by numerically solving the following equations:

n∂Γ(α̂+β̂)
∂α̂

Γ(α̂+ β̂)
− n∂Γ(α̂)

∂α̂

Γ(α̂)
+

n∑
i=1

log ci = 0

n∂Γ(α̂+β̂)

∂β̂

Γ(α̂+ β̂)
−

n∂Γ(β̂)

∂β̂

Γ(α̂)
+

n∑
i=1

log(1− ci) = 0 (6)

where

∂Γ(α̂+ β̂)

∂α̂
=

∫ ∞

0

(log x)xα̂+β̂−1e−xdx.

A less general, though simpler model, is to consider a single
parameter Beta(β) distribution with α equal to 1. In this case,
the density is β(1 − x)β−1 for 0 ≤ x ≤ 1 and 0 otherwise.
The maximum likelihood estimate of β is

β̂ =
n

n∑
i=1

log(
1

1− ci
)

(7)

The reason we choose the Beta distribution as described
above is that the domain of the Beta distribution can be
viewed as a probability, so it can be used to describe
the prior distribution over the probability (of a distribution)
which models the node compliance degree. By applying
Bayesian inference, the Beta distribution then can be used
as the posterior distribution of the probability after observing
sufficient instances.

E. False Negative and Positive Probabilities
Our intrusion detection is characterized by false negative

and positive probabilities, denoted by pfn and pfp, respectively.
A false negative occurs when a bad medical device is missed as
good, while a false positive occurs when a good medical device
is misdiagnosed as bad. While neither is desirable, a false
negative in an MCPS is especially impactful to the patient’s
well being. Because the key motivation in MCPS is safety,
we searched for a configuration yielding a high detection rate
without compromising the false positive probability. In this
paper we consider a threshold criterion. That is, if a bad
node’s compliance degree denoted by Xb with a probability
distribution obtained by Equation 4 above is higher than a
system minimum compliance threshold CT then there is a
false negative. Suppose that the compliance degree Xb of a
bad node is modeled by a G(·) = Beta(α, β) distribution as
described above. Then the host IDS false negative probability
pfn is given by:

pfn = Pr{Xb > CT } = 1−G(CT ). (8)

On the other hand, if a good node’s compliance degree denoted
by Xg is less than CT then there is a false positive. Again
suppose that the compliance degree Xg of a good node is
modeled by a G(·) = Beta(α, β) distribution. Then the host
false positive probability pfp is given by:

pfp = Pr{Xg ≤ CT } = G(CT ). (9)

IV. SIMULATION

We collect compliance degree history c1, c2, . . . , cn of a
device by means of Monte Carlo simulation. Monte Carlo
simulation allows us to generate repeated random sampling
following the stochastic process of a devices state machine
to obtain numerical results. We use the VSM device in the
reference MCPS defined in Section II to exemplify the utility
of our IDS technique for secure MCPS applications. The
Welch Allyn Connex 6000 is an example of a VSM that fits
into our model.

Specifically we simulate the procedure described in Section
III-B6 to construct the state machines of a good VSM device
and a bad VSM device. For a good VSM device, we simulate
pij (see III-B6 for its definition) as 1 − perr when j is the
single good state, and as perr when j is one of the 242 bad
states (treating both 31 warning and 211 unsafe states as bad).
For a bad VSM device with random attack probability pa, we
simulate pij as ((1−pa)×(1−perr)+pa×perr) when j is the
single good state, and as (pa×(1−perr)+(1−pa)×perr)/242
when j is one of the 242 bad states.

Given the state machine of a VSM device generated
above, we collect a sequence of compliance degree values
(c1, c2, . . . , cn) with n = 1000 Monte Carlo simulation test
runs. In each simulation test run, we start from state 0 and
then follow the stochastic process of this device as it goes
from one state to another. We continue doing this until at
least one state is traversed sufficiently (say 100 times). Then
we calculate the limiting probability that the device is in state
j, πj , using the ratio of the number of transitions leading to
state j to the total number of state transitions. Then we collect
one instance of c using Equation 3. We repeat a sufficiently
large n = 1000 test runs to collect c1, c2, . . . , cn needed for
computing the distribution of the compliance degree of a good
or a bad medical device performing reckless or random attacks.
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Fig. 4. Sensitivity of Good Node Compliance Degree to perr.

Figure 4 shows compliance degree raw data with X =
1, 2, . . . , n and Y = c1, c2, . . . , cn, for n = 1000 points, for
a good VSM node with several perr values. There are five
clouds of compliance degree data, one corresponding with
each perr setting. We see that as perr (representing ambient
noise) increases, the cloud of compliance degree data moves
down, i.e., the compliance degree of the good node decreases.
This is because as the noise increases, there is a higher
probability of the monitoring node misidentifying the good
state status of the good VSM node.

Figure 5 shows the sensitivity of c1, c2, . . . , cn to perr for a
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Fig. 6. Sensitivity of Bad Node Compliance Degree to perr for Opportunistic
Attackers.

bad VSM node attacking recklessly. Like Figure 4, there are
five clouds of compliance degree data, one corresponding with
each perr setting. However, in this case as perr increases, the
cloud of compliance degree data moves up, i.e., the compliance
degree of the bad VSM node increases. This is because as the
noise increases, there is a higher probability of the monitoring
node misidentifying the bad state status of the bad VSM node.

Figure 6 shows the sensitivity of c1, c2, . . . , cn to perr for a
bad VSM node attacking opportunistically (with ε = 0.9).
Like Figure 5, there are five clouds of compliance degree
data, one corresponding with each perr setting where higher
perr correlates with lower compliance. We see the compliance
of of the opportunistic attacker is more sensitive to perr
than the reckless attacker: While the range of compliance
covers (0.3, 0.9) for the opportunistic attacker, it is limited
to approximately (0.01, 0.07) for the reckless attacker. Also,
while the variance in compliance remains constant for the
opportunistic attacker, the same quantity increases with perr
for the reckless attacker.

Figure 7 shows the sensitivity of c1, c2, . . . , cn to pa, the
random attack probability by a bad node. There are five clouds
of compliance degree data, one corresponding with each pa
setting. As pa increases, the cloud of compliance degree data
moves down, i.e., the bad node’s compliance degree decreases.
This is because as the bad VSM node performs more frequent
attacks, it is more easily to be detected, so its measured
compliance degree decreases.

With c1, c2, . . . , cn of a good or bad VSM device in hand,
we apply Equation 7 to compute the β parameter value of
G(·) = Beta(α, β) for the probability distribution of the
compliance degree for a good or a bad VSM device. We
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TABLE IV
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

RANDOM ATTACK MODELS FOR VSM (CT = 0.9, perr = 0.01).

Attack Type β pfn pfp
Reckless Attacker (pa = 1.00) 98.5 0.001% 14.8%
Random Attacker (pa = 0.80) 4.29 0.005% 14.8%
Random Attacker (pa = 0.40) 1.08 8.33% 14.8%
Random Attacker (pa = 0.20) 0.621 23.9% 14.8%
Random Attacker (pa = 0.10) 0.441 36.3% 14.8%

then calculate pfn and pfp by Equations 8 and 9, respectively,
given the minimum compliance degree CT as input reflecting
the consequence of false negatives over false positives for the
VSM device. For an MCPS we prioritize achieving a low false
negative probability because the key motivation is safety.

Table IV shows the β values and the resulting pfn and
pfp values when CT = 0.9, perr = 0.01, and the binary
grading strategy is being used to assign cj to state j for a
reckless or random attacker. CT is a design parameter to be
fine-tuned to trade high false positives for low false negatives
due to safety criticality as described below. We observe that
when the random attack probability pa is high, the attacker
can be easily detected, as evidenced by a low false negative
probability. Especially when pa = 1, a reckless attacker can
hardly be missed. On the other hand, as pa decreases, the
attacker becomes more hidden and insidious and the false
negative probability increases. The false positive probability
remains the same regardless of the random attack probability
because it is a metric measuring the detection error against a
good node only.

Likewise, Table V shows the β values and the resulting
pfn and pfp values when CT = 0.9, perr = 0.01, and the
binary grading strategy is being used to assign cj to state j
for an opportunistic attacker. We observe that as ε decreases,
the opportunistic attacker can be detected more easily because
of its more aggressive attack behavior.

Our behavior rule based IDS allows one to adjust the

TABLE V
β IN BETA(1,β) AND RESULTING pfn AND pfp VALUES UNDER VARIOUS

OPPORTUNISTIC ATTACK MODELS FOR VSM
(CT = 0.9, perr = 0.01, C = 10).

Attack Type β pfn pfp
Aggressive Attacker with ε = 0.8 0.723 18.9% 14.8%
Aggressive Attacker with ε = 0.9 0.545 28.5% 14.8%
Conservative Attacker with ε = 1.0 0.441 36.3% 14.8%
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minimum compliance degree threshold CT to obtain an
acceptable pfn while keeping pfp as low as possible.

Figure 8 shows the relationship between pfn and CT for
detecting a random attacker with varying pa values. Our intent
is to analyze the effect of pa on pfn. For each curve, pfn = 1
at CT = 0 and pfn = 0 at CT = 1. We see pfn decreases as
pa increases because bad nodes are more likely to behave in
a way that reveals their malintent.

Figure 9 shows the relationship between pfn and CT for
detecting a reckless attacker (pa = 1) with varying perr values.
Our intent is to analyze the effect of perr on pfn. Like Figure
8, pfn = 1 at CT = 0 and pfn = 0 at CT = 1 for each curve.
We see pfn decreases as perr decreases because noise is less
likely to mask the malicious behavior of a reckless attacker.

Likewise, Figure 10 shows the relationship between pfn and
CT for detecting an opportunistic attacker (ε = 0.9) with
varying perr values. Like Figure 9, pfn = 1 at CT = 0
and pfn = 0 at CT = 1 for each curve. However, unlike
Figure 9, we see pfn decreases as perr increases because
an opportunistic attacker’s attack probability (pa) is higher
(i.e., more aggressive) as noise is higher, thus increasing its
probability of being detected and resulting in a smaller pfn.

Correspondingly, Figure 11 shows the relationship between
pfp and CT for detecting a good node with varying perr values.
Our intent is to analyze the effect of perr on pfp. For each
curve, pfp = 0 at CT = 0. pfp decreases as perr decreases
because noise is less likely to distort the behavior of good
nodes to appear malicious.
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Fig. 12. ROC Graph under Binary Grading for Detecting Random Attackers.

V. COMPARISON OF ROC UNDER BINARY AND
DISTANCE-BASED GRADING POLICIES

By adjusting CT , our specification-based IDS technique
can effectively trade higher false positives off for lower false
negatives to cope with more sophisticated and hidden random
attackers. That is, by increasing CT , one can effectively reduce
pfn at the expense of pfp. This is especially desirable for ultra
safe and secure MCPS applications for which a false negative
may have a dire consequence.

Figure 12 shows a ROC graph of intrusion detection rate
(1 − pfn) vs. false positive probability (pfp) under the binary
grading policy for reckless and random attackers, obtained
as a result of adjusting CT . In Figure 12 there are several
curves, one for each random attacker case with a different
attack probability pa. We fix perr to 0.01 to isolate out
its effect. As we increase CT , the detection rate increases
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Fig. 13. ROC Graph under Each Distance-Based Grading Strategy for Detecting Random Attackers.

(vertically up on a ROC graph) while the false probability
increases (toward the right of a ROC graph). We see that
in this environment setting with our specification-based IDS
technique, the detection rate of the VSM medical device can
approach 100% for detecting attackers, that is, an attacker is
always detected with probability 1 without false negatives,
while bounding the false positive probability to below 5% (for
reckless attackers) and 25% (for random attackers).

Figure 13 compares the performance of distance-based
grading strategies for reckless and random attackers. The
Area Under the Curve (AUC) is a common criterion
for relating ROC graphs. Figure 13 shows that AUC
increases as pa increases; each distance-based grading strategy
performs better for more aggressive attackers. For reckless
attackers (pa = 1), Hamming grading performs the best
followed by Euclidean, Manhattan, Levenshtein, Damerau-
Levenshtein and Longest Common Subsequence. However
for random attackers, however, we see that Levenshtein
grading performs the best followed by Damerau-Levenshtein,
Hamming, Longest Common Subsequence, Euclidean and
Manhattan.

VI. COMPARATIVE ANALYSIS

We perform a comparative study using the IDS design
by Park et al. [28] and Tsang and Kwong [32] as
baseline schemes. We only included these two studies in the
comparative performance analysis because other studies did
not provide adequate data.

A. Park et al. Study

Park et al.’s IDS scheme is designed for detecting abnormal
patient behaviors in a pervasive healthcare system. We justify
our comparison between the abnormal behavior of Park’s
patients and our reckless adversary because of the way they
synthesized their abnormal patients; time shifting data for
normal patients is similar to a replay attack.

First, their IDS applies a similarity function, to grade four
aspects of sensor data: longest common subsequence (LCS)

of events (s1), number of common events that are not part
of the LCS (s2), event start time similarities (s3) and event
duration similarities (s4). They experiment with two variants
each of s3 and s4: one considers events in the LCS (sD trials)
and the other does not (sI trials). Their intent is to control the
effects of interdependence between the similarity measures.
Second, their IDS calculates a threshold for classifying good
and bad behavior using a training data set. Third, the authors’
IDS determines the weight for each of the four sensor data
aspects. Park et al. measure patient activity using 3-tuple
events, ei, which comprise <sensor ID, time, duration>. They
form episodes, Ei, from sequences of events. They use 70%
of the dataset in [31] as normal training data and synthesize
abnormal training data by random generation and time shifting
normal training data by four, eight and 12 hours. They use the
remaining 30% of the dataset as test data. Finally they optimize
the performance by weighting the LCS (s1) and duration (s4)
aspects of sensor data more heavily than non-LCS common
events (s2) and start times (s3) aspects. Figure 14 shows
the resulting ROC curves for several distinct configurations
out of which we use the best ROC curve for performance
comparison.
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Fig. 14. ROC Graph for Park’s IDS.

Figure 15 compares the performance of Park’s design with
our BSID design using the LCS grading strategy and a reckless
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TABLE VI
BSID (perr = 0.01) VERSUS TSANG AND KWONG PERFORMANCE DATA

Design Detection Rate pfp
BSID 92.408% 0.666%
BSID 99.742% 1.533%
Tsang and Kwong 92.23% 1.53%

attacker. BSID using the LCS grading strategy outperforms
Park’s IDS because the AUC of BSID using LCS dominantly
covers that of Park’s IDS. Given the same pfp of 5%, BSID
has a better detection rate (98 versus 70%). Conversely, given
the same detection rate of 90%, BSID has a better pfp (3
versus 14%). This could be due to our longer history; we use
100 events compared to 20. In addition to LCS (s1), Park et
al. consider three other measurements of audit data: number
of common events that are not part of the LCS (s2), event
start time similarities (s3) and event duration similarities (s4).
They use a weighting scheme that optimizes the performance,
but our preliminary results indicate weights of 0 for s2,
s3 and s4 are best. This means one good measurement
with a long history outperforms multiple optimally weighted
measurements. In Figure 15, we also clearly see that BSID
using the Hamming grading policy performs the best among
all in detecting a reckless attacker.

B. Tsang and Kwong Study
Tsang and Kwong report detection rates between 88.39

and 92.23% and false positive rates between 1.17 and 2.79%
depending on the independent component analysis (ICA)
technique used to prepare the audit data.

We modeled comparable ROC detection rates using reckless
attackers. Table VI summarizes the comparison results. BSID
performs better compared to Tsang and Kwong using the
clustering algorithm yielding the highest detection rate. BSID
produces a detection rate of 92.408% given a false positive
rate of 0.666%. Using the FastICA clustering algorithm, their
detection rate is only 92.23% and brings a higher false positive
rate of 1.53%. If we allow a false positive rate as high as
1.53%, BSID can produce a detection rate as high as 99.742%.

VII. LESSONS LEARNED

We summarize lessons learned of applying the behavior
rule specification-based intrusion detection (BSID) technique
developed in the paper to medical devices, using VSMs as
a running example. The first step is to specify the behavior

rule set for a VSM as illustrated in Table I. The second step,
based on the knowledge of environment noise represented by
perr, is to mechanically transform rules into state machines
as illustrated in Figures 2 and 3 to differentiate good states
from bad states. The third step, based on the knowledge
of the attacker archetype, is to collect compliance degree
data (Figures 4 - 7), parameterize the compliance degree
distribution (Tables IV and V) and estimate pfn and pfp
(Figures 8 - 11) from which the ROC graphs may be generated
(Figure 12 under binary grading and Figure 13 under distance-
based grading) for IDS performance assessment.

A key insight observed is that the accuracy of our IDS
technique hinges on the completeness of the behavior rule set
for specifying a VSM device since it is the very first step for
defining acceptable or malicious behaviors. As behavior rules
are derived directly from threats, the threat model must be
broad enough to cover all possible threats that exploit system
vulnerabilities. This places the responsibility for developing
a complete attack model with the system designers. When
a threat is overlooked, the state machine will lack unsafe
states associated with the overlooked attack behavior indicator,
and the attack will go undetected. Consequently, when new
threats are discovered and introduced to the threat model,
new behavior rules corresponding to the new threats must
be added to the rule set because behavior rules are derived
directly from threats. BSID allows newly identified threats to
be updated to the threat model and hence the corresponding
new behavior rules to be derived from which the state machine
is automatically generated for intrusion detection. Another
insight gained is that there is a tradeoff between pfn and
pfp, and this tradeoff is sensitive to the attacker archetype,
namely, reckless, random and opportunistic, considered in the
paper. Therefore, BSID, given the attacker archetype as input,
can effectively identify the best tradeoff between pfn and pfp
by setting the best CT value (through Equations 8 and 9) to
satisfy the MCPS security requirement, such as minimizing
pfn without violating the imposed threshold requirement for
pfp.

VIII. CONCLUSIONS

For safety-critical MCPSs, being able to detect attackers
while limiting the false alarm probability to protect the welfare
of patients is of utmost importance. In this paper we proposed
a behavior-rule specification-based IDS technique for intrusion
detection of medical devices embedded in a MCPS. We
exemplified the utility with VSMs and demonstrated that
the detection probability of the medical device approaches
one (that is, we can always catch the attacker without
false negatives) while bounding the false alarm probability
to below 5% for reckless attackers and below 25% for
random and opportunistic attackers over a wide range of
environment noise levels. Through a comparative analysis, we
demonstrated that our behavior-rule specification-based IDS
technique outperforms existing techniques [28], [32] based on
anomaly intrusion detection.

In future work, we plan to analyze the overheads of
our detection techniques such as the various distance-based
methods in comparison with contemporary approaches. We
also plan to deepen adversary modeling research based on
stochastic Petri net techniques [13], [14], [23], [26], as well as
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intrusion defense modeling research based on accumulation of
deviation from good states [6], [9], [10] such that the system
can dynamically adjust CT to maximize intrusion detection
performance in response to changing attacker behaviors at
runtime.
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