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Abstract An outline is given of the behavioral properties (axioms) that have
been proposed, and to some extent empirically evaluated, concerning uncer-
tain (often risky) alternatives, the joint receipt of alternatives, and possible
linking properties. Recent theoretical work has established the existence
of three inherently distinct risk types of people—risk seeking, risk neutral,
and risk averse—and so evaluations of theories must take respondent type
into account. A program of experiments is sketched making clear exactly
which empirical studies need to be repeated with respondents partitioned by
risk type.

Keywords Gambles · Joint receipt · p-Additive representation · Risk types ·
Uncertain alternatives

JEL Classification C91 · D46 · D81

The term “behavioral economics” or “experimental economics” seems to have
been mostly used for experimental studies of various models of economic
interactions. But in my view it should also include experimental evaluation of
the behavioral axioms underlying theories of individual behavior which have
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been evolving for more or less realistic economic situations and leading to
forms of utility representations.

During the past 20 years, I have been fairly deeply involved in trying
to understand how two distinct economic structures inter-relate and the
sorts of numerical representations that can arise as a result of formalized
assumptions concerning these inter-relations. The one structure has to do with
consequences attached either to uncertain events resulting in what are often
called “gambles” or to risky events (i.e., with known probability of events
occurring) resulting in what are often called “lotteries”. This certainly has been
the mainstay for well over half a century of anything that purports to be a
theory of utility for uncertain or risky situations. The second structure has to
do with the concatenation of valued items which is called their joint receipt
(see Section 1.2 for more detailed discussion of this concept). This riskless
aspect of utility seems functionally to have been declared to be outside the
scope of utility theory even though behavioral axiomatizations of uncertain
alternatives result in a utility function over riskless alternatives which are now
taken for granted. Nonetheless, a few of us think that joint receipt is inherent
to economic situations and that by including it we gain considerable richness
of structure that can be effectively exploited.

My purpose here is to formulate in one place the key behavioral assump-
tions (axioms) that theorists have proposed and that might be evaluated
empirically in, first, the (binary) case of n = 2 branches, and then in the
general case of n branches which is approached by starting with the binary
results and studying recursive relations known as branching and upper gamble
decomposition (see Section 3). The proposed experimental program is quite
large, and I am unable to undertake it because I no longer teach or supervise
graduate students and do not have a suitable laboratory. My hope is that this
article may stimulate others to do so.

In many ways, the type of behavioral science this represents is intellectually
far closer to the types of physics that arose during the 16th through 19th
centuries—the study of macroscopic phenomena and the discovery of the laws
of mechanics, motion, thermodynamics, hydro-dynamics, electromagnetism,
relativity, etc.—than it is “to the opening of black boxes”—atomic structure,
quantum physics, much of planetary theory, plate tectonics, geology, etc.
typical of much physics in the 20th and first decade of the 21st centuries. What
we currently seem able to do is attempt to discover the behavioral axioms,
some of which are invariances, that form compact summaries of behavioral
regularities. And sometimes these axioms formulate enough structure to be
able to derive numerical representations of them. A well known example
concerns the axioms giving rise to the subjective expected utility (SEU)
representation (originated by Savage 1954). Of course, I fully realize that huge,
very expensive efforts are being made, often involving computational brain
models that are loosely tied to imaging data, that are intended to open the
black box that is the human brain and/or mind, but those “internal networks”
never seem to become firmly agreed upon. Important though it may be, such
reverse engineering is inherently very, very difficult, as modern physicists
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and engineers are perfectly aware, especially when one is not certain what
the appropriate components are. Imagine trying to infer what gives rise to
observable behavior of some computer when you don’t know of what electrical
components went into its construction. So the focus here is the “laws” that lead
to representations and that need to be checked experimentally.

It is important to recognize that utility representations, e.g., SEU, neither
reside in the mind of the decision maker (DM) nor are used directly by the DM
to make choices any more than the partial differential equations of classical
physics and their solutions lurk within the objects whose behavior they charac-
terize. Both representations are creations of scientific attempts to summarize
compactly the relevant behavior, thereby making it more convenient to derive
predictions from the collection of behavioral “laws.”

That is exactly why we bother to work out the representations: to dis-
cover behavioral implications of the underlying assumptions (ultimately called
“laws,” should they withstand empirical testing). We will see a vivid exam-
ple of this below in Sections 1.2.3 and 1.2.4. Further, a great deal of the
empirical research that the psychologist Michael H. Birnbaum has used to
attack the class of rank-dependent models (including the famed cumulative
prospect theory, CPT, of Tversky and Kahneman 1992) is of that character.
Of course, aficionados of CPT simply dismiss or ignore Birnbaum’s findings.
For a summary of his results until 2004 with detailed references to his relevant
publications, see Marley and Luce (2005) and also Birnbaum (2008).

My aim here is to propose an empirical program having two distinct parts.
The first is designed to evaluate several interrelated putative binary “laws” in
a fashion that should pinpoint which, if any, assumptions appear to be wrong.
Once the binary case is clarified, we turn to some possible generalizations
to gambles with n > 2 branches. These are based on inductive axioms that
simply have not yet been evaluated empirically. One quite novel feature of the
program is that the binary results lead to a qualitative classification of people
into 3 risk types (Section 1.2.3), which for good reasons I call “risk seeking,”
“risk neutral,” and “risk averse.”1 This partition must be taken into account
in empirically evaluating properties of the model. This, of course, complicates
the experimental program considerably.

Of course behavioral properties for which the type distinction does not
matter need not be repeated; these are listed in Section 4.1 and include transi-
tivity and monotonicity of preference, commutativity and associativity of joint
receipt, and several less familiar concepts. The focus of the rest of Section 4
is on how to decide for individual respondents which type they are and how
the behavioral laws linking gambles and joint receipt vary with type.

Formal theorems and their proofs are not stated here.

1These terms are commonly used referring to shapes of utility functions, and I relate my
clasification to them, in particular to the Arrow-Pratt risk classification (Section 2.3).
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1 Underlying empirical structures

1.1 Primitives

1.1.1 Consequences and preference order

Suppose that X is the (rich) set of valued, pure consequences under considera-
tion. By “pure” I mean viewed as certain, i.e., without perceived risk. A special,
but important, example is money. But X can include far more substantive
consequences than that, e.g., goods at stores when they are viewed as risk-
less, etc.

We postulate that the DM exhibits preferences over consequences that can
be summarized as a weak (preference) order � over X. The key property of �
is transitivity:

If x � y and y � z, then x � z. (1)

As usual, x ∼ y means that both x � y and y � x hold. Because the in-
difference relation ∼ is an equivalence relation, we are in reality working with
equivalence classes.

In principle transitivity can be studied empirically, but in practice some
fairly troublesome statistical issues have been encountered in making this
evaluation. Some data analyses proved to be in error, but the current consensus
is that we need not reject transitivity. The details until 1999 are found in Luce
(2000, pp. 37–39). Crucially important were analyses of Iverson and Falmagne
(1985), Regenwetter and Davis-Stober (2008), and Regenwetter et al. (2010).
A somewhat different explanation of the data is offered by Birnbaum and
Gutierrez (2007).

1.2 Joint receipts (JR)

Suppose that x, y ∈ X, then let x ⊕ y ∈ X mean having both x and y. Thus ⊕
is a binary operation (of joint receipt, often abbreviated JR) on X. Examples
of joint receipt are ubiquitous—anytime one shops for two (or more) things,
that purchase results in a joint receipt of goods. Buying a portfolio of financial
assets is another example. There are subtle issues of definition of a good. In
buying a pair of shoes, is that the joint receipt of the left shoe and the right
shoe or is it simply that the pair of shoes is a unitary good? The complications
of the former interpretation far exceed its usefulness to the consumer.

We assume that 〈X, e, ⊕, ∼〉 satisfies the usual axioms of what is technically
called an abelian (weakly commutative) group with identity e (see Cho and
Luce 1995; Cho et al. 1994). In particular, in addition to ∼ being an equivalence
relation, the assumptions are that for all x, y, z ∈ X, there is an element e ∈ X,

called “ no change from the status quo,” that is an identity of the operation:

x ⊕ e ∼ x, (2)
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that commutativity holds:

x ⊕ y ∼ y ⊕ x (3)

and that associativity holds:

(x ⊕ y) ⊕ z ∼ x ⊕ (y ⊕ z). (4)

The binary definition of ⊕ extends to any finite number of goods because
we have assumed that ⊕ is associative. In the psychophysical context and for
some interpretations of ⊕, failures of (3) have been found. I know of nothing
comparable in utility theory.

If x ∈ X and if x � e, then x is called a gain. If x � e, then x is called a
loss. Clearly joint receipt of two gains is a gain and of two losses is a loss.
Joint receipt of a gain and a loss can be perceived as either a gain or a loss.
As we shall see, the mixed case of both gains and losses is an ever present
complication in the theory.

In principal, the above axioms can be experimentally evaluated although
I am unaware of such a study. For associativity, presumably one would
determine for (4) certainty equivalents, i.e., the pure consequence indifferent
to the more complex object, for each side

u ∼ (x ⊕ y) ⊕ z, u′ ∼ x ⊕ (y ⊕ z), (5)

and then ask whether (statistically2)

u ≈ u′. (6)

A similar test of commutativity is also possible.
Two psychophysical examples are auditory pure tones of different inten-

sities to the two ears and a similar visual one with light patches of different
intensities to the two eyes. Such tests have been conducted by Steingrimsson
and Luce (2005) and by Steingrimsson (2009, 2010). If we denote the respective
stimuli (x, y) and (y, x) and match them to (u, u) and (u′, u′) the question is
whether or not (6) holds within the accuracy of the data. References in either
of these articles gives the theoretical background.

Both here and in some later cases, such as the Thomsen condition, we run
afoul of empirical experience that attempts to deal with an indifference ∼ by
having the respondent provide matches by pure alteratives has proved to be
more problematic than are choices of order based upon �. Dealing with this is
experimentally important and it is easy to become confused.

1.2.1 Hölder’s axioms

Our operation ⊕ plays a role analogous to the concatenation operations of
elementary physics, e.g., two masses on a pan balance, two rods abutted, etc.

2This is quite a tricky issue that has received some attention in psychophysics, but hardly an
accepted solution.
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We assume that 〈X, e, ⊕, �〉 on equivalence classes is a solvable, Archimedean
ordered, abelian group with an isomorphism onto the additive real numbers.
For the equivalence classes, the operation ⊕ is closed, has an identity, is
commutative and associative, and each element has an inverse satisfying the
usual axioms of a solvable, Archimedean ordered, abelian group (Hölder 1901;
Krantz et al. 1971, Chapters 2 and 3).

The key testable assumption beyond transitivity is monotonicity: For all
x, y, z ∈ X,

x � y ⇔ x ⊕ z � y ⊕ z. (7)

The literature up to 1999 is discussed in Luce (2000, pp. 137–139, 237–238)
and it seems favorable toward monotonicity of joint receipt. For a later and
very general discussion of testing many of the axioms I will mention, see the
important article by Karabatsos (2005).

1.2.2 p-Additive representations

Classically, and certainly in Hölder’s theorem as usually formulated, the only
representations that are studied are mappings into the real numbers denoted
R (or sometimes into the non-negative real numbers denoted R

+) under just
addition, i.e., into the structure 〈R, ≥, +〉. But recall that the typical theories
for uncertain alternatives, such as SEU and CPT, have representations that in-
volved both addition + and multiplication ×. So, why not admit the possibility
that the representations of ⊕ are onto suitable (defined below) subintervals of
〈R, ≥, +, ×〉 that are closed under both addition and multiplication?

Admitting that possibility, under the usual Hölder assumptions, the possible
polynomial representations are of the form:

U(x ⊕ y) = U(x) + U(y) + δU(x)U(y), δ = −1, 0, 1, (8)

where U is order preserving and U(e) = 0. These are called p-additive because
they are the only polynomial forms with U(e) = 0 that transform into addition.
If we limit ourselves to mappings of the form

U(x ⊕ y) = F (U(x), U(y)) ,

where F(u, v) is a function of u, v that is expressible in terms of the field
operations + and ×, along with the induced subtraction and division oper-
ations, and assuming F is a rational function, then (8) constitute the only
representations.3

3Personal communication from C. T. Ng, November 17, 2009.
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1.2.3 Three types of people

Corresponding to the value of δ, there are 3 classes or types of people. As we
shall see, these types are strikingly different and so I believe that our proposed
experiments must be partitioned accordingly for the data to be meaningful.

When δ = 0, the representation is

U(x ⊕ y) = U(x) + U(y), (9)

which is a purely additive ratio scale (unique to choice of unit) which certainly
is the type that has been mostly studied during the past 60 years. As Karabatsos
(2005) showed, additivity is not well sustained in general.

When δ 
= 0, we may rewrite (8) in terms of U as

1 + δU(x ⊕ y) = [
1 + δU(x)

] [
1 + δU(y)

]
, (10)

which means there is a representation in terms of the transformation

V(x) := 1 + δU(x), (11)

which satisfies the multiplicative property

V(x ⊕ y) = V(x)V(y). (12)

Note that no scale factor α 
= 1 maintains this multiplicative representation,
(12). In general, however, such a multiplicative representation is unique only
up to an arbitrary power, V → Vβ , β > 1, but as we shall see even that degree
of freedom is lost. Of course, from (12) it is immediate that ln V is an additive
ratio scale.

1.2.4 Two scale types: ratio and absolute

As mentioned earlier, for those people satisfying (9), the utility function is a
ratio scale, i.e., it is unique up to its unit. But for the other two types, δ 
= 0,
U must be an absolute scale. This follows from the fact that in (11) U is either
added to or subtracted from 1. Of course, V itself is unique up to positive
powers and so ln V is an additive ratio scale. The V scale maps onto ]0, ∞[ in
both non-zero cases. The difference being that V is order preserving for δ = 1
and order reversing for δ = −1. Put in words, U in the case δ = 0 has a free
unit, as say with mass, whereas for the cases with δ 
= 0 there is no freedom in
the choice of unit, as with probability. These differences are very significant as
we see below.

1.2.5 An experimental-procedural implication

The fact that there are 3 types of people corresponding to δ = −1, 0, 1, which
as we shall see are qualitatively quite different, should be significant for the
experimenter. It means that each participant in the study must be evaluated for
type before any further data are examined. A criterion for determining type is
provided in Section 2 below. Moreover, that fact certainly means that group
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averages, including medians and comparisons of distributions, over an un-
screened population are totally meaningless. Although averaging is a bit more
justified over people of the same type, the fact that utility functions have the
same (non-linear) form but with different parameters (see Section 2.4) means
that here too the averaging of raw data is not really justified. This has received
some attention in other areas, such as psychophysics, where the upshot is that
only averages of linear functions are meaningful. Moreover, the average slope
parameter equals the average of the individual parameters. Thus, in the pres-
ent case, one must transform the data to linear form as outlined in Section 2.4.

Although the Hölder axioms clearly have interesting consequences, there is
troubling empirical evidence (e.g., Luce 2000; Sneddon and Luce 2001) that
some properties seem to hold for gains (x � e) and, separately, for losses
(x � e) but not very well for gambles involving mixed gains and losses.
Schneider and Lopes (1986) clearly ran into the same issues with gambling
behavior. Whether or not this reflects the fact that a substantial number of
respondents are of types δ 
= 0 has not yet been carefully explored; it seems to
me to be very important to do so.

1.3 Uncertain alternatives—gambles

1.3.1 Uncertain alternatives

We assume there are a great many families of chance “experiments,” i.e.,
sources of uncertainty. We denote by C, D, etc. typical disjoint chance
events arising within a family of chance “experiments.” A general uncertain
alternative—often, although somewhat misleadingly, called a gamble, which
nonetheless is the term that I use—begins with a partition of the underlying
chance event into n subevents, and to each is assigned a consequence, either
an element of X or a first-order gamble. See Luce (2003).

A binary uncertain alternative is a gamble with n = 2 branches. We may
think of it as an experiment whose “universal set” � may be partitioned into
C and C := �\C. Each sub-event leads to its own consequence, so that the
gamble has two chance branches (x, C) and (y, C ). We write it as (x, C; y, C).

Two properties of binary gambles that have received some attention are
event commutativity

((
x, C; y, C

)
, D; y, D

)
∼

((
x, D; y, D

)
, C; y, C

)
, (13)

and right autodistributivity

((
x, C′; y, C′ ), C; z, C

)
∼

((
x, C′; z, C′ ), C; (

y, C′′; z, C′ ), C
)

, (14)

where the primes refer to independent realizations of the underlying chance
experiment. The reason they are of some interest is made clear in Section 1.5.
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1.3.2 Unitary gambles and separable representations

One important subclass of binary gambles has y = e; these are called unitary.
One axiomatic issue turns out to be whether such gambles have a multiplicative
conjoint representation:

U∗(x, C; e, C
) = U∗(x)S∗

�(C), (15)

which is called a separable representation.
The necessary axioms are well known (Krantz et al. 1971, Ch. 6) to be:

transitivity of �, monotonicity,4 i.e., if for non-null events C, D, E ∈ �,

(
x, C; e, C

)
�

(
y, C; e, C

) ⇔ (
x, D; e, D

)
�

(
y, D; e, D

)
, (16)

and the Thomsen condition:5

(
x, E; e, E

) ∼ (
z, D; e, D

)
&

(
z, C; e, C

) ∼ (
y, E; e, E

)

⇒ (
x, C; e, C

) ∼ (
y, D; e, D

)
. (17)

The monotonicity assumption has received some empirical study. For ex-
ample, von Winterfeldt et al. (1997) ran a test of it based on medians and
concluded that the evidence for it was mixed. However, Ho et al. (2005) carried
out a far more complete statistical analysis, which was based on the entire
distribution of responses, which provided strong support for monotonicity.
The second axiom for separable representations, the Thomsen condition,
(17), Karabatsos (2005) reanalyzed the then unpublished memory data of
William H. Batchelder and Jarad Smith using Bayesian methods, and the
Thomsen condition was well sustained. There is no question, however, that
data on unitary gambles, as such, need to be collected and analyzed in a
comparable way.

1.4 Two possible linking laws

At this point, we have two distinct measures of utility: the function U from
the JR concatenation structure and U∗ from the separable representation of
unitary gambles. One hopes that some sort of behavioral law exists that forces
them to be the same measure in the sense that there is a unique γ > 0 such that
U = (U∗)γ . Luce (2000, Theorem 4.4.6) proved that the following behavioral
condition of segregation suffices. The key mathematical result was proved by
efforts of Luce (1996) and Aczél et al. (1996).

4Actually called independence in the measurement literature.
5As originally formulated in Luce and Tukey (1964), they assumed double cancellation, which is
the Thomsen condition where ∼ is replaced by �. The result is the same. Because of experimental
“noise” it may be better empirically to evaluate double cancellation than the Thomsen condition.
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1.4.1 Segregation

Segregation holds if for x, y ∈ X with x � y and non-null event C,

(
x ⊕ y, C; y, C

) ∼ (
x, C; e, C

) ⊕ y. (18)

Clearly this is empirically testable, and it has been (see discussion below)
because of its crucial theoretical importance. To date, the empirical results
have been ambiguous (Karabatsos 2005). Whether this would be clarified by
taking respondent type into account remains to be seen.

1.4.2 Duplex decomposition

An alternative linking law has been proposed and studied quite a bit both
theoretically and experimentally (more details below). As we will soon see,
much more needs to be done.

Gambles are said to satisfy duplex decomposition (DD) over X if for all
x, y ∈ X,

(
x, C; y, C

) ⊕ (
e, C′; e, C′ ) ∼ (

x, C; e, C
) ⊕ (

e, C′; y, C′ ), (19)

where (C′, C′) is an independent realization of (C, C). Unlike segregation, DD
is rather non-rational: on the left one gets either x or y but not both whereas on
the right there are four possible consequences: e ∼ e ⊕ e, x ∼ x ⊕ e, y ∼ e ⊕ y,

x ⊕ y.

Duplex decomposition has proved to be critical in some work on the
utility of gambling (Luce et al. 2008a, b; Ng et al. 2009a, b) where we have
avoided assuming idempotence, (e, C′; e, C

′
) ∼ e, and where we have inter-

preted (e, C′; e, C
′
) to be the qualitative structure that underlies the utility of

gambling. Of course, we should attempt to verify, in the context of various
judgments about broader class of gambles, whether or not idempotence fails.

Although DD has been closely looked at empirically (see Luce 2000, Section
6.2), the most recent empirical study of it and segregation is Cho et al. (2002,
2005). Karabatsos (2005) claims good support for DD, but those results are
inherently ambiguous in the light of the theory motivating this article. Most
important, the respondents should be classified as to type, as described in
Section 2, when evaluating fits to a property. Also, all experimental tests to
date have assumed idempotence, which property, as I said earlier, needs to be
checked.

1.5 The binary representation

If x � y, C = �/C, and the above assumptions hold under segregation, the
binary utility representation is

U
(
x, C; y, C

) = U(x)S�(C) + U(y)S�

(
C

)
, (20)
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(for δ = 0, Luce et al. 2008a, Eq. 28; for δ 
= 0, Ng et al. 2009b, Eq. 39). Under
duplex decomposition, idempotence, and δ = 0

U
(
x, C; y, C

) = U(x)S�(C) + U(y)
[
1 − S�(C)

]
. (21)

(Luce et al. 2008a, Eq. 60), whereas for δ 
= 0

U
(
x, C; y, C

) = U(x)S�(C ) + U(y)S�

(
C

) + δU(x)U(y)S�(C)S�

(
C

)
. (22)

(Ng et al. 2009b, Eq. 47).
These representations feed into the general theory via recursive assump-

tions given in Section 3.
It is a simple calculation to show that event commutativity, (13), follows

from the rank-dependent form (21) but not from (20) unless the weights are
finitely additive:

S�

(
C

) = 1 − S�(C),

which is the classic subjective expected utility representation. Further, right
autodistributivity, (14), holds only in that case.

Chung et al. (1994) evaluated event commutativity and concluded that for
the most part it was sustained. Brothers (1990) in his dissertation explored
right autodistributivity and found it not consistent with the data, which is
consistent with the many studies that showed the inadequacy of subjective
expected utility.

2 Empirical classification of individuals

2.1 Events having subjective probability 1/2

If there exist consequences x � y and non-empty event E such that
(
x, E; y, E

) ∼ (
x, E; y, E

)
(23)

then from either (20) or (21),

S�(E) = S�

(
E

) = 1

2
. (24)

Such event partitions are called “equally likely.”

2.2 A criterion

For such events, the following criterion is established by Luce (2010): For all
x, y ∈ X, with x � x′ � y � y′, and for E satisfying (23),

δ =
⎧
⎨

⎩

1
0

−1

⎫
⎬

⎭
⇔ (

x ⊕ x′, E; y ⊕ y′, E
)
⎧
⎨

⎩

�
∼
≺

⎫
⎬

⎭
(
x ⊕ y, E; x′ ⊕ y′, E

)
. (25)
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This is less formidable than it may seem. Luce (2010) mentioned the
following examples:

(
160,

1

2
; 50,

1

2

)
versus

(
140,

1

2
; 70,

1

2

)

(
190,

1

2
; 30,

1

2

)
versus

(
120,

1

2
; 100,

1

2

)

(
1900,

1

2
; 60,

1

2

)
versus

(
1050,

1

2
; 910,

1

2

)
.

For example, the first case arises when x = 100, x′ = 60, y = 40, y′ = 10. No-
tice that the two gambles of each row have the same (subjective) expectation,
but that they differ in their (subjective) variance, the one on the left being more
risky than the safer one on the right.

Ng et al. (2009b) have shown that the co-domains (images) of U are

⎧
⎨

⎩

] − 1, ∞[
] − ∞, ∞[
] − ∞, 1[

⎫
⎬

⎭
⇔ δ =

⎧
⎨

⎩

1
0

−1

⎫
⎬

⎭
. (26)

This fact together with the criterion makes clear that the δ = 0 people are
oblivious to the (subjective) variance difference and so may be called risk
neutral (RN); those for whom δ = −1 by contrast like the safe gamble and
so are called risk averse (RA); and those for whom δ = 1 prefer the riskier
gambles and so are called risk seeking (RS). Such concepts have repeatedly
appeared in discussions of risk taking behavior (e.g., Tversky and Kahneman
1992; Schneider and Lopes 1986) with criteria that are special cases of (25),
which itself is an “if and only if” form. They typically pit a gamble against
a pure consequence equivalent to the expected value as the gamble. This
criterion is the special case of (25) where x ⊕ y ∼ x′ ⊕ y′ and idempotence
holds.

It is noteworthy that (26) does not have a fourth case of doubly bounded
utility functions. Why is this case missing? I simply do not know what serves to
rule it out. This requires further investigation.

2.3 Arrow-Pratt measure of local risk

Other authors, mostly economists, have characterized the type of risk attitude
as embodied in properties of a utility u function for money, not as a property
of people themselves. Unlike my and some other psychologists’ work, the
forms for utility functions are usually ad hoc but with apparently desired
properties. Moreover, the domain is usually assumed to represent total wealth,
not increments in it. So the independent variable can never be negative. That
is not true of my work.
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The most famous measure, now called the Arrow-Pratt measure of local risk
aversion, is

r(x) = −u′′(x)

u′(x)
. (27)

(Pratt 1964; Arrow 1965, 1974). An excellent summary up to 1975 of both
theory and applications centered on (27) is Keeney and Raiffa (1976/1993).6

Later discussions of this and related measures are extensive and include Holt
and Laury (2002), Levy and Levy (2002), Ross (1981), and references cited in
these articles.

In Section 2.4 the utility forms derived from my theory and the resulting r(x)

for them are stated.
As mentioned, Karabatsos’ (2005) reanalysis of other authors’ data makes

clear that δ = 0 is not sustained over the sample of people studied. So, a major
empirical problem is to collect data from a “representative sample” of people
that is not restricted to students and academics to see, first, if each person is
consistent in choosing either the risky over the safe, the safe over the risky,
or is indifferent between the two. Assuming that people are consistent, then
what proportions of each type seem to be found? And is there any substantial
correlation with social roles. Judging by informal “data” collected at several of
my lectures, such academics tended to be type δ = −1, i.e., risk averse with a
smaller fraction of risk seekers, and a few apparently are risk neutral (δ = 0).

Presumably, type may vary over different domains of activity. A person may
have one risk attitude toward financial matters and a different one about the
risks entailed in such apparently dangerous sports as mountain climbing and
skiing.

A more general criterion, due to C. T. Ng, which does not depend upon
finding an event satisfying (23), is also reported in Luce (2010). Although more
general, it is not nearly as transparent as is (25).

An important empirical issue is whether there really are any people who
are of type δ = 0? If not, then all the earlier theories of utility simply cannot
be descriptive. This would be a pretty shocking discovery, as is made clear by
Regenwetter and Davis-Stober (2008); Regenwetter et al. (2010).

2.4 Utility of money

Under his assumptions, Luce (2010) showed that there must be an increasing
function g : X −→ R and a constant α > 0 such that

U(x) =
⎧
⎨

⎩

eαg(x) − 1
αg(x)

1 − e−αg(x)

⎫
⎬

⎭
⇔ δ =

⎧
⎨

⎩

1
0

−1

⎫
⎬

⎭
. (28)

6A. A. J. Marley reminded me of this reference. The 1993 edition is mainly an update of
applications.
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So the Arrow-Pratt measure (27) is easily calculated to be

r(x) = −g′′(x)

g′(x)
− δαg′(x), δ = −1, 0, 1. (29)

For money amounts, it seems most plausible that

x ⊕ y ∼ x + y, (30)

from which it follows that g(x) = x. If so, then (29) reduces to

r(x) = −δα, δ = −1, 0, 1, (31)

which, of course, is constant risk aversion for δ = −1 or constant risk seeking
for δ = 1 (Keeney and Raiffa (1976), explored (28) with g(x) = x and without
the ±1 term).

Notice that

1. For δ = 1 as x → −∞, then U(x) = eαx − 1 → −1, and
2. For δ = −1 as x → ∞, then U(x) = 1 − e−αx → 1.

The empirical issues of estimating these asymptotes and the parameter α

have yet to be tackled systematically.
Given estimates of U, one acceptable way7 to average over people of the

same type is for δ = 1 to average ln(1 + U(x)) and for δ = −1 to average
− ln(1 − U(x)) vs. x.

3 General gambles

So far we have discussed only binary gambles, but clearly a satisfactory utility
theory must deal with gambles having n > 2 branches as well. So far, this seems
to have best been done via recursive forms.

Let a general gamble, where the consequences are ranked from best to
worst, be denoted

g[n] := (x1, C1; ...; xi, Ci; ...; xn, Cn). (32)

Branching is the recursion in which the first two branches are combined into
a single first-order binary gamble g[2] := (x1, C1; x2, C2), i.e.,

g[n] ∼ (g[2], C1 ∪ C2; x3, C3; ...; xn, Cn)

= ((x1, C1; x2, C2), C1 ∪ C2; x3, C3; ...; xn, Cn). (33)

7As noted earlier, it is well known that for linear functions, and only for them, the average function
is also linear. Further, the slope of the average is the average of the individual slopes.
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Upper gamble decomposition (UGD) is the recursion that treats as in-
different a binary gamble consisting of the branch with the best consequence
and all of the remaining branches combined as a single first-order gamble, i.e.,

g[n] ∼ (
x1, C1; g[n],−1, �\C1

)
(34)

where g[n],−1 := (x2, C2; ...; xi, Ci; ...; xn, Cn).

Some of the theoretical implications of the representations resulting from
these properties are explored in Luce et al. (2008a, b) and Ng et al. (2009a)
for the additive case δ = 0 and in Ng et al. (2009b) for the cases δ 
= 0.

Idempotence was not assumed, but when idempotence is assumed the results
described here follow readily. To my knowledge, no experiments have been
run on either branching or UGD. There are many opportunities for research
here, both empirical and theoretical. For example, if both branching and UGD
are shown to be empirically incorrect, then theorists must seek alternative
recursive properties.

4 Experimental program

For the experiments listed below in Section 4.1, type does not matter and so
these studies need not be rerun because of our classification. Of course, that
does not mean the existing studies are beyond criticism. For example, commu-
tativity and associativity of ⊕, the Thomsen condition, event commutativity,
and right autodistributivity are all formulated in terms ∼ which invites having
the respondent do matches, which is known to be a problematic procedure.

The several experiments discussed in the subsequent sections were run
without any apparent awareness of the classification of people into 3 types.
So, when that distinction is important to a property, it must be rerun taking
risk type into account.

4.1 Tests independent of risk type

Of course, even when risk type does not directly matter, we must be most
cautious about averaging the data from several individuals because there are
usually parametric differences as, e.g., in the utility of functions.

• Transitivity of �, (1), appears well supported empirically at this point and
is not in urgent need of further evaluation.

• Commutativity, (3), and Associativity, (4), of JR have not been directly
evaluated, but few doubt that they hold. Indeed, if money satisfies (30),
then they must hold by virtue of properties of arithmetic.

• Monotonicity (or independence), (7), of JR was explored by Cho and
Fisher (2000) and was mostly sustained.

• The Thomsen condition, (17), has not, to my knowledge, been directly
evaluated using unitary gambles. Because practically every theory that has



34 J Risk Uncertain (2010) 41:19–37

been proposed implicitly or explicitly assumes it to be correct, it is almost
certainly worthy of some empirical study.

• Consequence monotonicity, (16), of binary gambles seems first to have
been explored empirically by von Winterfeldt et al. (1997) and reanalyzed
by Ho et al. (2005), as described in Section 1.3.2. They concluded that the
von Winterfeldt et al. (1997) analysis was not sufficiently thorough and
that consequence monotonicity was actually very well sustained. Again,
methods invoking ∼ rather than � have the usual matching difficulties
(Birnbaum and Sutton 1992; Birnbaum 1992).

• Event commutativity, (13), and right autodistributivity, (14), were both dis-
cussed in Section 1.5, and there seems no need for further data collection.

4.2 Classification by risk type

Given the p-additive representation, (8), it is clearly critical to know the risk
type of each experimental respondent and to analyze their data separately. To
do this, one should find an event E with binary symmetry, (23), and determine
type by the criterion (25).

• One obvious empirical question is whether or not a person is consistent in
adhering to the criterion. At this time, we simply do not know—it seems to
be an empirically virgin topic.

• A second thorny issue is whether the criterion is just for gains and losses
separately or whether it also works for mixed gains and losses. This topic
needs extensive exploration in order to guide future theory construction.

4.3 Linking for risk neutral people

The properties of segregation, (18), and duplex decomposition, (19), have
proved important theoretically, and they have received a fair amount of
empirical investigation (Sneddon and Luce 2001; Cho et al. 2002; Karabatsos
2005) with somewhat mixed and confusing results. However, at the time, no
one recognized the risk type distinction of the p-additive form, and so the data
were not so partitioned. This should be done.

• Those people exhibiting δ = 0 should have, according to the theory (see
Tables 1 of the Ng et al. (2009a, b) articles), a rank-dependent rep-
resentation under segregation and a linear weighted one under duplex
decomposition.

• Once that is done, the recursive properties of branching, (33), and UGD,
(34), need direct empirical investigation.

4.4 Linking for risk averse or risk seeking people

Ng et al. (2009b) have studied the representations that follow from segregation,
(18), and duplex decomposition, (19).
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• For δ 
= 0, segregation leads to the rank-dependent form, which according
to some data (of course, not partitioned by type), was rejected because
it implies coalescing (Luce 2000, pp. 92, 180), which seems empirically
wrong, at least when not partitioned. Again, this needs to be restudied
with respondent type playing a role.

• With δ 
= 0, duplex decomposition implies that, in essence, the weights do
not vary with events, which is absurd. So, DD should fail for these 2 types.

• Should the evidence, when partitioned by risk types and carefully checked
for experimental flaws, show systematic failures of segregation and/or
duplex decomposition, then theorists will be forced to devise alternatives
and work out their consequences.

4.5 Inductive conditions of branching and UGD

To my knowledge, no empirical work has ever been attempted to check
directly either branching, (33), or upper gamble decomposition, (34). Given
their current theoretical importance, it is important to do so with respondents
partitioned by type.

4.6 Fitting utility and weighting functions to data

Considerable work has been done on fitting functions for both utility and
weighting functions to appropriate data (see Luce 2000, Sections 3.3 and 3.4
for a summary to 1999).

• Mostly this has been done under the implicit assumption of additive joint
receipts (δ = 0), and no attempt has been made to fit the form (28) which
has been recently derived and its special case (30).

• To do so, we need to develop ways to estimate from finite sets of data the
upper bound for δ = −1 and lower bound for δ = 1 types.

• Of the weighting functions, the generally most successful class of functions
is the Prelec one for events with known probabilities

W(p) = exp
[−β(− ln p)α

]
,

which includes power functions as the special case α = 1 (e.g., Sneddon
and Luce 2001).8 Luce (2001) presents a fairly simple axiomatic condition
that is equivalent to a Prelec function, which should be explored again but
partitioned by type. Aczél and Luce (2007) generalized that to the case
W(1) 
= 1.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

8The expression for the Prelec function in this article, Eq. 26, was incorrectly stated using −p
where it should have been p.
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