
540 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

Behavioral Diversity, Choices and Noise in the
Iterated Prisoner’s Dilemma
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Abstract—Real-world dilemmas rarely involve just two choices
and perfect interactions without mistakes. In the iterated pris-
oner’s dilemma (IPD) game, intermediate choices or mistakes
(noise) have been introduced to extend its realism. This paper
studies the IPD game with both noise and multiple levels of coop-
eration (intermediate choices) in a coevolutionary environment,
where players can learn and adapt their strategies through an
evolutionary algorithm. The impact of noise on the evolution of
cooperation is first examined. It is shown that the coevolutionary
models presented in this paper are robust against low noise (when
mistakes occur with low probability). That is, low levels of noise
have little impact on the evolution of cooperation. On the other
hand, high noise (when mistakes occur with high probability) cre-
ates misunderstandings and discourages cooperation. However,
the evolution of cooperation in the IPD with more choices in a co-
evolutionary learning setting also depends on behavioral diversity.
This paper further investigates the issue of behavioral diversity
in the coevolution of strategies for the IPD with more choices and
noise. The evolution of cooperation is more difficult to achieve if
a coevolutionary model with low behavioral diversity is used for
IPD games with higher levels of noise. The coevolutionary model
with high behavioral diversity in the population is more resistant
to noise. It is shown that strategy representations can have a sig-
nificant impact on the evolutionary outcomes because of different
behavioral diversities that they generate. The results further show
the importance of behavioral diversity in coevolutionary learning.

Index Terms—Behavioral diversity, coevolution, coevolutionary
learning, evolutionary computation, iterated prisoner’s dilemma
(IPD), representation.

I. INTRODUCTION

THE ABSTRACT mathematical game of the iterated pris-
oner’s dilemma (IPD) has been studied widely in many

areas [1]. In its classical form, it is a two-player, nonzero sum,
and noncooperative game. It has long been used to model so-
cial, economic, biological, and other interactions, and to study
the conditions that allow for mutual cooperation to occur within
a group of selfish individuals. In the IPD game, two isolated
players engage in repeated interactions and can choose between
two choices: cooperate and defect. It is “justifiably famous as
an elegant embodiment of the tension between individual ratio-
nality (reflected in the incentive of both sides to be selfish) and
group rationality (reflected in the higher payoff to both sides for
mutual cooperation)” [2]. In the IPD, defection is not always
the best choice. Axelrod [2], [3] showed through tournament
games that a particular form of cooperative play can be a viable
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strategy. Many others have also shown that cooperative play can
be learned from a set of random strategies using an evolutionary
algorithm [4]–[8] even though the evolution is unstable [9].

Early studies of the IPD using the coevolutionary approach
[4]–[8] each assumed only two choices, i.e., cooperation and de-
fection, for each player. Further studies have extended the IPD
to bridge the gap between the model and real-world dilemmas.
The IPD with more choices [10]–[13], i.e., multiple levels of
cooperation, was studied. It allows modeling subtle behavioral
interactions that are not possible with just two extreme choices.
It was shown that with more choices, the evolution of coopera-
tion is unstable [10] and more difficult to achieve [11]–[13].

The other extension to the classical IPD is the consideration
of noise, i.e., misinterpretations or mistakes, which is used
to model uncertainty in behavioral interactions [14]–[19].
Julstrom [20] studied noise in the classic two-choice IPD.
Wahl and Nowak [21], [22] considered a continuous prisoner’s
dilemma using linear reactive strategies, with and without
noise. (Their noise model is different from what we are using
here.) However, none of the previous studies has investigated
the impact of noise on the coevolutionary learning of strate-
gies in the IPD with more choices. In classical evolutionary
games [14]–[18], [21], [22], strategies do not adapt as they
do in coevolutionary learning from an initial set of random
strategies. It is also worth noting that continuous prisoner’s
dilemma is different from the discrete IPD with multiple levels
of cooperation.

Darwen and Yao [11]–[13], [23] were among the first who
studied the IPD with multiple levels of cooperation in a coevo-
lutionary learning environment. They showed that cooperative
strategies were more difficult to evolve as the number of cooper-
ation levels increased. However, a very simple reputation could
help to encourage cooperation [23]. Noise was not considered
in their studies.

This paper presents a detailed empirical study of the impact
of behavioral diversity in the IPD with multiple levels of co-
operation and noise in a coevolutionary learning environment.
Two major research issues are examined. First, we study how
the level of noise (from low to high probability levels of making
mistakes) influences the evolution of cooperation in the IPD
with multiple levels of cooperation. Results show that different
levels of noise lead to different evolutionary outcomes. More
importantly, different coevolutionary models exhibit different
evolutionary dynamics and lead to different evolutionary out-
comes in the noisy IPD games with more choices. It turns out
that behavioral diversity, rather than genetic diversity, plays a
crucial role here. Second, to support this explanation, we study
the role of behavioral diversity explicitly. A comparative study
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Fig. 1. Payoff matrix for the two-player IPD. The payoff listed in the lower
left-hand corner is assigned to the player choosing the move.

Fig. 2. Payoff matrix for the two-player IPD used in this paper. T = 5; R =

4; P = 1, and S = 0.

is conducted between two different strategy representation
schemes, which can produce different behavioral diversities.
We show that through direct evolution of strategy’s behaviors
(using the lookup table representation), behavioral diversity of
the coevolving population increases and, as a result, a smooth
evolution toward cooperation can be achieved easily. We also
distinguish between the effects of direct behavioral evolution
and that of noise on the coevolutionary process.

The rest of this paper is organized as follows. Section II intro-
duces the classical and extended IPD game models used in our
experiments. Section III describes the two strategy-representa-
tion schemes, neural networks and lookup tables, and the coevo-
lutionary model. Section IV presents our experimental studies.
Section V discusses the experimental results. Finally, Section VI
concludes this paper with some remarks on future studies.

II. IPD OVERVIEW

A. Classic IPD

In the classic IPD, each player has two choices: cooperation
and defection. The payoff a player receives depends on a payoff
matrix (Fig. 1) that must satisfy the following three conditions:

1) and (defection always pays more);
2) (mutual cooperation beats mutual defection);
3) (alternating does not pay).
There are many possible values for , and that satisfy

the above three conditions. We use , and
(Fig. 2).

B. IPD With Multiple Levels of Cooperation and Noise

The IPD with multiple levels of cooperation and noise follows
previous work [11]–[13], [23], [24]. The model is based on a
simple interpolation of the classic -choice IPD. Specifically,

Fig. 3. Payoff matrix for the two-player four-choice IPD used in this paper.
Each element of the matrix gives the payoff for Player A.

the -choice IPD is linearly interpolated from the -choice
IPD using the following equation [13]:

where is the payoff to player A, given that and are the
cooperation levels of the choices that players A and B make,
respectively.

In generating the payoff matrix for the IPD with -choices,
the following conditions must be satisfied:

1) for and constant :
;

2) for and :
;

3) for and :
.

The above conditions are analogous to those for the two-
choice IPD’s. The first condition ensures that defection always
pays more. The second condition ensures that mutual coopera-
tion has a higher payoff than mutual defection. The third condi-
tion ensures that alternating between cooperation and defection
does not pay in comparison to just playing cooperation.

Given the payoff equation and the three conditions above, an
-choice IPD can be formulated [11]. Here, a -choice IPD

(Fig. 3) is used, which is sufficient to investigate the two major
research issues mentioned in Section I. Having more choices
than four increases the computational cost of the experiments
and would have made the analysis of results unnecessarily
complicated.

Fig. 3 illustrates two important points. First, the payoffs in
the four corners of an -choice IPD payoff matrix are the same
as those in the -choice IPD. Second, any 2 2 submatrix of
the matrix of the -choice IPD is itself a two-choice IPD.

Noise is modeled as the mistake that a player makes. It cap-
tures the situation where a player intends to play a choice but
ends up with a different choice instead. It has a certain proba-
bility of occurrence and is fixed throughout a game. Consider
an example of a four-choice IPD game with . Sup-
pose a player chooses to play at cooperation level. There
will be a probability that this cooperation level will not be
made. When this occurs, one of the other three possible cooper-
ation levels, i.e., , and , will be chosen uniformly
at random. This simplifies the implementation and ensures that
there is no bias of play toward a specific cooperation level. The
noise model here is different from some other implementations
[22] where noise is modeled as errors that occur in the interpre-
tation of opponent’s move. As in [22], we note that the noise
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model here is an extreme case, where players do not know that
mistakes have occurred.

III. STRATEGY REPRESENTATION AND

COEVOLUTIONARY MODEL

Neural networks have often been used to represent strategies
in a coevolutionary learning environment [6], [10]–[13], [23].
However, it has been pointed out that the many-to-one mapping
from genotypes (neural networks) to phenotypes (strategy be-
haviors) may have contributed to the difficulty in evolving co-
operative strategies in the IPD with more choices. It is unknown
whether this would still be the case for the IPD with both more
choices and noise. To study the issue in more depth, we compare
two strategy representation schemes in our experiments. One is
based on neural networks. The other is based on lookup tables.

We restrict the memory length of every strategy to be one
in order to facilitate the analysis of the results and reduce the
computational cost.

A. Neural Network Representation of Strategies

In the IPD, strategies can be represented by binary strings
[4], [8], finite-state machines (FSMs) [5], [7], [25], and neural
networks [6], [10]–[13], [23]. Neural network representation is
attractive because it can scale up easily as the number of coop-
eration levels increases.

1) Neural Network Architecture: We use a fixed-architec-
ture feed-forward multilayer perceptron (MLP) to represent IPD
strategies. Specifically, the neural network consists of an input
layer, a single hidden layer, and an output node. The input layer
consists of the following four input nodes.

1) The neural network’s previous choice, i.e., level of coop-
eration, in .

2) The opponent’s previous level of cooperation.
3) An input of if the opponent played a lower cooperation

level compared to the neural network, and 0, otherwise.
4) An input of if the neural network played a lower coop-

eration level compared to the opponent, and 0, otherwise.
Since the last two inputs are derived from the first two inputs,

the input layer is a function of just two variables: the neural
network’s previous choice and the opponent’s previous choice.
The reason for the additional two input nodes is to facilitate
learning the recognition of being exploited and exploiting [11],
[23].

The number of hidden nodes used in the experiments is ten
and has not been optimized. The network is fully connected and
strictly layered. That is, there is no shortcut connection from the
input layer to the output node. The transfer (activation) function
used for all nodes is the hyperbolic tangent function .

Given the inputs, the neural network’s output determines
the choice for its next move. The neural network output is
a real value between and . It is discretized to either

, or , depending on which discrete value the
neural network output is closest to.

With regards to the choice of using a single hidden layer of
ten nodes, previous studies on IPD with multiple choices have
shown that the coevolution of neural networks with ten hidden

nodes is capable of producing mutual cooperative behaviors
[13].

2) Evolution of Neural Network Weights: As summarized
by Yao [26], real-valued weights of a neural network can be
evolved using self-adaptive evolutionary algorithms, such as
evolutionary programming [27]. Here, a neural network is
associated with a self-adaptive parameter vector that
controls the mutation step size of the respective weights and
biases of the neural network .

Offspring neural networks ( and ) are generated
from parent neural networks ( and ) through muta-
tion. Two different mutations, Gaussian and Cauchy, are used in
order to investigate the effects of variation operators on evolving
IPD strategies.

For the self-adaptive Gaussian mutation, offspring neural net-
works are generated according to the following equations:

where , and is
a Gaussian random variable (zero mean and standard deviation
of one) resampled for every . is the total number of weights,
biases, and the pre-game inputs required for an IPD strategy
based on memory length of one.

For the self-adaptive Cauchy mutation [27], the following
equations are used:

where is a Cauchy random variable (centered at zero
and with a scale parameter of 1) resampled for every . All other
variables remain the same as those in the self-adaptive Gaussian
mutation.

B. Lookup Table Representation of Strategies

The lookup table representation used here is different from
that used in [4], [8], where the genotypic representation used is
a binary string. Our lookup table is used to represent directly the
strategy map. It is treated as a two-dimensional representation.
The variation operators used to generate offspring are applied
to the strategy maps directly and explicitly. As such, the evolu-
tionary process is applied directly at the phenotypic (behavioral)
level of the IPD strategies. This avoids the potential problem of
having many-to-one mappings between genotypes and pheno-
types [28], [29] associated with other representations such as
neural networks.

Fig. 4 illustrates the lookup table representation for the IPD
strategies with four choices and memory length of one.
specifies the choice to be made, given the inputs (player’s own
previous choice) and (opponent’s previous choice). Rather
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Fig. 4. The lookup table representation for the two-player IPD with four
choices and memory length one.

than using pre-game inputs (two for memory length one strate-
gies), the first move is specified independently. Instead of using
quarternary values , each of the table elements can
take any of the possible four choices .

A simple mutation operator is used to generate offspring. Mu-
tation replaces the original element by one of the other three
possible choices with an equal probability. For example, if mu-
tation occurs at , then the mutated element
can take either or with an equal probability. Each
table element has a fixed probability of being replaced by
one of the remaining three choices. The value is not opti-
mized. Crossover is not used in any of the experiments.

Although the lookup table used here and the one used by
Axelrod in [4] similarly specify a strategy’s responses that are
indexed by previous moves, they are different if we consider
the evolutionary algorithm as a whole. An evolutionary algo-
rithm depends on the interactions between variation operators
and the representation. There is an important difference between
our approach (e.g., varying the lookup table elements directly)
and Axelrod’s approach (e.g., varying lookup table encoded as
binary strings).

C. Coevolutionary Model

The coevolutionary procedure involves a population of 30
strategies. A small population size in coevolution will reduce the
level of behavioral diversity in the population, allowing strate-
gies to overspecialize and, thus inducing cycles between coop-
eration and defection. This facilitates the investigation into how
behavioral diversity is influenced by different parts of the model
and how the evolutionary outcome is influenced by different be-
havioral diversity.

Coevolution starts with random initialization of 15 parents,
which then generate 15 offspring. In initializing the strategies,
additional steps are taken to ensure that the initial population has
sufficient behavioral diversity in addition to genotypic diversity
[11]. The following setting is adopted after some preliminary
experimentations.

For experiments using neural networks, the weights and
biases of the parent neural networks are initialized randomly
by sampling from a uniform distribution over .
Each component of the self-adaptive parameter vector of the
parent neural networks is initialized to 0.5 for consistency with
the initialization range of neural networks’ weights and biases.
After that, outputs of each neural network are evaluated and

Fig. 5. Evolution of cooperation for C-CEP and C-FEP in the four-choice IPD.

discretized. For an IPD game with four choices and memory
length of one, we required that the frequency at which each of
the four choices is selected for each of
the parent neural networks’ strategies (input-output mappings)
is roughly the same. The parents are resampled as many times
as necessary to satisfy this condition. A similar check is made
for experiments that used lookup tables.

After generating the offspring, each strategy in the popula-
tion competes with every other strategy, including itself, in a
round-robin fashion (e.g., each strategy competes in a total of
30 games). The fitness of a strategy is obtained by taking the
average payoff that it receives from all the games it played. The
best half of the population is selected as parents for the next
generation. The cycle of generating offspring, competition, and
selection is repeated for 600 generations. Each experiment is re-
peated for 30 independent runs.

D. Shadow of the Future

In the IPD, the shadow of the future refers to the situation
whereby the number of iterations of a game is known in advance.
In this situation, there is no incentive to cooperate in the last it-
eration because there is no risk of retaliation from the opponent.
However, if every player defects on the last iteration, then there
is no incentive to cooperate in the iteration prior to the last one.
If every player defects in the last two iterations, then there is no
incentive to cooperate in the iteration before that, and so forth.
So we would end up with mutual defection in all iterations.

One popular way to address this issue and to allow for cooper-
ation to emerge is to have a fixed probability in ending the game
on every iteration, thereby keeping the game length uncertain.
In our experiments, neither of our representations includes the
information on the number of iterations. It is impossible for our
strategies to count how many iterations have been played and
how many remain. We simply use a fixed game length of 150
iterations (move start from 0) in all our game plays. The game
length is chosen to be comparable to the experiments conducted
in [4] and [30] so that comparisons with previous work can be
made.
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Fig. 6. Frequencies of choices played for C-CEP in the four-choice IPD.

IV. EXPERIMENTAL STUDIES

A. Behavioral Diversity Helps the Evolution of Cooperation
for the IPD With More Choices

Behavioral diversity indicates how different the played
choices are in the IPD games. We examine two major sources
of behavioral diversity in our experiments. The first is induced
by genetic diversity, e.g., different weights and biases for neural
networks. However, genetic diversity among neural networks
may not lead to behavioral diversity among strategies. The
second source to induce diversity is through direct and explicit
generation of diversity by mutating a lookup table of strategy
maps. We will compare the two different representations using
the four-choice IPD.

Let the term “coevolutionary classical evolutionary program-
ming” (C-CEP) refer to the coevolutionary model that uses the
neural network representation with self-adaptive Gaussian mu-
tation. We refer to the model that uses self-adaptive Cauchy
mutation as “coevolutionary fast evolutionary programming”
(C-FEP). We refer to the model that uses lookup table represen-
tation as C-PM05, C-PM10, C-PM15, C-PM20, and C-PM25,
respectively, to indicate models that use of 0.05, 0.10, 0.15,
0.20, and 0.25, respectively.

1) Results With the Neural Network Representation: Fig. 5
plots the average payoff over 30 runs for C-CEP and C-FEP. It
shows that the evolutionary behaviors for C-CEP and C-FEP
are similar to that of the classical two-choice IPD [4]. For both
C-CEP and C-FEP, Fig. 5 shows a brief initial drop in average
payoff before rising to a value greater than 3 (i.e., mutual
cooperation).

Figs. 6 and 7 show the average frequencies for each of the
four choices that were played at each generation for C-CEP
and C-FEP, respectively. The frequency for each choice started
around 25%, indicating good behavioral diversity in the initial

population. However, after a short period (around 10–15 gener-
ations), the frequencies for the four choices diverged. The fre-
quency for full cooperation was significantly higher than
other choices, indicating that there were more full cooperative
plays by the evolving strategies.

Figs. 8 and 9 show the plots for five individual runs of C-CEP
and C-FEP, respectively. The figures indicate that not all runs
had converged to fully cooperative strategies within 600 gener-
ations. Some runs stayed at the intermediate levels of coopera-
tion, while a few converged to defection. This is quite different
from the case for classical two-choice IPD games [4], [8], where
each run converged to mutual cooperation quite consistently and
quickly. It illustrates that more choices have made cooperation
more difficult to evolve.

2) Results With the Lookup Table Representation: Similar
experiments were conducted for C-PM05, C-PM10, C-PM15,
C-PM20, and C-PM25, respectively. The average results over
30 runs showed general evolutionary trends similar to those
observed from the classic two-choice IPD [4] and to those in
Fig. 5, i.e., the average cooperation level decreased initially be-
fore restoring and increasing to full cooperation. The figures are
omitted from this paper for brevity.

Fig. 10 shows the average frequencies of four different
choices played at each generation for C-PM05. It is evident that
full cooperation was played far more often than others.
A similar observation can be made for C-PM10, C-PM15,
C-PM20, and C-PM25 as well. Corresponding figures are again
omitted for brevity.

Fig. 11 plots five individual runs for C-PM05, which show
that the majority of the runs evolved to a very high cooperation
level . Similar results were obtained for other C-PMs. No
runs converged to defection.

Table I summarizes the experiment results for the four-choice
IPD. Three observations can be made.
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Fig. 7. Frequencies of choices played for C-FEP in the four-choice IPD.

Fig. 8. Five sample runs of C-CEP in the four-choice IPD.

First, the most significant result in the table is that no run con-
verged to defection when the lookup table representation was
used. This demonstrates the effectiveness of direct and explicit
manipulation of behavioral diversity in coevolving strategies.

Second, comparing the results from C-CEP and C-FEP, it ap-
pears that Cauchy mutation is less effective in increasing be-
havioral diversity in the population in comparison with the case
where a lookup table is used. There was no statistically signif-
icant difference between C-CEP and C-FEP in spite of Cauchy
mutation, which increases the genetic diversity by providing
larger variations to the neural network’s weights [27]. As ob-
served previously [11], an increase in genetic diversity does not
mean an increase in behavioral diversity. It is behavioral diver-
sity that helps to coevolve cooperation [13]. An indirect method
of varying a strategy’s behavior (e.g., neural networks) is less

Fig. 9. Five sample runs of C-FEP in the four-choice IPD.

effective than a direct method (e.g., lookup tables) in increasing
behavioral diversity.

Third, a small mutation rate for the lookup table represen-
tation, i.e., C-PM05 and C-PM10, can increase and maintain
behavioral diversity significantly better than others, while not
degenerating the coevolutionary algorithm into random search.
High mutation rates appear to disrupt evolution and make con-
vergence to the high level of cooperation more difficult. How-
ever, no defection was observed in any of our runs.

B. How Does Noise Affect Coevolutionary Learning of
Strategies?

We now compare the evolutionary behaviors of different co-
evolutionary models using the four-choice IPD with noise. We
study the effects of various noise probability settings. For low
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Fig. 10. Frequencies of choices played for C-PM05 in the four-choice IPD.

Fig. 11. Five sample runs of C-PM05 in the four-choice IPD.

settings, we use 0.05%1 , 0.10%, 0.15%,
0.20%, 0.25%, 0.50%, and 1.50%. For high settings, we use
5%, 10%, 15%, and 20%.

1) Coevolutionary Models Are Robust Against Low Noise:
Tables II and III summarize the comparisons of different coevo-
lutionary models when was set to 0.05% and 1.50%, respec-
tively. Results for other low values are omitted.

Comparing Tables II and III against Table I, there was no
statistically significant difference between the low noise and
noiseless cases at the end of the evolutionary process, which
indicates that the coevolutionary models used here were quite
robust against low noise.

On the evolutionary process itself, there were more runs that
exhibited large fluctuations between full cooperation and full

1%’s are not probabilities.

defection when noise was introduced to C-CEP and C-FEP.
When %, the fluctuations were less obvious (Figs. 12
and 13). When setting was increased, however, the fluctu-
ations were more obvious. For example, cycles between full
cooperation and full defection can be seen clearly from Fig. 14
(C-CEP) and Fig. 15 (C-FEP) when %.

Comparing various C-PMs with C-CEP and C-FEP shows
that there were more runs in the C-PMs that evolved to higher
cooperation levels for all low values. For C-PMs, no
run exhibited large fluctuations between full cooperation and
full defection that were associated with the runs in C-CEP and
C-FEP. For example, Fig. 16 (C-PM05) and Fig. 17 (C-PM25)
have shown quite different characteristics from those in Fig. 12
(C-CEP) and Fig. 13 (C-FEP). They have also shown that con-
sistently high levels of cooperation could be evolved with low
level of noise. In other words, the lookup table representation is
more robust in the face of low noise.

2) High Noise Causes Misunderstanding and Destroys Co-
operation: Axelrod [15] noted that with increasing noise in the
IPD, cooperation becomes less likely as generosity invites more
exploitation. Given high values, we investigate our coevolu-
tionary models’ resistance to defection. Tables IV–VI summa-
rize the results for C-CEP, C-FEP, and C-PM05, respectively.
Results for other C-PMs are omitted for space.

Tables IV and V show that for models that used the neural
network representation, there was an increasing tendency for
runs to evolve toward mutual defection as increased. Obser-
vation on individual runs (not detailed in this paper) showed a
consistent trend toward defection. On the other hand, Table VI
shows that for similar settings, no run evolved to defection
for C-PM05. Observation on individual runs showed cycles be-
tween full cooperation and full defection for C-PM05.

The results indicate that C-PMs are more robust than C-CEP
and C-FEP. Even for high noise, C-PMs could still converge to
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TABLE I
COMPARISON BETWEEN COEVOLUTIONARY MODELS THAT USE DIFFERENT STRATEGY REPRESENTATIONS FOR THE FOUR-CHOICE IPD.

RESULTS WERE TAKEN FROM THE FINAL GENERATION. “MEAN” INDICATES THE AVERAGE OVER 30 RUNS. “STD DEV” INDICATES

THE STANDARD DEVIATION. “MAX” INDICATES THE HIGHEST POPULATION PAYOFF. “MIN” INDICATES THE LOWEST POPULATION

PAYOFF. “No � 1:5” INDICATES THE NUMBER OF RUNS THAT ENDED WITH DEFECTION. “1:5 < No < 3:5” INDICATES

THE NUMBER OF RUNS THAT ENDED WITH INTERMEDIATE PAYOFFS. “No � 3:5” INDICATES THE NUMBER OF

RUNS THAT ENDED WITH FULL COOPERATION. THE t-TESTS COMPARE C-CEP WITH OTHER MODELS

TABLE II
COMPARISON BETWEEN COEVOLUTIONARY MODELS THAT USE DIFFERENT STRATEGY REPRESENTATIONS FOR THE FOUR-CHOICE

IPD WITH p SET AT 0.05%. RESULTS WERE TAKEN FROM THE FINAL GENERATION. “MEAN” INDICATES THE AVERAGE

OVER 30 RUNS. “STD DEV” INDICATES THE STANDARD DEVIATION. “MAX” INDICATES THE HIGHEST POPULATION

PAYOFF. “MIN” INDICATES THE LOWEST POPULATION PAYOFF. “No � 1:5” INDICATES THE NUMBER OF RUNS

THAT ENDED WITH DEFECTION. “1:5 < No < 3:5” INDICATES THE NUMBER OF RUNS THAT ENDED

WITH INTERMEDIATE PAYOFFS. “No � 3:5” INDICATES THE NUMBER OF RUNS THAT ENDED

WITH FULL COOPERATION. THE t-TESTS COMPARE C-CEP WITH OTHER MODELS

a certain degree of cooperation and avoid full defection. This
was not the case for C-CEP and C-FEP. However, cycles be-
tween full cooperation and full defection could be observed for
C-PMs under very high noise during the evolutionary process.

V. DISCUSSION

A. Behavioral Diversity Is Crucial for Evolution to Higher
Cooperation Level in the IPD With More Choices and Noise

McNamara et al. [31] showed that stable evolution to cooper-
ation can be achieved in the IPD if sufficient variations in the be-
havior of strategies are maintained. In the continuous IPD with
noise [22], it was shown that evolution to cooperation was un-
stable. Cycles between cooperation and defection could occur.
Our studies show that stable evolution to cooperation can be
achieved in the IPD with more choices and low noise if be-
havioral diversity is maintained, e.g., the case of C-PMs. The
coevolutionary model using the lookup table representation is
quite robust against noise.

The cycles between full cooperation and full defection ob-
served in some of our experiments can be explained in terms of
overspecialization of strategies in the same population, which

makes strategies vulnerable to mutants and noise. The general-
ization issue in coevolutionary learning was first discussed for
the classical noise-free two-player IPD by Darwen and Yao [8].
According to their study [8], the evolutionary process could lead
to a population of naive cooperators, through drift and selec-
tion, that were vulnerable to defectors. The defectors would then
be replaced by retaliatory cooperators such as tit-for-tat. After
tit-for-tat type strategies took over the population, drifts toward
naive cooperators would happen again.

Although overspecialization in C-CEP and C-FEP could be
addressed by using larger population sizes (e.g., a population
size of 100), a smaller population can avoid cyclic evolutionary
behaviors if behavioral diversity is maintained explicitly, as is
the case for C-PMs. Analysis of individual strategies evolved
by C-PMs has showed that their populations included a good
mixture of different strategies. The population did not overspe-
cialize. Naive cooperators were not observed to dominate the
population at any time of evolution. The behavioral diversity
can be very high for the lookup table representation because
every mutation will result in a behavioral change. The degree of
change is controlled directly and explicitly by . For the neural
network representation, not every weight change will lead to a
behavioral change.
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TABLE III
COMPARISON BETWEEN COEVOLUTIONARY MODELS THAT USE DIFFERENT STRATEGY REPRESENTATIONS FOR THE FOUR-CHOICE

IPD WITH p SET AT 1.5%. RESULTS WERE TAKEN FROM THE FINAL GENERATION. “MEAN” INDICATES THE AVERAGE

OVER 30 RUNS. “STD DEV” INDICATES THE STANDARD DEVIATION. “MAX” INDICATES THE HIGHEST POPULATION

PAYOFF. “MIN” INDICATES THE LOWEST POPULATION PAYOFF. “No � 1:5” INDICATES THE NUMBER OF RUNS

THAT ENDED WITH DEFECTION. “1:5 < No < 3:5” INDICATES THE NUMBER OF RUNS THAT ENDED

WITH INTERMEDIATE PAYOFFS. “No � 3:5” INDICATES THE NUMBER OF RUNS THAT ENDED

WITH FULL COOPERATION. THE t-TESTS COMPARE C-CEP WITH OTHER MODELS

Fig. 12. Five sample runs of C-CEP using the four-choice IPD with p =

0:05%.

Fig. 13. Five sample runs of C-FEP using the four-choice IPD with p =

0:05%.

B. Noise Does Not Necessarily Promote Behavioral Diversity

It was mentioned recently that sources of variations in models
such as mutation and noise might encourage cooperation [31].

Fig. 14. Five sample runs of C-CEP using the four-choice IPD with p =

1:50%.

Fig. 15. Five sample runs of C-FEP using the four-choice IPD with p =

1:50%.

However, mutation and noise produce behavioral diversity dif-
ferently. Mutation introduces strategies with different behaviors
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TABLE IV
COMPARISON OF C-CEP BETWEEN VARIOUS HIGH p SETTINGS FOR THE FOUR-CHOICE IPD. RESULTS WERE TAKEN FROM

THE FINAL GENERATION. “MEAN” INDICATES THE AVERAGE OVER 30 RUNS. “STD DEV” INDICATES THE STANDARD

DEVIATION. “MAX” INDICATES THE HIGHEST POPULATION PAYOFF. “MIN” INDICATES THE LOWEST POPULATION PAYOFF.
“No � 1:5” INDICATES THE NUMBER OF RUNS THAT ENDED WITH DEFECTION. “1:5 < No < 3:5” INDICATES THE

NUMBER OF RUNS THAT ENDED WITH INTERMEDIATE PAYOFFS. “No � 3:5” INDICATES THE NUMBER OF RUNS

THAT ENDED WITH COOPERATION. THE t-TESTS COMPARE THE NOISELESS CASE WITH THE NOISY ONES

TABLE V
COMPARISON OF C-FEP BETWEEN VARIOUS HIGH p SETTINGS FOR THE FOUR-CHOICE IPD. RESULTS WERE TAKEN FROM

THE FINAL GENERATION. “MEAN” INDICATES THE AVERAGE OVER 30 RUNS. “STD DEV” INDICATES THE STANDARD

DEVIATION. “MAX” INDICATES THE HIGHEST POPULATION PAYOFF. “MIN” INDICATES THE LOWEST POPULATION PAYOFF.
“No � 1:5” INDICATES THE NUMBER OF RUNS THAT ENDED WITH DEFECTION. “1:5 < No < 3:5” INDICATES THE

NUMBER OF RUNS THAT ENDED WITH INTERMEDIATE PAYOFFS. “No � 3:5” INDICATES THE NUMBER OF RUNS

THAT ENDED WITH COOPERATION. THE t-TESTS COMPARE THE NOISELESS CASE WITH THE NOISY ONES

TABLE VI
COMPARISON OF C-PM05 BETWEEN VARIOUS HIGH p SETTINGS FOR THE FOUR-CHOICE IPD. RESULTS WERE TAKEN FROM

THE FINAL GENERATION. “MEAN” INDICATES THE AVERAGE OVER 30 RUNS. “STD DEV” INDICATES THE STANDARD

DEVIATION. “MAX” INDICATES THE HIGHEST POPULATION PAYOFF. “MIN” INDICATES THE LOWEST POPULATION PAYOFF.
“No � 1:5” INDICATES THE NUMBER OF RUNS THAT ENDED WITH DEFECTION. “1:5 < No < 3:5” INDICATES THE

NUMBER OF RUNS THAT ENDED WITH INTERMEDIATE PAYOFFS. “No � 3:5” INDICATES THE NUMBER OF RUNS

THAT ENDED WITH COOPERATION. THE t-TESTS COMPARE THE NOISELESS CASE WITH THE NOISY ONES

into the population. Noise allows other parts of a strategy’s be-
havior that are not played otherwise in a noiseless IPD game to
be accessed.

Our results show that noise does not necessarily promote be-
havioral diversity in the population that lead to a stable evo-
lution to cooperation. This is especially true in the cases of
C-CEP and C-FEP. Increasingly higher levels of noise did not
improve the evolution of cooperation at all. In fact, it increased
the number of runs that converged to full defection.

With higher levels of noise, closer inspection of evolved
strategies revealed that overspecialization had occurred in
the population, which led to cyclic behaviors in the evolu-
tionary process. This was true even in experiments that used

lookup tables. High mutation rates and high noise were
supposed to generate high diversity according to previous
thinking in the literature. Our results show that this is not
always the case.

More importantly, noise and mutation have different impacts
on the evolutionary process. For example, increasingly higher
levels of noise lead to mutual defection outcomes. Given a very
noisy environment, strategies overspecialized to play defection
only. This was not observed in the noiseless case of the IPD
with increasingly more mutations. For example, increasingly
higher mutation rates in C-PMs did not lead to mutual defection
outcomes. Strategies were not observed to overspecialized to
play defection, or any specific play.
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Fig. 16. Five sample runs of C-PM05 using the four-choice IPD with p =

1:50%.

Fig. 17. Five sample runs of C-PM25 using the four-choice IPD with p =

1:50%.

VI. CONCLUSION

Behavioral diversity is shown to be important in coevolu-
tionary learning of strategies for the IPD with multiple levels of
cooperation and noise. A detailed empirical study has been car-
ried out to find out how behavioral diversity affects the learning
of strategies in the IPD game. Two main issues have been ad-
dressed here: how different levels of noise affect the evolu-
tionary outcome and how behavioral diversity plays a key role
in the evolution to cooperation.

First, our study shows that low levels of noise can help in
the evolution of cooperation by introducing generosity in the
strategies. However, increasingly higher levels of noise dis-
courage cooperation because of increasing misunderstandings
in the interactions. Instead of encouraging different behaviors,
high levels of noise cause the population of strategies to over-
specialize. This makes the strategies vulnerable to invading
mutants, and can be observed by the cyclic dynamics between
cooperation and defection in the evolutionary process. With
very high levels of noise introduced in the game, strategies
evolved to mutual defection.

Second, our study shows that behavioral diversity helps with
the evolution to cooperation in noisy IPD games. In particular,
it has been shown that strategy representations have a signif-
icant impact on the evolutionary outcomes because of the dif-
ferent levels of behavioral diversity that they generate. A coevo-
lutionary model that uses lookup tables that allow direct evolu-
tion of strategy behaviors can induce higher levels of behavioral
diversity and is more robust to the effects of noise in the IPD
game. However, very high levels of noise still lead to mutual
defection.

For future research directions, a more rigorous analysis of
evolved strategies from generalization’s point of view should
be carried out. Comparisons between our noise model and Wahl
and Nowak’s [22] can be carried out. The impact of noise on
more realistic and complex IPD games can also be investigated,
e.g., IPD with neighborhoods and IPD with more than two
players.
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