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Motor control in swimming can be analyzed using low- and high-order parameters
of behavior. Low-order parameters generally refer to the superficial aspects of
movement (i.e., position, velocity, acceleration), whereas high-order parameters capture
the dynamics of movement coordination. To assess human aquatic behavior, both
types have usually been investigated with multi-camera systems, as they offer high
three-dimensional spatial accuracy. Research in ecological dynamics has shown
that movement system variability can be viewed as a functional property of skilled
performers, helping them adapt their movements to the surrounding constraints. Yet
to determine the variability of swimming behavior, a large number of stroke cycles
(i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based
systems as they simply record behaviors over restricted volumes of water. Inertial
measurement units (IMUs) were designed to explore the parameters and variability
of coordination dynamics. These light, transportable and easy-to-use devices offer
new perspectives for swimming research because they can record low- to high-order
behavioral parameters over long periods. We first review how the low-order behavioral
parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and
their variability can be assessed using IMUs. We then review the way high-order
parameters are assessed and the adaptive role of movement and coordination variability
in swimming. We give special focus to the circumstances in which determining the
variability between stroke cycles provides insight into how behavior oscillates between
stable and flexible states to functionally respond to environmental and task constraints.
The last section of the review is dedicated to practical recommendations for coaches on
using IMUs to monitor swimming performance. We therefore highlight the need for rigor
in dealing with these sensors appropriately in water. We explain the fundamental and
mandatory steps to follow for accurate results with IMUs, from data acquisition (e.g.,
waterproofing procedures) to interpretation (e.g., drift correction).

Keywords: human swimming behavior, coordination variability, behavioral adaptability, inertial measurement
units, aquatic environment, swimming monitoring
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INTRODUCTION

Research on human swimming has been extensive in part
because of one of the unique properties of water: its high
density, which causes great resistance to movement. Many
of the studies have been in the fields of physiology (Berger
et al., 1997; Pendergast et al., 2003), biomechanics (Payton and
Bartlett, 1995; Nikodelis et al., 2005; Gourgoulis et al., 2008),
and motor control (Chollet and Seifert, 2011), and have helped
coaches to monitor and manage training sessions. Motor control
investigations follow the principles of coordination dynamics
within the theoretical framework of ecological dynamics (Seifert
et al., 2013; Davids et al., 2015), an approach used to study
the continuous interactions between an individual and his/her
environment. Applied to swimming, this framework takes the
continuous swimmer–aquatic environment interaction as the
most relevant scale of analysis for understanding human behavior
in an ecological context of performance (Seifert et al., 2014a).
According to Wei et al. (2014, p. 547), “nowhere in sport is
performance so dependent on the interaction of the athlete
with the surrounding medium than in competitive swimming.”
In this sense, swimming provides a valuable and interesting
vehicle for studying emergent behaviors from a coordination
dynamics and ecological point of view. In his ecological theory of
direct perception, Gibson (1979) argued that animals (i.e., human
swimmers) perceive and act on substances (e.g., water), surfaces
(e.g., swimming block), places (e.g., a swimming pool), objects
(e.g., paddles) and events (e.g., a 400-m front crawl competition)
in the environment, without integrating representations of the
world to perceive it (Araújo et al., 2006). This theory suggests
that perception guides an athlete’s actions and, in turn, his/her
actions shape on-going perceptions (i.e., leading to a coupling
of perception and action to support performance behaviors;
Davids et al., 2015). In competitive swimming, swimmers’
actions impact the motion of water particles in a circular
and tight manner since fluid motion will, in turn, impact the
swimmer’s future perceptions and actions. The circular causality
between perception and action, and therefore the emergence of
functional behaviors, is continuously shaped by three categories
of constraints: organismic (i.e., the individual characteristics of
a performer), environmental (i.e., external physical and social
constraints surrounding a performer), and task (i.e., the specific
goals of an activity) (Newell, 1986). These constraints continually
reduce the number of configurations that a complex adaptive
system can adopt in a performance environment (Glazier and
Davids, 2009; Davids et al., 2013). Consequently, appropriate
manipulations of these constraints may prepare the swimmer to
functionally respond to the competitive context of performance
through adaptive behavior (Seifert et al., 2013). Adaptability
refers to the subtle blend of behavioral stability and flexibility,
in the sense that stability is the robustness of behavior under
conditions of perturbation (e.g., waves) and flexibility is the
superficial refinement of behaviors to adjust to constraints (e.g.,
approaching the wall to turn) (Seifert et al., 2014e). Because
movement behavior emerges from the surrounding constraints
that an individual must continuously cope with, we need to
understand the mechanisms underlying behavioral stability,

loss of stability and flexibility. Such changes in coordination
dynamics are strongly dependent on the magnitude of the
perturbation from constraints on the individual–environment
system and may be related to low- and high-order parameters
of behavior. Low-order parameters are generally related to
common biomechanical parameters (e.g., positions, velocities,
accelerations), reflecting simple inherent mechanisms (i.e., over
space or time) that lead to the emergence of behavior (Haddad
et al., 2006). This first level of analysis should be complemented,
however, by capturing the true dynamics of the task, as doing so
provides a better characterization of the rich complexity of the
system (Haddad et al., 2006). High-order parameters combine
multiple lower-order components, like, for example, position and
velocity to obtain the relative phase between limbs, which can be
used to capture the system coordination dynamics.

In swimming, low-order behavioral parameters are generally
measured through two-dimensional video analyses. This method
has become the gold standard (e.g., Nikodelis et al., 2005; Sanders
et al., 2006; Elipot et al., 2009; Naemi et al., 2010; Mason and
Formosa, 2011; Callaway, 2015) to collect kinematic data (i.e.,
prerequisite data for assessing behavior). First, two-dimensional
analyses were “designed to identify where, why and how
swimmers performed better than others” (Mason and Formosa,
2011, p. 413). The temporal parameters of events (i.e., duration
of start, turn and finish segments) or stroke length (SL; i.e.,
distance traveled by the body during a complete stroke),
stroke rate (SR; i.e., number of stroke cycles per minute), and
mean stroke velocity are assessed by a digitization procedure
using two-dimensional camera-based analysis. It should be
noted, however, that simple manual digitization of anatomical
landmarks is error-prone and the data processing is long (Wilson
et al., 1999; Mooney et al., 2015a) (27 h to digitize four stroke
cycles, according to Psycharakis and Sanders, 2008). In addition,
Dadashi et al. (2012, p. 12928) have stated, “the biomechanical
analysis of swimming remains inadequately explored due to
complications of kinematic measurements in water,” leading to
an increase in error reconstruction up to 42% compared with
similar on-land analyses (Silvatti et al., 2013). The parallax
effect at the water–air interface (Kwon, 1999), water clarity and
light reflection, distortion problems and pixel contrast between
the swimmer and background (Ichikawa et al., 1998), and
turbulence or bubble formation (Mooney et al., 2015a) are all
factors that hamper continuity in the recorded data. Despite
these difficulties, however, interesting data have emerged on
the spatial or temporal characteristics of the swimming path
(Callaway et al., 2009), swimmers’ mechanical energy (Berger
et al., 1997; Pendergast et al., 2003), and hand force production
(Schleihauf, 1979; Toussaint and Beek, 1992). Yet these analyses
remain limited for evaluating higher-order parameters, which
require another level of investigation (Callaway et al., 2009; de
Magalhães et al., 2014). For this purpose, researchers turned to
three-dimensional optoelectronic analyses (Chiari et al., 2005)
based on the automatic detection of reflective markers positioned
on swimmers’ joints to properly track their motion (Callaway
et al., 2009; Dadashi et al., 2013c). For an example in breaststroke,
consider the real-time data collected in a calibrated volume by
Olstad et al. (2012). The camera setup, position, resolution and
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calibration determine a volume within which movement will be
analyzed: the more cameras used and the closer the calibration
volume, the greater the measurement accuracy will be (de Jesus
et al., 2015). This method is the gold standard in laboratory
conditions, but remains relatively rare outdoors or in constrained
environments, such as underwater (Silvatti et al., 2012; de Jesus
et al., 2015). Another major issue in swimming is that the analyses
are performed over a restricted area (Ceccon et al., 2013) of only
three or four stroke cycles (Dadashi et al., 2013c; Callaway, 2015).
This means that, although multi-camera systems can be used for
inter-individual or intra-cyclic analyses of high-order movement
parameters, they are of limited use for investigating behavioral
dynamics.

The limitations inherent to both two- and three-dimensional
video-based technologies have prompted investigators to look
for new ways (de Magalhães et al., 2014) to dynamically
monitor swimming training and better investigate human
behavioral adaptations to surrounding swimming constraints.
The accelerometer-based data logger (Silvatti et al., 2012;
Callaway, 2015) may be one of the first devices to respond
to the requirements of research in coordination dynamics. By
incorporating a gyroscope (to measure angular velocities) and
a magnetometer (sensitive to magnetization; for a technical
complement see Dadashi, 2013; Barber, 2014; Vannozzi, 2014),
a wider range of measurement opportunities is offered. This
device is also called an inertial measurement unit (IMU), a
wearable motion sensor (WMS) or a microelectromechanical
system (MEMS) (Callaway et al., 2009), but we will refer to it as
an IMU in this review. IMUs were recently validated for studying
the “readily observable factors” (Glazier et al., 2006, p. 61; i.e.,
swimming speed, stroke length, stroke frequency) of swimming
performance during training sessions, although equipping
swimmers with sensors during competition is unauthorized
(Mooney et al., 2015b). Once they are scrupulously waterproofed,
IMUs offer distinct advantages to investigate swimmers’ behavior
dynamics (Dadashi et al., 2013e): first, they can record a high
volume (e.g., 5981 cycles recorded by Dadashi et al., 2016) of
continuous data over an entire swimming training event. Second,
they do not require digitization procedures (de Magalhães et al.,
2014), and they are user-centric (i.e., no interference between two
swimmers wearing them), low cost, and portable for easy use in
field conditions (Favre et al., 2006; Dadashi et al., 2013c, 2015).
Not least, the results are rapidly available for simple analyses
(Dadashi et al., 2013c) once complete data processing has been
performed one time (i.e., data processing depend on the quantity
and complexity of the investigated parameters).

Inertial measurement units thus open new perspectives on
coordination dynamics by enabling the investigation of inter-
cyclic variability in performance, movement and coordination
patterns (i.e., variability of both low- and high-order parameters).
The data can then be used to build swimmer profiles and to
more deeply explore swimmers’ adaptability to the constraints
surrounding them (Newell, 1986). Seifert et al. (2014a), for
example, demonstrated that there is no single and ideal pattern
of coordination in swimming. Instead, these authors showed that
the coordination variability observed in neurobiological systems
is essential to produce (i) new behaviors that are highly adapted

to the situations that arise, (ii) stable behavior despite external
disturbances, and (iii) flexible behavior as a function of the
constraints that continuously surround individuals (Bartlett et al.,
2007; Davids and Glazier, 2010). The analysis of coordination
dynamics and its functional variability provides insight into the
processes by which swimmers adapt to the continuous changes in
the constraining and unpredictable water environment (Bartlett
et al., 2007).

In this critical review, we examine two key aspects of
swimming research: (i) the characterization of human behavior
in the highly resistive aquatic environment (e.g., behavior
emergence, stability or flexibility) and (ii) the evaluation of inter-
cyclic variability as a way to gain insight into the coordination
dynamics of swimming behavior. Such investigations are
facilitated by focusing on both low- and high-order movement
parameters in order to precisely reveal the rich complexity of
the swimmer–aquatic environment system. Yet although video-
based analyses have been quite popular in swimming research,
they do not offer the possibility of characterizing these parameters
over long periods, and some researchers have thus turned to
IMUs as a solution. Therefore, this critical review presents how
IMUs can be used to characterize swimming behavior, providing
valuable insights for both researchers and coaches. IMUs have
undergone rapid development, with steadily increasing use in
swimming studies (e.g., 87 references included in the review
of Mooney et al., 2015b, with 62 published since 2010). To
deal with this expanded literature, the present review goes
beyond the technical researches performed by de Magalhães et al.
(2014) and Mooney et al. (2015b), relating the research question
driving each analysis to the appropriate signal processing from
studies that have used accelerometers and IMUs. In the first
section, we review the IMU-based investigations of low-order
behavioral parameters and their variability. The second and main
section is devoted to the assessment of high-order behavioral
parameters (i.e., movement coordination) in swimming and
inter-cycle variability. IMUs are particularly well suited to explore
the functional role of variability (especially between cycles)
through numerous and long time-series analyses performed
in an ecological context of performance. As assessing these
parameters in swimming depends greatly on sensor use in
the constraining aquatic environment, the last section provides
practical recommendations ranging from sensor positioning to
data processing.

Journal and conference articles referencing the assessment
of coordination dynamics in swimming with accelerometers or
IMUs were selected from the major scientific databases: PubMed,
Science Direct, IEEE Xplore, Scopus and Google Scholar. The
searching keywords were “human behavior in swimming” or
“swimming biomechanics” investigations for “performance” or
“motion/movement analysis” or “stroke analysis” or “angle
determination” or “coordination dynamics” or “sensorimotor
control” purposes, analyzed with “IMUs” or “WMS” or “MEMS”
or “inertial sensors” or “accelerometers” or “gyroscopes.” The
inclusion criterion was the relevance of the article/conference
proceeding to assessing low- to high-order parameters of human
swimming behavior with the use of accelerometers, and/or
gyroscopes, and/or magnetometers. Fifty articles and conference
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proceedings (published before 2016) were identified for review.
Eleven other papers on terrestrial cyclical activities were also
included for their relevance to determining sensor position and
assessing joint angles in swimming. Finally, 23 other articles on
the functional and adaptive roles of performance and movement
variability were included for their relevance to examining
within- and between-cycle and inter-individual variability. These
additional references demonstrate that measurements that were
generally limited to on-land conditions in the past (e.g.,
building dynamical biomechanical and motor control models of
swimming) are now available in the aquatic environment thanks
to advances in IMU technology.

DETERMINING LOW-ORDER
PARAMETERS: A FIRST LEVEL OF
ANALYSIS TO CHARACTERIZE HUMAN
BEHAVIOR IN SWIMMING

One of the first and simplest ways to characterize human
swimming behavior is to analyze the circumstances in which
one swimmer performs better than another despite similar
environmental constraints. These parameters, generally referred
to as the simple mechanisms of swimming motion—or more
broadly, performance-related parameters—are swimming speed,
SR, SL and even segment positions throughout the stroke cycle.

Race components and stroking parameters have traditionally
been assessed with stopwatches, despite inconsistencies due to
athlete bias or human error (Beanland et al., 2013) and the
limited number of athletes that coaches can follow at a given time
(Lecoutere and Puers, 2014). The raw data from accelerometers
provide the swimming time, which is the major component in
swimming performance (Mooney et al., 2015b). To compute it,
the beginning and end of the swimming event are recorded.
Generally, the start of a swimming event is characterized by
high acceleration along the longitudinal axis (Davey et al., 2008;
Bächlin and Tröster, 2011; Stamm et al., 2011; Ohgi et al., 2014),
decreasing to values close to zero at the end of the event. The
average velocity can also be computed if the event duration
and the distance covered by the swimmer are known (Bächlin
and Tröster, 2011; Stamm et al., 2011; Beanland et al., 2013).
This first level of analysis, which is a simple examination of the
raw data when the accelerometer-based information is known
(e.g., sampling frequency, reference axes), provides rapid and
useful information on swimming performance. In a further step
to characterize swimmers’ accelerations for a given distance,
scientists can focus on the signal within the starting and ending
bounds of the swimming event. In this portion of the acquired
signal, the cyclical nature of the swimming activity is quite useful
for determining parameters like SR, which is the time between
similar acceleration peaks in the data (Ichikawa et al., 2003; James
et al., 2004; Daukantas et al., 2008; Davey et al., 2008; Slawson
et al., 2008; Bächlin and Tröster, 2011; Hagem et al., 2013; Khoo
et al., 2013; Lecoutere and Puers, 2014; Callaway, 2015; Stamm
and Thiel, 2015). SR can easily be obtained by positioning a
sensor on the back or at the sacral level (Figure 1) (Pansiot

FIGURE 1 | An example of raw acceleration data (longitudinal axis)
obtained with a sensor positioned on the swimmer’s lower back
during a 50-m front crawl performed in a 25-m swimming pool. Simple
parameters can be identified: the duration of the wall start and the tumble turn
(in gray), the swimming sequences, and the duration of one stroke cycle,
allowing the computation of the average velocity and the stroke length.

et al., 2010; de Magalhães et al., 2014). The ratio of SR to the
average velocity of the swimming lap can then give approximate
values of SL and stroke index (SI, the product of velocity and
SL, according to Costill et al., 1985). Additionally, in order to
characterize the dynamics of performance-related parameters,
scientists may now use IMUs to register data over long periods.
The recent data loggers, which are small and able to collect data
autonomously, can record up to 200 h at a sampling frequency of
100 Hz (James et al., 2011) and up to 8 h between two consecutive
battery charges. This allows for a wide range of measurement
contexts, from a normal training session to a complete day of
data acquisition. These sensors therefore provide information
on the variability in performance-related parameters—that is,
for a detailed degree of swimming monitoring—that was not
possible with classical video-based methods. For example, by
manipulating swimming velocity or inducing fatigue, swimmers
can be prompted to adapt their SR and/or SL, which can then be
analyzed dynamically with IMUs. These investigations at the scale
of the swimming event can be completed by the assessment of
the data on temporal and/or spatial characteristics over restricted
portions of the swimming event (e.g., a stroke cycle, start or
turn sequences), which provide evidence of finer behavioral
adaptations as a function of surrounding constraints.

The use, positioning and number of sensors selected for
these analyses are highly dependent on the research question the
scientists intend to address. Competitive swimming is aquatic
locomotion involving motions of both the upper and lower
limbs. Hand dynamics might be determined by a single sensor
positioned on the dorsal side to detect water entry. As highlighted
by Mooney et al. (2015b), detection of hand entry is highly
dependent on the swimmer’s technique: a flatter hand entry is
associated with high palmar-dorsal acceleration (Ohgi et al.,
2000) or sagittal acceleration near zero (Ichikawa et al., 2003),
whereas hand entry with a sharper pitch angle is associated with
palmar-dorsal acceleration near 0 m/s2 (Ohgi et al., 2000). To
investigate the dynamics of the lower limbs during training,
a similar procedure is adopted, with sensors generally placed
on the calf of the dominant leg (Fulton et al., 2009a,b, 2011).
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These results can be considered as a first level of analysis in
swimming investigations, in that the movement indications are
available from the raw sensor data. Determining the upper and
lower limb oscillations offers insights into the strategies that
swimmers use to create propulsion (it is generally considered
that the upper limbs create nearly 90% of the total body
propulsion; Deschodt et al., 1999), which can be approached by
measuring their instantaneous velocity. To compute this velocity,
which is considered the best parameter for estimating swimming
performance (Barbosa et al., 2011; Dadashi et al., 2015), a
supplementary level of analysis is needed, since velocity is not
directly obtained from accelerometer or IMUs recordings. To our
knowledge, Holmér (1978) was the first to assess this parameter
from a single accelerometer positioned on the swimmer’s lower
back. With simple instantaneous acceleration data integration,
he obtained velocity curves for front crawl and breaststroke,
and this pioneering investigation prompted the recent studies
focused on instantaneous hip (Puel et al., 2014) and whole
body (Dadashi et al., 2012, 2013a,b,d; Stamm et al., 2013a,b)
velocity estimation following the same computational process.
However, this transformation is sometimes subject to drift and
needs additional processing to correct it (Dadashi et al., 2015),
as described in the practical implications section. Dadashi et al.
(2012, 2014) assumed that the average trend of instantaneous
velocity peaks is quasi-constant due to the steady regime of front
crawl swimming. They therefore extracted the cycle minimum
and maximum peaks of instantaneous velocity and fit them with
a shape preserving spline (Fritsch and Carlson, 1980). Then,
they assessed the instantaneous velocity by expressing the data
into an external reference frame (e.g., as a function of the
gravity vector) to obtain a general overview of the swimmer’s
velocity profile. Thus, only the component collinear with the
swimmer’s displacement axis was needed to estimate swimming
performance (Barbosa et al., 2011; Dadashi et al., 2015). In
contrast, Stamm et al. (2013a,b) did not correct the integration
error during the instantaneous velocity estimation of a push-
off and swimming lap, considering noise as insignificant for
such brief events. Their results showed an acceptable difference
(bias of −0.15 m/s) between the values obtained with the
IMU and the gold standard (i.e., tethered optical velocity
meter: description in Davey and James, 2008) for both push-
off and swimming lap instantaneous velocity. Some authors
were even able to characterize the variability in instantaneous
swimming velocity over different time-scales, showing that
swimmers functionally adapt to surrounding constraints (Newell,
1986). To do so, they computed the so-called intra-cyclic
velocity variations (IVV; Dadashi et al., 2013a) and cycle velocity
variation (Dadashi et al., 2016) from the values of instantaneous
velocity.

All the aforementioned parameters, which are listed in Table 1,
offer a first level of analysis for investigating human swimming
behavior, essentially based on temporal parameters (acceleration
and its first integration). These analyses can be completed
by investigations focusing on the spatial parameters of the
swimming stroke.

Kinematic analyses provide clear insight into swimmers’
continuous functional adaptations to the changes in their

dynamic and unpredictable aquatic environment. Indeed, by
determining the different limb positions in the swimming event
(i.e., movement phases) and connecting them to propulsion,
researchers can show how swimmers act on their environment
to create or at least maintain their instantaneous velocity.
Determining instantaneous velocity variations as a function
of limb position is accomplished by coupling accelerometers
or IMUs with video-analyses. For example, phases of the
start (Chakravorti et al., 2013), turn (Vannozzi et al., 2010;
Lee et al., 2011b; Le Sage et al., 2012; Slawson et al., 2012;
Stamm et al., 2013a) (the procedures are summarized by Mooney
et al., 2015b) and stroke cycle (Ohgi et al., 2000, 2003, 2014;
Ohgi, 2002; Nakashima et al., 2010; James et al., 2011; Lee
et al., 2011a; Callaway, 2015) have been detected, based on
acceleration data. Ohgi et al. (2000, 2003) were the first to present
a case study of the movement phases in the stroke cycle in
both freestyle and breaststroke swimming from a single two-
dimensional accelerometer. In the breaststroke and butterfly,
propulsive phases are systematically followed by non-propulsive
phases, as the two upper and two lower limbs make similar
and simultaneous movements, causing considerable velocity
fluctuations throughout the stroke cycle. For example, velocity
during the breaststroke glide decreases greatly in preparation for
the strong re-acceleration in the following propulsive phases of
the stroke. It is thus essential to determine limb position to ensure
that leg propulsion is not concomitant to upper limb propulsion,
which is generally a beginner’s error (i.e., “accordion” propulsion
mode; Leblanc et al., 2009). In freestyle, these fluctuations are
subtler, since propulsion is created by the continuous actions
of both upper and lower limbs. In the pioneering study of
Ohgi et al. (2000), the authors positioned a sensor on the
wrist to detect acceleration peaks, in line with the stroke
phases described by Maglischo (1982), and recorded swimmers’
actions with bottom- and side-view cameras. The changes in the
acceleration profile were linked to changes in forearm position,
thereby defining the different stroke phases. The minimum
values of sagittal hand acceleration were observed when the
hand entered the water. Similarly, the maximum acceleration
values were noted after the catch point at the beginning of
the insweep movement. On the longitudinal axis, the values
decreased to nearly zero at the beginning of the underwater
sequence, since hand acceleration was greatly reduced along this
axis during the entry and stretch (i.e., extension of the arm
forward). High acceleration was then recorded at the beginning
of the downsweep. Following this sequence, the upsweep started
with vertical hand acceleration. The authors concluded that a
single sensor positioned on the wrist was sufficient to detect
most of the swimmer’s upper limb swimming phases (except
the hand release from the water), which greatly reduced the
processing time generally associated with similar video analyses
(Ohgi et al., 2000). Propulsion was mainly accomplished by the
completion of an efficient insweep movement, where the highest
acceleration levels were recorded. Also, the acceleration curves
offered insights into those instants when propulsion might be
increased and thus provided indications to further adapt the
swimming stroke. Nevertheless, this work must be viewed as
the first step in automatically detecting the stroke phases of

Frontiers in Psychology | www.frontiersin.org 5 March 2017 | Volume 8 | Article 383

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00383 March 11, 2017 Time: 13:38 # 6

Guignard et al. Swimming Behavior Analysis with IMUs

TABLE 1 | Studies focusing on the temporal low-order parameters of swimming behavior.

Authors Measured parameters Sensor type Participant

Bächlin and Tröster, 2011 Wall push-off, end of the laps, average
velocity, SL and SR

3D accelerometer 18 swimmers

Beanland et al., 2013 Stroke count, mid-pool velocity 3D accelerometer 21 swimmers

Callaway, 2015 Lap time, average velocity, stroke count,
stroke duration, SR

3D accelerometer 12 swimmers

Dadashi et al., 2012, 2014 Instantaneous swimming velocity 3D accelerometer, 3D gyroscope 20 and 8 swimmers

Dadashi et al., 2013a Instantaneous swimming velocity,
intra-cyclic velocity variations

3D accelerometer, 3D gyroscope 12 swimmers

Dadashi et al., 2013d Instantaneous swimming velocity, cycle
mean velocity

3D accelerometer, 3D gyroscope 20 swimmers

Dadashi et al., 2015 Breaststroke cycle mean velocity 3D accelerometer, 3D gyroscope 15 swimmers

Daukantas et al., 2008 Lap count, instantaneous SR 3D accelerometer 4 swimmers

Davey et al., 2008 Wall push-off, turns, lap time, stroke count
and SR

3D accelerometer 6 swimmers

Fulton et al., 2009a,b Kick count and kick rate 3D accelerometer, 1D gyroscope 14 and 12 Paralympic swimmers

Fulton et al., 2011 Kick count and kick rate 3D accelerometer, 1D gyroscope 12 Paralympic swimmers

Hagem et al., 2013 SL, SR, lap time 3D accelerometer 1 swimmer

Ichikawa et al., 2003 Stroke frequency, hand water entry and
exit

3D accelerometer 4 swimmers

James et al., 2004 Wall push-off, stroke style and stroke
count metrics

3D accelerometer Selection of swimmers

Jensen et al., 2013 Rest and swimming phases, swimming
style and turn detection

3D accelerometer, 3D gyroscope 12 swimmers

Khoo et al., 2013 Acceleration profiles, stroke duration,
breathing pattern

3D accelerometer 2 swimmers

Lecoutere and Puers, 2014 Split times, stroke frequencies, breathing
patterns and distance per stroke

3D accelerometer, 3D gyroscope 1 swimmer

Le Sage et al., 2010a Turns, stroke duration 3D accelerometer, 2D gyroscope 1 swimmer

Le Sage et al., 2010b Lap time, turn detection 3D accelerometer, 3D gyroscope 1 swimmer

Ohgi et al., 2014 Rest and swimming phases, start, turns,
goal touch events, swimming style

3D accelerometer 45 swimmers

Pansiot et al., 2010 Swimming style, wall push-off, lap counts 3D accelerometer 1 swimmer

Puel et al., 2014 Rotational speeds and translational
accelerations, hip longitudinal speeds in
breaststroke and crawl

3D accelerometer, 3D gyroscope, 3D magnetometer Sample of swimmers

Siirtola et al., 2011 Swimming style, turns, number of strokes 3D accelerometer 11 swimmers

Slawson et al., 2008 Stroke count, stroke duration 3D accelerometer 1 triathlete

Stamm et al., 2011 Start and end swimming times, stroke
frequency, average velocity

3D accelerometer 1 swimmer

Stamm et al., 2013a Instantaneous push-off and glide velocities 3D accelerometer 7 swimmers

Stamm et al., 2013b Instantaneous swimming velocity, SR 3D accelerometer, 3D gyroscope 17 swimmers

Stamm and Thiel, 2015 Lap velocity and acceleration, SR, arm
symmetry

3D accelerometer, 3D gyroscope 8 swimmers

Vannozzi et al., 2010 Gliding phase, stroke phase and turn
phase durations

3D accelerometer, 2D gyroscope 8 swimmers

For each work, the measured parameters are included alongside the sensor type. SL, stroke length; SR, stroke rate; 1D, one-dimensional; 2D, two-dimensional; 3D
three-dimensional.

front crawl swimming, since it involved only one swimmer and
an additional camera system. It also had to be personalized
for the subject (Callaway, 2015) in terms of sensor fixation,
location and orientation, the swimmer’s technique, and signal
processing (e.g., low-pass filtering cutoff frequencies). Currently,
coupling three-dimensional accelerometers and video systems is
considered appropriate for investigating the motion phases of
swimming training (as recently confirmed by Callaway, 2015,
for front crawl phase determination). In other studies, a second

data source (i.e., three-dimensional gyroscope) was added to the
accelerometer-video couple to obtain angular velocities, further
improving phase detection accuracy and validity. IMU data
alone may indeed be too imprecise since these sensors provide
only estimations; systematic control with video may thus be
essential. For Ohgi (2002) and Lee et al. (2011a), the gyroscope
complemented the accelerometer (positioned at the wrist) and
provided additional data on the front crawl phases. Specifically,
these author’s distinguished local maximum and minimum values
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TABLE 2 | Studies focusing on the spatial low-order parameters of swimming behavior.

Authors Measured parameters Sensor type Participant

Callaway, 2015 Discrimination of stroke phases 3D accelerometer 12 swimmers

Chakravorti et al., 2013 Detection of glide phase, first stroke initiation and turn initiation 3D accelerometer, 2D gyroscope 2 swimmers

Dadashi et al., 2013b Detection of breaststroke phases 3D accelerometer, 3D gyroscope 7 swimmers

James et al., 2011 Arm stroke identification 3D accelerometer, 3D gyroscope 1 swimmer

Lee et al., 2011a Hand water entry and exit, discrimination of stroke phases 3D accelerometer, 3D gyroscope 6 swimmers

Lee et al., 2011b Discrimination of tumble turn phases 3D accelerometer 2 swimmers

Le Sage et al., 2012 Turn phases, stroke count, stroke duration 3D accelerometer 12 swimmers

Nakashima et al., 2010 Wrist trajectory 3D accelerometer, 3D gyroscope 1 swimmer

Ohgi et al., 2000 Discrimination of stroke phases 2D accelerometer 2 swimmers

Ohgi, 2002 Discrimination of stroke phases 3D accelerometer (prototype I); 3D accelerometer,
3D gyroscope (prototype II)

2 swimmers

Ohgi et al., 2003 Discrimination of breaststroke phases 2D accelerometer 2 swimmers

Ohgi et al., 2014 Discrimination of stroke phases 3D accelerometer 45 swimmers

Slawson et al., 2012 Tumble turn phases 3D accelerometer, 2D gyroscope 1 triathlete

For each work, the measured parameters are included alongside the sensor type. 2D, two-dimensional; 3D, three-dimensional.

for the angular velocity profiles corresponding to the entry,
catch and exit points of the hand trajectory (Lee et al., 2011a).
Dadashi et al. (2013b) used another method based on the hidden
Markov model (HMM) to determine breaststroke phases. These
authors hypothesized that the phases of arm and leg movement
during the breaststroke possess statistical properties that can be
used to supervise learning based on the HMM. For example,
the breaststroke arm recovery takes place before gliding with
arms fully extended. Such an event can be (i) detected and (ii)
fully automated using the HMM, as can the other two stroke
phases, the glide and propulsion, which, when connected to the
swimming velocity, reveal swimmers’ propulsion strategies.

The discrimination of stroke phases has become feasible with
IMUs (Daukantas et al., 2008; results presented in Table 2)
and doing so reveals how swimmers are able to continuously
act on their environment to minimize instantaneous velocity
variations. Using IMUs with video, however, runs counter to
the primary intention of using an independent system that
does not have the inherent limitations of video systems, which
record data over a restricted volume of analysis (Callaway et al.,
2009). New investigations, mainly focusing on the assessment of
higher-order parameters of swimming behavior, have therefore
been conducted using only accelerometers and IMUs, which can
record over long periods of time.

INVESTIGATION OF HIGH-ORDER
PARAMETERS TO CHARACTERIZE
COORDINATION DYNAMICS AND
BEHAVIORAL VARIABILITY IN
SWIMMING: NEW PERSPECTIVES
USING IMUS

Combining spatial and temporal data (i.e., mixing low-order
parameters) is one way to investigate the interaction of the
components of the swimmer–aquatic environment system at
a behavioral level. Computing the so-called spatial-temporal

coordination between two or more segments (or joints) starts
with the determination of the angular times series of the segments
(or joints) under consideration (Wheat and Glazier, 2006). When
these angles are determined using IMUs, the data processing
should take into account drift, offset, sensor synchronization and
three-dimensional position determination, all of which implies
complex steps compared with the procedures for determining
low-order parameters. These investigations are made possible by
considering the orientation of the sensors in the tridimensional
domain, without any further help from video systems. Sensor
orientation is determined by fusing the data from the acceleration
integration and angular velocity (assessed by gyroscopes). As
noted, this operation has to deal with the problem of drift,
whose negative effects can be limited by using a magnetometer
coupled to the accelerometer and gyroscope. The magnetometer
compensates for the baseline drift in the other two devices
(Callaway et al., 2009). The studies on this problem are very
recent, but already they point to new ways to better characterize
the spatial-temporal coordination of human swimming behavior
and its variability over time (works on this topic are summarized
in Table 3).

Dadashi et al. (2011, 2013c) computed the inter-arm spatial-
temporal coordination in front crawl swimming by assessing
the Index of Coordination (IdC; Chollet et al., 2000). The
IdC “measures the coordination of arm stroking, with precise
quantification of the lag between the start of the propulsion by
one arm and the end of propulsion by the other” (Chollet et al.,
2000, p. 54). It combines inputs from both the position of the
swimmer’s segments and the temporal parameters to detect each
stroke phase computed using an experimental setup composed of
three IMUs positioned on the swimmer’s forearms and sacrum.
The IdC is computed by detecting the beginning of the pull
(i.e., start of the propulsive sequence, when the forearm begins
its backward motion), the beginning of the push (i.e., transition
between the two propulsive phases, when the forearm passes
the shoulder), and the end of the push or the beginning of
the recovery (i.e., end of the propulsion, when the forearm is
alongside the body) for each upper limb (Chollet et al., 2000).
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TABLE 3 | Studies focusing on the high-order parameters of swimming behavior.

Authors Measured parameters Sensor type Participant

Dadashi et al., 2011 Propulsive phases, coordination index 3D accelerometer, 3D gyroscope 7 swimmers

Dadashi et al., 2013c Arm stroke phases and inter-arm coordination 3D accelerometer, 3D gyroscope 7 swimmers

Dadashi et al., 2016 Intra-cyclic velocity variation, cycle velocity variation and
inter-arm coordination

3D accelerometer, 3D gyroscope 18 swimmers

Seifert et al., 2014c Inter-segmental elbow and knee angles cycle per cycle, arm-leg
coordination

3D accelerometer, 3D gyroscope, 3D magnetometer Not specified

Seifert et al., 2014d Inter-segmental elbow and knee angles cycle per cycle, patterns
of coordination

3D accelerometer, 3D gyroscope, 3D magnetometer Not specified

Seifert et al., 2014e Adaptability of limbs movements and arm-leg coordination after
perturbation

3D accelerometer, 3D gyroscope, 3D magnetometer 6 swimmers

For each study, the measured parameters are included alongside the sensor type. SR, stroke rate; 3D, three-dimensional.

Dadashi et al. (2011, 2013c, 2015) automatically determined the
beginning of the pull and the push by focusing on forearm
angular velocities and accelerations and computing the angle
between the forearms and the sacrum to assess the beginning
of recovery. The beginning of the pull was characterized by
high forearm velocity in the backward direction. To precisely
detect this event in time, a model of slope change detection was
applied for medial-lateral angular velocity and anterior-posterior
acceleration curves (CUSUM algorithm; Gustafsson, 2000). The
start of the push phase, which is the change in forearm movement
from outsweep to insweep, was detected from the angular velocity
on the frontal axis. On the curve, it was determined by the local
maximum directly observable after the beginning of the pull
(Figure 2). For the start of the recovery, these researchers had to
detect the end of the underwater part of the arm motion. To do so,
they focused on the absolute sacrum/forearm angle, considering
the minimum angulation value when the swimmer had the arm
extended to the front (i.e., during glide). Consequently, the
underwater portion of the stroke corresponded to an increase in
this angle until a maximum, at which point the recovery began.
Due to the cyclical nature of swimming, this procedure could be
performed throughout the swimming event (i.e., in dynamics),
providing a complete and accurate overview of the front-crawl
inter-arm coordination of the swimmers.

Another possibility for assessing coordination is to compute
the continuous relative phase (CRP) between two or more
segments for swimming motion analysis (Seifert et al., 2014c,d,e).
This parameter contains information about both the position
and velocity of the two segments under consideration. In this
case, the researchers were interested in investigating inter-limb
coordination, which meant accurately locating the limbs in three-
dimensional space to obtain their positions, and hence the angle
between them. Computing CRP was facilitated using a net of four
IMUs positioned on the forearm, upper arm, thigh and shank
of a body side to capture elbow and knee angles (Seifert et al.,
2014c,e). The authors developed a process to correct for drift,
based on the assumption that the orientation of the magnetic field
would be constant during recording. This technique could not
be used to compute absolute angles since the initial signal had
been modified. Therefore, the authors computed relative angles
(θnorm; normalized between −1, corresponding to −120◦, and
+1, corresponding to 50◦; Seifert et al., 2014e) as the integration

FIGURE 2 | An example of temporal parameter estimations for
computing IdC from sensors positioned on the forearm and sacrum.
The angular velocities on the transversal axis (upper panel) are used to detect
the beginning of pull (gray triangles) and push (gray circles), and hence the
stroke duration. The absolute sacrum/forearm angle characterizes the
beginning of recovery (gray squares).

of the difference in the gyroscopic signals from the sensors
positioned around the joint under study. A similar procedure
was used to compute the normalized angular velocities (ωnorm) of
both elbow and knee joints in the interval [−1, +1]. Then, phase
angles (ϕelbow and ϕknee) in degrees were calculated and corrected
according to their quadrant to ensure their continuity over time
(Hamill et al., 2000): ϕ = arctan(ωnorm/θnorm). Finally, the CRP
for a complete cycle was calculated as the difference between
the two phase angles (Hamill et al., 2000): ϕrel = ϕelbow–ϕknee.
Values obtained from CRP computations directly reveal the mode
of coordination between the two considered segments/joints
(here knee and elbow for upper/lower limb coordination in
breaststroke). In these studies (Seifert et al., 2014c,e), CRP
values between −30 and +30◦ signified an “in-phase” pattern of
coordination between knee and elbow, whereas values ranging
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between −180 and −150◦ or +150 and +180◦ denoted an
“anti-phase” pattern.

These essential spatial-temporal investigations have for too
long been limited to a restricted number of stroke cycles,
but IMUs now offer the possibility of more fully considering
the coordination dynamics and its variability. This objective
can be achieved by characterizing the inter-cyclic movement
variability (Dadashi et al., 2016), which can be analyzed
within or between individuals. In the traditional cognitivist
approach to coordination dynamics, variability in movement and
coordination is noise or random fluctuation and is generally
seen as detrimental to performance (Newell and Corcos, 1993;
Davids et al., 2003, 2012). From this perspective, an athlete is
expert when he/she is able to automate and reproduce a specific
movement or coordination pattern consistent with the task goal
(Ericsson et al., 1993; Abernethy et al., 2008). However, variability
is inherent to all biological systems, since a repeated movement is
never identical to the one before it (Bernstein, 1967). Within the
ecological dynamics framework, an athlete’s movement emerges
from the interaction of a set of constraints (environment, task and
organism; Newell, 1986) through circular relationships between
perception and action (Davids et al., 2012). The specificity of
swimming is that the environmental constraint is crucial; since
it limits swimmers’ motion by high resistances (water is 800
times denser than air). According to the ecological dynamics
perspective, the manipulation of constraints is likely to prompt
new behavior to emerge, to stabilize a given behavior, or to
train adaptive flexibility. Recently, Dadashi et al. (2016) used this
behavioral approach by constraining or perturbing swimmers in
order to visualize the possible consequences on coordination.
Such perturbations may take different forms, from the use of a
parachute to add resistance, the modification of SR with a pacer
positioned under the cap, or the manipulation of the fluid flow by
swimming in a flume.

In the ecological dynamics framework, movement and
coordination variability might be defined as functional flexibility,
with the sensorimotor system adapting to continuous or
temporary changes in constraints (Davids et al., 2003; Seifert
et al., 2013). Variability can thus be seen as reflecting the
property of degeneracy in the neurobiological system (Edelman
and Gally, 2001; Mason, 2010; Whitacre, 2010). Degeneracy is
“the ability of elements that are structurally different to perform
the same function or yield the same output” (Edelman and
Gally, 2001, p. 13763). In other words, different components
of the sensorimotor system (i.e., heteromorphic components)
can achieve the same task goal or performance outcome (i.e.,
isofunctionality) under specific conditions in order to ensure
robustness if the initial system configuration fails (Mason, 2010).
As an example, Seifert et al. (2014b) manipulated glide duration
during a 200-m freestyle event and observed that swimmers
were able to increase their kicking (e.g., to a 10-beat kick) to
functionally adapt their behaviors when required to increase
the glide phase with their arms. This functional adaptability is
called degenerate behavior, and it should be distinguished from
redundancy, which requires the isomorphy (i.e., the quality of
being structurally identical; Mason, 2010) and isofunctionality of
components to perform a function (Mason, 2010). Redundancy

is characterized by a duplication of the motor program in case of
failure of the initial command.

Degeneracy can be observed through different combinations
of the same components (i.e., different coordination patterns)
and the interchangeability of different structures. The concept
of degeneracy therefore explains why an individual can vary
sensorimotor behavior (structurally) without compromising
function, providing evidence for the adaptive and functional role
of movement and coordination pattern variability in order to
reach a task goal. Degeneracy in the complex neurobiological
systems involved in swimming, and more broadly the functional
role of movement and coordination variability, can be examined
at three levels: (i) inter-limb coordination variability within a
cycle, (ii) variability of coordination patterns between cycles, and
(iii) inter-individual variability of coordination patterns (for a
review, see Seifert et al., 2014a). Seifert et al. (2014a) explained
the usefulness of assessing the behavioral variability of motor
coordination and control by emphasizing the effects of constraint
manipulation on swimming. The investigation of degeneracy
requires the computation of various indicators of variability to
assess recurrence, stationarity or cyclicity over long time series
(for a review, see Bravi et al., 2011), which might be captured
with the help of IMUs. Although standard deviation, variance
and coefficients of variation are often computed, more advanced
analysis is useful in this case. For example, the variability between
two time series can be assessed by computing the root mean
square (RMS) error and the Cauchy criterion (Chen et al.,
2005; Rein, 2012). The RMS measures the similarity between
the pattern of one stroke cycle and the mean pattern for time
continuous data, whereas the Cauchy criterion compares two
consecutive coordination patterns (Chen et al., 2005; Rein,
2012). Another approach derived from unsupervised machine
learning is cluster analysis to recognize patterns both between
and within individuals. Applied to swimming, this approach can
distinguish athletes as a function of their specialty (Figueiredo
et al., 2012) or their profiles during front crawl starts (Seifert
et al., 2010; Vantorre et al., 2010). In breaststroke, clustering
differentiates arm to leg coordination strategies between learners
of different skill levels (Seifert et al., 2011) or as a function of
speed increase (Komar et al., 2015). More broadly, Dadashi et al.
(2013c, 2015, 2016) provided an interesting perspective on how
IMUs can be used to assess variability in swimming, and this
was recently complemented by an investigation of the effects
of artificial perturbation on swimmers’ behavior (Seifert et al.,
2014e). These authors investigated the flexibility and stability of
motor behavior by assessing the relaxation time (i.e., the time
needed to recover the initial motor behavior after perturbation)
(Scholz et al., 1987; Seifert et al., 2014e). To do so, swimmers
performed 15 cycles at a given velocity in a flume and were
then towed 1 m backward from their initial place. Following
this perturbation, they had to return to their initial position as
fast as possible before continuing to swim for an additional 15
cycles. Using this procedure, Seifert et al. (2014e) investigated the
breaststrokers’ adaptability (ratio between stability and flexibility)
in overcoming the artificial perturbation, as reflected by the
inter-limb coordination variability (based on the computation
of CRP). These preliminary findings obtained with IMUs must
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be confirmed and reinforced in the future, since this technology
offers substantial advantages by capturing continuous data over
long time periods (Dadashi et al., 2013c).

Practical Implications and Technical
Recommendations to Assess The
Behavioral Dynamics in Swimming
Research on the low- to high-order parameters of swimming
behavior has developed rapidly with the use of accelerometers
and IMUs, generating new procedures from data collection to
data treatment. Yet despite the undeniable possibilities offered
by IMUs, scientists should bear in mind that working with IMUs
in an aquatic environment is not as straightforward as it might
appear. We present some recommendations ranging from sensor
positioning to data processing, and we insist that any use of these
tools requires a meticulous approach.

Although there is no consensus on how best to attach and seal
sensors (de Magalhães et al., 2014), several suggestions have been
made. First, the direction of the accelerometer and gyroscope
signals depends on the device orientation. This is a crucial
consideration for analyses to determine the precise orientation of
IMUs in three-dimensional space (see following section), whereas
it is of limited interest for studies to investigate temporal-related
parameters of swimming motion. In any case, IMUs are always
positioned on the skin. Different positioning procedures have
been proposed but all should be meticulously followed, especially
for coordination assessment. de Magalhães et al. (2014) and
Mooney et al. (2015b) made note of several possibilities. To
optimize placement and reduce skin movement artifacts, the
relative movement between sensor and body segment should
be minimized by robustly strapping or taping the sensor to
the limb (Fong and Chan, 2010) to prevent it from becoming
obtrusive and uncomfortable. For example, hand acceleration
is easily determined by a sensor placed on the dorsal side of
the hand or at the wrist. The dynamics of the leg kick can be
correctly estimated by positioning a sensor on the feet or the
ventral portion of the calf (for further information on sensor
placement, please refer to de Magalhães et al., 2014). The sensor
may be cumbersome (on average 50 × 35 × 15 mm between
2013 and 2015, according to Mooney et al., 2015b), however, and
this can modify the swimming pattern and increase drag (James
et al., 2011; Dadashi et al., 2013c). In one notable example, the
reflective markers in motion capture analysis (with dimensions
similar to IMUs) were found to increase maximal drag by
10% (Kjendlie and Olstad, 2012). These potential problems
might limit the utility of IMUs over long periods of swimming
more than technological factors like battery life. Finally, the
sensor position must not perturb swimmers’ interactions with
their environment (Bächlin and Tröster, 2011) (e.g., a sensor
placed on the hand might limit sensory information from the
water).

Once the sensors are placed, the first level of analysis can
begin, facilitated by the cyclical nature of swimming locomotion.
The raw acceleration data present a repeatable pattern (i.e.,
corresponding to one complete stroke), which makes it easier
to determine the different portions of the event (i.e., starts

and turns) (James et al., 2004; Davey et al., 2008; Le Sage
et al., 2010a,b; Vannozzi et al., 2010; Bächlin and Tröster, 2011;
Siirtola et al., 2011; Jensen et al., 2013; Ohgi et al., 2014).
For example, the rotation during the freestyle turn is detected
when an acceleration peak occurs along the transversal axis
(Davey et al., 2008). In this sense, a turn is an indicator of the
end of a lap or a separator of two swimming styles during a
medley, and it is therefore key for measuring the time to cover
a given swimming distance (Jensen et al., 2013). The data help
coaches by offering many ways to monitor swimming training,
since most of the sensors collect data in portable data loggers
(Fong and Chan, 2010) that can be consulted at the end of a
training session to provide feedback to the swimmers (Hagem
et al., 2013; Callaway, 2015; Dadashi et al., 2015). First, the
race components and temporal stroke parameters can easily
be computed by focusing on the shape of the acceleration
versus time curves, revealing swimmers’ inherent strategies for
managing the training session and, by extension, a competitive
event. Additionally, pioneering studies have investigated the
status and role of variability in race management, performance
optimization, training processes and skill acquisition, generally
observed as a function of the manipulation of the constraints
surrounding action (Newell, 1986). These constraints prompt
behavioral adaptations, such as (i) increasing SR to overcome
the drag created by the swimmer in the next lane, (ii) regulating
swimming speed when approaching the wall to perform a turn,
or (iii) showing fatigue at the end of a race (Dadashi et al., 2016).
Also, the acceleration data recorded over a training session can
help coaches to distinguish between swimming styles (Pansiot
et al., 2010; Hou, 2012; Jensen et al., 2013; Ohgi et al., 2014;
Mooney et al., 2015b), but not between two different signals
emerging from the same swimming style. This means that a
single sensor positioned on the chest can distinguish the signals
obtained in freestyle and backstroke from those obtained in
butterfly and breaststroke through the general shape of the
acceleration versus time curves (Le Sage et al., 2011; Jensen
et al., 2013; Ohgi et al., 2014) (please refer to Le Sage et al.,
2011; Ohgi et al., 2014, for a depiction of these curves). It
is therefore possible for coaches and swimmers to accurately
record the swimming distances in each style during a training
session and adapt exercise (e.g., swimming at high SR, with
paddles or fins, or against a high fluid flow) in preparation for
future competitions. When used this way, the sensors function
as a “training partner” alone or coupled with other devices
(e.g., heart rate monitor or VO2 consumption estimator) in
many training contexts and over long periods of time (e.g.,
they may provide insight into fatigue effects after an exhausting
training session; Dadashi et al., 2016). They provide data on
behavioral variability in training and expand the possibilities
for monitoring beyond the traditional embedded devices, like
instrumented paddles (measuring force or pressure on the hand
during propulsion; Chollet et al., 1988, 1992) or the AquapacerTM

(positioned under the cap to maintain a target pace; Thompson
et al., 2002, 2004). The feedback on swimmers’ motor behavior
and performance variability is specific and subject-dependent
(Callaway, 2015; Dadashi et al., 2015) and in this sense can help
them manage their training (e.g., see Hagem et al., 2013) and,
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by extension, future swimming competitions. Finally, coaches
can obtain an overview of their athletes’ performances by using
three-dimensional accelerometers several time a year to (i)
quantify the typical movements of a swimming sequence and (ii)
accurately detect the temporal events in training (starts, turns,
and “free swim” duration) (Chambers et al., 2015).

For the second level of data processing to assess coordination,
the sensor orientation needs to be accurately captured in
three-dimensional space and swimmers’ limb angles have to
be estimated. This procedure generally begins with the sensor
position expressed in (i) a terrestrial reference frame or (ii)
a local reference frame (i.e., the limb with the sensor on it).
Few studies have computed swimmers’ joint angles from IMUs,
since the process to do so is both laborious and error prone.
Indeed, IMUs provide estimations of inter-segmental angles, but
they cannot compute the real joint angle since few of them
store anthropometric models (or these systems have not yet
been validated in aquatic environments). The first problem is
deciding on the correct number of sensors and how to position
them (Yang and Li, 2012) in line with the research topic.
Although a single sensor positioned on the lower back allows
instantaneous velocity computation (Dadashi et al., 2012, 2014),
assessing upper and lower limb angles requires multiple sensors
on the propulsive body segments (Seifert et al., 2014e). As the
sensors have a reference frame and the recorded values are
linked to the IMU positions on the subject (Seel et al., 2014),
the estimation of joint angles could be affected if a sensor is
not correctly aligned with the limb axes after fixation (which
might be characterized by an offset; Le Sage et al., 2011),
causing measurement errors. In swimming, an example of offset
removal was described for body roll estimation by (i) having
the subject lie face down for 10 s (zero degrees of roll was
parallel to the pool deck in this position) and then (ii) adding
the obtained averaged value or subtracting it from the calculated
hip roll (this simple linear correction was only acceptable if
the offset was considered in a single plane; Barber and Barden,
2014). This correction might be too simple to estimate the
three-dimensional angle between two IMUs in water, however.
Researchers should therefore follow the well-described procedure
for terrestrial activities, where the offset is estimated using an
immobile, known standing posture prior to its removal from
the joint angle data (e.g., in walking; Mills et al., 2007; Cooper
et al., 2009). Another way to correct for this error is to convert
the sensor axes to the bone anatomical frame to obtain accurate
estimations of joint angles (Chardonnens et al., 2012; Dadashi
et al., 2012). Once again, the procedure has been fully described
for terrestrial locomotion such as walking and running (Favre
et al., 2008, 2009). Owing to a functional calibration, the signal
synchronized between all the sensors became insensitive to their
placement and was expressed in the bone anatomical frame. The
procedure consisted of determining a constant rotation matrix
(or a quaternion transformation) between the measured sensor
frame and the segment orientation. The athletes performed
a series of dynamic exercises (squats) and then maintained
a standing position (for 5 s). The complete explanation of
the correction process was presented by Favre et al. (2009).
Moreover, this strategy can be used in water by calibrating in

dry-land conditions before starting the aquatic tests, as described
by Fantozzi et al. (2016) in simulated swimming (i.e., legs
constrained and upper limbs moving in the air). The results
showed good agreement between the joint angles computed
with the IMUs and the gold standard (coefficients of multiple
correlations near 1).

Last, Favre et al. (2006) proposed two methods to reduce drift,
both using the motionless instants of the recording sequence (i.e.,
zero-velocity updates; Woyano et al., 2016). The first method
relies on the quaternion-based integration of angular velocity.
Orientations are expressed using vector and scalar quaternion
representations from the sensor xyz reference frame into an
external XYZ reference frame. The computation then proceeds
by integrating the angular velocity. The second method presents
an orientation correction using gravity (the method often used in
traditional analysis: O’Donovan et al., 2007; Takeda et al., 2009;
and clinical gait analysis: Cutti et al., 2010; Ferrari et al., 2010).
It assumes that limb acceleration has two components at each
instant: one due to gravity, the other to the motion of the sensor.
During rest (or near constant motion velocity), the accelerometer
measures only the effects of gravity. Static calibration takes
advantage of gravity, being the signal common to all IMUs.
Then, an additional dynamic calibration is performed, during
which the subject rotates his/her limbs about the proximal joints
(hip and shoulder) while maintaining “stiff” ankle, knee, wrist
and elbow joints, imposing the same angular velocities for all
IMUs. In this way, the relative orientation of the IMUs with
respect to the limb can be identified, and the joint angles can
then be estimated from the IMU signals. Another method for
reducing integration errors caused by drift is to combine the
data recorded by a three-dimensional accelerometer, a three-
dimensional gyroscope and a three-dimensional magnetometer
with a Kalman filter (Zhu and Zhou, 2004). The Kalman filter
estimates the state parameters derived from the fusion of the
three sensors by incorporating the stable drift-free performance
of gravity acceleration and magnetic field (for more explanation
on Kalman filtering techniques, please see Brookner, 1998). These
recommendations offer the possibility of investigating other
aspects of swimming locomotion, such as instantaneous velocity
and/or limb orientation and its variability. According to Dadashi
et al. (2016), the characterization and determination of variability
in front-crawl technique descriptors may be used to distinguish
swimmers’ levels, based on their skills. These authors found that
skilled swimmers presented robust kinematics in response to
sudden movement outbursts (i.e., a constraint manipulation).
The skilled swimmers also had more diverse motor solutions
than recreational swimmers, showing adaptability to surrounding
constraints (e.g., velocity, fatigue, drag variations; Dadashi et al.,
2016).

REVIEW SUMMARY

Assessing coordination dynamics and its variability in swimming
behavior may involve low-order to higher-order parameters.
Investigating these parameters sheds light on the circumstances
in which a swimmer exhibits behavioral stability, loss of stability
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or flexibility, depending on the constraints he/she is currently
coping with. The swimmer–aquatic environment system has long
been evaluated with video-based systems that are too limited
for investigations of coordination dynamics and inter-cyclic
variability. We thus show the interest of using IMUs for this type
of research and underline their major advantage: they can record
continuous data over long periods. It should nevertheless be kept
in mind that these devices have undergone rapid development
and the results have generally been compared against those of
the gold standard in small samples. Two issues therefore require
further research: (i) the generalizability of the results to larger
populations and (ii) the automaticity in the data processing
(regularly highlighted as an advantage of IMUs). It should be
noted that using IMUs may even be inferior to video analysis if
the technical recommendations in the last section of the review
are not scrupulously followed. Of particular interest, IMUs can
be used to determine joint angles as the first step in investigating
the functional behavior of athletes in ecological conditions.
The essential computational steps, however, cannot be ignored,
from sensor placement to the correction of drift, both being
critical steps in the procedure. By following the recommended
procedures, researchers—as well as coaches—will be able to study
swimmers’ coordination patterns and their variability (e.g., inter-
cycle). To enhance the emergence of adaptive behaviors, it is
crucial to design new training situations. This might prompt
new and original perspectives for assessing this adaptability of
swimmers evolving in the highly resistive environment of water.
The adaptability might reveal the evolvability and creativity of

swimmers, who are likely to face important and unpredictable
constraints during competition.

AUTHOR CONTRIBUTIONS

BG, AR, DC, and LS made substantial contributions to the
conception or design of the work or the acquisition, analysis,
or interpretation of the data. BG, AR, DC, and LS drafted
the manuscript or revised it critically for important intellectual
content. BG, AR, DC, and LS gave final approval of the version
to be published. BG, AR, DC, and LS also agree to be accountable
for all aspects of the work and ensure that any questions related to
the accuracy or integrity of any part of the work are appropriately
investigated and resolved.

FUNDING

This project received the support of the CPER/GRR Logistic,
Mobility and Numeric (ID: XTerM 1880) and FEDER RISC (ID:
33172).

ACKNOWLEDGMENT

The authors thank Omar Ayad, Jérémie Boulanger, and Dominic
Orth for their advice during the writing of this manuscript.

REFERENCES
Abernethy, B., Poolton, J. M., Masters, R. S. W., and Patil, N. G. (2008).

Implications of an expertise model for surgical skills training. ANZ. J. Surg. 78,
1092–1095. doi: 10.1111/j.1445-2197.2008.04756.x

Araújo, D., Davids, K., and Hristovski, R. (2006). The ecological dynamics of
decision making in sport. Psychol. Sport Exerc. 7, 653–676. doi: 10.1016/j.
psychsport.2006.07.002

Bächlin, M., and Tröster, G. (2011). Swimming performance and technique
evaluation with wearable acceleration sensors. Pervasive Mob. Comp. 8, 68–81.
doi: 10.1016/j.pmcj.2011.05.003

Barber, M. V. (2014). Performance Research. Available at: http://www.geneactiv.
org/using-geneactiv/applications/#performance-research [accessed April 10,
2015].

Barber, M. V., and Barden, J. M. (2014). “The effects of breathing on hip roll
asymmetry in competitive front crawl swimming,” in Proceedings of the XIIth
International Symposium for Biomechanics and Medicine in Swimming, ed. B. R.
Mason (Bruce, ACT: Australian Institute of Sport), 84–89.

Barbosa, T. M., Silva, A. J., Marinho, D. A., and Costa, M. J. (2011). “Biomechanics
of competitive swimming strokes,” in Biomechanics in Applications, ed. V. Klika
(Rijeka: InTech), 367–388.

Bartlett, R., Wheat, R., and Robins, M. (2007). Is movement variability
important for sports biomechanists? Sports Biomech. 6, 224–243. doi: 10.1080/
14763140701322994

Beanland, E., Main, L. C., Aisbett, B., Gastin, P., and Netto, K. (2013). Validation of
GPS and accelerometer technology in swimming. J. Sci. Med. Sport 17, 234–238.
doi: 10.1016/j.jsams.2013.04.007

Berger, M. A., Hollander, A. P., and de Groot, G. (1997). Technique and energy
losses in front crawl swimming. Med. Sci. Sports Exerc. 29, 1491–1498.
doi: 10.1097/00005768-199711000-00016

Bernstein, N. A. (1967). The Coordination and Regulation of Movements. London:
Bergamon Press.

Bravi, A., Longtin, A., and Seely, A. J. E. (2011). Review and classification of
variability analysis techniques with clinical applications. Biomed. Eng. Online
10, 90–116. doi: 10.1186/1475-925X-10-90

Brookner, E. (1998). Tracking and Kalman Filtering Made Easy. New York, NY:
John Wiley & Sons, Inc. doi: 10.1002/0471224197

Callaway, A. J. (2015). Measuring kinematic variables in front crawl swimming
using accelerometers: a validation study. Sensors 15, 11363–11386. doi: 10.3390/
s150511363

Callaway, A. J., Cobb, J. E., and Jones, I. (2009). A comparison of video
and accelerometer based approaches applied to performance monitoring in
swimming. Int. J. Sports Sci. Coach. 4, 139–153. doi: 10.1260/1747-9541.4.1.139

Ceccon, S., Ceseracciu, E., Sawacha, Z., Gatta, G., Cortesi, M., Cobelli, C., et al.
(2013). Motion analysis of front crawl swimming applying CAST technique by
means of automatic tracking. J. Sports Sci. 13, 276–287. doi: 10.1080/02640414.
2012.729134

Chakravorti, N., Le Sage, T., Slawson, S. E., Conway, P., and West, A. (2013).
Design and implementation of an integrated performance monitoring tool for
swimming to extract stroke information in real time. IEEE Trans. Hum. Mach.
Syst. 43, 199–213. doi: 10.1109/TSMC.2012.2235428

Chambers, R., Gabbett, T. J., Cole, M. H., and Beard, A. (2015). The use of wearable
microsensors to quantify sport-specific movements. Sports Med. 45, 1065–1081.
doi: 10.1007/s40279-015-0332-9

Chardonnens, J., Favre, J., Le Callennec, B., Cuendet, F., Gremion, G., and
Aminian, K. (2012). Automatic measurement of key ski jumping phases and
temporal events with a wearable system. J. Sports Sci. 30, 53–61. doi: 10.1080/
02640414.2011.624538

Chen, H.-H., Liu, Y.-T., Mayer-Kress, G., and Newell, K. M. (2005). Learning the
pedalo locomotion task. J. Mot. Behav. 37, 247–256. doi: 10.3200/JMBR.37.3.
247-256

Chiari, L., Croce Della, U., Leardini, A., and Cappozzo, A. (2005). Human
movement analysis using stereophotogrammetry: part 2: instrumental errors.
Gait Posture 21, 197–211. doi: 10.1016/j.gaitpost.2004.04.004

Frontiers in Psychology | www.frontiersin.org 12 March 2017 | Volume 8 | Article 383

https://doi.org/10.1111/j.1445-2197.2008.04756.x
https://doi.org/10.1016/j.psychsport.2006.07.002
https://doi.org/10.1016/j.psychsport.2006.07.002
https://doi.org/10.1016/j.pmcj.2011.05.003
http://www.geneactiv.org/using-geneactiv/applications/#performance-research
http://www.geneactiv.org/using-geneactiv/applications/#performance-research
https://doi.org/10.1080/14763140701322994
https://doi.org/10.1080/14763140701322994
https://doi.org/10.1016/j.jsams.2013.04.007
https://doi.org/10.1097/00005768-199711000-00016
https://doi.org/10.1186/1475-925X-10-90
https://doi.org/10.1002/0471224197
https://doi.org/10.3390/s150511363
https://doi.org/10.3390/s150511363
https://doi.org/10.1260/1747-9541.4.1.139
https://doi.org/10.1080/02640414.2012.729134
https://doi.org/10.1080/02640414.2012.729134
https://doi.org/10.1109/TSMC.2012.2235428
https://doi.org/10.1007/s40279-015-0332-9
https://doi.org/10.1080/02640414.2011.624538
https://doi.org/10.1080/02640414.2011.624538
https://doi.org/10.3200/JMBR.37.3.247-256
https://doi.org/10.3200/JMBR.37.3.247-256
https://doi.org/10.1016/j.gaitpost.2004.04.004
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00383 March 11, 2017 Time: 13:38 # 13

Guignard et al. Swimming Behavior Analysis with IMUs

Chollet, D., Chalies, S., and Chatard, J. C. (2000). A new index of coordination
for the crawl: description and usefulness. Int. J. Sports Med. 20, 54–59.
doi: 10.1055/s-2000-8855

Chollet, D., Madani, M., and Micallef, J. P. (1992). “Effects of two types of
biomechanical biofeedback on crawl performance,” in Swimming Science VI, eds
D. P. MacLaren, T. Reilly, and A. Lees (London: E & FN SPON), 57–62.

Chollet, D., Micallef, J. P., and Rabischong, P. (1988). “Biomechanical signals for
external biofeedback to improve swimming techniques,” in Swimming Science
V, eds B. E. Ungerechts, K. Wilke, and K. Reischle (Champaign, IL: Human
Kinetics), 389–396.

Chollet, D., and Seifert, L. M. (2011). “Inter-limb coordination in the four
competitive strokes,” in World Book of Swimming, From Science to Performance,
eds L. M. Seifert, D. Chollet, and I. Mujika (New York, NY: Nova Science
Publishers, Inc), 153–172.

Cooper, G., Sheret, I., McMillian, L., Siliverdis, K., Sha, N., Hodgins, D.,
et al. (2009). Inertial sensor-based knee flexion/extension angle estimation.
J. Biomech. 42, 2678–2685. doi: 10.1016/j.jbiomech.2009.08.004

Costill, D. L., Kovaleski, J., Porter, D., Kirwan, J., Fielding, R., and King, D.
(1985). Energy expenditure during front crawl swimming: predicting success
in middle-distance events. Int. J. Sports Med. 6, 266–270. doi: 10.1055/s-2008-
1025849

Cutti, A. G., Ferrari, A., Garofalo, P., Raggi, M., Cappello, A., and Ferrari, A. (2010).
“Outwalk”: a protocol for clinical gait analysis based on inertial and magnetic
sensors. Med. Biol. Eng. Comput. 48, 17–25. doi: 10.1007/s11517-009-0545-x

Dadashi, F. (2013). Laboratory of Movement Analysis and Measurement.
Swimming. EPFL. Available at: http://lmam.epfl.ch/page-46573-en.html
[accessed April 10, 2015].

Dadashi, F., Aminian, K., Crettenand, F., and Millet, G. P. (2013a). “Towards
estimation of front-crawl energy expenditure using the wearable aquatic
movement analysis system (WAMAS),” in Proceedings of the International
Conference on Body Sensor Networks, (Cambridge: IEEE), 1–6. doi: 10.1109/bsn.
2013.6575467

Dadashi, F., Arami, A., Crettenand, F., Millet, G. P., Komar, J., Seifert, L. M.,
et al. (2013b). “A hidden markov model of the breaststroke swimming temporal
phases using wearable inertial measurement units,” in Proceedings of the
International Conference on Body Sensor Networks, (Cambridge: IEEE), 1–6.
doi: 10.1109/bsn.2013.6575461

Dadashi, F., Arami, A., Crettenand, F., Millet, G. P., Seifert, L. M., Komar, J.,
et al. (2013c). Automatic front-crawl temporal phase detection using adaptive
filtering of inertial signals. J. Sports Sci. 31, 1251–1260. doi: 10.1080/02640414.
2013.778420

Dadashi, F., Crettenand, F., Millet, G. P., and Aminian, K. (2012). Front-crawl
instantaneous velocity estimation using a wearable inertial measurement unit.
Sensors 12, 12927–12939. doi: 10.3390/s121012927

Dadashi, F., Crettenand, F., Millet, G. P., Seifert, L. M., Komar, J., and Aminian, K.
(2011). “Frontcrawl propulsive phase detection using inertial sensors,” in
Proceedings of the XXIXth International Conference on Biomechanics in Sports,
eds J.-P. Vilas-Boas, L. Machado, and W. Kim (Porto: Portuguese Journal of
Sport Sciences), 855–858.

Dadashi, F., Millet, G. P., and Aminian, K. (2013d). Gaussian process framework
for pervasive estimation of swimming velocity with body-worn IMU. Electron.
Lett. 49, 44–46. doi: 10.1049/el.2012.3684

Dadashi, F., Millet, G. P., and Aminian, K. (2013e). Inertial measurement unit and
biomechanical analysis of swimming: an update. J. Swiss Soc. Sports Med. 61,
28–33.

Dadashi, F., Millet, G. P., and Aminian, K. (2014). “Approaching on-line estimation
of swimming instantaneous velocity using a wearable IMU,” in Proceedings of
the International Symposium on 3D Analysis of Human Movement, Lausanne,
176–179.

Dadashi, F., Millet, G. P., and Aminian, K. (2015). A Bayesian approach for
pervasive estimation of breaststroke velocity using a wearable IMU. Pervasive
Mob. Comp. 19, 37–46. doi: 10.1016/j.pmcj.2014.03.001

Dadashi, F., Millet, G. P., and Aminian, K. (2016). Front-crawl stroke descriptors
variability assessment for skill characterisation. J. Sports Sci. 34, 1405–1412.
doi: 10.1080/02640414.2015.1114134

Daukantas, S., Marozas, V., and Lukosevicius, A. (2008). “Inertial sensor for
objective evaluation of swimmer performance,” in Proceedings of the XIth

International Biennial Baltic Electronics Conference, (Tallinn: University of
Technology), 321–324. doi: 10.1109/bec.2008.4657545

Davey, N. P., Anderson, M., and James, D. A. (2008). Validation trial of an
accelerometer-based sensor platform for swimming. Sports Technol. 1, 202–207.
doi: 10.1002/jst.59

Davey, N. P., and James, D. A. (2008). “Swimming stroke analysis using multiple
accelerometer devices and tethered systems,” in The Impact of Technology on
Sport II, eds F. K. Fuss, A. J. Subic, and S. Ujihashi (London: Taylor & Francis
Group), 577–582.

Davids, K., Araújo, D., Hristovski, R., Passos, P., and Chow, J. Y. (2012). “Ecological
dynamics and motor learning design in sport,” in Skill Acquisition in Sport.
Research, Theory and Practice, eds N. J. Hodges and A. M. Williams (New York,
NY: Routledge), 112–130.

Davids, K., Araújo, D., Seifert, L. M., and Orth, O. (2015). “Expert performance in
sport: an ecological dynamics perspective,” in Handbook of Sport Expertise, eds
J. Baker and D. Farrow (London: Taylor & Francis), 273–303.

Davids, K., Araújo, D., Vilar, L., Renshaw, I., and Pinder, R. (2013). An ecological
dynamics approach to skill acquisition: implications for development of talent
in sport. Talent Dev. Excell. 5, 21–34.

Davids, K., and Glazier, P. (2010). Deconstructing neurobiological coordination:
the role of the biomechanics-motor control nexus. Exerc. Sport Sci. Rev. 38,
86–90. doi: 10.1097/JES.0b013e3181d4968b

Davids, K., Glazier, P., Araújo, D., and Bartlett, R. (2003). Movement systems as
dynamical systems: the functional role of variability and its implications for
sports medicine. Sports Med. 33, 245–260. doi: 10.2165/00007256-200333040-
00001

de Jesus, K., de Jesus, K., Figueiredo, P., Vilas-Boas, J.-P., Fernandes, R. J., and
Machado, L. J. (2015). Reconstruction accuracy assessment of surface and
underwater 3D motion analysis: a new approach. Comput. Math. Methods Med.
2015:269264. doi: 10.1155/2015/269264

de Magalhães, F. A., Vannozzi, G., Gatta, G., and Fantozzi, S. (2014). Wearable
inertial sensors in swimming motion analysis: a systematic review. J. Sports Sci.
33, 731–745. doi: 10.1080/02640414.2014.962574

Deschodt, V. J., Arsac, L. M., and Rouard, A. H. (1999). Relative contribution of
arms and legs in humans to propulsion in 25-m sprint front-crawl swimming.
Eur. J. Appl. Physiol. Occup. Physiol. 80, 192–199. doi: 10.1007/s00421005
0581

Edelman, G. M., and Gally, J. A. (2001). Degeneracy and complexity in biological
systems. Proc. Natl. Acad. Sci. U.S.A. 98, 13763–13768. doi: 10.1073/pnas.
231499798

Elipot, M., Hellard, P., Taiar, R., Boissière, E., Rey, J. L., Lecat, S., et al. (2009).
Analysis of swimmers’ velocity during the underwater gliding motion following
grab start. J. Biomech. 42, 1367–1370. doi: 10.1016/j.jbiomech.2009.03.032

Ericsson, K. A., Krampe, R. T., and Tesch-Römer, C. (1993). The role of deliberate
practice in the acquisition of expert performance. Psychol. Rev. 100, 363–406.
doi: 10.1037/0033-295X.100.3.363

Fantozzi, S., Giovanardi, A., Magalhães, F. A., Di Michele, R., Cortesi, M.,
and Gatta, G. (2016). Assessment of three-dimensional joint kinematics of
the upper limb during simulated swimming using wearable inertial-magnetic
measurement units. J. Sports Sci. 34, 1073–1080. doi: 10.1080/02640414.2015.
1088659

Favre, J., Aissaoui, R., Jolles, B. M., de Guise, J. A., and Aminian, K. (2009).
Functional calibration procedure for 3D knee joint angle description using
inertial sensors. J. Biomech. 42, 2330–2335. doi: 10.1016/j.jbiomech.2009.06.025

Favre, J., Jolles, B. M., Aissaoui, R., and Aminian, K. (2008). Ambulatory
measurement of 3D knee joint angle. J. Biomech. 41, 1029–1035. doi: 10.1016/j.
jbiomech.2007.12.003

Favre, J., Jolles, B. M., Siegrist, O., and Aminian, K. (2006). Quaternion-based
fusion of gyroscopes and accelerometers to improve 3D angle measurement.
Electron. Lett. 42, 612–614. doi: 10.1049/iel:20060124

Ferrari, A., Cutti, A. G., Garofalo, P., Raggi, M., Heijboer, M., Cappello, A., et al.
(2010). First in vivo assessment of “Outwalk”: a novel protocol for clinical gait
analysis based on inertial and magnetic sensors. Med. Biol. Eng. Comput. 48,
1–15. doi: 10.1007/s11517-009-0544-y

Figueiredo, P., Seifert, L. M., and Vilas-Boas, J.-P. (2012). Individual profiles of
spatio-temporal coordination in high intensity swimming. Hum. Mov. Sci. 31,
1200–1212. doi: 10.1016/j.humov.2012.01.006

Frontiers in Psychology | www.frontiersin.org 13 March 2017 | Volume 8 | Article 383

https://doi.org/10.1055/s-2000-8855
https://doi.org/10.1016/j.jbiomech.2009.08.004
https://doi.org/10.1055/s-2008-1025849
https://doi.org/10.1055/s-2008-1025849
https://doi.org/10.1007/s11517-009-0545-x
http://lmam.epfl.ch/page-46573-en.html
https://doi.org/10.1109/bsn.2013.6575467
https://doi.org/10.1109/bsn.2013.6575467
https://doi.org/10.1109/bsn.2013.6575461
https://doi.org/10.1080/02640414.2013.778420
https://doi.org/10.1080/02640414.2013.778420
https://doi.org/10.3390/s121012927
https://doi.org/10.1049/el.2012.3684
https://doi.org/10.1016/j.pmcj.2014.03.001
https://doi.org/10.1080/02640414.2015.1114134
https://doi.org/10.1109/bec.2008.4657545
https://doi.org/10.1002/jst.59
https://doi.org/10.1097/JES.0b013e3181d4968b
https://doi.org/10.2165/00007256-200333040-00001
https://doi.org/10.2165/00007256-200333040-00001
https://doi.org/10.1155/2015/269264
https://doi.org/10.1080/02640414.2014.962574
https://doi.org/10.1007/s004210050581
https://doi.org/10.1007/s004210050581
https://doi.org/10.1073/pnas.231499798
https://doi.org/10.1073/pnas.231499798
https://doi.org/10.1016/j.jbiomech.2009.03.032
https://doi.org/10.1037/0033-295X.100.3.363
https://doi.org/10.1080/02640414.2015.1088659
https://doi.org/10.1080/02640414.2015.1088659
https://doi.org/10.1016/j.jbiomech.2009.06.025
https://doi.org/10.1016/j.jbiomech.2007.12.003
https://doi.org/10.1016/j.jbiomech.2007.12.003
https://doi.org/10.1049/iel:20060124
https://doi.org/10.1007/s11517-009-0544-y
https://doi.org/10.1016/j.humov.2012.01.006
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00383 March 11, 2017 Time: 13:38 # 14

Guignard et al. Swimming Behavior Analysis with IMUs

Fong, D. T.-P., and Chan, Y.-Y. (2010). The use of wearable inertial motion sensors
in human lower limb biomechanics studies: a systematic review. Sensors 10,
11556–11565. doi: 10.3390/s101211556

Fritsch, F. N., and Carlson, R. E. (1980). Monotone piecewise cubic interpolation.
SIAM J. Numer. Anal. 17, 238–246. doi: 10.1137/0717021

Fulton, S. K., Pyne, D. B., and Burkett, B. (2009a). Quantifying freestyle kick-count
and kick-rate patterns in Paralympic swimming. J. Sports Sci. 27, 1455–1461.
doi: 10.1080/02640410903062936

Fulton, S. K., Pyne, D. B., and Burkett, B. (2009b). Validity and reliability of kick
count and rate in freestyle using inertial sensor technology. J. Sports Sci. 27,
1051–1058. doi: 10.1080/02640410902998247

Fulton, S. K., Pyne, D. B., and Burkett, B. (2011). Optimizing kick rate and
amplitude for Paralympic swimmers via net force measures. J. Sports Sci. 29,
381–387. doi: 10.1080/02640414.2010.536247

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Hove: Psychology
Press.

Glazier, P. S., and Davids, K. (2009). Constraints on the complete optimization
of human motion. Sports Med. 39, 15–28. doi: 10.2165/00007256-200939010-
00002

Glazier, P. S., Wheat, J. S., Pease, D. L., and Bartlett, R. M. (2006). “The interface
of biomechanics and motor control,” in Movement System Variability, eds K.
Davids, S. Bennett, and K. M. Newell (Champaign, IL: Human Kinetics), 49–72.

Gourgoulis, V., Aggeloussis, N., Vezos, N., Antoniou, P., and Mavromatis, G.
(2008). Hand orientation in hand paddle swimming. Int. J. Sports Med. 29,
429–434. doi: 10.1055/s-2007-965570

Gustafsson, F. (2000). Adaptative Filtering and Change Detection. New York, NY:
John Wiley & Sons, LTD.

Haddad, J. M., Van Emmerik, R. E. A., Whittlesey, S. N., and Hamill, J. (2006).
Adaptations in interlimb and intralimb coordination to asymmetrical loading
in human walking. Gait Posture 23, 429–434. doi: 10.1016/j.gaitpost.2005.
05.006

Hagem, R. M., Thiel, D. V., O’Keeffe, S., and Fickenscher, T. (2013). Real-time
swimmers’ feedback based on smart infrared (SSIR) optical wireless sensor.
Electron. Lett. 49, 340–341. doi: 10.1049/el.2012.3222

Hamill, J., Haddad, J. M., and McDermott, W. J. (2000). Issues in quantifying
variability from a dynamical systems perspective. J. Appl. Biomech. 16, 407–418.
doi: 10.1123/jab.16.4.407

Holmér, I. (1978). “Analysis of acceleration as a measure of swimming proficiency,”
in Swimming Science III, eds J. Terauds and E. W. Bedingfield (Baltimore, MD:
University Park Press), 118–124.

Hou, P. (2012). The study on swimming exercise based on 3D accelerometer
data analysis. Int. J. Adv. Comput. Technol. 4, 239–245. doi: 10.4156/ijact.vol4.
issue21.28

Ichikawa, H., Ohgi, Y., and Miyaji, C. (1998). “Analysis of stroke of the freestyle
swimming using an accelerometer,” in Biomechanics and Medicine in Swimming
VIII, eds K. Keskinen, P. Komi, and P. Hollander (Jyväskylä: University of
Jyväskylä), 159–164.

Ichikawa, H., Ohgi, Y., Miyaji, C., and Nomura, T. (2003). “Estimation of arm
motion in front crawl swimming using accelerometer,” in Biomechanics and
Medicine in Swimming IX, ed. J. C. Chatard (Saint Etienne: University of Saint
Etienne), 133–138.

James, D. A., Davey, N. P., and Rice, T. (2004). “An accelerometer based sensor
platform for insitu elite athlete performance analysis,” in Proceedings of the IEEE
Sensors Conference, ed. H. T. Nagle (Vienna: IEEE), 1373–1376. doi: 10.1109/
icsens.2004.1426439

James, D. A., Leadbetter, R. I., Neeli, M. R., Burkett, B. J., Thiel, D. V.,
and Lee, J. B. (2011). An integrated swimming monitoring system for the
biomechanical analysis of swimming stroke. Sports Technol. 4, 141–150.
doi: 10.1080/19346182.2012.725410

Jensen, U., Prade, F., and Eskofier, B. M. (2013). “Classification of kinematic
swimming data with emphasis on resource consumption,” in Proceedings of
the IEEE International Conference on Body Sensor Networks, ed. J. Anderson
(Cambridge: IEEE), 1–5. doi: 10.1109/bsn.2013.6575501

Khoo, B. H., Lee, B. K. J., Arosha Senanayake, S. M. N., and Wilson,
B. D. (2013). “System for determining within-stroke variations of speed in
swimming (SWiSS),” in Proceedings of the IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, (Singapore: Monash University),
1927–1932.

Kjendlie, P.-L., and Olstad, B. H. (2012). “Automatic 3D motion capture of
swimming: marker resistance,” in Proceedings of the 59th Annual Meeting of
the American College of Sports Medicine, eds W. Kohrt and S. Blair (San
Francisco, CA: Wolters Kluwer).

Komar, J., Chow, J. Y., Chollet, D., and Seifert, L. M. (2015). Neurobiological
degeneracy: supporting stability, flexibility and pluripotentiality in complex
motor skill. Acta Psychol. 154, 26–35. doi: 10.1016/j.actpsy.2014.11.002

Kwon, Y. H. (1999). “A camera calibration algorithm for the underwater motion
analysis,” in Proceedings of the XVIIth International Symposium on Biomechanics
in Sports, eds R. H. Sanders and B. J. Gibson (Perth, WA: Edith Cowan
University), 257–260.

Le Sage, T., Bindel, A., Conway, P., Justham, L., Slawson, S. E., Webster, J. M.,
et al. (2012). “A multi-sensor system for monitoring the performance of elite
swimmers,” in e-Business and Telecommunications, eds M. S. Obaidat, G. A.
Tsihrintzis, and J. Filipe (Berlin: Springer), 350–362.

Le Sage, T., Bindel, A., Conway, P., Justham, L., Slawson, S. E., and West, A.
(2010a). Development of a real time system for monitoring of swimming
performance. Procedia Eng. 2, 2707–2712. doi: 10.1016/j.proeng.2010.04.055

Le Sage, T., Bindel, A., Conway, P., Justham, L., Slawson, S. E., and West, A.
(2010b). “Kalman filter design for application to an INS analysing swimmer
performance,” in Proceedings of the 18th European Signal Processing Conference,
eds B. Kleijn and J. Larsen (Aalborg: Aalborg University), 1723–1727.

Le Sage, T., Bindel, A., Conway, P. P., Justham, L. M., Slawson, S. E., and West, A.
(2011). Embedded programming and real-time signal processing of swimming
strokes. Sports Eng. 14, 1–14. doi: 10.1007/s12283-011-0070-7

Leblanc, H., Seifert, L. M., and Chollet, D. (2009). Arm-leg coordination in
recreational and competitive breaststroke swimmers. J. Sci. Med. Sports 12,
352–356. doi: 10.1016/j.jsams.2008.01.001

Lecoutere, J., and Puers, R. (2014). Wireless communication with miniaturized
sensor devices in swimming. Procedia Eng. 72, 398–403. doi: 10.1016/j.proeng.
2014.06.069

Lee, J. B., Burkett, B. J., Thiel, D. V., and James, D. A. (2011a). Inertial sensor, 3D
and 2D assessment of stroke phases in freestyle swimming. Procedia Eng. 13,
148–153. doi: 10.1016/j.proeng.2011.05.065

Lee, J. B., Leadbetter, R. I., Ohgi, Y., Thiel, D. V., Burkett, B. J., and James, D. A.
(2011b). Quantifying and assessing biomechanical differences in swim turn
using wearable sensors. Sports Technol. 4, 128–133. doi: 10.1080/19346182.
2012.725171

Maglischo, E. W. (1982). Swimming Faster. Toronto, ON: Mayfield Publishing
Company.

Mason, B. R., and Formosa, D. P. (2011). “Competition analysis,” in World Book
of Swimming: From Science to Performance, eds L. M. Seifert, D. Chollet, and I.
Mujika (New York, NY: Nova Science Publishers, Inc), 411–424.

Mason, P. H. (2010). Degeneracy at multiple levels of complexity. Biol. Theory 5,
277–288. doi: 10.1162/BIOT_a_00041

Mills, P. M., Morrison, S., Lloyd, D. G., and Barrett, R. S. (2007). Repeatability of
3D gait kinematics obtained from an electromagnetic tracking system during
treadmill locomotion. J. Biomech. 40, 1504–1511. doi: 10.1016/j.jbiomech.2006.
06.017

Mooney, R., Corley, G., Godfrey, A., Osborough, C., Quinlan, L. R., and
ÓLaighin, G. (2015a). Application of video-based methods for competitive
swimming analysis: a systematic review. Sports Exerc. Med. Open J. 1, 133–150.
doi: 10.17140/SEMOJ-1-121

Mooney, R., Corley, G., Godfrey, A., Quinlan, L. R., and ÓLaighin, G. (2015b).
Inertial Sensor technology for elite swimming performance analysis: a
systematic review. Sensors 16. doi: 10.3390/s16010018

Naemi, R., Easson, W. J., and Sanders, R. H. (2010). Hydrodynamic glide efficiency
in swimming. J. Sci. Med. Sport 13, 444–451. doi: 10.1016/j.jsams.2009.04.009

Nakashima, M., Ohgi, Y., Akiyama, E., and Kazami, N. (2010). Development of
a swimming motion display system for athlete swimmers’ training using a
wristwatch-style acceleration and gyroscopic sensor device. Procedia Eng. 2,
3035–3040. doi: 10.1016/j.proeng.2010.04.107

Newell, K. M. (1986). “Constraints on the development of coordination,” in Motor
Development in Children: Aspects of Coordination and Control, eds M. G. Wade
and H. T. A. Whiting (Boston, MA: Martinus Nijhoff Publishers), 341–360.
doi: 10.1007/978-94-009-4460-2_19

Newell, K. M., and Corcos, D. M. (1993). Variability and Motor Control. Champain,
IL: Human Kinetics.

Frontiers in Psychology | www.frontiersin.org 14 March 2017 | Volume 8 | Article 383

https://doi.org/10.3390/s101211556
https://doi.org/10.1137/0717021
https://doi.org/10.1080/02640410903062936
https://doi.org/10.1080/02640410902998247
https://doi.org/10.1080/02640414.2010.536247
https://doi.org/10.2165/00007256-200939010-00002
https://doi.org/10.2165/00007256-200939010-00002
https://doi.org/10.1055/s-2007-965570
https://doi.org/10.1016/j.gaitpost.2005.05.006
https://doi.org/10.1016/j.gaitpost.2005.05.006
https://doi.org/10.1049/el.2012.3222
https://doi.org/10.1123/jab.16.4.407
https://doi.org/10.4156/ijact.vol4.issue21.28
https://doi.org/10.4156/ijact.vol4.issue21.28
https://doi.org/10.1109/icsens.2004.1426439
https://doi.org/10.1109/icsens.2004.1426439
https://doi.org/10.1080/19346182.2012.725410
https://doi.org/10.1109/bsn.2013.6575501
https://doi.org/10.1016/j.actpsy.2014.11.002
https://doi.org/10.1016/j.proeng.2010.04.055
https://doi.org/10.1007/s12283-011-0070-7
https://doi.org/10.1016/j.jsams.2008.01.001
https://doi.org/10.1016/j.proeng.2014.06.069
https://doi.org/10.1016/j.proeng.2014.06.069
https://doi.org/10.1016/j.proeng.2011.05.065
https://doi.org/10.1080/19346182.2012.725171
https://doi.org/10.1080/19346182.2012.725171
https://doi.org/10.1162/BIOT_a_00041
https://doi.org/10.1016/j.jbiomech.2006.06.017
https://doi.org/10.1016/j.jbiomech.2006.06.017
https://doi.org/10.17140/SEMOJ-1-121
https://doi.org/10.3390/s16010018
https://doi.org/10.1016/j.jsams.2009.04.009
https://doi.org/10.1016/j.proeng.2010.04.107
https://doi.org/10.1007/978-94-009-4460-2_19
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00383 March 11, 2017 Time: 13:38 # 15

Guignard et al. Swimming Behavior Analysis with IMUs

Nikodelis, T., Kollias, I., and Hatzitaki, V. (2005). Bilateral inter-arm coordination
in freestyle swimming: effect of skill level and swimming speed. J. Sports Sci. 23,
737–745. doi: 10.1080/02640410400021955

O’Donovan, K. J., Kamnik, R., O’Keeffe, D. T., and Lyons, G. M. (2007). An inertial
and magnetic sensor based technique for joint angle measurement. J. Biomech.
40, 2604–2611. doi: 10.1016/j.jbiomech.2006.12.010

Ohgi, Y. (2002). “Microcomputer-based acceleration sensor device for sports
biomechanics – stroke evaluation by using swimmer’s wrist acceleration,” in
Proceedings of IEEE Sensors, (Orlando, FL: IEEE), 699–704. doi: 10.1109/
ICSENS.2002.1037188

Ohgi, Y., Ichikawa, H., Homma, M., and Miyaji, C. (2003). Stroke phase
discrimination in breaststroke swimming using a tri-axial acceleration sensor
device. Sports Eng. 6, 113–123. doi: 10.1007/BF02903532

Ohgi, Y., Kaneda, K., and Takakura, A. (2014). Sensor data mining on the
kinematical characteristics of the competitive swimming. Procedia Eng. 72,
829–834. doi: 10.1016/j.proeng.2014.06.036

Ohgi, Y., Yasumura, M., Ichikawa, H., and Miyaji, C. (2000). “Analysis of stroke
technique using acceleration sensor IC in freestyle swimming,” in Engineering
of Sport: Research, Development and Innovation, eds A. J. Subic and S. Haake
(Oxford: Blackwell Science), 503–511.

Olstad, B. H., Zinner, C., Haakonsen, D., Cabri, J., and Kjendlie, P.-L. (2012).
“3D automatic motion tracking in water for measuring intra cyclic velocity
variations in breaststroke swimming,” in Proceedings of the XVIIth Annual
Congress of the European College of Sport Science, eds R. Meeusen, J. Duchateau,
B. Roelands, M. Klass, B. De Geus, S. Baudry, et al. (Bruges: University of
Brussels), 22–22.

Pansiot, J., Lo, B., and Guang-Zhong, Y. (2010). “Swimming stroke kinematic
analysis with BSN,” in Proceedings of the International Conference on Body
Sensor Networks (BSN), ed. L. O’Conner (Singapore: Conference Publishing
Services), 153–158. doi: 10.1109/bsn.2010.11

Payton, C. J., and Bartlett, R. M. (1995). Estimating propulsive forces in swimming
from three-dimensional kinematic data. J. Sports Sci. 13, 447–454. doi: 10.1080/
02640419508732261

Pendergast, D. R., Zamparo, P., di Prampero, P. E., Capelli, C., Cerretelli, P.,
Termin, A. C., et al. (2003). Energy balance of human locomotion in water. Eur.
J. Appl. Physiol. 90, 377–386. doi: 10.1007/s00421-003-0919-y

Psycharakis, S. G., and Sanders, R. H. (2008). Shoulder and hip roll changes
during 200-m front crawl swimming. Med. Sci. Sports Exerc. 40, 2129–2136.
doi: 10.1249/MSS.0b013e31818160bc

Puel, F., Seifert, L. M., and Hellard, P. (2014). “Validation of an inertial
measurement unit for the determination of the longitudinal speed of a
swimmer,” in Proceedings of the XIIth International Symposium for Biomechanics
and Medicine in Swimming, ed. B. R. Mason (Bruce, ACT: Australian Institute
of Sport), 484–489.

Rein, R. (2012). Measurement methods to analyze changes in coordination during
motor learning from a non-linear perspective. Open Sports Sci. J. 5, 36–48.
doi: 10.2174/1875399X01205010036

Sanders, R., Psycharakis, S. G., McCabe, C., Naemi, R., Connaboy, C., Li, S., et al.
(2006). “Analysis of swimming technique: state of the art: applications and
implications,” in Biomechanics and Medicine in Swimming X, eds J.-P. Vilas-
Boas, F. Alves, and A. Marques (Porto: Portuguese Journal of Sport Sciences),
20–24.

Schleihauf, R. E. (1979). “Hydrodynamic analysis of swimming propulsion,” in
Swimming Science III, eds J. Teraud and E. W. Bedingfield (Baltimore, MD:
University Park Press), 70–109.

Scholz, J. P., Kelso, J. A. S., and Schöner, G. (1987). Nonequilibrium phase
transitions in coordinated biological motion: critical slowing down and
switching time. Phys. Lett. A 123, 390–394. doi: 10.1016/0375-9601(87)
90038-7

Seel, T., Raisch, J., and Schauer, T. (2014). IMU-based joint angle measurement for
gait analysis. Sensors 14, 6891–6909. doi: 10.3390/s140406891

Seifert, L. M., Button, C., and Davids, K. (2013). Key properties of expert
movement systems in sport. Sports Med. 43, 167–178. doi: 10.1007/s40279-012-
0011-z

Seifert, L. M., Komar, J., Barbosa, T. M., Toussaint, H., Millet, G. P., and Davids, K.
(2014a). Coordination pattern variability provides functional adaptations
to constraints in swimming performance. Sports Med. 44, 1333–1345.
doi: 10.1007/s40279-014-0210-x

Seifert, L. M., Komar, J., Crettenand, F., and Millet, G. P. (2014b). Coordination
pattern adaptability: energy cost of degenerate behaviors. PLoS ONE 9:e107839.
doi: 10.1371/journal.pone.0107839

Seifert, L. M., Komar, J., Hérault, R., and Chollet, D. (2014c). “Using inertial
measurement unit for coordination pattern detection and recognition in
breaststroke,” in Proceedings of the XIIth International Symposium for
Biomechanics and Medicine in Swimming, ed. B. R. Mason (Bruce, ACT:
Australian Institute of Sport), 235–242.

Seifert, L. M., L’Hermette, M., Komar, J., Orth, D., Mell, F., Merriaux, P., et al.
(2014d). Pattern recognition in cyclic and discrete skills performance from
inertial measurement units. Procedia Eng. 72, 196–201. doi: 10.1016/j.proeng.
2014.06.033

Seifert, L. M., Leblanc, H., Komar, J., Button, C., and Chollet, D. (2011). Inter-
individual variability in the upper-lower limb breaststroke coordination. Hum.
Mov. Sci. 30, 550–565. doi: 10.1016/j.humov.2010.12.003

Seifert, L. M., Schnitzler, C., Komar, J., Dovgalecs, V., and Button, C. (2014e).
“How competitive swimmers adapt their inter-limb coordination to drag
perturbation,” in Proceedings of the XIIth International Symposium for
Biomechanics and Medicine in Swimming, ed. B. R. Mason (Bruce, ACT:
Australian Institute of Sport), 230–235.

Seifert, L. M., Vantorre, J., Lemaitre, F., Chollet, D., Toussaint, H., and Vilas-Boas,
J.-P. (2010). Different profiles of the aerial start phase in front crawl. J. Strength
Cond. Res. 24, 507–516. doi: 10.1519/JSC.0b013e3181c06a0e

Siirtola, P., Laurinen, P., Röning, J., and Kinnunen, H. (2011). “Efficient
accelerometer-based swimming exercise tracking,” in Proceedings of the IEEE
Symposium on Computational Intelligence and Data Mining (CIDM), (Paris:
IEEE), 156–161. doi: 10.1109/cidm.2011.5949430

Silvatti, A. P., Cerveri, P., Telles, T., Dias, F. A. S., Baroni, G., and Barros, R. M. L.
(2013). Quantitative underwater 3D motion analysis using submerged video
cameras: accuracy analysis and trajectory reconstruction. Comput. Methods
Biomech. Biomed. Eng. 16, 1240–1248. doi: 10.1080/10255842.2012.664637

Silvatti, A. P., Dias, F. A. S., Cerveri, P., and Barros, R. M. L. (2012). Comparison
of different camera calibration approaches for underwater applications.
J. Biomech. 45, 1112–1116. doi: 10.1016/j.jbiomech.2012.01.004

Slawson, S. E., Justham, L. M., and Conway, P. P. (2012). Characterizing the
swimming tumble turn using acceleration data. J. Sports Eng. Technol. 226,
3–15. doi: 10.1177/1754337111428395

Slawson, S. E., Justham, L. M., West, A. A., Conway, P. P., Caine, M. P., and
Harrison, R. (2008). “Accelerometer profile recognition of swimming strokes,”
in The Engineering of Sport, Vol. 7, eds M. Estivalet and P. Brisson (Paris:
Springer), 81–87.

Stamm, A., James, D. A., Burkett, B., Hagem, R. M., and Thiel, D. V. (2013a).
Determining maximum push-off velocity in swimming using accelerometers.
Procedia Eng. 60, 201–207. doi: 10.1016/j.proeng.2013.07.067

Stamm, A., James, D. A., and Thiel, D. V. (2013b). Velocity profiling using inertial
sensors for freestyle swimming. Sports Eng. 16, 1–11. doi: 10.1007/s12283-012-
0107-6

Stamm, A., and Thiel, D. V. (2015). Investigating forward velocity and symmetry
in freestyle swimming using inertial sensors. Procedia Eng. 112, 522–527.
doi: 10.1016/j.proeng.2015.07.236

Stamm, A., Thiel, D. V., Burkett, B., and James, D. A. (2011). Towards determining
absolute velocity of freestyle swimming using 3-axis accelerometers. Procedia
Eng. 13, 120–125. doi: 10.1016/j.proeng.2011.05.061

Takeda, R., Tadano, S., Natorigawa, A., Todoh, M., and Yoshinari, S. (2009). Gait
posture estimation using wearable acceleration and gyro sensors. J. Biomech. 42,
2486–2494. doi: 10.1016/j.jbiomech.2009.07.016

Thompson, K. G., MacLaren, D. P., Lees, A., and Atkinson, G. (2002). Accuracy
of pacing during breaststroke swimming using a novel pacing device, the
Aquapacer. J. Sports Sci. 20, 537–546. doi: 10.1080/026404102760000044

Thompson, K. G., MacLaren, D. P., Lees, A., and Atkinson, G. (2004). The
effects of changing pace on metabolism and stroke characteristics during
high-speed breaststroke swimming. J. Sports Sci. 22, 149–157. doi: 10.1080/
02640410310001641467

Toussaint, M. H., and Beek, P. J. (1992). Biomechanics of competitive front crawl
swimming. Sports Med. 13, 8–24. doi: 10.2165/00007256-199213010-00002

Vannozzi, G. (2014). Inertial Sensors in Swimming. Available at: http:
//www.swimmingscience.net/2014/11/inertial-sensors-in-swimming.html
[accessed April 10, 2015].

Frontiers in Psychology | www.frontiersin.org 15 March 2017 | Volume 8 | Article 383

https://doi.org/10.1080/02640410400021955
https://doi.org/10.1016/j.jbiomech.2006.12.010
https://doi.org/10.1109/ICSENS.2002.1037188
https://doi.org/10.1109/ICSENS.2002.1037188
https://doi.org/10.1007/BF02903532
https://doi.org/10.1016/j.proeng.2014.06.036
https://doi.org/10.1109/bsn.2010.11
https://doi.org/10.1080/02640419508732261
https://doi.org/10.1080/02640419508732261
https://doi.org/10.1007/s00421-003-0919-y
https://doi.org/10.1249/MSS.0b013e31818160bc
https://doi.org/10.2174/1875399X01205010036
https://doi.org/10.1016/0375-9601(87)90038-7
https://doi.org/10.1016/0375-9601(87)90038-7
https://doi.org/10.3390/s140406891
https://doi.org/10.1007/s40279-012-0011-z
https://doi.org/10.1007/s40279-012-0011-z
https://doi.org/10.1007/s40279-014-0210-x
https://doi.org/10.1371/journal.pone.0107839
https://doi.org/10.1016/j.proeng.2014.06.033
https://doi.org/10.1016/j.proeng.2014.06.033
https://doi.org/10.1016/j.humov.2010.12.003
https://doi.org/10.1519/JSC.0b013e3181c06a0e
https://doi.org/10.1109/cidm.2011.5949430
https://doi.org/10.1080/10255842.2012.664637
https://doi.org/10.1016/j.jbiomech.2012.01.004
https://doi.org/10.1177/1754337111428395
https://doi.org/10.1016/j.proeng.2013.07.067
https://doi.org/10.1007/s12283-012-0107-6
https://doi.org/10.1007/s12283-012-0107-6
https://doi.org/10.1016/j.proeng.2015.07.236
https://doi.org/10.1016/j.proeng.2011.05.061
https://doi.org/10.1016/j.jbiomech.2009.07.016
https://doi.org/10.1080/026404102760000044
https://doi.org/10.1080/02640410310001641467
https://doi.org/10.1080/02640410310001641467
https://doi.org/10.2165/00007256-199213010-00002
http://www.swimmingscience.net/2014/11/inertial-sensors-in-swimming.html
http://www.swimmingscience.net/2014/11/inertial-sensors-in-swimming.html
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


fpsyg-08-00383 March 11, 2017 Time: 13:38 # 16

Guignard et al. Swimming Behavior Analysis with IMUs

Vannozzi, G., Donati, M., Gatta, G., and Cappozzo, A. (2010). “Analysis of swim
turning, underwater gliding and stroke resumption phases in top division
swimmers using a wearable inertial sensor device,” in Biomechanics and
Medicine in Swimming XI, eds P.-L. Kjendlie, R. K. Stallman, and J. Cabri (Oslo:
Norwegian School of Sport Science), 178–180.

Vantorre, J., Seifert, L. M., Fernandes, R. J., Vilas-Boas, J.-P., and Chollet, D. (2010).
Kinematical profiling of the front crawl start. Int. J. Sports Med. 31, 16–21.
doi: 10.1055/s-0029-1241208

Wei, T., Russell, M., and Hutchison, S. (2014). The fluid dynamics of competitive
swimming. Annu. Rev. Fluid Mech. 46, 547–565. doi: 10.1146/annurev-fluid-
011212-140658

Wheat, J. S., and Glazier, P. S. (2006). “Measuring coordination and variability in
coordination,” in Movement System Variability, eds K. Davids, S. Bennett, and
K. M. Newell (Champaign, IL: Human Kinetics), 167–181.

Whitacre, J. M. (2010). Degeneracy: a link between evolvability, robustness and
complexity in biological systems. Theor. Biol. Med. Model. 7, 1–12. doi: 10.1186/
1742-4682-7-6

Wilson, D. J., Smith, B. K., Gibson, J. K., Choe, B. K., Gaba, B. C., and Voelz, J. T.
(1999). Accuracy of digitization using automated and manual methods. Phys.
Ther. 79, 558–566.

Woyano, F., Lee, S., and Park, S. (2016). “Evaluation and comparison of
performance analysis of indoor inertial navigation system based on foot
mounted IMU,” in Proceedings of the XVIIIth International Conference on
Advanced Communications Technology, (Pyeongchang: IEEE), 792–798.

Yang, S., and Li, Q. (2012). Inertial sensor-based methods in walking speed
estimation systematic review. Sensors 12, 6102–6116. doi: 10.3390/s120506102

Zhu, R., and Zhou, Z. (2004). A real-time articulated human motion tracking using
tri-axis inertial/magnetic sensors package. IEEE Trans. Neural Syst. Rehabil.
Eng. 12, 295–302. doi: 10.1109/TNSRE.2004.827825

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2017 Guignard, Rouard, Chollet and Seifert. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 16 March 2017 | Volume 8 | Article 383

https://doi.org/10.1055/s-0029-1241208
https://doi.org/10.1146/annurev-fluid-011212-140658
https://doi.org/10.1146/annurev-fluid-011212-140658
https://doi.org/10.1186/1742-4682-7-6
https://doi.org/10.1186/1742-4682-7-6
https://doi.org/10.3390/s120506102
https://doi.org/10.1109/TNSRE.2004.827825
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive

	Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units
	Introduction
	Determining Low-Order Parameters: A First Level Of Analysis To Characterize Human Behavior In Swimming
	Investigation Of High-Order Parameters To Characterize Coordination Dynamics And Behavioral Variability In Swimming: New Perspectives Using Imus
	Practical Implications and Technical Recommendations to Assess The Behavioral Dynamics in Swimming

	Review Summary
	Author Contributions
	Funding
	Acknowledgment
	References


