
Behavior-to-Placed RTL Synthesis with Performance-Driven Placement

Daehong Kimx, Jinyong Jungx, Sunghyun Leex, Jinhwan Jeonz, and Kiyoung Choix
xElectrical Engineering and Computer Science, Seoul National University,

Seoul 151-742, Korea
zGCT Research, Inc., Seoul 151-742, Korea

Abstract
Interconnect delay should be considered together with computa-
tion delay during architectural synthesis in order to achieve timing
closure in deep submicrometer technology. In this paper, we pro-
pose an architectural synthesis technique for distributed-register
architecture, which separates interconnect delay for data transfer
from component delay for computation. The technique incorpo-
rates performance-driven placement into the architectural synthe-
sis to minimize performance overhead due to interconnect delay.
Experimental results show that our methodology achieves perfor-
mance improvement of up to 60% and 22% on the average.

1 Introduction

In deep submicrometer (DSM) technology, logic delay no longer
dominates overall system delay because of the increase of inter-
connect delay [1]. This trend will continue in future deeper submi-
crometer technology with the continuous scaling of process tech-
nology, which will cause longer interconnect delay due to RC de-
lay, coupling noise, inductance, etc. [2][3]. In such a situation,
the conventional design flow that performs architectural synthesis,
logic synthesis, and layout synthesis in sequence may never achieve
timing closure. This is because accurate information of intercon-
nect delay is not available until the completion of physical layout,
resulting in high-level and logic synthesis with no or wrong inter-
connect delay information. To overcome this problem, lots of re-
searches have been carried out to obtain/exploit relatively accurate
information of interconnect delay for a design at higher levels of
abstraction [4][5][6][7][8][9].

The effectiveness of obtaining interconnect delay information
and exploiting it at higher levels of abstraction depends on the tar-
get architecture as well as the synthesis algorithm. The target archi-
tectures that are employed by typical synthesis systems are based
on centralized register file. In such an architecture, functional units
(FUs) read/write their operands/results from/to a centralized regis-
ter file through relatively long interconnect [10], which is responsi-
ble for a portion of total clock cycle time. The portion has become
comparable to the rest of the cycle time due to the dominance of in-
terconnect delay in DSM technology and can be even three or four
times larger in deeper submicrometer technology. Therefore, the
interconnect delay plays an important role in determining the crit-
ical path and the cycle time for the architecture. However, the ex-
isting architectural synthesis methodologies for such architectures
do not take good care of the interconnect delay during architectural
synthesis. They usually add the interconnect delay to the operation
delay, resulting in long cycle time. This approach keeps FUs idle
during the long interconnect delay for data transfer.

The distributed-register architecturethat we adopt in this paper
enables separating interconnect delay for data transfer from FU de-
lay for computation. The result of an FU’s computation does not
need to be transferred right after the computation. The data trans-
fer can be done independently any time later. We do not assume
the data transfer between FUs to be completed within one clock

cycle, but allow it to be performed across multiple clock cycles.
Data transfers are treated in the same way as FU computations.
The difference is that while FU delay is a constant value, inter-
connect delay depends on the placement of FUs. To improve the
system performance, we need good estimation and optimization of
interconnect delay and that is why we perform placement during
architectural synthesis.

In this paper, we propose architectural synthesis with performa-
nce-driven constructive placement, targeting a distributed-register
architecture. Our performance-driven constructive placement algo-
rithm takes bound DFG as an input and outputs the information
about the component location and the estimated data transfer de-
lay between interconnected components. We assume data intensive
applications and therefore take DFG as an input.

The related work with respect to combination of architectural
synthesis with placement is given in section 2. In section 3, we il-
lustrate our target architecture and the motivation. After the overall
design flow in section 4, we present the details of our performance-
driven constructive placement algorithm in section 5. In section
6, we present experimental results including comparisons with the
existing approaches. Finally we conclude in section 7.

2 Related Work

There have been a lot of researches into architectural synthesis
with placement to reduce the interconnect delay [5][6][7][8][9].
Weng and Parker [5] schedule, bind, and place nodes constructively
for all operations along the critical path, followed by an iterative
improvement procedure in order to minimize the interconnection
costs. Fang and Wong [6] perform performance-driven FU binding
and simulated annealing based floorplanning simultaneously and
Prabhakaran and Banerjee [7] combine scheduling, binding, and
floorplanning under a simulated annealing based algorithm. Mosh-
nyaga et al. also presented the combination of architectural synthe-
sis with performance-driven placement in [8] and [9].

Our approach is unique in two aspects compared to the previous
approaches. First, all the previous approaches mentioned above fo-
cus on reducing the portion occupied by interconnect delay within
a clock cycle through placement. They improve the system latency
by reducing the cycle time1. They give limited performance im-
provement since the interconnect delay still constitute a big portion
of the cycle time in DSM technology. On the contrary, in our ap-
proach, long interconnect delay does not form the cycle time, com-
bined with FU delay, which enables us to reduce the clock cycle
time, thereby reduce the slack time wasted with idle FUs. Second,
our approach incorporates the concept of multi-cycle interconnect
delay (data transfer with multi-cycle delay) into scheduling and
treat each data transfer as a FU with variable delay. We try to re-
duce the number of clock cycles needed by each data transfer using
an appropriate placement of components that are related to the data
transfer, resulting in the reduction of system latency.

1In this paper, we define the system latency as the number of clock cycles multi-
plied by the cycle time.

Register
file

Interconnect

FU

Figure 1: Distributed-register architecture.

Few researches into architectural synthesis with placement in a
distributed-register architecture have been done. In [11], Authors
schedule, bind nodes concurrently in a distributed environment and
then place nodes. It is an iterative process and is repeated until the
result converges or the exit condition (the iteration limit) is met.

3 Target Architecture and Motivation

3.1 Target architecture

In this subsection, we propose a distributed-register architecture
as the target architecture to assure the separation of data transfer
from computation and manage multi-cycle interconnect delay. In
this architecture, each FU performs computation by reading data
from some dedicated local storage elements (registers or latches)
and writing the result into some dedicated local storage elements.
Global data transfers occur between FUs by moving data from a
local storage element of the source FU to that of the destination
FU. Therefore, the global data transfer delay between FUs is sep-
arated from the computation delay in the distributed architecture.
Figure 1 shows a simple model of the architecture. We use the
term componentto denote a logic block that consists of an FU,
dedicated registers, and local interconnects. Type of a component
denotes the type of the FU in the component. We define two more
terms – intra-component cycle time(TINTRA) for the computation
and inter-component cycle time(TINTER) for the data transfer – that
are defined as

TINTRA = TLOGIC+TR2FU +TFU2R+TSETUP+TCLK2Q

TINTER = TSETUP+TR2Ri+TCLK2Q

where TLOGIC, TSETUP, and TCLK2Q represent FU delay, register
setup time and clock-to-register output delay, respectively. TR2R is
the interconnect delay between dedicated registers through global
interconnect and depends on the location and the area of FUs to
which corresponding registers belong. Note that both TR2FU and
TFU2R are almost constant and have negligible values due to the
property of distributed architecture. In DSM, TINTER can be equal
to or longer than TINTRA due to the dominant interconnect delay
TR2R.

Assume that we appropriately assign operations and variables
to FUs and their dedicated registers, respectively, in such a way
that the number of inter-component data transfers is minimized. If
we assume that TINTER is larger than TINTRA and we determine
the system clock based on TINTER, then the clock cycle will con-
tain significant slack. Therefore, to minimize the slack (and so the
system latency), we need to treat the data transfer between compo-
nents, which has relatively long interconnect delay, as a multi-cycle
operation.

The distributed architecture requires more complex FU/register
binding algorithm compared to the centralized one. It also requires
more registers and more complex controller in general. However,

Adder1 Multiplier1 Bus1

10ns 20ns 20ns

14ns

Adder1 Multiplier1

Bus1

+

+ *

Adder1

Adder1 Multiplier1

Adder1 Multiplier1

10ns 20ns

32ns

(a) (b)

(d)(c)

Figure 2: Reduction of clock cycle time due to multi-cycle inter-
connect delay under our target architecture.

it is rather efficient in DSM if we properly manage multi-cycle in-
terconnect.

3.2 Motivation

3.2.1 In terms of reducing cycle time

In this subsection, we explain the concept of multi-cycle intercon-
nect delay in more detail using a simple example of distributed-
register architecture. We show that overall system latency is im-
proved by allowing multi-cycle data transfer between FUs.

Figure 2(a) represents a simple example that consists of two ad-
ditions and one multiplication. Multiplier1 accepts the result from
the adder1 to perform its multiplication operation. First, assume
that the target architecture is based on centralized register file. If
TR2FU +TFU2R is 20 ns and TSETUP+TCLK2Q is 2 ns, we obtain a
clock cycle time of 32 ns (10+20+2) based on optimal clock selec-
tion [12] and the system latency of 96 ns (32*3) as shown in Figure
2(b). Note in this case that interconnect delay is contained within
a clock cycle. Next let’s consider the case of multi-cycle intercon-
nect delay under distributed-register target architecture. Assuming
that interconnect delay from adder1 to multiplier1 is 20ns, which
is longer than the execution time of adder1, and TR2FU +TFU2R is
2 ns, the scheduling result of Figure 2(c) is obtained. We get the
optimal clock cycle of 14 ns (10+2+2) and the system latency of
70 ns (14*5). Figure 2(d) is the target architecture based on the
scheduling result of Figure 2(c), where the data transfer takes two
effective clock cycles.

The distributed-register architecture can reduce the system la-
tency in two ways. First, through multi-cycling of data transfers,
it enables us to select smaller clock cycle time, which reduces the
wasteful slack induced by the difference between computation time
and cycle time, thereby minimizing the system latency. Secondly,
it enables parallel execution of data transfers and computations.
While data is transferred on a global bus, we can initiate a new
operation in an FU or another data transfer through a different bus.
Recall that, in the centralized architecture, the interconnect delay is
merged with an FU delay into a clock cycle and therefore it is not
allowed to initiate a new operation or a data transfer.

.2

*

-

*

* * * +

*

-

+ <

Mult1
Mult2

Mult3

ALU1

ALU2

*

-

*

*

-

OPDELAY(MULT2) = 4 cycles

OPDELAY(MULT2-MULT1) = ? cycles

OPDELAY(MULT1) = 4 cycles

OPDELAY(ALU1) = 1 cycle

OPDELAY(ALU1) = 1 cycle

OPDELAY(ALU1-MULT1) = ? cycles

OPDELAY(MULT1-ALU1) = ? cycles

System latency: 9 * 14 = 126 ns

Mult1

Mult2

ALU1

ALU2 Mult3

Mult2

Mult1

ALU1

ALU2 Mult3

2 cycles

1 cycle

1 cycle 1 cycle

9 * 13 = 117 ns

(a) (b)

(d)(c)

Figure 3: Reduction of the number of clock cycles via performa-
nce-driven placement.

3.2.2 In terms of reducing the number of clock cycles

We also explain how the number of clock cycles occupied by the
interconnect delay can be reduced through a placement of com-
ponents in a distributed-register architecture. As illustrated in the
previous subsection, the multi-cycle interconnect delay affects the
system latency independently. Using the fact that the interconnect
delays depend on areas and locations of components within a layout
frame, a good performance-driven placement should be incorpo-
rated into the architectural synthesis to improve the system latency.

Figure 3(a) is a simple example of a differential equation solver
to illustrate the effect of a performance-driven placement on the
latency. Solid arrows represent intra-iteration data dependencies
and dotted ones represent inter-iteration data dependencies. As-
sume that three multipliers and two ALUs are allocated and bound
as shown in Figure 3(a), and the execution times of an ALU and
a multiplier, TR2FU + TFU2R, and TSETUP+ TCLK2Q are 5 ns, 30
ns, 2 ns, and 2 ns, respectively in our distributed-register architec-
ture. Optimal clock is determined as 9 ns (5+2+2) based on optimal
clock selection [12] and therefore a multiplication operation is per-
formed across four clock cycles. Figure 3(c) and 3(d) show two
alternatives for the placement. In the former, the data transfer from
Mult2 to Mult1 occupies two clock cycles due to relatively long
interconnect and the transfer from Mult1 to ALU1 takes one clock
cycle, resulting in the critical path length of 14 clock cycles and so
system latency of 126 ns. On the contrary, the latter which is the
result of our performance-driven constructive placement has the la-
tency of 117 ns (9 *13) due to the data transfer from Mult2 to Mult1
with one clock cycle.

4 Overall Design Flow

Figure 4 shows the overall design flow of our architectural synthe-
sis with placement. Given a DFG and resource allocation table,
we first select the optimal clock, which is based on [12] and our
distributed-register architecture.

Next we perform binding before scheduling. For interconnect

Clock Selection

Binding

PD Placement

DFG

RTL

Scheduling

Post Processing

Figure 4: Overall design flow.

dominance in DSM, it is reasonable to perform binding first so that
the delay for steering logic and wiring can be derived from the bind-
ing followed by placement. Our architectural synthesis now sup-
ports point-to-point interconnect scheme. Our performance-driven
placement takes bound DFG, clock cycle, layout frame size, and
component aspect ratio as inputs and places constructively the crit-
ical components on the critical path as close as possible so as to
reduce the number of clock cycles occupied by the interconnect de-
lay. The placement algorithm will be presented in detail in section
5. After placement, the estimated interconnect delay is available
and used for the data transfers, which are treated like computations
with fixed delay, in the scheduling phase.

4.1 Binding

The objective of the binding is to bind operations to FUs (or com-
ponents) such that data transfers among components with the same
type are minimized, and data transfers among components with dif-
ferent types are localizedas much as possible. The localization
means binding operations to components that are already involved
with the heaviest traffic. Such components are placed nearby so
that the interconnect delay between them is minimized. The local-
ization strategy is used for tie breaking.

Detailed procedure for our binding is as follows. We first per-
form list scheduling without considering register-to- register inter-
connect delays, and construct a weighted compatibility graph for
each operation type. There are two kinds of weight: high weight
for an edge between a pair of compatible nodes with data transfer
and low weight for an edge between a pair of compatible nodes
with no data transfer. For the operation type with largest area, we
search for the maximum weighted cliques that cover the graph [13].
Then we select the weighted compatibility graph for the operation
type with the next largest area and repeat the same process. In case
of tie, we consider localizationof inter-component data transfers.
Figure 3(a) shows the result of our binding for the differential equa-
tion solver.

5 Performance-Driven Placement

5.1 PD constructive placement

In this section, we present the performance-driven place-ment for
the distributed-register architecture. It is based on the concept of
inter-cycle slack windowwhich is obtained by converting inter-
cycle slack information of an interconnect to the corresponding ge-
ometrical constraint for component placement. A placement using
the concept of windowwas proposed for performance optimization
of combinational circuits in [14]. Our placement algorithm is basi-
cally the same in that it combines timing and geometric constraints

1: Create PATHLIST();
2: Calculate inter-cycle slack of each net in each path();
3: while (PATHLIST is not empty) do
4: begin
5: Select the most critical path();
6: while (all the module are placed) do
7: Select the most critical module();
8: Place the module();
9: end;
10: Break all the paths associated with the modules into sub-paths();
11: Include the generated sub-paths in PATHLIST();
12: Remove the broken paths from PATHLIST();
13: Remove the current critical path from PATHLIST();
14: end;

Place the module()

{

1: if (the modules which have interconnects with the module to be placed are already placed)

2: if (the number of the associated modules is two) {

3: Construct the inter-cycle slack windows of the corresponding placed modules;

4: Construct the intersection region for two windows;

5: Place the module at a position that is closest to the associated modules within the region;

6: } else {

7: Construct the inter-cycle slack window of the placed module;

8: Place the module at a position that is closest to the associated module within the window;

9: }

10: else Place the module at free space considering the layout frame size;

}

(a)

(b)

Figure 5: Overall process of performance-driven constructive
placement.

using the concept of window. However, it uses a new metric of
inter-cycle slack to be incorporated into architectural synthesis for
distributed-register architecture.

Definition 1. An interconnected component graph(ICG) is a
graph, G(NICG;EICG), where NICG is a set of components to which
operation nodes are bound and EICG is a set of directed edges be-
tween components and denotes data transfers between components.
A solid edge represents a data transfer within the same iteration and
a dotted edge represents an inter-iteration data transfer.

Definition 2. An inter-component data edgeis a directed edge
in DFG whose source node and target node are bound to different
components. In our distributed-register architecture, a data transfer
corresponding to the inter-component data edge requires delay of
at least one clock cycle.

Definition 3. The inter-cycle slackof an inter-component data
edge is the mobility of the data transfer corresponding to the inter-
component data edge in the number of clock cycles. It is kept as an
attribute of the inter-component data edge.

Definition 4. A component path(CP) is a path in ICG that cor-
responds to a path in DFG. Operation nodes that are on the path
in DFG and executed successively in the same component are all
mapped to one corresponding component on the corresponding path
in ICG. An inter-component data edge in DFG corresponds to an
edge on a CP.

Overall process of our performance-driven placement is shown
in Figure 5. First we make an ICG, which is actually an input of
our placement algorithm, from a bound DFG and resource alloca-
tion table, and create a list of CPs from the ICG (line 1 in Figure
5(a)). Figure 6 shows an ICG and a list of CPs from the bound
DFG in Figure 3(a). Next we calculate the inter-cycle slack of each
edge (inter-component data edge in DFG) in each CP, using sim-
ple list scheduling of the given DFG under binding constraints and
assuming that lower bound data transfer delay of inter-component

Mult1 Mult2

Add1 Mult3 Add2

intra-iteration communication

inter-iteration communication Mult1

Add1

Mult1

Mult2

Mult1

Add1

Mult2

Mult2

Mult3

Add1

Mult1

Mult3

Add1

Mult2

Mult2

Add2

Mult3

0

0

0 0

0

0

2

0

2

0 1

1

Figure 6: Interconnected component graph and a list of component
paths.

Mult1

Mult2
0

allowable delay of MULT-to-MULT interconnect =
(inter-cycle slack of the interconnect + lower bound
clock cycle of the interconnect)*(clock cycle)

Ex) Dm1,m2 = (0+1)*9 = 9 (ns)

interconnect delay =
constant*(interconnect length)2

Ex) Dm1,m2 = K * Lm1,m22

The center of the
placed module

placed

to be placed

Lm1,m2

Lm1,m2

Figure 7: Construction of inter-cycle slack window.

data edge is one clock cycle (line 2). The number beside each edge
in Figure 6(b) is the calculated inter-cycle slack. The selection of
critical path within a CP list (line 5) and critical component among
components comprising a CP (line 7) is done according to the fol-
lowing criteria.

Critical path:

1. The path that has the smallest sum of inter-cycle slacks of all
edges on the path.

2. In case of tie, the path that has as many types of inter- com-
ponent data transfers as possible.

Critical component:

1. The bigger of the two components associated with the edge
that has the smallest inter-cycle slack.

2. In case of tie with respect to inter-cycle slack of the edge, se-
lect the edge in the order of multiplier-to-multiplier, multipl-
ier-to-ALU, and ALU-to-ALU etc.

After selecting the critical module, we place it based on inter-
cycle slack windowwithin layout frame (Figure 5(b)). As men-
tioned before, inter-cycle slack window is a geometrical window,
constructed using inter-cycle slack information of the correspond-
ing edge. Specific process of the window construction is illustrated
in Figure 7. We assume that each component has a rectangular
shape that cannot be rotated and interconnect length between two
components is the distance from the center of one component to
that of the other. As shown in Figure 7, the slack information is
transformed to geometrical window using the relation of intercon-
nect delay with its rectilinear length [15].

After placing all the components on the selected CP, we modify
the list by breaking CPs that have components already placed (line
10, 11, 12, 13). The process is repeated until no CP is left in the
list. When placement is completed as shown in Figure 8, we can
estimate the data transfer delays for inter-component data edges

Mult2

Mult1

ALU1

ALU2 Mult3 9ns

*1

-

*2 *3

*4
*5

*6

-

+

<

1

2

3

5
+4

MULT2-to-MULT1: 8 ns, 1 clock cycle
MULT1-to-ALU1 : 7 ns, 1 clock cycle
MULT2-to-ALU1 : 7 ns, 1 clock cycle
MULT3-to-ALU1 : 7 ns, 1 clock cycle
MULT2-to-ALU2 : 5 ns, 1 clock cycle
MULT3-to-ALU2 : 5 ns, 1 clock cycle

Figure 8: Final placement and schedule.

9ns

*1

-

*2 *3

*4
*5

*6

-

+

<

1

2

3

5
+4 9ns

*1

-

*2 *3

*4
*5

*6

-

+

<

1

2

3

5
+4

9 * 13 = 117 ns 9 * 12 = 108 ns

Figure 9: Retiming of data transfers.

and determine the number of clock cycles that can accommodate
the estimated delay. During placement, we reserve routing area
and routing paths. The interconnect length between components is
computed by shortest path length along the reserved path. Based on
the computed interconnect lengths, the data transfer delay for inter-
component data edges is estimated by the equation shown in Figure
7. Figure 8 also shows the final schedule of Figure 3(a) using the
estimated data transfer delay in terms of clock cycles.

5.2 Post processing

We perform two kinds of post-processing. One is retiming of data
transfer using the property of our distributed-register architecture to
improve the system latency further. As illustrated in Figure 9, when
data transfers occur in the last clock cycle due to the inter-iteration
dependencies, they can be retimed, resulting in about 8% additional
latency improvement. The other is merging components with small
interconnect delays between them (and so large intra-clock slacks).

Definition 5. An intra-cycle slackis the difference between the in-
terconnect delay, which corresponds to inter-component data edge,
and the clock cycle.

Using the whole clock cycle for small interconnect delay is a
waste. In Figure 10, assume the clock cycle time is 9 ns and the in-
terconnect delay from ADD1 and ADD2 is 3 ns (intra-cycle slack is
6 ns). Then the merging results in the reduction of one clock cycle
in the system latency. Note that, after merging, the corresponding
operation delay must not exceed the clock cycle boundary.

ADD2ADD1

REG REG

+

+

+

+

ADD1

ADD2

ADD2ADD1

REG
+

+
+

+

ADD1
ADD2

Figure 10: Component merging.

Table 1: Comparisons in terms of binding and/or placement

Resources α Latency (ns) Improvement (%)
PLACE(1) Ours(2) (2)/(1)

1.0 192 192 0.0
fir11 +1*3 1.5 198 198 0.0

2.0 198 198 0.0
1.0 240 234 2.5

iir7 +2*3 1.5 246 240 2.4
2.0 252 246 2.4
1.0 270 240 11.1

dct +2*3 1.5 276 240 13.0
2.0 282 246 12.8
1.0 432 402 6.9

wavelet +2*3 1.5 438 408 6.8
2.0 450 420 6.7
1.0 402 342 14.9

nc +2*4 1.5 402 372 7.5
2.0 414 408 1.4
1.0 198 222 -12.1

parallel +2*5 1.5 216 228 -5.6
2.0 216 234 -8.3

Average 3.5

6 Experimental Results

We implemented overall design flow using C++ under UNIX en-
vironment. The implementation takes a VHDL description for an
application and compiles it into a DFG. A series of experiments
with data-dominated applications were performed to evaluate our
architectural synthesis with placement. Applications used are an
11th order FIR filter, a 7th order IIR filter, a DCT, a wavelet filter,
a noise canceller, and a parallel form of Avenhaus filter. We as-
sumed that the delays of an adder and a multiplier are 4 ns and 40
ns, respectively and that, in our distributed architecture, TR2FU +
TFU2R+TSETUP+TCLK2Q is 2 ns.

To show the effects of our performance-driven constructive pla-
cement along overall flow on the latency reduction, we first com-
pared our scheme with the same flow with a different placement,
which is done by normal slicing floorplan based on min-cut parti-
tioning (PLACE). Table 1 shows the latency improvement of up to
15% and 3.5% on the average over PLACE. These results show that
in our distributed-register architecture, it is very important to place
nodes on critical paths as close as possible. To see the effect of
interconnect delay on the latency improvement, we experimented
under different values of interconnect delay. We multiplied all the
interconnect delays by a factor α, which indicates the extent of in-
terconnect dominance indirectly. We used three values of α: 1.0,
1.5, and 2.0.

Next, to show the effectiveness of the proposed flow, we also
compared it with the three completely different flows using dis-
tributed architectures, running on the same applications. The first
one, which we call LS in this section, performs the conventional
list scheduling and binding in sequence and allows neither separa-
tion of the data transfer delay from FU delay nor multi-cycling of
data transfer. The second one, which is represented by RESYN,
is the re-synthesis algorithm that performs re-scheduling and clock
optimization as post processing after interconnect delay is added to
the computation time of each operation [16] and is modified such

that it supports the separation and multi-cycling of the data transfer.
The last one, which is represented by PDSI, is an iterative concur-
rent scheduling and binding algorithm that takes interconnect delay
into account and supports the separation and multi-cycling. To gen-
erate the interconnect delays during the three flows, we performed
floorplanning from the synthesis result obtained in the previous it-
eration of the synthesis loop. For fair comparison, the cycle time
in all the flows, including our approach, is determined based on
optimal clock selection [12]. While our constructive approach de-
termines the clock cycle time based on computation delay only, the
above three flows determines the cycle time based on both compu-
tation delay and interconnect delay, obtained at the end of previous
iteration. Table 2 shows the reduction of up to 60%, 51%, and 13%
over LS, RESYN, and PDSI, respectively. The large improvement
over LS is primarily because in LS, interconnect delay is incorpo-
rated into the cycle time, and therefore large clock slack is created
and concurrent data transfer and computation cannot be performed.
While RESYN supports the separation and multi-cycling of data
transfer, it does not consider data transfer delay during synthesis,
but consider it at the post-processing step, resulting in limited im-
provement over LS. PDSI shows slightly better latency over our
approach on some of the given applications. This is because its
iterative process complements the inability to consider the inter-
connect delay during synthesis. But while PDSI is iterative and
therefore it needs to assure that the final solution converges, our
approach is constructive.

7 Conclusions

As the process technology goes into deep submicrometer, intercon-
nect delay has become comparable to computation delay and is now
the major bottleneck in performance. In this paper, we proposed
an approach that combines architectural synthesis with placement
under distributed-register architecture to minimize the system la-
tency, which can handle the dominant interconnect delay effec-
tively in DSM. Our distributed-register architecture separates in-
terconnect delay from computation delay and supports multi-cycle
interconnect delay. We used the performance-driven constructive
placement based on inter-cycle slack window to reduce the criti-
cal interconnect delay in terms of the number of clock cycles. We
can achieve the latency improvement of up to 60% and the aver-
age improvement of 22% over different approaches assuming the
distributed-register architecture.

As we are still at the early stage of a behavior-to-layout synthe-
sis research, there is much work to do. One of important research
areas is on synthesizing a distributed controller that is appropriate
for our distributed-register architecture. In addition, we are trying
to refine our placement algorithm, targeting FPGA synthesis, where
interconnect delay is extremely dominant.

References

[1] International Technology Roadmap for Semiconductor. Semiconductor Industry
Association, 1999.

[2] D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,” in Proc.
Int’l Conf. on Computer Aided Design, pp. 203–211, Nov. 1998.

[3] Y. I. Ismail, E. G. Friedman, and J. L. Neves, “Figures of merit to characterize
the importance of on-chip inductance,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 7, Dec. 1999.

[4] S. Tarafdar, M. Leeser, and Z. Yin, “Integrating floorplanning in data-transfer
based high-level synthesis,” in Proc. Int’l Conf. on Computer Aided Design,
pp. 412–417, Nov. 1998.

[5] J. P. Weng and A. C. Parker, “3D scheduling: high-level synthesis with floor-
planning,” in Proc. Design Automation. Conf., pp. 668–673, 1991.

[6] Y. M. Fang and D. F. Wong, “Simultaneous functional-unit binding and floor-
planning,” in Proc. Int’l Conf. on Computer Aided Design, pp. 317–321, 1994.

Table 2: Comparisons in terms of overall flow

Res. α Latency (ns) Improvement (%)
LS RESYN PDSI Ours (4)/(1) (4)/(2) (4)/(3)
(1) (2) (3) (4)

fir11 +1*3 1.0 237 201 183 192 19.0 4.5 -4.9
1.5 242 203 185 198 18.2 2.5 -7.0
2.0 264 211 187 198 6.2 6.2 -5.9

iir7 +2*3 1.0 324 259 239 234 27.8 9.7 2.1
1.5 379 276 244 240 36.7 13.0 1.6
2.0 401 300 240 246 38.7 18.0 -2.5

dct +2*3 1.0 402 391 269 240 40.3 38.6 10.8
1.5 478 445 276 240 49.8 46.1 13.0
2.0 550 501 282 246 55.3 12.8 12.8

wavelet +2*3 1.0 570 482 432 402 29.5 16.6 6.9
1.5 610 522 437 408 33.1 21.8 6.6
2.0 697 526 438 420 39.7 20.2 4.1

nc +2*4 1.0 649 580 394 342 47.3 41.0 13.2
1.5 748 697 399 372 50.3 46.6 6.8
2.0 880 840 410 408 53.6 51.4 0.5

parallel +2*5 1.0 420 305 196 222 47.1 27.2 -13.3
1.5 552 376 201 228 58.7 39.4 -13.4
2.0 589 444 211 234 60.2 47.3 -10.9

Average 39.5 25.7 1.1

[7] P. Prabhakaran and P. Banerjee, “Parallel algorithm for simultaneous scheduling,
binding and floorplanning in high-level synthesis,” in Proc. Int’l Symposium on
Circuits and Systems, vol. 6, pp. 372–376, 1998.

[8] V. G. Moshnyaga and K. Tamaru, “A placement driven methodology for high-
level synthesis of sub-micron ASIC’s,” in Proc. Int’l Symposium on Circuits and
Systems, vol. 4, pp. 572–575, 1996.

[9] Y. Mori, V. G. Moshnyaga, H. Onodera, and K. Tamaru, “A performance-driven
macro-block placer for architectural evaluation of ASIC designs,” in Proc. the
Eighth Annual IEEE International ASIC Conference and Exhibit, pp. 233–236,
1995.

[10] High Level synthesis: Introduction to Chip and System Design. Kluwer Aca-
demic Publishers, Inc., 1992.

[11] J. .Jeon, D. Kim, D. Shin, and K. Choi, “High-level synthesis under multi-
cycle interconnect delay,” in Proc. Asia South Pacific Design Automation Conf.,
pp. 662–667, Jan. 2001.

[12] S. Narayan and D. D. Gajski, “System clock estimation based on clock slack
minimization,” in Proc. Design Automation. Conf., pp. 66–71, 1992.

[13] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill,
Inc., 1994.

[14] I. Lin and D. H. C. Du, “Performance-driven constructive placement,” in Proc.
Design Automation. Conf., pp. 103–106, 1990.

[15] N. Weste and K. Eshraghian, Principles of CMOS VLSI Design, A System Per-
spective. Addison-Wesley, Inc., 1985.

[16] S. Park, K. Kim, H. Chang, J. Jeon, and K. Choi, “Backward-annotation of post
layout delay information into high-level synthesis process for performance opti-
mization,” in Proc. Sixth International Conference on VLSI and CAD, pp. 25–28,
1999.

