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ABSTRACT

Gangliosides are endogenous sialic acid
containing glycospingolipids which are highly
concentrated in the central nervous system.
Although they were first characterized over 40
years ago, the function(s) played by this unique
class of lipids remain largely unknown.
Gangliosides have been suggested to play a
prominent role in both normal and abmormal
developmental processes. In addition, several
lines of convergent evidence have indicated that
gangliosides exert pronounced trophic effects
following damage to peripheral and central
nerves. Gangliosides have been shown to (1)
enhance cell survival and outgrowth in cultured
and developing neurons; (2) promote the
regeneration of damaged peripheral and central
nerves, and (3) facilitate behavioral recovery by
altering the pattern, extent and persistence of the
biochemical, morphological and behavioral
changes induced by neural trauma. Little is
known, however, concerning the neurobiological
mechanisms which subserve the behavioral
protection afforded by ganglioside treatment.
This review focuses on the evidence suggesting
that gangliosides mediate functional recovery by
minimizing primary or secondary cell loss or
promoting the regeneration or sprouting of
damaged central nerves subsequent to injury.
An understanding of the mechanisms by which
gangliosides produce their effects may lead to
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the development of more efficacious and rational
primary or adjunct pharmacological treatments
for central nervous system disorders.
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INTRODUCTION

One of the major goals of neuroscience is to
understand and treat brain disorders. Despite
technical and conceptual advances in the
neurosciences we still face fundamental
questions in mneurology. Among the most
problematic neurological disorders are those
associated with the degeneration of brain
neurons. Neurodegenerative diseases, strokes
and penetrating wounds all produce unique
constellations of behavioral symptoms that result
from the destruction of specific neuronal
populations. Although research is beginning to
reveal the pathophysiology and molecular
biology of these disorders there remains a wide
gap between our understanding of the substrates
of these diseases and our ability to prevent or
treat them.

Traditional approaches to the treatment of
acute and more chronic neurological disorders
typically produce very limited functional
recovery and may even produce deleterious side
effects. Even in cases where some degree of
functional recovery occurs, residual deficits
typically continue to compromise the individuals’
quality of life /51/. Based on the limited efficacy
of current treatment modalities it is imperative
to develop treatments which limit the extent and
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persistence of neural trauma and promote
functional recovery.

Gangliosides are sialic acid containing
glycospingolipids which are highly concentrated
in neuronal membranes /40,45,65,66/. These
large, complex lipids are typically associated with
the outer surface of the neuronal membrane and
consist of a hydrophobic spingosine and steric
acid complex inserted into the neuronal
membrane and a hydrophilic component con-
taining sialic acid residues and a variety of
carbohydrates which protrude towards the
extracellular fluid. Although over 70 different
forms of gangliosides /96/ have been identified,
most investigators have focused on the mono-
sialoganglioside GM1 because of its demon-
strated in vivo and in vitro efficacy as a trophic
agent.

The location of gangliosides on the outer
portion of the neuronal membrane has led to the
speculation that these molecules play a role in
cell surface events such as cell to cell recognition,
synaptic transmission and receptor-ligand func-
tions. Morphological, developmental, biochemi-
cal and behavioral studies have shown that
gangliosides participate in a variety of neuro-
biological functions related to the maturation
and repair of neural tissue. For example, there
are pronounced changes in ganglioside concen-
trations and distribution during synaptogenesis
and central nervous system (CNS) maturation
/29,59/. In addition, developmental disorders
which result from impairments in the meta-
bolism of gangliosides (e.g., Tay Sachs disease)
are characterized by anomalous patterns of
neuronal differentiation and synaptogenesis as
well as progressive cognitive deterioration
/85,86/. Moreover, administration of antibodies
to GMI1 ganglioside to developing animals
produces permanent alterations in the extent of
synaptogenesis and myelination of nervous tissue
together with deficits in learning performance
/59/. In contrast, exogenously administered
gangliosides increase cell survival and enhance
neurite outgrowth when added to cultures of
developing neurons /12,26,28,38,73/, promote
regeneration of damaged central and peripheral
nerves /4,43-45/, and facilitate behavioral
recovery by altering the pattern, extent and

persistence of the biochemical, morphological
and behavioral changes induced by neural
trauma /16,17,20,30,32,34,35,37,82,83,89,92-97,
115,120/. Based upon these observations it has
been proposed that gangliosides may serve as
useful pharmacological agents for augmenting
the plasticity of the CNS and promoting func-
tional recovery. Results such as those described
above, coupled with the practical considerations
that gangliosides are capable of crossing the
blood-brain barrier /64,81,111/ and produce no
overt toxic side effects /52/, make gangliosides
particularly attractive neurotrophic agents for
the treatment of CNS injury. Although several
studies have documented the efficacy of ganglio-
sides in a variety of animal models and human
conditions, the mechanism by which gangliosides
exert their beneficial effects has remained
elusive (see Table 1). The purpose of this article
is to review the possible anatomical mechanisms
by which gangliosides might produce behavioral
recovery in various models of CNS injury.

EFFECTS OF GANGLIOSIDES ON
DEVELOPMENT AND PERIPHERAL NERVOUS
SYSTEM REGENERATION

The expression of gangliosides correlates with
the development of the CNS and has led to the
suggestion that gangliosides play a role in normal
neuronal growth. Willinger /117/ reported that
the expression of ganglioside GM1 was markedly
increased on the neuronal membrane of differ-
entiating cells. Moreover, Rosner /91/ demon-
strated that increases in the concentrations of a
variety of endogenous gangliosides paralleled
cell migration and neuronal differentiation in the
optic lobes of the chicken. The differential
alterations in ganglioside concentrations during
development do not provide direct evidence for
a causative role in specific developmental
phenomena. However, the abnormal neuronal
development associated with disorders of
ganglioside metabolism does suggest a direct
modulatory role for gangliosides in neuronal
growth. GM1 gangliosidosis results from a
deficiency of the enzyme B-galactosidase which
is responsible for the degradation of GM1. As a
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BEHAVIORAL EFFECTS OF GANGLIOSIDES

TABLE 1

EFFECTS OF GANGLIOSIDES ON BEHAVIORAL AND NEUROBIOLOGICAL RECOVERY

FOLLOWING CNS LESIONS
Species/ Ganglioside Anatomical/ Behavioral Ref
Lesion Treatment Neurochemical Results
Results

Rat peroneal Mix of GM1, GDla, Enhanced neuromuscular 13
nerve GD1b, and GT1 control

(50 mg/kg, IP)
Rat sciatic Mix of GM1, GDl1a, Sprouting of moto- 44
nerve GD1b, and GT1 neurons

(5 mg/kg, IP)
Rat fourth Mix from bovine Enhanced isometric 102
lumbar root brain (50 mg/kg, IP) tension of plantaris

muscle

Rat sciatic Mix of GM1, GD1a, Ameliorated loss of
nerve; alloxan-  GDI1b and GT1b axonal transport 70
induced diabetes (10 mg/kg, IP)
Rat sciatic Mix of GM1, GDl]a, Improvement of nerve 108
nerve, diabetic GD1b, and GT1b conduction
peripheral neuro- (20 mg/kg, SC)
pathy
Rat; vinblastine- GM1 and/or NGF Reduced NE loss 117
induced sym- (30 and 1 mg/kg, SC)
pathectomy
Rat ventro- Mix of GM1, GDla, Promoted recovery of 124
medial septal GD1b, and GT1 ChAT and AChE
nucleus (50 mg/kg, IP)
Rat septal GM1 (30 mg/kg, IP) Decreased emotionality 84
nucleus
Rat dorsal GM1 (30 mg/kg, IM) Enhanced recovery of AChE, 46
hippocampus ChAT and 5-HT
Rat dorsal GM1 (30 mg/kg, IP) Enhanced 5-HT uptake 61
hippocampus
Rat hippo- GM1 (30 mg/kg, IP) Enhanced ChAT activity 104
campus/
neocortex
Ratentorhinal  Mix from bovine Promoted recovery of 57
cortex brain (50 mg/kg, IM) T- maze altemation
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Table 1 (cont.)
Species/ Ganglioside Anatomical/ Behavioral Ref
Lesion Treatment Neurochemical Results
Results
Ratentorhinal Mix of GM1, GDla, Decreased sprouting Reduced hyperactivity 36
cortex GD1b, and GT1
(30 mg/kg, IM)
Rat dentate GM1 (30 mg/kg, IP) No reduction of cell loss Promoted recovery of 120
gyrus hyperactivity and pharm-
acological sensitivity
Rat dentate GM1 (30 mg/kg, IP) No reduction of cell loss Increased ODC activity 119
gyrus on contralateral side
Rat dentate GM1 or AGF2 No reduction of cell loss  Induced recovery of T- 32
gyrus (15 and 10 mg/kg IP) maze performance
Rat hippo- GM1 (15 mg/kg, IP) Prevent loss of ChAT and 27
campus HAChU
Rat nucleus GM1 (30 mg/kg, IP) Prevent cholinergic cell 20
basalis loss
Rat nucleus GM1 (5 mgkg, ICV) Prevent decrease in ChAT Promoted recovery of 31
basalis passive avoidance and
water maze performance
Rat septal AGF2 (10 mg/kg, IP) Induce recovery of Partial recovery of radial 34
nucleus ChAT arm maze task
Rat septal AGF2 (10 mg/kg, IP) Prevent loss of ChAT Prevented hyperactivity 35
nucleus and HAChU and cognitive deficits
Rat nucleus GM1 (10 mg/kg, IM) Reduced loss of AChE  Reduced mortality 69
basalis and ChAT
Rat striatum GM1 (10, 30, or 50 Reduced loss of ChAT 68
mg/kg, IP) and GAD
Rat striatum GM1 (30 mg/kg, IP) Reduced anterograde 97
cell loss
Rat striatum GM1 or AGF2 Regeneration of nigro- 4
(30 mg/kg IP) striatal DA system
Rat substantia GM1 (30 mg/kg, IP) Reduced retrograde cell loss 116
nigra
Rat nigrostriatal GM1 (30 mg/kg, IP) Reduced rotational beh- 94
pathway avior
Rat nigrostriatal GM1 or AGF2 Induced recovery of TH  Reduced rotational beh- 115
pathway (30 mg/kg, IP) avior
Rat striatum GM1 (30 mg/kg, IP) Promoted recovery of 93
cognitive behavior cont.
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Table 1 (cont.)
Species/ Ganglioside Anatomical/ Behavioral Ref
Lesion Treatment Neurochemical Results
Results
Rat cerebral GM1 (30 mg/kg, IP) Induced regrowth of NE 62
cortex terminals
Mouse sciatic  Mix of GM1, GD1a, Promoted recovery of 76
nerve; diabetic  GD1b, GT1 axonal flow
peripheral neuro- (1 or 10 mg/kg, IP)
pathy
Mouse periph- Mix of GM1, GD1a, Induced fiber sprouting 109
eral neuropathy GD1b, GT1
(20 mg/kg, SC)
Mouse sub- GM1 or AGF2 Produced recovery of DA 47
stantia nigra (30 or 10 mg/kg, IP) DOPAC
(MPTP)
Mouse sub- GM1 (30 mg/kg, IP) Eliminated haloperidol 121
stantia nigra induced sensorimotor
(MPTP) effects
Hamster sup-  GM1 (30 mg/kg, IP) Enhanced sprouting of 98
erior colliculus retinotectal fibers
Human stroke  GM1 (20 mg, IM) Produced neurological 7
improvement
Human cerebro- GM1 (40 mg, IM) Enhanced neurophysio- 8
vascular disease logical and clinical
recovery
Human diabetic Mix of GM1, GDla, Produced recovery of sen- 53
neuropathy GD1b, GT1b sory perception of lower
(40 mg, IM) extremeties
Human idio- Mix of GM1, GD1a, Complete recovery 54
pathic facial GD1b, GT1b
paralysis (20 mg, IM)
Human GM1 (100 mg, IM) No improvement on cog- 3
Alzheimer's nitive or psychosocial
Human Mix of GM1, GDla Improved visual field 72
retinitis GD1b, GT1b area and electroretino-
pigmintosa (40 mg, IM) graphic responses

NOTE: AChE = acetylcholine esterase; ChAT = choline acetyltransferase; DA = dopamine; DOPAC =3 4,-
dihydroxyphenylacetic acid; GAD = glutamic acid decarboxylase; HAChU = high affinity choline uptake;
MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, NE = norepinephrine; NGF = nerve growth factor;
ODC = ornithine decarboxylase; IP = intraperitoneal; SC = subcutaneous; IM = intramuscular; ICV =

intraventricular,
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result of this deficiency, meganeurites, charac-
terized by multiple neuritic processes, neurites,
and spines develop throughout the nervous
system /85,86/. Since this pattern of cell growth is
typically observed only during early stages of
development, these results indicate that an
abnormal accumulation of gangliosides has a
direct influence on the subsequent growth of
neurons.

Numerous in vitro experiments have
demonstrated that exogenous gangliosides alter
the morphological characteristics of cultured
neurons  /12,26,28,38,73,125/.  Gangliosides
promote neuritogenesis in a variety of cell lines,
with certain cells responding only to specific
species of gangliosides. For instance, Carine et
al. /15/ reported that GM1, but not GDla,
enhanced neuritogenesis in S20Y murine neuro-
blastoma cells. Similarly, the selectivity of
afferent connections in tetrodotoxin-treated
spinal cord explants is dependent on the species
of gangliosides used /6/. Mixed bovine ganglio-
side treatments produced a selective afferent
connectivity in these culture preparations while
GM1 alone produced a nonselective connecti-
vity. These studies indicated that the exogenous
addition of gangliosides enhances the outgrowth
of cultured neurons but that this outgrowth is
dependent on the molecular form of the ganglio-
side used. Since the distribution of gangliosides
in the nervous system is variable, it is conceivable
that gangliosides normally play a role in
mediating specific forms of neuronal connectivity
and that the extent of functional recovery
afforded by gangliosides is a function of precise
and subtle anatomical changes.

Ceccarelli and colleagues /18/ initially
reported that the exogenous administration of
gangliosides promoted sprouting in the
peripheral nervous system (PNS). Following a
pre- and postganglionic anastomosis of the
superior cervical ganglion in cats, daily
administration of gangliosides resulted in a
complete recovery from paralysis together with
normal pupillary and nictitating membrane
function. Since animals typically exhibit a partial
recovery from this surgery as a result of
regenerating axons reinnervating the cervical
ganglion it was concluded that the gangliosides

had promoted the regeneration of the axoto-
mized fibers. Support for the assumption of
regeneration came from visualization of
increased catecholaminergic histofluorescence in
the cervical ganglion following the anastomosis.
Since these initial studies, several laboratories
have confirmed that gangliosides promote the
regeneration and sprouting of damaged
peripheral nerves and muscle /13,44,45,56,60/.

GANGLIOSIDE-INDUCED REGENERATION AND
SPROUTING FOLLOWING NEURAL INJURY

Septohippocampal cholinergic system

Given that gangliosides could markedly
potentiate the regenerative response of
peripheral nerves, Oderfeld-Nowak and
colleagues /77-80/ investigated the effects of
ganglioside treatment on the sprouting response
which results from partial denervation of the
cholinergic input to the hippocampus (HPC).
Following damage to the septum, there is an
initial decrease in the enzymes acetyl-
cholinesterase (AChE) and choline acetyl-
transferase (ChAT) in the HPC which is then
followed by a progressive recovery of enzymatic
activity over the next several months /75,79/. The
recovery of neurochemical activity correlates
with the appearance of newly formed synaptic
contacts in the HPC and is considered to be an
accurate marker of sprouting of surviving
hippocampal afferents. Following electro-
coagulation lesions, a mixture of gangliosides
accelerated the recovery of AChE and ChAT
activity in the HPC /77,79,80/. While the initial
decline in enzymatic activity was equivalent
regardless of whether the animals received
gangliosides or not, gangliosides produced a
significant increase in AChE and ChAT activity
compared to controls at both 18 and 50 days
post-surgery. These same investigators reported
that ganglioside GM1 promoted sprouting
following ablations of the entorhinal cortex /78/.
At 3 weeks following surgery, GM1 enhanced the
recovery of AChE and ChAT activity in the HPC
indicating an enhancement of the sprouting
response of the septohippocampal pathway.
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Given that gangliosides appeared to enhance
the plasticity of the septohippocampal choli-
nergic pathway, investigators examined the
behavioral consequences of this accelerated
response. Karpiak /57/ examined the perfor-
mance of rats on a spatial alternation task
following unilateral lesions of the entorhinal
cortex. Animals receiving daily injections of
GM1 made significantly fewer errors on the first
postoperative day compared to lesioned animals
ot receiving ganglioside treatment. Because this
reduction in the lesion-induced behavioral
deficits preceded the period of time considered
necessary for reinnervation to begin, these
results were interpreted as indicating that GM1
exerted a protective rather than regenerative
effect. To evaluate this possibility Fass and
Ramirez /36/ bilaterally lesioned the entorhinal
cortex producing increases in open-field activity
which typically recover over a two week period.
Animals treated with GM1 were less active than
lesioned animals receiving saline treatment as
early as two days post-surgery suggesting that the
behavioral protection was independent of
alterations in the sprouting response. Fur-
thermore, a reduction in the density of AChE
staining was observed in the dentate gyrus of
animals treated with gangliosides indicating that
GM1 might have actually suppressed the
sprouting response. The interpretation of these
results was further complicated by a comparison
between the behavioral and histological analysis
which revealed that there was no obvious
relationship between the recovery of the
behavioral impairments and the alterations in
AChE staining. Poplawsky and Isaacson /84/
further demonstrated that ganglioside treatment
decreased the hyper-emotionality following
septal lesions. Again, these changes were
observed within two days following surgery,
making it unlikely that structural changes, such
as sprouting, accounted for the observed
behavioral effects.

More recently, Emerich and Walsh /34/
examined the effects of ganglioside AGF2 (the
internal ester of GM1) on the behavioral and
neurochemical consequences of bilateral
injections of ethylcholine mustard aziridinium
ion (AF64A) into the lateral ventricles of rats.

AF64A produced an impairment on both a
standard radial arm maze (RAM) task and when
a 1 hour delay was imposed between the fourth
and fifth arm choices. Although the initial
impairment was equivalent regardless of whether
the AF64A-treated animals received AGF2 or
saline, the AGF2-treated rats recovered on the
standard RAM task within 4 weeks but were
permanently impaired on the delay version of
the task. Neurochemical analysis revealed that
AGF2 enhanced ChAT activity in the
hippocampus at 20, but not 2 or 11 weeks
following surgery. Cell counts of cholinergic
neurons in the medial septum revealed that
AGF?2 did not reduce the extent of neuronal loss.
As in the study by Fass and Ramirez /36/, these
data indicated that AGF2 might have enhanced
the sprouting of cholinergic terminals following
the initial insult, but that the behavioral recovery
exhibited by these animals was incomplete and
unrelated to that sprouting.

It appears, then, that there is no clear
evidence which directly links ganglioside-induced
sprouting to behavioral recovery following
damage to central cholinergic systems.
Gangliosides have been shown to influence
behavioral recovery at times too early to be
accounted for by structural changes or at times
removed from the occurrence of such changes
/34,36,57,84/. The interpretation of the
relationship of sprouting to behavioral recovery
is also complicated by the methods used to assess
sprouting. Changes in enzyme levels do not
necessarily reflect an effect of ganglioside on
sprouting. Rather gangliosides could be
modulating a lesion-induced up-regulation of
transmitter biosynthesis and release. Ganglio-
sides could also directly stimulate the activity of
the enzymes involved in the synthesis of
acetylcholine (ACh). Cuello and colleagues /20/
found that GM1 significantly increased ChAT
activity in the nucleus basalis in sham-operated
rats. In addition, Hefti et al. /49/ reported that a
ganglioside mixture directly increased ChAT
activity in cultures of dissociated fetal septal
neurons without altering fiber outgrowth of
those cholinergic neurons. Accordingly, ganglio-
sides might enhance ChAT activity following
septal lesions by increasing the activity of this
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enzyme in surviving neurons. However, en-
hanced sprouting and direct stimulation of
ChAT activity need not be mutually exclusive
events and might act in a coordinated manner to
create a more conducive neural environment for
the initiation of structural repair processes which
promote functional recovery.

Nigrostriatal dopamine system

The nigrostriatal dopamine system also lends
itself to an analysis of the correlation between
behavioral recovery and  regeneration/
reinnervation processes. Transections of the
nigrostriatal tract result in a marked reduction in
tyrosine hydroxylase (TH) and homovanillic acid
(HVA) content in the denervated caudate.
Behaviorally, rats with unilateral lesions exhibit a
stereotyped rotational behavior when challenged
with dopaminergic agonists such as apomorphine
or amphetamine. Toffano and colleagues /113-
115/ reported that gangliosides reduced the
number of apomorphine-induced rotations at 14
and 30, but not 8 days, following a unilateral
hemitransection of the nigrostriatal pathway. It
was also reported that TH levels in saline-
treated controls were 50% of normal while
animals receiving gangliosides exhibited only a
20% decrease in TH. Increased levels of HVA
and TH-immunofluorescence substantiated the
ganglioside related increase in dopaminergic
activity at the later, but not earlier, time points.
Since this time course coincided with that
expected for terminal reinnervation of the
striatum, it was concluded that gangliosides
enhanced behavioral recovery through increased
sprouting of dopaminergic fibers. However, the
interpretation of these studies are also subject to
the possibility that gangliosides simply increased
HVA and TH activity through a compensatory
increase in neurotransmitter synthesis and
release. Following damage, surviving
dopaminergic neurons increase their rate of
synthesis and metabolic activity. Ganglioside
treatments might act to accelerate this process,
thereby affording the animal some degree of
behavioral recovery.

To address this issue more carefully, Sabel et
al. /92,94/ injected HRP into the striatum

following transection of the nigrostriatal
pathway. It was assumed that if GM1 ganglioside
was promoting sprouting then an increased
number of HRP-positive cells should be
visualized within the substantia nigra. At post-
operative day 3 there were no differences in the
number of labeled cells between the saline and
GMl-treated animals. However, at day 15 there
were significantly more labeled neurons in those
animals treated with GM1. While these results
strongly suggested that GM1 stimulated
reorganizational processes, these same processes
do not necessarily underlie behavioral recovery.
In fact, a clear dissociation of behavioral and
morphological recovery was observed in these
studies. While ganglioside-treated animals
exhibited decreases in rotational behavior as
early as two days following surgery, there were
no apparent differences in HRP-labeled cells in
the substantia nigra. Although these two indices
may correlate at later time points, the proposed
sprouting of dopaminergic fibers cannot account
for this early behavioral recovery.

Other studies have failed to find a clear
correlation between anatomical/neurochemical
and behavioral recovery following ganglioside
treatment. Sabel et al. /93/ reported that
gangliosides ameliorated the deficits in spatial
alternation = behavior  following  bilateral
electrolytic lesions of the caudate nucleus. Upon
histological evaluation, it was revealed that there
were no differences in the number of neurons or
glia adjacent to the lesion site or in the
substantia nigra between those lesioned animals
receiving gangliosides and those receiving
vehicle control injections. While a protective
effect of gangliosides was not likely in these
studies, the role of sprouting remains a possible
contributor to the observed functional recovery.
Dunbar et al. /30/ examined the effects of
gangliosides on rotational behavior, aphagia and
adipsia following complete transections of the
nigrostriatal pathway. Following total lesions,
gangliosides were ineffective in reducing
amphetamine-induced rotational behavior /30/.
However, these same ganglioside-treated
animals demonstrated a significant attenuation
of the initial decrease in body weight. Together
with previous neurochemical studies, these data
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suggested that there may be a dissociation
between functional and neurobiological recovery
in ganglioside-treated animals.

Other systems

The ability of gangliosides to promote
sprouting has been evaluated in a variety of
other neural regions. Kojima et al. /62/ infused 6-
hydroxydopamine (6-OHDA) into the cerebral
cortex via an osmotic minipump. Fluorescent
histochemistry and neurochemical analysis
revealed a significant loss of fluorescent nerve
terminals and norepinephrine (NE) levels in the
cortex within 3-7 days. Within 5 weeks there was
a reappearance of nerve terminals within the
damaged region. Treatment with ganglioside
GML1 significantly elevated NE levels at 7 and 14
days following 6-OHDA with no effect on the
initial loss of NE terminals.

Jonsson et al. /55/ reported that GM1
restored serotonin (5-HT) levels in the cortex
following systemic injections of the serotonergic
neurotoxin 5,7-DHT. Again, GM1 had no effect
on the initial loss of 5-HT terminals, rather the
effects were observed to occur following the
initial result.

Fujito et al. /41,42/ conducted a series of
experiments which suggested that gangliosides
promoted sprouting in the red nucleus of kittens.
Following neocortical damage, the probability of
producing excitatory postsynaptic potentials
(EPSPs) in the red nucleus decreased to approx-
imately 20%. Gradually, EPSPs reappeared, in-
dicating a sprouting response of the previously
degenerating cortical afferents. Placement of a
sponge containing a crude ganglioside extract
into the wound cavity resulted in an increased
probability of inducing EPSPs in the red nucleus
at 3 weeks post-lesion. These data indicated that
gangliosides promoted a sprouting response and
that this response had a functional consequence
(i.e., production of EPSPs).

Other investigators have suggested that
gangliosides promote sprouting in the spinal
cord following transections /10,19/ and in the
hamster visual system following lesions of the
superior colliculus /98/.
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GANGLIOSIDE-INDUCED PREVENTION OF
NEURONAL DEGENERATION

The foregoing discussion strongly suggests
that ganglioside-induced enhancement of
sprouting does not necessarily account for the
promotion of functional recovery. Given that
behavioral recovery processes have been
frequently reported to occur relatively soon
following injury (i.e., at times prior to the
initiation of sprouting), a more parsimonious
explanation for these effects might be that they
limit the extent of neuronal damage produced
immediately following surgery. The following
section reviews the evidence for this possibility
and discusses possible biological mechanisms
underlying this prophylactic effect.

Nucleus basalis-cortical cholinergic system

Following lesions of the magnocellular nuclei,
high affinity choline uptake (HAChU) and
ChAT activity is decreased by approximately
50% in the frontal cortex. Treatment with GM1
prevented the decreases in HAChU in the
frontal and parietal cortex as early as 4 days
following surgery /82/. Because of this early time
course of recovery, the sparing of HAChU
cannot be accounted for by collateral sprouting.
Following unilateral cortical lesions, GM1 also
prevented the retrograde cell atrophy in the
nucleus Dbasalis /20/. Accompanying this
attenuation was a significant protection against
the loss of ChAT activity in this same region.
Unfortunately, a time course analysis was not
performed to determine whether GM1 actually
prevented or reversed the cell shrinkage.

Casamenti and colleagues /17/ confirmed that
ganglioside treatment not only prevents the loss
of cortical cholinergic parameters following
damage but also improves the rate of acquisition
of an active avoidance task. These behavioral
effects were observed during the initial stages of
behavioral testing (4-7 days post-surgery) and
ruled out the possibility that collateral sprouting
underlay the observed alterations in cholinergic
function. Rather, these results may be
interpreted as indicating that GMI1 either
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prevented terminal degeneration or produced
compensatory increases in cholinergic enzymatic
activity at time points shortly following injury.
The contention that exogenous ganglioside
administration attenuates the Initial
consequences of damage to the magnocellular
nuclei is supported by a recent study by Cuello
and colleagues /20/. These investigators reported
that GM1 prevented the retrograde atrophy and
loss of cholinergic neurons in the nucleus basalis
following cortical damage. Importantly, this
effect was observed both following systemic
administration of GM1 and following the
placement of microencapsulated GM1 onto the
damaged cortical surface /71/. Elliott and
colleagues /31/ examined the effects of GM1 on
the neurochemical and behavioral changes
produced by unilateral devascularizing lesions of
the neocortex. Following surgery, animals
exhibited a series of behavioral alterations,
including hyperactivity, motor uncoordination,
impaired passive avoidance retention and
reacquisition, and decreased retention of a
Morris water maze task. Infusion of GMI1
directly into the lateral ventricles via minipumps
prevented the retrograde degeneration of
cholinergic nuclei in the nucleus basalis and
enhanced the reacquisition of both the passive
avoidance and water maze task but had no effect
on the hyperactivity or motor coordination tasks.

Septohippocampal cholinergic system

Ganglioside-induced prevention of
cholinergic cell loss has also been reported
following damage to the septohippocampal
cholinergic system. DiParte et al. /27/ reported
that the intraventricular injection of vincristine
decreased ChAT and HAChU in the HPC and
that these decreases were prevented by prior
treatment with ganglioside GM1. Sofroniew et al.
/104/ further demonstrated that gangliosides
prevented the retrograde cell loss in the medial
septum and vertical limb of the diagonal band
following hippocampal ablation.

To evaluate the ability of gangliosides to
prevent damage to the septohippocampal
cholinergic system and the associated behavioral
consequences, a series of studies using the

neurotoxin colchicine were conducted /33,35/.
Intraventricular administration of colchicine
produced marked decreases in hippocampal
ChAT activity and HAChU levels without
damage to hippocampal granule cells which are
susceptible to direct administration of colchicine.
Behaviorally, colchicine-treated animals
exhibited a pronounced hyperactivity and
marked cognitive deficits which were prevented
by AGF2 administration. While previous studies
had indicated that gangliosides produced a task
dependent behavioral recovery /17,34/ the
recovery in these studies was complete. Lesioned
animals receiving AGF2 were able to perform a
radial arm maze task as well as controls, even
when a delay as long as four hours was imposed
between the fourth and fifth arm choices.
Neurochemical and anatomical analyses
indicated that AGF2 prevented the decreases in
hippocampal ChAT and HAChU as well as the
loss of cholinergic neurons in the medial septum.
These data clearly indicated that gangliosides are
capable of preventing the biochemical,
anatomical and behavioral consequences of
neural damage.

Interestingly, ganglioside treatment appeared
to exert a different profile of effects following
intradentate injections of colchicine. Following
intrahippocampal  administration, colchicine
produced extensive decreases in the thickness of
both the superior and inferior blades of the
dentate gyrus and an associated retrograde
degeneration of cholinergic neurons in the
medial septum /32,33/. GM1 administration
facilitated the recovery of normal locomotor
activity, attenuated the impaired retention of a
passive avoidance task and reduced the
alterations in sensitivity to the motor stimulating
effects of apomorphine and the analgesic effects
of morphine /118/. Furthermore, both GM1 and
AGF?2 facilitated recovery of working memory in
a multiple component T-maze task /32/.
However, quantitative analysis revealed that,
despite the facilitative effects of ganglioside
treatment on behavior, there was no obvious
reduction in the extent of colchicine-induced
granule cells destruction or the retrograde
degeneration of cholinergic neurons in the
medial septum.
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In contrast to the failure to find any
anatomical correlate to the ganglioside-induced
behavioral recovery following intrahippocampal
colchicine, biochemical evidence suggesting a
possible protective effect of GM1 has been
obtained. Following intrahippocampal injections
of colchicine, Walsh er al. /119/ examined the
effects of GM1 on the expression of ornithine
decarboxylase (ODC) activity in the HPC.
Ornithine decarboxylase is the rate-limiting
enzyme in the synthesis of the polyamines
putrescine, spermine, and spermidine and has
been suggested to provide a reflection of the
extent of neural damage present. Following
unilateral injections of colchicine into the
dentate gyrus, ODC activity increased 8-fold in
the HPC. Prior treatment with GM1 ganglioside
significantly reduced this response on the
ipsilateral side but enhanced the ODC response
on the contralateral side. These ganglioside-
induced changes were independent of any
protective action of GMI1 on hippocampal
morphology. Since changes in ODC activity are
correlated with the magnitude of neural damage,
it appeared that GM1 may have altered some of
the secondary consequences of hippocampal
damage.

The mechanism by which gangliosides exert
their protective effects on cholinergic systems is
unclear but may relate to the interaction of
gangliosides with endogenous neurotrophic
factors at or near the site of injury. Several lines
of evidence indicate that gangliosides augment
endogenous biological responses that are
initiated by injury and subserve neuroplasticity. It
is well established that levels of endogenous
trophic factors increase following neural damage
[74,75/. Furthermore, the early administration of
trophic agents, including nerve growth factor
(NGF) and gangliosides, are effective in
reducing both cell death and the behavioral
deficits associated with neural injury /21,22,
27,31,35,50,63,107,122/. The typical increases in
injury mediated trophic factors may not be
sufficient to prevent the lesion-induced cell loss
which occurs immediately following injury, or
these increases may occur at a time subsequent
to the majority of cell loss. The administration of
compounds capable of interacting with

VOL. 3,NO. 1, 1992

endogenous trophic factors or altering the
response of neurons to the levels of endogenous
trophic factors may represent one method for
minimizing injury related cell loss. Gangliosides
have been suggested to exert their trophic effects
by interacting with endogenous NGF. This
suggestion is supported by several convergent
lines of evidence: (1) gangliosides and NGF
promote cell survival and increase ChAT activity
in the nucleus basalis in a synergistic manner
following cortical damage /20/; (2) GMl
potentiates the ability of NGF to prevent the
decreases in norepinephrine levels in the heart,
spleen and kidneys following systemic
administration of vincristine /117/; (3) GM1
initiates neurite outgrowth in fetal chick dorsal
root ganglionic cells and PC12 cells in a NGF-
dependent manner /28,103/, and (4) the ability of
GM1 to prevent the loss of cholinergic neurons
in the nucleus basalis diminishes as the age of the
animal increases and the normal and lesion-
induced levels of trophic factors decrease /107/.

Although the exact mechanism by which
gangliosides potentiate the actions of NGF
remains unknown, it may relate to a modification
of membrane surface properties subsequent to
the incorporation of gangliosides into the
membrane. Unfortunately Ferrari /39/ failed to
find increased binding of NGF to PCi12 cells
following ganglioside treatment. However,
gangliosides could still conceivably modulate a
variety of neuronal processes including surface
transduction or specific NGF related post-
translational events (see /22/ and /101/ for
reviews).

Gangliosides may also alter axonal transport
and in turn increase the availability of NGF or
other trophic factors to deprived neurons.
Gangliosides promote the formation of
microfilament networks in cultured neuro-
blastoma cells /106/ as well as stimulating tubulin
gene expression following transections of the
nigrostriatal pathway /126/. By accelerating or
promoting the organization of cytoskeletal
elements, gangliosides may enhance the
transport and subsequent availability of trophic
factors such as NGF under normal conditions
and following injury. The ability of gangliosides
to modulate the regeneration of damaged nerves
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by altering the axoplasmic transport of
macromolecules has been investigated following
nerve crush of the optic nerve in goldfish.
Following nerve crush, the optic nerve
regenerates over a 2-4 week period in parallel
with increased visual acuity /23,24/. Sbaschnig-
Agler et al. /100/ reported an 8-fold increase in
the axonal transport of gangliosides following
crush of the optic nerve. This increase was
evident within 8 days following surgery and
persisted for up to 25 days. In addition,
intraocular  injections of antibodies to
gangliosides inhibited the regeneration of the
optic nerve following nerve crush /105/. Daily
injections of antiserum beginning 5 days prior to
surgery resulted in a 40% decrease in the
distance of axonal outgrowth measured 10 days
after the crush. These data suggested that
gangliosides may play a role in neural outgrowth
and regeneration by modulating the transport of
various macromolecules such as NGF.

Nigrostriatal dopamine system

As already mentioned, the evidence
supporting a role for gangliosides in mediating
behavioral recovery via sprouting of surviving
dopaminergic afferents is questionable. Several
lines of evidence indicate that behavioral
recovery occurs at time points too early to be
“accounted for by structural changes. On the
other hand, there is evidence to suggest that
gangliosides may act to reduce the initial
consequences of damage to this system.

Within 2 weeks following a partial
hemitransection of the nigrostriatal pathway,
animals treated with gangliosides exhibit an
attenuated decrease in TH activity. Toffano et al.
/116/ reported that this amelioration was
associated with a ganglioside-induced reduction
of the loss of dopamine neurons. Both the TH
and immunocytochemical indices necessarily use
dopamine to evaluate cell number and these
results could also be interpreted as indicating
that gangliosides are simply increasing
transmitter synthesis.

In an attempt to evaluate more carefully the
possible protective effects of gangliosides, Sabel

et al. /97/ used the Fink-Heimer technique to
quantify the extent of anterograde degeneration
in the substantia nigra following hemitransec-
tions of the nigrostriatal pathway in the left
hemisphere and an electrolytic caudate lesion in
the right hemisphere. Seven days following the
lesion, the animals treated with GM1 had signifi-
cantly smaller areas of neuronal degeneration on
the side with the caudate lesion than those
animals treated with saline. In contrast, there
was no effect of ganglioside treatment on the
side with the hemitransection. While GM1 had
no effect following the hemitransection in these
studies, Raiteri and colleagues /88/ reported that
AGF?2 decreased the reduction of [*H]dopamine
uptake into striatal synaptosomes five days fol-
lowing surgery. Although not conclusive, the
combined anatomical and neurochemical data
suggest that gangliosides exert some protective
effect following damage to the nigrostriatal
system.

The contention that gangliosides produce
behavioral recovery by minimizing cell damage is
supported by a study by Li et al. /67/. Two days
following unilateral nigrostriatal transections,
amphetamine-induced rotational behavior was
reduced by ganglioside treatment. The ganglio-
side treatment also prevented the loss of striatal
Na* K*-ATPase activity typically observed fol-
lowing damage. Two days following transection,
the level of Na*,K+-ATPase was decreased 36%
in lesioned animals but only 7% in lesioned
animals receiving gangliosides. Because in-
creased Na*,K*-ATPase activity had been pre-
viously shown to correlate with the extent of
edema, it was concluded that the gangliosides
had minimized the extent of edema and in turn
promoted functional recovery.

Ischemia

Karpiak and colleagues have used a model of
transient cerebral ischemia to investigate the
effects of gangliosides on behavioral recovery
/58/. In particular, this model has been employed
to evaluate the suggestion that gangliosides
produce their effects through the induction of
discrete metabolic events immediately after
damage. The most studied metabolic alterations
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concern the ability of gangliosides to reduce the
decrease in membrane Nat K*-ATPase which
occurs following cell damage. Gangliosides
produced a 33% reduction in edema 48 hours
following cortical damage in rats /58/. This
reduction was accompanied by a significant
attenuation of lesion-induced reduction in
plasma Na*K*-ATPase levels and paralleled
enhanced cerebral blood flow, reduced cell
damage, electrocorticographic alterations and
neurological deficits /14/.

There have been a limited number of clinical
studies examining the effects of gangliosides in
human stroke patients. Bassi /7/ reported that
patients receiving gangliosides had a higher level
of neurological functioning than a similar group
of individuals treated with placebo. Likewise,
Battistin /8/ demonstrated that ganglioside
treatment resulted in improved neurophysiolo-
gical ratings in patients with cerebrovascular
disease. Importantly, the ganglioside treatment
in both these studies was effective even though it
began at least 10 days following the initial lesion.
Therefore, it may not be absolutely necessary to
administer gangliosides during the acute phase
of such an injury. Such a treatment may still be
effective during the subacute phase and might
actually exert a more powerful effect if given
earlier.

CONCLUSIONS

Gangliosides appear to be capable of
producing potent behavioral recovery following a
variety of CNS perturbations /16,17,20,30,32,34,
35,82,89,92-97,113,115,120/. Gangliosides have
been shown to reduce motor and cognitive defi-
cits in laboratory animals as well as the clinical
signs of neurological functioning in humans. In
contrast, only a small number of studies has
failed to demonstrate a beneficial effect of
ganglioside treatment /11,17,30,34,84/. Impor-
tantly, in those studies failing to show any
significant improvement following ganglioside
treatment in humans, there have not been any
demonstrated deleterious effects. For instance,
chronic administration (up to 12 months) of
GML1 ganglioside to Alzheimer’s patients did not

VOL. 3,NO. 1, 1992

result in any neurological improvement but had
no toxic side effects either, demonstrating the
long-term safety of chronic ganglioside treatment
/3/. Unfortunately, these investigators were not
able to determine if the GMI1 treatment
significantly slowed the progression of the
disease. Recent studies have suggested that
antibodies to GM1 are present in high levels in
individuals afflicted with Guillain Barre
syndrome, suggesting that chronic administration
of gangliosides could contribute to the
development of this disease /87,127/. However, a
recent study failed to reveal antibody formation
following parenteral injection of gangliosides in
Alzheimer patients /110/. Nevertheless, the pos-
sibility of untoward side effects from ganglioside
treatment deserves serious attention prior to
large scale clinical trials. The possibility of side
effects further underscores the need to deter-
mine the mechanism underlying ganglioside-
induced recovery.

Several lines of evidence suggest that
gangliosides promote sprouting of CNS neurons
and that this sprouting response mediates
behavioral recovery /92,93,113-115/. However,
there are also numerous studies which seriously
question this conclusion /34,36,57,84/. Most of
the evidence of ganglioside-induced sprouting is
based on observations of increased transmitter
levels or their metabolites. Additionally,
increased retrograde cell labeling has been
provided as evidence of enhanced sprouting.
These indices do not, however, provide direct
evidence of enhanced sprouting and could simply
reflect increased transmitter levels, enzyme
activity, axonal transport processes or a unique
combination of these events. Future studies
using electron microscopy, tract tracing
techniques, autoradiography, electrophysiology
and in vitro techniques are needed to
substantiate ganglioside-induced sprouting.

Regardless of whether gangliosides do
actually promote sprouting, it appears that this is
not always the basis of behavioral recovery.
Functional recovery has been frequently
reported prior to, or independent of, measures
indicative of sprouting /34,36,84/. Such a
dissociation suggests that events which precede
sprouting may be the basis for some observed
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recovery. Although few studies have actually
demonstrated neuronal sparing following
ganglioside treatment, some have provided
direct evidence of a protective effect /20,35/.
While either an enhancement of sprouting or a
prophylactic effect of gangliosides is appealing,
neither can account for all observed behavioral
recovery. It appears then that a variety of
factors, including the type, location, and extent
of the lesion, may affect the ability of
gangliosides to modulate behavioral recovery.
Further complicating our understanding of
recovery are questions concerning the effective
species of gangliosides for eliciting recovery from
various lesion types, as well as practical
considerations, including the doses, timing and
route of administration and which portion of
ganglioside molecule is responsible for an
observed effect. These considerations withhold-
ing, gangliosides appear to be useful for treating
a variety of CNS injuries. Although not a
panacea, answers to the above questions may
accelerate our development of an efficacious and
rational approach for using gangliosides or other
pharmacological treatments as primary or
adjunct therapies in disorders of the CNS.
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