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Abstract

With increasing speed, virulence, and sophistication, self-propagating worms continue to pose a serious threat
to the safety of the Internet. To effectively identify and defend against self-propagating worms, a critical task is to
characterize a worm along multiple dimensions. Content-based fingerprinting is a well-established dimension for
worm characterization by deriving the most representative content sequence as a worm’s signature. However, this
dimension alone does not capture all aspects of a worm and may therefore lead to incomplete or inaccurate worm
characterization.

To expand the space of worm characterization, this paper proposes and justifies a new dimension, behavioral
footprinting. Orthogonal and complementary to content-based fingerprinting, behavioral footprinting characterizes
a worm’s unique behavior during each infection session, which covers the probing, exploitation, and replication
phases of the infection session. By modeling each infection step as a behavior phenotype and the entire infection
session as a sequential behavioral footprint, we show that behavioral footprinting captures worm-specific behavior
which is inherently different from a normal access to the vulnerable service. We present advanced sequence analysis
techniques to extract a worm’s behavioral footprint from its infection traces. Our evaluation with a number of real-
world worms clearly demonstrates its feasibility and effectiveness in successfully extracting worm-characterizing
behavioral footprints for all experimented worms. Furthermore, by comparing with content-based fingerprinting,
our experiments demonstrate the uniqueness and robustness of behavioral footprinting in worm recognition and
identification.
Keywords: Worm Recognition and Characterization, Behavioral Footprinting, Content-Based Fingerprinting

1 Introduction

Self-propagating worms continue to pose a serious threat to the safety of the Internet, To effectively identify and

defend against self-propagating worms, a critical task is to characterize a worm along multiple dimensions. Content-

based fingerprinting [26, 28, 33, 43] is a well-established dimension to capture a worm’s characteristics by deriving

the most representative content sequence as the worm’s signature. In practice, various intrusion detection systems

(IDSes) [36, 41], together with recent honeypot systems [5, 22, 38, 46], are deployed to collect live worms. Once a

worm specimen1 is collected, anti-worm experts will manually examine the specimen and extract a worm-identifying

content fingerprint as the worm’s signature. Recent systems [26, 28, 33, 43] take one step further by automatically

generating worms’ content fingerprints. These systems have demonstrated a degree of success. However, they all

1The worm specimen might not only contain the worm binary itself, but also include other corresponding traffic associated with a worm
infection (e.g., exploitation).



focus on one dimension of worm characterization, namely content, while missing other aspects of a worm. This

single-dimension characterization may limit the capability of worm identification and recognition. For example, it has

been demonstrated that advanced worms are now capable of exploiting the weakness of content-based fingerprinting

by mutating [45] or encrypting [27] their contents or payloads in each infection session, hence escaping recognition

and identification by content fingerprints.

We are motivated to explore other dimensions to expand the space of worm characterization and thus enhance worm

identification capabilities. Especially, we realize that content-based fingerprinting does not capture a worm’s temporal

infection behavior, which contains valuable self-identifying information that leads to the worm’s recognition. In this

paper, we present and justify a new dimension, behavioral footprinting, to enrich worm characterization. We would

like to emphasize that behavioral footprinting is expected to be orthogonal and complementary to other dimensions

including content fingerprinting. This new dimension alone also suffers from ineffectiveness towards certain worms.

In this paper, we target the type of worms [7, 8, 9, 10, 12, 13, 30, 31, 37] that exploit traditional vulnerable servers

(e.g., Apache/IIS, DNS, and Sendmail) to propagate themselves without any human intervention. Other types of

worms (e.g., mass-mailing or IM worms [11] involving end user interactions) are subjects of future work. Our

contributions are mainly three-fold:

Firstly, we propose behavioral footprinting as a fundamentally new dimension for the characterization of self-

propagating worms. Unlike content fingerprinting which extracts one or a few static worm-unique byte sequences as

signature, behavioral footprinting essentially captures a worm’s unique temporal action sequence during an infection

session, which covers the probing 2, exploitation, and replication phases of the infection session. Our evaluation

(Section 4) with a number of real-world worms clearly demonstrates the existence of worm-specific behavioral foot-

prints.

Secondly, we develop robust algorithms to extract the behavioral footprint from a worm’s infection traces. More

specifically, by representing each step within a worm’s infection session as a behavioral phenotype and the complete

infection session as a behavioral phenotype sequence, we observe that the sequence reflects both worm-specific

exploitation and propagation strategies. Given traces of only a few infection sessions, our algorithms (Section 3) are

able to accurately and robustly extract a worm’s behavior footprint, despite possible worm behavior mutation and

camouflaging, such as cloaking authentic phenotypes or forging phenotypes.

Thirdly, by comparing with content-based fingerprinting, we demonstrate the uniqueness and robustness of behavior-

based footprinting in worm recognition and identification. Because of their orthogonality, behavior-based footprinting

is naturally robust against attacks that evade content-based fingerprinting. Our experiments show instances of worms

that cannot be identified by content fingerprints but are recognizable using behavior footprints, justifying behavioral

footprinting as a complementary dimension for worm characterization.

The rest of this paper is organized as follows: In Section 2, we demonstrate the existence of behavioral footprints

2Some non-scanning worms may not have the probing phase.
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in self-propagating worms and make a case for the new dimension of behavior-based footprinting. We then describe

in Section 3 our algorithms to extract a worm’s behavioral footprint. We present experimental results with a number

of real worms in Section 4. Limitations and possible improvements are described in Section 5. We present related

work in Section 6 and finally conclude this paper in Section 7.

2 A Case for Behavioral Footprinting

In this section, we first present a staged view of a worm infection session to motivate the characterization of worm

behavior. As representative examples, we illustrate the existence of behavioral footprints in two well-known worms:

the MSBlaster worm propagating on Windows platform and the Lion worm on Linux platform. Finally, we make a

case for behavioral footprinting.

2.1 A Staged View of Worm Infection

In general, the infection of a self-propagating worm from an infected host to a victim host can be broken into three

phases:

A Worm A Victim

Target Selection/Probing

Exploitation

Replication

Figure 1. A Staged View of a Worm Infection Session

Phase 1: Target selection and probing Using a strategy such as random or biased address scanning, a scanning

worm during this stage attempts to pick up a victim for infection. For example, an ICMP echo request packet or a

TCP SYN probe is used to infer the reachability of a chosen target. Additional packets may also be used to obtain the

version of a possibly vulnerable service. We note that this phase may not exist for non-scanning worms because they

may carry a pre-computed target list.

Phase 2: Exploitation Once the worm receives a positive response from the victim host, a number of malicious

packets3 may be sent over attempting to exploit the targeted vulnerability. Successful exploitation will result in the ex-

ecution of a specifically crafted code in the victim node. Different worms usually implement different functionalities

in the crafted code.

Phase 3: Replication If the exploitation is successful, an additional replication phase may follow to transmit a

worm replica to the victim node. The replica will be installed in the victim node, completing this infection session.

We will show that the behavior exhibited by the worm during this infection session contains valuable self-identifying

information that can be used to characterize and identify the worm. Especially, the temporal order of infection steps

3There are certain worms such as Slammer[30] which might blindly send exploitation to any probed hosts.
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taken by the worm reflects the intrinsic dependencies that must be followed to ensure a successful infection.

2.2 Example I: Windows-Based MSBlaster Worm

We consider the infamous MSBlaster worm [9] as the first motivating example. The MSBlaster worm exploits an

RPC-DCOM vulnerability (MS03-026) for its infection. An MSBlaster infection session is illustrated in Figure 2.

The infection session consists of the following steps:

  69/UDP     */UDP

4444/TCP    */TCP

TCP 3−way handshake

TCP 3−way handshake

UDP * −> 69

UDP 69 −> *

RST 

135/TCP     */TCP

RST

Figure 2. An Infection Session of the MSBlaster/Windows Worm

• A three-way TCP handshake on port 135 4 is implicitly used by the worm to check the reachability of the

selected target (Phase 1).

• Upon the establishment of the TCP connection, the worm sends a number of malicious packets (Phase 2),

which exploit the known RPC-DCOM vulnerability[9] and contain a specially crafted shell-code. A successful

exploitation will lead to the execution of the shell-code in the victim node. In the case of the MSBlaster worm,

a new shell service will be started on TCP port 4444 by the shell-code.

• The new shell service on 4444/TCP is immediately contacted by the worm to send instructions on how to

download the worm replica, i.e., msblast.exe (Phase 3). From Figure 2, the TFTP protocol is apparently used

for the downloading.

The above sequence of actions significantly deviates from a normal access to the RPC-DCOM service: First, after

the “service request”, a new shell service would not suddenly appear and listen on 4444/TCP in the victim host.

Second, a new TCP connection to this port would not follow with the service request. Third and most importantly,

it should not be observed that the victim took the initiative in using the TFTP protocol to download a file (with the

name msblast.exe and size 6, 372 bytes) from the service client.

4Microsoft’s DCOM Service Control Manager (also known as the RPC Endpoint Mapper) uses this port as a well-defined means to provide
port-mapping services associating available services with their ports.
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2.3 Example II: Linux-Based Lion Worm

TCP 3−way handshake

FIN

FIN

TCP 3−way handshake

     */TCP 53/TCP

TCP 3−way handshake

FIN

RST

     */TCP 53/TCP

 27374/TCP      */TCP

FIN

FIN

Figure 3. An Infection Session of the Lion/Linux Worm

The second illustrative example is the historical Linux-based Lion worm [4]. The Lion worm exploits a BIND

vulnerability (CA-2001-02) for its infection. A Lion worm infection session is shown in Figure 3.

• The Lion worm firstly makes an explicit TCP connection attempt to the destination port 53. A successful con-

nection indicates the reachability and possible vulnerability of the selected target (Phase 1). This connection,

if established, is then immediately tore down without transmitting any payload.

• Another TCP connection to the same destination port is then established. This time, certain exploitation codes

are sent (Phase 2).

• If the exploitation is successful, the shell script, which is transmitted together with the exploitation codes, will

be executed to retrieve a worm replica from the infecter to the victim (Phase 3).

Again, deviation from the normal access to DNS lookup service is observed: First, it is unlikely that the access

would begin with a plain TCP connection with no payload. Second and most importantly, after the DNS lookup

request, it is highly unusual that the BIND server on the victim side initiates a TCP connection to the DNS client on

an unusual port 27374/TCP , followed by an HTTP session on this connection to transfer a file of 71, 680 bytes from

the client to the server.

2.4 Behavioral Footprinting: a New Dimension

In general, for the same vulnerable service, there exist intrinsic differences between a normal access to the service

and a worm infection through the service:
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Firstly, during the exploitation phase of a worm infection session, a worm will attempt to misuse a vulnerable

service in a way that is different from a normal access. In fact, several recent works [1, 32, 47] have leveraged this

difference to derive vulnerability models for worm defense.

Secondly, the replication phase of a worm infection session should not happen during a normal access to the

vulnerable service. In sharp contrast, it will appear in every successful worm infection. As shown in Figure 2, the

4444/TCP connection and its encapsulated TFTP transmission will appear in every MSBlaster worm infection.

Similarly, the 27374/TCP connection and its encapsulated HTTP session can be observed for every Lion worm

infection (Figure 3).

Finally, the entire sequence of infection steps during an infection session characterizes the worm’s behavior, and is

highly unlikely to appear in normal traffic. In fact, our experiments with real-world network traces result in zero false

positive. Furthermore, for different worms exploiting the same vulnerable service, their sequences of infection steps

are different. The reason is that different worms tend to have different exploitation means, replication idiosyncrasies,

and payloads, even though they are exploiting the same vulnerability (Section 4.2).

Based on the above observations, we are motivated to adopt a worm’s infection step sequence during an infection

session to characterize and thus uniquely identify the worm. We call this new dimension behavioral footprinting,

in contrast to the well-known dimension of content-based fingerprinting. We emphasize that the two dimensions

complement each other and they should be combined to overcome their own weaknesses (Section 5). Especially,

since behavioral footprinting does not rely on payload content analysis, it is naturally resistant to content-based

mutation and encryption attacks (Sections 4.4.1, 4.4.2).

3 Behavioral Footprint Representation and Extraction

In this section, we first define the behavioral footprint and its representation. A simple pairwise alignment al-

gorithm is then presented to extract a behavioral footprint from the traces of two infection sessions. To increase

the robustness against more intelligent worms, we develop an advanced footprint extraction algorithm to accurately

extract a worm’s behavioral footprint from multiple infection sessions.

3.1 Behavioral Phenotype and Footprint

The term “behavioral phenotype” was originally coined in 1972 by Nyhan [35] to represent a behavior that was

genetically determined in the same way as the physical features of a phenotype. Recall the staged view of worm in-

fection session in Section 2, if we denote a worm’s infection steps as the worm’s behavioral phenotypes, the sequence

of behavioral phenotypes manifested during the infection session will be defined as the worm’s intrinsic behavioral

footprint. From Section 2, the behavioral footprint uniquely reflects the behavioral characteristics of the worm (e.g.,

abused vulnerability, working exploitation, adopted propagation, and self-carried payload).
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Our proposed algorithms to extract worm behavior footprints are based on the sequence analysis techniques ex-

tensively applied in bio-informatics areas. A common and important issue for bio-informatics research is to operate

over a large sequences of strings such as DNA, RNA, and protein sequences to find certain pattern(s) among them.

Notice that any type of protein is a sequence of amino acid sub-units and there are only 20 different amino acids,

which constitute the whole alphabet for protein sequence analysis. Similarly, if we consider all possible behavioral

phenotypes during the worm infection as the alphabet, the behavioral footprint of a worm can be represented as a

sequence of characters in the alphabet. For example, the behavioral footprint of the MSBlaster worm, based on the

infection session in Figure 2, can be represented as S1

←−
SA

1
A1 · · ·R1S2

←−
SA

2
A2 · · ·

←−
U1U1 · · ·R2, where the characters’

definitions are:

S1 : < TCP, 4581/infecter, 135/victim, SY N >
←−
SA

1
: < TCP, 135/victim, 4581/infecter, SY N,ACK >

A1 : < TCP, 4581/infecter, 135/victim,ACK >

R1 : < TCP, 4581/infecter, 135/victim,RST >

S2 : < TCP, 4599/infecter, 4444/victim, SY N >
←−
SA

2
: < TCP, 4444/victim, 4599/infecter, SY N,ACK >

A2 : < TCP, 4599/infecter, 4444/victim,ACK >

←−
U1 : < UDP, 1552/victim, 69/infecter >

U1 : < UDP, 69/infecter, 1552/victim >

R2 : < TCP, 4599/infecter, 4444/victim,RST >

The letters in the above footprint denote either TCP flows with different control bits (SYN, ACK, RST) or

UDP/ICMP flows (U/I). The subscripts denote different flows. For example,
←−
SA

1
or
←−
SA

2
5 represents the second step

(SYN and ACK bits set) in a normal three-way TCP handshaking procedure. Without ambiguity, a unique well-

known subsequence can be further shortened as a single character. For example, a TCP 3-way handshake sequence

(e.g., Si

←−
SA

i Ai, i = 1, 2, in previous sequence) could be simply defined as Ci (more in Section 4).

In this example, every character is a tuple of several fields: the character representing a specific TCP flow has four

fields < TCP, source port, dest port, TCP control bits >; the character related to a specific UDP flow has three fields

< UDP, source port, dest port >. Note that as different infection sequences might have different ports, a special

wildcard field 6 needs to be introduced. Using the MSBlaster worm as an example, the source ports (e.g., the port

4581, 4599, 1552 in S1, S2,
←−
U1, respectively) vary with different infection sessions while the destination ports are

fixed (e.g., the port 135, 4444, 69 in S1, S2,
←−
U1, respectively). As such, the special wildcard field (instead of a fixed

5The arrow sign is used to mark the traffic fl ow direction and can be omitted when it is implicitly implied.
6A finite set containing a limited number of values can also be introduced to more precisely capture the possible contents. For simplicity,

this paper only mentions the wildcard field.
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port number) is used for the source port field. Also, there are some worms, which might have a constant source port

number (e.g., the Witty worm have a constant UDP source port 4000), but a random destination port. In this case,

the wildcard is used to represent the destination port field. It is worth mentioning that although a worm infection

session usually involves only two nodes (infecter and victim), a coordinated worm infection might involve more than

two nodes (e.g., downloading the worm replica from a third-party). In this case, the wildcard field can be used to

represent the infecter field.

In addition, the number of fields in a phenotype may not be fixed. Additional fields can be added to each flow

to include other meaningful information such as the packet length, particular content sequence, or even relative

timing from the previous one (an example is shown in Section 3.3.1). In fact, the extensible nature of behavioral

phenotype representation makes it easier to integrate worm characteristics of other dimensions. For example, the

content-based fingerprint of a worm can be added to a behavioral phenotype, indicating the occurrence of the content

during the corresponding infection step. Protocol compliance analysis and vulnerability-specific information can also

be integrated to further improve the accuracy of worm identification.

However, we would like to point out that due to different understanding or emphasis even for the same worm,

different researchers might intend to extract different behavioral footprints (e.g., in terms of sequence length or field

content). Such situation is similar to the content-based counterpart: Different content fingerprints may be chosen by

different researchers for the same worm. For simplicity, this paper chooses a simple representation described in this

Section. As shown in Section 4, such representation is capable of accurately characterizing existing worms.

3.2 Pairwise Alignment Algorithm

Based on the behavioral footprint representation, we first present an algorithm to extract a worm’s behavioral

footprint from two infection sequences of the worm.

Given two infection sequences F1 = x1x2 · · ·xn and F2 = y1y2 · · · ym, a pairwise alignment algorithm is

primarily used to align these two sequences so that they could have the same length. Based on a pre-defined scoring

matrix (e.g., a match yields 1 while a mismatch yields 0), the alignment algorithm inserts gaps, if necessary, to

achieve maximum alignment of the two sequences. The maximum alignment is defined as the sum of terms for each

aligned pair of characters < xi, yj > within the sequences (representing similarity s(xi, yj)), plus terms for each gap

(representing penalty, p). The similarity and gap penalty are defined as a part of the scoring matrix and might be

specific to different applicable scenarios. A global alignment scheme obtains the optimal global alignment between

two sequences while a local alignment scheme looks for the best alignment between subsequences of them. There

are two corresponding well-known dynamic programming algorithms, i.e., Needleman-Wunsch algorithm[18] and

Smith-Waterman algorithm[18].

The idea in Needleman-Wunsch algorithm is to build up an optimal alignment using previous solutions or optimal

alignments of smaller subsequences. A matrix M , indexed by i and j with one index for each sequence, is iteratively
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constructed. The cell M (i, j) is the score of the best alignment between the initial segment x1x2 · · ·xi of x up to xi

and the initial segment y1y2 · · · yj of y up to yj . Initially, M (0, 0) = 0, M (i, 0) = −ip, M (0, j) = −jp. Then, the

matrix is iteratively filled from top-left cells to bottom-right cells based on Eqn.(1).

M (i, j) = max























M (i− 1, j − 1) + s(xi, yj), i ≥ 1, j ≥ 1

M (i− 1, j)− p, i ≥ 1

M (i, j − 1)− p, j ≥ 1

(1)

Each case represents an option how current M (i, j) cell is derived from one of the other three cells (above-left

[i− 1, j − 1], above [i− 1, j], or left [i, j − 1]). Once all values are calculated, the choices taken at each cell starting

from the bottommost rightmost one are traced back so that an optimal global alignment is derived. An example

alignment applying the Needleman-Wunsch algorithm to the Welchia worm [12] is shown in Figure 4.

I 1I 1C 1F 1F 1C 2U 1U 1 R 2

C 1F 1F 1C 2U 1U 1 R 2U 2U 2

Sequence 1:

Sequence 2:

Figure 4. Global Alignment with Needleman-Wunsch Algorithm. The choices made during the alignment
are shown as “-” and “|”. The “-” in the top sequence used as index i for M corresponds to the choice
“above” [i−1, j], the “-” in the bottom sequence used as index j for M represents “left” choice [i, j−1],
while the “|” in the middle shows the option “above-left” [i− 1, j − 1].

Smith-Waterman algorithm works similarly except that Eqn.(1) is modified for local alignment purpose. Particu-

larly, one more case is added to reflect the possibility of starting a new local alignment. As such, the entry of M (i, j)

is refined with the value max(M (i, j), 0) during the iterative calculation of Eqn.(1). The traceback is not performed

from the bottommost rightmost cell, but from the cell with the maximum value7. Keen readers might find another

interesting application with the Smith-Waterman algorithm: if we associate a metric (e.g., number of matches) to the

best alignment between subsequences of F1 and F2, the metric can also be used to indicate the similarity among

the two sequences. In fact, the Smith-Waterman alignment is used in the next algorithm as a similarity-based scoring

mechanism to build the relevant phylogenetic tree from a number of worm infection sequences.

It is interesting that most existing self-propagating worms are still primitive with no behavior-polymorphic capabil-

ities. Our experiments in Section 4 show that pairwise alignment is highly effective in extracting worm-characterizing

behavioral footprints. However, even though the majority of current self-propagating worms are not polymorphic in

behavior, it is likely that future worms will be more intelligent, given that certain libraries [16, 25, 42] rendering code

polymorphic are readily available. As a result, the pairwise alignment algorithm might not be capable of characteriz-

ing future worms.

7A tie can be broken by arbitrarily choosing any cell with the maximum value.
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3.3 Phylogenetic Tree Algorithm

In this section, we propose a robust algorithm to extract behavioral footprints of more advanced worms. The

algorithm is based on our observation on the existence of behavioral invariants. Before presenting the algorithm, we

further justify the existence of behavioral invariants even in advanced worms.

3.3.1 Examining Behavior Invariants

Similar to its counterpart - the content-polymorphic worm, a behavior-polymorphic worm could exhibit varying

behavior during different infection sessions. Here we consider single-vector worms which target one vulnerability,

because a multi-vector worm can be considered as the combination of several single-vector worm variants, each

with only one infection vector. We have so far studied at least twenty self-propagating worms and their variants

(including behavior-polymorphic worms we synthesize) targeting a number of different services on top of various

operating systems, and have found behavioral invariant in each of them. Although we are not claiming that all worms

will exhibit behavioral invariants, a significant fraction of them do, because behavioral invariants typically result

from (1) restrictions imposed for successful exploitations, (2) common components in each infection session (e.g.,

same payload and replication method of a worm), or (3) in some cases, a worm’s idiosyncrasies in its exploitation

means, replication mechanisms, and self-carrying payloads. We present two examples to illustrate how restrictions

for successful exploitations determine a worm’s behavior invariants.

The first example is related to the OpenSSL heap-based buffer overflow exploited by the Slapper worm. As de-

scribed in [37], the overflow is used twice by the worm to achieve a reliable infection. The first OpenSSL exploitation

only attempts to locate the over-writable heap address within the vulnerable Apache address space, which is hardly

predictable across all the servers. After the first exploitation, the acquired heap address is patched in the attack buffer

within the second OpenSSL exploitation. It is expected that this two-phase exploitation enables a reliable infection.

However, it has one more restriction that the two Apache processes handling these two exploitation connections

should have the same heap layout, and thus ensure the validity of the heap address obtained from the first exploitation

connection to the second exploitation connection. To satisfy the restriction, the worm must first exhaust the Apache’s

pool of servers before actual exploitation. The exhaustion is achieved by opening a succession of 20 connections8

so that two fresh Apache processes can be spawned to handle the two exploitation connections. As such, a reliable

Slapper worm infection requires a series of resource-exhausting TCP connections and two additional exploitations.

These requirements will be essentially reflected as the behavioral invariants or invariant subsequence in Slapper

worm’s behavioral footprint. We will further analyze the Slapper worm in Section 4.4.3.

The second example is related to the Slammer worm exploiting a simple buffer-overrun vulnerability in MS SQL

servers. Due to the nature of the exposed vulnerability, only a single UDP packet with the following properties:

8The number 20 is related to the StartServers entry in the Apache configuration file.
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destination port 1434, packet type 4, and size larger than 60 bytes, will successfully trigger the buffer overflow. Such

requirement leads to the behavioral invariant of the Slammer worm, and is reflected in its behavioral footprint as:

< UDP, ∗/∗, 1434/∗, payload : “|04|”, size > 60 >.

3.3.2 Building the Phylogenetic Tree

By operating over a collection of a worm’s infection sequences9, the worm’s behavioral invariants can be reliably

extracted by advanced sequence analysis techniques. More specifically, pairwise alignment is first performed to

derive their relative similarities with each other (a.k.a., the Smith-Waterman alignment). Based on the similarities,

a phylogenetic tree will be built to guide the final stage of multiple sequence alignment to expose and extract the

behavioral invariants.

A phylogenetic tree is originally proposed to depict the evolutionary relationships of a group of life organisms.

Here we are building the phylogenetic tree to extract the most fundamental footprint subsequences or invariants that

are embedded within a number of related infection sequences Fk, k = 1..n. Some of the sequences might be

explicitly mutated by inserting irrelevant subsequences or replacing some subsequence with another functionally-

equivalent string. An algorithm called UPGMA [18] originally used in gene analysis has been applied to construct

such a tree. Initially, each sequence Fk is considered as a cluster Ck. These clusters are iteratively grouped with the

most related one so that, eventually, there is only one cluster left. The relatedness or similarity between two clusters

Ci and Cj is defined as dij :

dij =
1

‖Ci‖ ‖Cj‖

∑

p∈Ci,q∈Cj

dpq (2)

where ‖Ci‖ and ‖Cj‖ denote the number of sequences in clusters Ci and Cj . The value of dpq is derived based on

the Smith-Waterman scoring algorithm. The clustering algorithm is further described as follows:

PHYLOGENETICTREECONSTRUCTION(Fk, k = 1 · · ·n)

1 C ← ∅; T ← ∅

2 for each sequence Fi i ∈ 1..n

3 do

4 Assign a cluster Ci ← {Fi}

5 and add it into C ← C
⋃

Ci

6 Define a leaf Ni in T for Fi

7 for each any other sequence Fj , j ∈ i + 1 · · ·n

8 do

9 Calculate the similarity between Fi and Fj

10 dij ← SMITH-WATERMAN(Fi, Fj)

11 while ‖C‖ 6= 1

9Such infection sequences can be safely collected by unleashing the worm in our experimental environment (Section 4.1.2).
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12 do Determine the two clusters Ci and Cj

13 s.t. dij is maximum

14 Define a new cluster Ck = Ci

⋃

Cj

15 and calculate dkl for all l

16 Remove Ci and Cj from C, i.e., C ← C − Ci − Cj

17 Add Ck to C, i.e., C ← C
⋃

Ck

18 Add a parent node Nk to T with children Ni and Nj

19 return T

The calculation in dkl in step 15 can be conveniently performed based on following equation:

dkl =
dil ‖Ci‖+ djl ‖Cj‖

‖Ci‖+ ‖Cj‖
(3)

The time and space complexity of the algorithm is O(n2), since there are n− 1 iterations, with O(n) steps in each

one.

3.3.3 Aligning Multiple Sequences

The phylogenetic tree is used to categorize the worm footprint sequences and guide the actual alignment of multiple

sequences. Within the generated tree T the leaves contain the raw footprint sequences while intermediate nodes

contain the sequences representing their children nodes. A simple post-order tree traversal algorithm (shown below)

can be recursively applied to construct the representative sequences until the root of the tree T is reached.

MULTIPLESEQUENCEALIGNMENT(T : PhylogeneticTree)

1 if T 6= NULL

2 then MULTIPLESEQUENCEALIGNMENT(T.left);

3 MULTIPLESEQUENCEALIGNMENT(T.right);

4 if T.left 6= NULL AND T.right 6= NULL

5 then T.sequence←

6 NEEDLEMAN-WUNSCH(T.left, T.right)

The actual sequence construction is based on the global alignment alignment, i.e., the Needleman-Wunsch algo-

rithm (Section 3.2). An example run of the algorithm against a Welchia worm variant is illustrated in Fig 5. The

sequence shown at the root of the tree

< variable > C1F1

←−
F1C2

←−
U1U1 < variable > R2

is extracted as the behavioral footprint for the Welchia worm.
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C 1F 1F 1C 2U 1 R 2I 1I 1 F 1F 1C 2U 1U 1 R 2U 2U 2I 1I 1 C 1F 1F 1C 2U 1U 1 R 2U 2U 2

I 1I 1C 1F 1F 1C 2U 1U 1 R 2

C 1F 1F 1C 2U 1U 1 R 2

Sequence 1 Sequence 2 Sequence 3
C 1U 1

Figure 5. An Example Alignment of Multiple Worm Sequences/Footprints. These three sequences are
modified from the original Welchia worm sequence (Section 4.3) for illustration purpose. The first
sequence ignores the second tftp UDP connection for the SV CHOST.exe file. The second sequence
contains the original infection sequence. The last one ignores the first ICMP probing.

4 Evaluation

In this section, we first describe our experimental environment (Section 4.1), which is used to trap “live” worms

and analyze historical worms. We then derive these worms’ behavioral footprints (Section 4.2) and demonstrate their

validity by showing that they not only differ significantly from normal service access behavior, but also accurately

characterize the behavior of corresponding worms. Later, by comparing with content-based fingerprinting, our ex-

periments further demonstrate the uniqueness (Section 4.3) and robustness (Section 4.4) of behavioral footprinting in

worm recognition and identification.

4.1 Experimental Environments

Behavioral footprints characterize worms by capturing their dynamic infection sequences. The difficulty in vali-

dating the proposed scheme lies in the safe collection of infection sequences of real-world worms. To address this

challenge, we have implemented and deployed (1) Collapsar [22], a honeyfarm architecture to trap live, real-world

worms and (2) vGround [23], a virtual worm playground environment to safely unleash and observe the dynamic

infection behavior of historical real-world worms.

4.1.1 Trapping Live Worms

The goal of trapping live worms is to collect their malicious infection sequences. To achieve this goal, there are

two important considerations:

• Honeypot services on dark address space There is a high concentration of malicious traffic in a dark (namely,

unallocated) IP address space. By further deploying high-interaction honeypot services [22] in such dark ad-

dress spaces, we are able to collect original traces of self-propagating worms. In our experimental environment

(Collapsar), honeypots are deployed using virtual machines enabled by both VMware [6] and User-Mode Linux

(UML) [17].
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• Off-site and distributed worm capture A high-interaction honeypot can be infected as a real host by propagat-

ing worms. To collect a diverse set of worm infection traces, we have developed a number of honeypot traffic

redirectors, which forward dark space traffic from distributed participating sites to a centralized location for

easy worm trace collection. By using traffic re-direction techniques such as Proxy-ARP and GRE [20, 21], the

traffic redirectors are transparent to remote worm infectors.

We first started the prototype of Collapsar in February 2003 and it was initially deployed in August 2003. Three

redirectors are deployed in three Ethernet-based production networks and forward traffic to a centralized facility,

which is located in a separate Ethernet LAN. Encouragingly, right after its deployment, it successfully captured one

instance of the MSBlaster worm. Later in August 2004, we expanded Collapsar deployment to three more production

networks: one local subnet network (20 IP addresses), one wireless LAN, and one DSL network. The DSL network

is located in another administrative domain. The honeypots run a variety of commodity operating systems, including

RedHat Linux 7.2/8.0, Windows XP Home Edition, FreeBSD 4.2, and Solaris 8.0. All traffic from/to these honeypots

are fully logged through the tcpdump tool. Using Collapsar, a number of live real-world worms such as MSBlaster

[9], Enbiei [8], Welchia [12], and Sasser [13] are captured 10. Further analysis of the worms are presented in Section

4.2.

4.1.2 Analyzing Historical Worms

Our honeyfarm architecture Collapsar is able to capture currently propagating worms. However, it is unable to

analyze other historical worms. To this end, we have created a virtual worm playground environment called vGround,

where worms can be safely unleashed and monitored. vGround has the following features:

• High fidelity with full-system virtualization Within a vGround, realistic end-hosts and network entities (e.g.,

routers and firewalls) are emulated using virtual machines [6, 17]. The adoption of virtual machines brings

great convenience and flexibility in supporting unmodified vulnerable services and operating systems.

• Strict confinement with link-layer network virtualization A vGround is used to experiment with malicious,

destructive worms. A confined virtual network is necessary to strictly contain malicious worm traffic and worm

damage. To this end, we have developed a link-layer network virtualization technique to safely intercept and

completely confine worm traffic within the virtual playground. Our current vGround prototype supports both

VMware and UML-based virtual machines.

We have successfully experimented with a number of historical worms and their variants, including Lion worm

[4], Slapper worm [37], Ramen worm [7], and SARS worm [10]. For each experiment, the dynamic infection traces

are captured using the tcpdump tool. The analysis is presented in the next section.

10Note that due to the limited scale of our current deployment, it is less likely to capture all of Internet worms which are active particularly
at their early stage. However, Collapsar did capture Sasser worm on the first day (May 1, 2004) of its outbreak.
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4.2 Extracting Behavioral Footprints

With collected tcpdump log files, the next step is to extract flow sequences relevant to worm infections. We develop

a tool named sneeze for this purpose: all TCP/UDP/ICMP flow sequences contained within the log are extracted and

additional packet reassembly or re-ordering, if necessary, is also performed. These TCP/UDP/ICMP sequences are

separated with respect to each address pair and are further ordered based on the associated time-stamp. The duration

and payload size of each flow is also automatically calculated by sneeze.

An example output from sneeze is shown in Figure 6. The trace input is related to an complete infection session

of the Sasser worm, which is captured by Collapsar on May 1, 2004.

Figure 6. An Example Output of the Sneeze Tool

Note that when analyzing related TCP flows, sneeze is able to track relevant TCP states. Specifically, within

extracted TCP flows, any TCP control packet with SYN, ACK, FIN, or RST bit set are contained within the resulting

infection sequence. The TCP data packets (though ACK bit turned on) are usually ignored. However, as discussed in

Section 3.1, additional content sequence, protocol compliance analysis, or even vulnerability-related information can

be integrated here to further enrich the accuracy and effectiveness of worm footprints. We are currently extending the

prototype for such integration. UDP and ICMP flows are also recorded within the sequence.

By considering each interaction as the behavioral phenotype, the algorithm described in Section 3 is applied on

these multiple interaction sequences to extract representative behavioral footprints. The results are shown in Table

1. Within the table, those letters denote either TCP flows with different control bits or UDP/ICMP flows. Also, the

letter Ci represents the well-known three-way TCP connection handshake. However, the same letter usually means

different field contents (e.g., the destination port number) for different footprints.

It is encouraging to note that we are able to reliably extract behavioral footprints for all worms examined. The

footprint of the MSBlaster worm has been pictorially shown in Figure 2. Welchia worm11 is similar to MSBlaster

worm except that an initial ICMP probing packet is generated before actual infection and the second TCP connection

11The Welchia worm is a multi-vector worm, which takes advantage of two vulnerabilities, i.e., the RPC-DCOM vulnerability (MS03-026)
and WebDAV vulnerability (MS03-007). Due to the lack of the vulnerable IIS server in our environment setup, the WebDAV-based infection
is not able to be reproduced.
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Name Infection Vector Behavioral Footprints Derived Captured Date Platforms

MSBlaster RPC-DCOM vulnerability (MS03-026) C1R1C2

←−

U1U1R2 Aug. 28, 2003 Windows

Welchia RPC-DCOM vulnerability (MS03-026) I1

←−

I1C1F1

←−

F1

←−

C2

←−

U1U1

←−

U2U2R2 Sep. 17, 2003 Windows
WebDAV vulnerability (MS03-007)

Enbiei RPC-DCOM vulnerability (MS03-026) C1R1C2

←−

U1U1R2 Oct. 12, 2003 Windows

Sasser LSASS vulnerability (MS04-011) C1R1C2

←−

C3C4F4

←−

F4F3

←−

F3R2 May 1, 2004 Windows

Ramen LPRng vulnerability (CVE-2000-0917) S
F
1

←−

S1R1C2F2

←−

F2C3

←−

C4F4

←−

F4 - Linux

WU-FTPD vulnerability (CVE-2000-0573) S
F
1

←−

S1R1C2R2C3R3 (flawed) -

NFS-UTILS vulnerability (CVE-2000-0666) S
F
1

←−

S1R1U1

←−

U1U2C2

←−

C3F3

←−

F3R2 -

Lion BIND vulnerability (CA-2001-02) C1F1

←−

F1C2

←−

C3F3

←−

F3R2 - Linux

Slapper OpenSSL vulnerability (CA-2002-23) C1F1

←−

F1C2

←−

F2

∏

22

i=3
CiC23C24 - Linux

SARS Samba vulnerability (CAN-2003-0201) U1

←−

U1U2

←−

U2C1F1C2F2

←−

F2C3

←−

C4

←−

F4F4R3 - Linux/BSD

Table 1. Characterizing Self-Propagating Worms with Behavioral Footprints
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Figure 7. Behavioral Footprints of the Ramen Worm, a Multi-Vector Worm

(
←−
C2) is initiated from the victim with a connect-back shell-code. Note that though MSBlaster and Welchia exploit

the same vulnerability, their behavioral footprints are different. Enbiei worm exhibits a footprint similar to that of

MSBlaster worm but has a different worm binary and payload. Sasser worm uses the ftp protocol (
←−
C3) to download

the worm replica. Within the ftp session, a PORT primitive is initiated to start another reverse connect-back activity

(C4).

Table 1 also shows the footprints of several historical worms, which are derived from our worm playground envi-

ronment (vGround). Ramen worm is a multi-vector worm, which has three infection vectors (IVs): LPRng (CVE-

2000-0917), wu-ftpd (CVE-2000-0573), and nfs-utils (CVE-2000-0666). Interestingly, the exploitation on the wu-ftp

IV is flawed, which could not result in a success infection. The footprints for Ramen worms on different infection

vectors are also visualized in Figure 7. Note that an initial TCP control packet with SYN and FIN bits (SF
1

) set,

source port being 21, and destination port being 21, is used to probe the victim among all three IV-specific footprints.

Another three examined worms, i.e., Lion, Slapper, and SARS worms, are single-vector worms. Lion worm has been
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described in Section 2.3. We defer the discussion of Slapper worm in Section 4.4. SARS worm is a multi-platform

worm, which is able to spread across various platforms (e.g, Debian 3.0, Gentoo 1.4.x, Mandrake 8.x/9.0, Redhat

6.x/7.x/8.0/9.0, Slackware 8.x/9.0, SuSE 7.x/8.x, FreeBSD 4.x/5.0, NetBSD 1.5/1.6, and OpenBSD 3.2). Its visual

presentation is omitted due to space constraint.

We would like to highlight that all of these behavior sequences are uniquely exhibited by the corresponding worms

and to the best of our knowledge, are not exhibited within any other normal accesses to corresponding services.

4.3 Uniqueness of Behavioral Footprinting

Behavioral footprinting captures worms’ characteristics based on their infection cycles. In this section, we demon-

strate the benefit obtained from this new dimension for worm identification. To this end, we perform trace-driven

worm recognition experiments. More specifically, the sneeze utility (Section 4.2) is modified to serve as a worm

recognition tool using worms’ behavioral footprints. We use a 7-hour trace (80M containing 3 live worm infections)

collected by Collapsar [22] to demonstrate the benefit of worm behavioral footprinting. For comparison, we first

apply a popular open-source content-based IDS, i.e., snort, to detect possible intrusions12. Our own tool, sneeze, is

then applied to the same trace. Sneeze is able to identify all three worm infections in the trace with 0% false positive.

The results from snort and sneeze are shown in Table 2 and Figure 8, respectively.

Snort Signature # Alerts # Sources # Dests

1 NETBIOS DCERPC ISystemActivator path overflow attempt little endian 539 12 201
2 NETBIOS SMB-DS Session Setup And X request unicode username overflow attempt 15 1 1
3 NETBIOS SMB-DS DCERPC NTLMSSP asn1 overflow attempt 14 2 1
4 ICMP Source Quench 28 28 1
5 ICMP redirect host 27 1 1
6 TFTP Get 24 1 4
7 ICMP Large ICMP Packet 3 2 2
8 ICMP PING CyberKit 2.2 Windows 307551 33 153549
9 ICMP Destination Unreachable Communication Administratively Prohibited 156 2 1
10 SCAN UPnP service discover attempt 30 1 1
11 NETBIOS SMB-DS IPC$ share unicode access 6 3 1

Table 2. Worm Detection with Content Fingerprints

As Table 2 shows, snort performs reasonably well in recognizing various RPC DCOM buffer overflow attempts,

and in reporting numerous alerts for “ICMP PING CyberKit 2.2 Windows”, which correspond to the probing traffic

from Welchia worms. However, these alerts are distinct alerts even though they might be caused by the same worm

infection session. Figure 8 shows the result from sneeze. Sneeze naturally identifies 3 successful worm infections and

also reports 2 unsuccessful worm infections (which were not discovered in [22]). Further manual analysis shows that

one unsuccessful worm infection has erroneously generated a wrong address (192.168.1.59) to download the worm

replica while another unsuccessful infection has a flawed exploitation in binding the command shell service. Since

tftp protocol is used for all these worms, we would like to compare both outputs in this aspect. Table 2 reports 4

12The signature database used in the snort has been updated to contain latest content fingerprints for known intrusions.
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Figure 8. Worm Detection and Identification with Behavioral Footprints

alerts with messages “TFTP GET” while Figure 8 further shows that one tftp is related to the Enbiei worm, one tftp

is related to the MSBlaster worm, and the other two tftp are related to the Welchia worm, which uses one tftp session

to download the file DLLHOST.exe (the worm payload) and the other tftp session for SV CHOST.exe (a tftpd

daemon).

The comparison clearly demonstrates the uniqueness of the behavioral footprinting dimension. From the content

dimension, snort inspects every incoming/outgoing packet and raises a general alert if a malicious content sequence is

detected. From the behavior dimension, sneeze is able to recognize individual worms once the behavioral footprints

are matched.

4.4 Robustness of Behavioral Footprinting

Previous subsections demonstrate the feasibility and effectiveness in extracting behavioral footprints for worm

characterization and recognition. In the following, we further compare the robustness of behavioral footprinting with

the popular content fingerprinting dimension under three different types of mutation attacks.

4.4.1 A Content-Mutation Attack

In this experiment, we examine the robustness under a simple content-mutation attack. The Slapper worm is

chosen for the comparison.

Within the snort system, there are two Slapper-related signatures shown in Table 3. To compare, a vGround

with 100 virtual nodes is firstly instantiated and an instance of the original Slapper worm is introduced into the

environment. A tcpdump trace file containing the infection of slapper worms is randomly selected. Snort reports

two alerts on the log file with the message “MISC OpenSSL Worm Traffic” and five alerts for “WEB-MISC Bad

HTTP/1.1 Request”.

Then, another experiment is conducted by performing a simple mutation of the Slapper worm content: replacing

the string “TERM=xterm” with “TERM=linux” and “GET / HTTP/1.1” (the banner grabbing routine) with “GET
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Snort Signature Alert Message

1 TERM=xterm MISC OpenSSL Worm Traffic
2 GET / HTTP/1.1 WEB-MISC Bad HTTP/1.1

Request, Potentially Worm Attack

Table 3. Snort Signatures for the Slapper Worm

/ HTTP/10”. The same vGround is used to experiment with the modified Slapper worm. Once the contents are

mutated, no alert is generated by snort from any worm propagation trace. Other recent work [45] has also confirmed

the in-effectiveness of content fingerprints under content mutation attacks.
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  443/TCP     */TCP

TCP 3−way handshake

TCP 3−way handshake

TCP 3−way handshake
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     */TCP   443/TCP

     */TCP   443/TCP

Figure 9. The Behavior Footprint of the Slapper Worm

Behavioral footprinting demonstrates its robustness under this attack. In both cases, sneeze is able to identify the

same behavioral sequence of the Slapper worm. As visualized in Figure 9, the slapper worm firstly opens a normal

TCP connection (C1F1

←−
F1) against port 80 checking the reachability of remote host; It then issues an invalid HTTP

GET request (C2

←−
F2, half-close; containing the second content signature used in snort) to grab the server banner and

query the version of web server; Later on, it further establishes 20 simultaneous plain TCP connections (
∏

22

i=3
Ci,

opened without any payload and never shutdown) on 443 port to prepare for the two following exploitations (C23,

C24). Finally, a flurry (> 10, 000) of short packets (1 byte in payload) can be observed for the C24 TCP connection.

4.4.2 A Traffic-Encryption Attack

In this experiment, we examine the robustness when the whole worm traffic is encrypted.

As pointed out in [37], the original Slapper worm is propagated through the transmission of a uuencoded version of

the unencrypted worm source code. In this experiment, a synthesized Slapper variant is first instructed to encrypt the

worm source file before propagation and then it is instructed to decrypt the file before compiling it and executing the
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Figure 11. N-Gram Analysis of the Slapper Worm
Variant with Encrypted Transmission

worm binary in the infected victim. N-Gram analysis (counting the frequency of n-length combinations of bytes) is

performed over two infection instances: one for the original Slapper worm with transfer of unencrypted worm source

(shown in Figure 10) and the other for the Slapper worm variant with encrypted source (shown in Figure 11).

The N-gram analysis on the original Slapper worm trace shows several common strings with a much higher fre-

quency of occurrence than other strings. However, these strings are not the same as the signature adopted in snort to

detect Slapper worms. In fact, the signature used in snort “TERM=xterm” only happens twice within the N-Gram

analysis. It suggests that the most-recurring content blocks are not necessarily suitable for signature purpose. Once

the transmission is encrypted, almost every string has equal probability of occurrence. On the other hand, the se-

quence C1F1

←−
F1C2

←−
F2

∏

22

i=3
CiC23C24 is exhibited in both the original and the synthesized Slapper worm infections,

which demonstrates the applicability of behavioral footprinting even to worms that encrypt their traffic.
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Figure 12. A Phylogenetic Tree Built from 20 Polymorphic Behavioral Sequences of the Slapper Worm
Variant

4.4.3 A Behavior-Polymorphism Attack

The previous two experiments demonstrate the robustness of worm footprints against content-mutation and traffic

encryption attacks. In this experiment, we further examine the robustness of worm footprints against a behavior-
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polymorphism attack.

Instead of following the behavior sequence shown in its original footprint, a behavior-polymorphic Slapper worm

variant is crafted, which is capable of (1) intentionally introducing an arbitrary number of irrelevant or miscellaneous

sequences during the infection 13; (2) intentionally adding a certain random timing delay among any two consecutive

infection steps; and (3) intelligently changing the IP address from which to download the attack payload, including

the worm replica. However, as restricted by the way to exploit the OpenSSL heap vulnerability (Section 3.3.1), the

temporal order in the original behavior sequence has to be maintained to ensure successful infection.

A vGround with 1500 virtual nodes is constructed and all successful infection sessions are recorded for sequence

analysis. For brevity and readability, Figure 12 only shows the phylogenetic tree built from collected traces with

20 infection instances. The numbers in the leaf nodes are index numbers from 1 to 20. The values in intermediate

nodes indicate normalized similarity ([0, 1]) based on Smith-Waterman algorithm (Section 3.2). Lower value indicates

higher similarity between the two sub-clusters. The penalty used for each gap through the algorithm is p = −2 and

the scoring matrix used for Smith-Waterman algorithm is

s(i, j) =











2, xi = yj

−1, otherwise.

(4)

As we observe, the phylogenetic tree algorithm is still able to extract the most critical part of the original be-

havior sequence:
∏

22

i=3
CiC23C24, demonstrating the resilience of behavioral footprinting against the behavior-

polymorphism attack.

5 Limitations

As a new dimension to characterize self-propagating worms, behavioral footprinting shows great potential in iden-

tifying all infection incidents of each real-world worm we have experimented with. However, we would like to point

out that behavioral footprinting is proposed to enrich worm characterization along with other dimensions, e.g., con-

tent fingerprinting. It alone could lead to either incomplete or inaccurate worm characterization. In the following, we

describe current limitations of behavioral footprinting. Such limitations also call for further improvement of this new

dimension and the adoption of a multiple-dimensional approach to worm characterization and identification.

Behavior substitution attacks Our current pairwise alignment algorithm leverages a basic sequence alignment

technique, or more specifically, a simple predefined scoring matrix (Section 3.2), to align worm infection sequences

where a worm-identifying behavioral footprint is derived. An attacker might intentionally introduce some substi-

tutable subsequence, which attempts to corrupt the alignment process while still achieves its goal for infection or

propagation. For example, within the Replication phase (Figure 1), different transport channels or even tunneling can

13We would like to point out that though the worm is able to initiate the connections (e.g., ICMP/TCP/UDP fl ows) to the victim node, it can
not control the reverse direction as the victim is not under its control yet before a successful exploitation.
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be leveraged to retrieve the worm replica.

However, if we re-examine the motivation behind the sequence analysis and consider each behavior substitution

as a possible mutation, such attack is reminiscent of the classic challenge faced by biologists on how to optimally

align gene sequences under possible mutations. It is interesting to note that two popular scoring matrices used in

gene sequence alignment, i.e., PAM [18] and BLOSSOM [18], have been constantly evolved (and are still evolving)

to reflect newly-discovered mutations for decades. Similarly, considering the scoring matrix behind our algorithm is

primitive as it simply returns 1 if two flows are fully matched, additional efforts are still necessary to refine the scoring

matrix. Fortunately, our application domain is different from the original biological domain as a worm usually can

not evolve itself at runtime and has relatively limited number of possible substitutions. In addition, a worm capable

of substituting its infection steps is likely to be more bloated (e.g., reflected by its replica size) than a compact one.

An over-bloated worm is more likely to be detected in the first place.

Behavior-camouflaging attacks Behavioral footprinting is designed to capture a worm’s infection steps exposed

during its infection. A worm author might attempt to inject fake steps into the infection sequences. After these fake

steps have been included in the worm’s behavioral footprint, the worm will stop exhibiting these fake steps. As a

result, the behavioral footprint will experience a sudden increase in false negatives because a full match against the

footprint will fail from now on. The fundamental solution is to identify and remove those fake steps using techniques

such as semantic-level analysis [34, 44], which is an on-going, challenging research topic. Another possible approach

is to mitigate such attack by adopting partial instead of full footprint matching. However, a trade-off will be made

to determine the confidence level of the partial matching to avoid the opposite, namely high false positives. Other

dimensions (e.g., content fingerprinting) may provide complementary capability in this case.

6 Related work

Due to the significant threat imposed by self-propagating worms, security researchers have explored various di-

mensions to first capture worms’ uniqueness and then apply them for worm identification.

Among the most notable, content fingerprinting [26, 28, 33, 43] has been widely examined and utilized to derive

the most representative content sequences. Realizing the inconvenience in manually extract the content sequences,

several systems such as Honeycomb [28], Autograph [26], EarlyBird [43] and Polygraph [33] have been recently pro-

posed to automate the content-based signature extraction process. However, a content sequence is only able to detect

the worm activity within one infection step or most likely, the exploitation stage (Figure 1). Behavioral footprint-

ing instead is proposed to capture worms’ uniqueness during its entire infection session, which nicely complements

content fingerprinting (Section 4.3).

Another dimension, anomaly detection [1, 2, 3, 24, 29, 39, 48], leverages the insight that worms are likely to

generate anomalous behaviors such as port scanning [24] and failed connection attempts [1, 2, 3], which are different

from the normal behavior. Though such approach has been demonstrated effective in detecting worm infection, it is
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not intended to identify worms. In other words, it mainly answers the question “is there a worm infection?”, not the

question “which worm is this?”.

Other promising dimensions include vulnerability-specific characterization [1, 32, 47] and semantic-aware taint-

edness tracking [14, 15, 34, 40, 44]. Shield [47] or similarly Worm Vaccine [1] and Generic Exploit Blocking [32]

propose the notion of vulnerability-specific signature and use it to accurately filter out attack flows. TaintCheck [34],

Minos [15], Vigilante [14], and other related systems [40, 44] enable the detection of unknown attacks by associating

a tag to untrusted information sources and reporting an alert if a tainted instruction is executed. These schemes are

generally applicable even to detect unknown attacks or intrusions. While capable of detecting the occurrence of a

possible exploitation, they do not attempt to characterize the entire worm infection process where exploitation is only

one of the infection phases.

Different from these dimensions, behavioral footprinting is a new but complementary dimension. Recently, another

related behavior-oriented approach [19] is proposed. However, it focuses on the inter-machine propagation pattern

(tree) exhibited by worms as well as the similar payload from one machine to another. Moreover, it implicitly assumes

the existence of worms’ behavioral footprints, without justifying the existence and proposing the extraction of worm

behavioral footprints, which is the focus of our work.

7 Conclusion

We have presented a new promising dimension, behavioral footprinting, to enrich the worm characterization space.

Orthogonal and complementary to existing dimensions, behavioral footprinting characterizes the temporal worm

infection process. Efficient and robust algorithms are proposed to accurately and reliably extract worm behavioral

footprints. Our experiments with real-world worms, in comparison with the content-based fingerprinting approach,

clearly demonstrate the feasibility, uniqueness, and robustness of behavioral footprinting.
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