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ABSTRACT

Malware behavioral graphs provide a rich source of information
that can be leveraged for detection and classification tasks. In this
paper, we propose a new behavioral malware detection method that
extracts behavioral graphs from API call sequences and uses a Deep
Graph Convolutional Neural Network (DGCNN), a state-of-the-art
neural network architecture that can directly accept graphs of arbi-
trary structures, to learn a binary classification function able to dis-
tinguish between malware and goodware. In order to train and eval-
uate the models, we created a new public domain dataset of more
than 40,000 API call sequences resulting from the execution of
malware and goodware instances in a sandboxed environment. Ex-
perimental results show that our models achieve similar Area Un-
der the ROC Curve (AUC-ROC), F1-Score, Precision, and Recall
to Long-Short Term Memory (LSTM) networks, widely used as
the base architecture for sequence learning in behavioral malware
detection methods, thus indicating that the models can effectively
learn to classify malicious and benign temporal patterns through
convolution operations on graphs. To the best of our knowledge,
this is the first paper that investigates the applicability of DGCNN
to behavioral malware detection using API call sequences.
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1. INTRODUCTION

According to a report published by AV-TEST [1], 9.74 million new
malware specimens were released just in September of 2019, to-
taling 948 million known specimens in the wild. Dealing with the
rapid increase of malware in number, complexity, and variability re-
quires the research and development of new intelligent, automatic
malware detection methods capable of scaling accordingly.
There are two main approaches to detecting malware; static mal-
ware analysis, and dynamic malware analysis [2]. On the one hand,
static malware analysis can be conducted quickly by comparing a
set of handcrafted features of the incoming file to previously ob-
served malware features or signatures, which makes static analysis

vulnerable to code obfuscation techniques employed by polymor-
phic and metamorphic malware [3], as well as to complete new
specimens of malware or zero-days. Traditional signature-based
malware detection methods are the cornerstone of the majority of
the commercial endpoint protection systems since they are rela-
tively fast and do not depend on any additional infrastructure to
collect and analyze the data; however, they require expert knowl-
edge to reverse engineer malware instances and produce the fea-
tures that will be used for detection. Evidently, this approach does
not scale as fast as malware production.
On the other hand, dynamic malware analysis or behavioral analy-
sis is based on behavioral data such as API or system calls, which
is harder to obfuscate [4]. In order to collect dynamic analysis data,
it is often necessary to run the program in a sandbox environment
[5]. A sandbox provides a controlled and isolated environment for
the guest program to run while monitoring and tracking its activi-
ties. Once the data is collected and preprocessed, it can be used to
feed behavioral detection algorithms [6].
Deep learning algorithms have shown unprecedented success in
various domains such as image classification, natural language pro-
cessing, and speech recognition [7]. The key advantage of deep
learning is the capability of automatically learn hierarchical fea-
ture representations using a general-purpose learning procedure
[7]. Deep learning algorithms are less dependent on good feature
extractors that would require skill and domain expertise to perform
feature engineering; therefore, they can easily take advantage of the
increasing amount of data and computation available [7].
Following this trend, Deep Learning algorithms have also been ap-
plied to malware detection and classification tasks using static and
dynamic analysis data exploiting its temporal [8, 9, 10], spatial
[11, 12], or spatio-temporal [13, 14] structure.
In this work, we propose a new behavioral malware detection
method that exploits yet another structure of the dynamic analysis
data, the graph structure of the API call sequences. To accomplish
this task, our method is based on a state-of-the-art Deep Learning
architecture designed for graph classification; more specifically, the
Deep Graph Convolutional Neural Network (DGCNN) [15]. Due to
their capability of learning from non-Euclidean data such as graphs,
Graph Neural Networks (GNNs) [16, 17] can be applied to prob-
lems in a vast range of domains from protein classification [18]
to Materials science [19]. By defining a graph structure to repre-
sent the API call sequence of a program, we combine both the spa-
tial and temporal information from its behavior. Then, we use the
DGCNN to learn high-level representations that can be used by a
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classifier to detect whether the program is malware or goodware.
Experimental results show that the proposed method achieves sim-
ilar AUC-ROC [20], F1-Score, Precision and Recall to specialized
Deep Learning architectures for sequence learning such as LSTM
networks [21], widely used as the base architecture for behavioral
malware detection methods [22]. To the best of our knowledge, this
is the first paper that investigates the applicability of DGCNN to
behavioral malware detection using API call sequences.
The main contributions of our work are as follows.

(1) We propose a new behavioral malware detection method that
uses graph convolution operations for sequence learning by
leveraging the graph structure of the API call sequences.

(2) LSTM networks are the de-facto standard networks used for
sequence learning problems, including behavioral malware de-
tection and classification methods using API call sequences. In
this work, we propose the use of an alternative state-of-the-art
architecture, the DGCNN, to tackle the problem of behavioral
malware detection using API call sequences and their associ-
ated behavioral graphs. Our results show that, although DGC-
NNs were not initially designed for sequence learning prob-
lems, our method achieves similar ROC-AUC, F1-score, Preci-
sion, and Recall to LSTM networks, thus indicating that DGC-
NNs are also applicable.

(3) We created a new public domain dataset of more than 40,000
API call sequences resulting from the execution of malware
and goodware instances in a sandboxed environment.

The rest of the paper is organized as follows. Related work is re-
viewed in Section 2. A brief background on DGCNNs is introduced
in Section 3. The proposed method is detailed in Section 4. Per-
formance evaluation is described in Section 5. Results, discussion,
limitations, and future work are presented in Section 6. Finally,
conclusions are drawn in Section 7.

2. RELATED WORK

Classical Deep Learning algorithms such as Convolutional Neural
Networks (CNNs) [23] and LSTM networks have been successfully
applied to malware detection and classification problems using both
static and dynamic analysis data [22]; however, Deep Learning on
graphs has been mainly applied to data extracted employing static
analysis methods.
Yan et al. [24] proposed a malware classification method (MAGIC)
based on a modified version of the DGCNN to learn directly from
attributed control flow graphs (ACFGs) extracted from disassem-
bled binaries, in which each vertex summarizes code characteristics
as numerical values.
Jiang et al. [25] introduced a malware detection approach using
graph embedding to map the control flow graphs (CFGs) extracted
from disassembled binaries to low-dimensional vectors as inputs
for two stacked denoising autoencoders (SDAs) that are responsible
for representation learning.
Zhu et al. [26] presented a method for Android malware detection
that creates CFGs using data extracted from decompiled applica-
tions’ source codes and information from their manifest files. Then,
a Graph Convolutional Network (GCN) [27] was used to learn
high-level representations that could be used in detection tasks.
Phan et al. [28] studied the effectiveness of DGCNNs in processing
large-scale graphs with hundreds of thousands of nodes by conduct-
ing experiments on malware detection and software defect predic-
tion.
Our work follows a similar approach to [24] and shares the same
theoretical basis on applying DGCNNs for classification tasks [15].

However, we use the standpoint of dynamic analysis by extract-
ing behavioral graphs from the API call sequences and using both
the API call sequences and the behavioral graphs as inputs to a
DGCNN. In addition, the standard LSTM network was chosen as a
benchmark since it has been successfully applied as the base archi-
tecture for several behavioral malware detection and classification
methods using API call sequences data [22].

3. BACKGROUND ON DEEP GRAPH

CONVOLUTIONAL NEURAL NETWORKS

DGCNN is a state-of-the-art neural network architecture that can
directly accept graphs of arbitrary structures to learn a graph clas-
sification function [15]. In other words, DGCNNs deal with the task
of graph classification as opposed to node classification [27].
Let G be a directed graph of order n ∈ N and A ∈ Z

n×n its
associated adjacency matrix. Now, let us define the following: The

augmented adjacency matrix of G, Ã = A + In, to ensure that
the convolution operation takes into account the features of each
node as well as its neighbours’ features. The augmented diagonal

degree matrix of G, D̃i,i =
∑

j Ãi,j for row-wise normalization.

The node feature matrix X ∈ R
n×c, c ∈ N, where each row of

X is a node “feature descriptor”, and each column of X is a node

“feature channel.” The matrix of learning parameters W ∈ R
c×c′ ,

where c′ ∈ N is the number of output feature channels, with the

non-linear activation function f : Rn×c′ → R
n×c′ . Then, the graph

convolution operation can be written as follows [15]:

Z = f(D̃−1ÃXW ) (1)

The graph convolution operation defined by (1) aggregates lo-
cal substructure information by considering the nodes’ immedi-
ate neighborhoods. In order to extract multi-scale substructure fea-
tures, (1) can be stacked to form a deep network, using the follow-
ing recurrence relation [15]:

Z(t+1) = f(D̃−1ÃZ(t)W (t)) (2)

where Z(0) = X and W (t) ∈ R
ct×ct+1 , t ∈ N.

In summary, standard DGCNNs have four sequential steps [15]:
1) Graph convolutional layers generalize the convolution operation
from Euclidean domains or grid-like structures such as image data
to non-Euclidean domains such as graph data by generating node
representations as the aggregation of their own feature descriptors
and their neighbors’ feature descriptors. 2) Unordered graph data
from each convolutional layer are concatenated along their feature
channels (or columns), resulting in matrix Z ∈ R

n×
∑

t
ct . 3) A

SortPooling layer sorts the unordered graph data according to their
feature descriptors or structural roles. This step guarantees that the
nodes of different graphs will be placed in similar positions, ac-
cording to their weighted feature descriptors. 4) The ordered graph
data is flattened and passed to a standard 1-dimensional CNN layer
followed by a fully connected layer to learn a classification func-
tion. For a more comprehensive review, please refer to [15].

4. PROPOSED METHOD

As illustrated in Fig. 1, our method has eight sequential steps from
data gathering to detection. First of all, Portable Executable (PE)
files (1) are fed to a Cuckoo Sandbox [29] environment (2), which
in turn runs the PE files and generates raw JSON reports containing
dynamic analysis data such as API call sequences, generated traf-
fic and dropped files (3). Next, the API call sequences are extracted
from the reports and post-processed in order to identify and convert

2



International Journal of Computer Applications (0975 - 8887)

Volume 174 - No.29, April 2021

the API calls into ordinal categorical values (4). At this point, we
have tracked the temporal behavioral information from the PE files
and the ordered set of all possible API calls. Behavioral graphs are
then generated based on both the API call sequences and the set of
API calls (5), and both are passed to a graph convolutional layer
to learn high-level representations of the spatial and temporal re-
lations among the API calls (6). If multiple graph convolutional
layers are stacked together to form a deep network, it is necessary
to concatenate their results in order to consider multi-scale sub-
structure features. Finally, the learned representations are passed to
a fully connected layer (7), followed by a sigmoid layer (8) binary
classification. In the next sections, a more in-depth description of
the method is presented.

4.1 Data Collection and Post-Processing

We introduced a new public domain dataset of 42,797 malware API
call sequences and 1,079 goodware API call sequences each [30].
Our motivation was twofold. On the one hand, we were motivated
by the lack of public domain PE dynamic malware analysis dataset
for training and evaluating our models. On the other hand, we were
motivated by the desire to provide an open dataset that the research
community could further utilize and extend.
Following [10], malware samples were collected from
VirusShare [31], and goodware samples were collected from
both portablepps.com [32] and a 32-bit Windows 7 Ultimate
directory. Portableapps.com offers commonly used Windows
applications such as text editors, spreadsheets, calculators, email
clients, games, FTP clients, and so son, that have been specially
packaged for portability. Based on [33], we assume that these
goodware applications to be representative of software commonly
present on the average user’s computer. All the samples from
VirusShare have at least one positive detection from Virustotal
[34], and all the samples from portableapps.com are assumed
to be goodware since the repository is actively developed and
maintained. Also, notice that all the collected goodware samples
can be executed in the sandbox without any installation procedure
and either are standalone executables or depend only on local
system Dynamic Link Libraries (DLLs).
In order to gather the API call sequences from each sample, we
chose Cuckoo Sandbox, which is a largely used, open-source au-
tomated malware analysis system capable of monitoring processes
behavior while running in an isolated environment. We set up a
standard Cuckoo Sandbox environment with full internet access
and without any hardening techniques such as anti-evasion or anti-
VM. Each instance was executed only once, with the average exe-
cution and logging time of 5 minutes.
Once the data was collected, three additional post-processing steps
were performed. 1) Similar to [13], it was considered the first
100 non-consecutive repeated API calls to avoid tracking loops. 2)
Since in malware detection tasks, it is prominent to recognize ma-
licious patterns as early as possible, the sequences were extracted
from the parent process only. 3) We built the list of unique API
calls, considering all the samples, and then converted each API call
name into a unique integer identifier equal to the index of the API
call name in the list.
As a result, 307 distinct API calls were identified. We produced a
dataset where the first column contains the MD5 hash of the sam-
ple. The next 100 columns contain ordinal categorical values be-
tween 0 and 306, representing the API call sequence of the sample.
The last column contains the label of the sample.
The total running time to collect the data was about 3000 hours, re-
sulting in approximately 50,000 Cuckoo JSON report files and 1.5

TB of raw data. Our Cuckoo sandbox environment was based on
an Intel Xeon D-1540, 8 cores, 16 threads, 2.6 GHz, 64 GB RAM,
and 2 TB SSD running Ubuntu Server 16.04 Ubuntu Server 16.04
as the Cuckoo host and 8 32-bit Windows 7 Ultimate VirtualBox
virtual machines running in parallel as Cuckoo analysis guests.

4.2 API Call Sequences and Behavioral Graphs

Generation

On the one hand, API call sequences represent the most important
part of the program behavior through time [13]. On the other hand,
graph structures encode spatial relations, such as adjacency and
connectivity, between API calls. Our method leverages both tem-
poral and spatial information for malware detection. In order to ac-
complish that, it is necessary to extract the graph structure from the
API call sequences to generate their associated behavioral graphs.
A behavioral graph is a graph representation of a program run and,
in particular, of its API call sequences [35]. Fig. 2 shows the be-
havioral graph of a Trojan horse malware. More formally, let us
define a behavioral graph as a 2-tuple directed graph G = (N,E),
where N ⊆ N is the ordered set of nodes representing the ordered
set of API calls, E ⊆ N × N is the set of edges, and each edge
e = (ei, ej) ∈ E corresponds to the temporal relation between the
two consecutive API calls ei and ej such that the order of execu-
tion is ei followed by ej . Let x = (x0, x1, ..., xL−1), xi ∈ N be
an API call sequence of length L ∈ N. Then, the adjacency ma-
trix A ∈ {0, 1}|N |×|N | of the behavioral graph G associated to x is
given by: 1

Aij =

{

1 if (xi, xj) ⊆ x

0 otherwise
(3)

The above definition can be implemented using Algorithm 1.

Algorithm 1: Seq2BGraph

input : API call sequence x of length L ∈ N. Cardinality of N:
|N | ∈ N

output: Adjacency matrix A of the behavioral graph G associated
to x

Let A be a new zero-initialized |N | × |N | matrix
for i← 0 to L− 2 do

A[xi, xi+1]← 1
end

As an example, let N = (0, 1, 2, 3) be the ordered set of API calls.
Fig. 3 step I shows the behavioral graph G resulting from the ad-
jacency matrix generated by (3) applied to the API call sequence
x = (0, 1, 2, 0, 2, 3).

4.3 Deep Graph Convolutional Neural Networks and

Graph Convolutional Layers

In order to take advantage of the DGCNN architecture, let us define
the node feature matrix X ∈ {0, 1}|N |×L of G as the result of one-
hot encoding each xi in the API call sequence x. As an example to
show how the graph convolution operation acts on X , let us again
consider the ordered set of API calls N = (0, 1, 2, 3), the API
call sequence x = (0, 1, 2, 0, 2, 3) and the adjacency matrix A,

1The reader may forgive a little abuse of notation here. (xi, xj) ⊆ x if and

only if xi, xj are two consecutive elements in the sequence x
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Fig. 1. High-level flow of the proposed method.
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Fig. 2. Behavioral graph of the Trojan horse malware with MD5 hash
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generated by Algorithm 1, associated to the behavioral graph G of
x, depicted in Fig. 3. For the sake of clarity, let us take the product

AX in (4) and its visualization in step II of Fig. 3

AX =

0 1 2 3












0 0 1 1 0
1 0 0 1 0
2 1 0 0 1
3 0 0 0 0

0 1 2 0 2 3












1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 1

(4)

=

0 1 2 0 2 3












0 0 1 1 0 1 0
1 0 0 1 0 1 0
2 1 0 0 1 0 1
3 0 0 0 0 0 0

As we can see, the resulting product AX is a matrix representing
the API call sequence and, for each API call, its immediate inde-
gree neighbors. Also, notice that the rows of AX represent ordered
nodes, and the columns of X represent the behavior of the pro-
gram in time given by the API call sequence x. Moreover, since the
nodes of G are already sorted by their natural order, our model does
not require the SortPooling layer introduced in [15], thus reducing

its execution time. Finally, the term D̃−1ÃX is multiplied by the
weight matrix W , allowing the model to learn higher-level repre-
sentations. For example, let us consider only the product AXW
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4.4 Fully Connected Layers and Sigmoid Layer

The last graph convolutional layer outputs a matrix Z(T ) ∈
R
|N |×cT , T ∈ N. Finally, in order to train a fully connected

layer on it, first it is necessary to concatenate Z(1), . . . , Z(T )

along their columns and then reshape the result into a row vector

z ∈ R
|N |

∑
T

t=1 ct . As an example, let us consider (5). Notice that
after reshaping, the high-level features will be grouped by the nat-
ural order of the nodes (6) and can be passed to a fully connected
layer followed by a sigmoid layer for binary classification:

z =









































0 w21 + w31 + w51

0 w22 + w32 + w52

1 w31 + w51

1 w32 + w52

2 w11 + w41 + w61

2 w12 + w42 + w62

3 0
3 0

(6)

Fig. 3, step III, depicts the high-level features grouped by the natu-
ral order of the nodes.

4.5 The Method

In summary, without considering the data collection and post-
processing steps, our method can be implemented using Algorithm
2. According to the principles of Deep Learning [7], Algorithm 2
can be extended by stacking the graph convolutional layers or fully
connected layers followed by the sigmoid layer for binary classi-
fication or a softmax layer multi-class classification. Furthermore,
we included a Dropout [36] layer after each graph convolutional
layer in order to prevent overfitting and used ReLU [37] as the acti-
vation function to perform non-linear transformations while pre-
venting the vanishing gradient problem. Notice that our method
does not include the SortPooling layer introduced in the original
DGCNN architecture [15] since the nodes of G are already sorted
by their natural order. Moreover, our method also does not include
the 1-dimensional CNN layer preceding the fully connected layer
since its addition did not show performance improvements.
DGCNN uses a constant amount of memory for model parameters,
and its runtime complexity is proportional to the number of vertices
and vertex degrees [28], in particular, our method runtime complex-
ity isO(L×|N |), since the maximum number of vertices is defined
by the API call sequence length L and the maximum vertex degree
is defined by the cardinality of the ordered set of API calls N .

Algorithm 2: The Model

input : API call sequence x. Cardinality of N: |N |
output: The probability of x was generated by a malware

Ã← Seq2BGraph(x, |N |) + IN

D̃ ← DiagonalDegree(Ã)
X ← OneHotEncoding(x, |N |)

Z(1) ← Dropout(ReLU(D̃−1ÃXW (0)))
. . .

Z(T ) ← Dropout(ReLU(D̃−1ÃZ(T−1)W (T−1)))

Z ← Concatenate(Z(1), . . . , Z(T ))

Ŷ ← σ(FullyConnected(Flatten(Z)))

Algorithm 3: LSTM network

input : API call sequence x
output: The probability of x was generated by a malware
X ← OneHotEncoding(x, |N |)
Y ← LSTM(X)

Ŷ ← σ(FullyConnected(Dropout(Y )))

5. PERFORMANCE EVALUATION

The goal of our experiment was to establish a fair performance
comparison between our models and LSTM networks on the same
task. LSTM networks were chosen as the baseline architecture for
performance comparison since they are the de-facto standard archi-
tecture used in sequence learning problems, including behavioral
malware detection using API call sequences [8, 9, 10, 13, 14]. Tak-
ing that into account, let us consider the dataset introduced in 4.1
and the following models: Model-1, a 1-layer DGCNN, according
to Algorithm 2. Model-2, a 2-layer DGCNN, according to Algo-
rithm 2. LSTM, an LSTM network followed by a fully connected
layer that receives the last LSTM network hidden state vector and
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Table 1. Hyperparameter optimization search space. W (0) and W (1) are the sizes of the output channels for Model-1 or

Model-2 for each layer. H is the size of the hidden layer for the LSTM network.

Hyperparameter / Model Model-1 Model-2 LSTM

Dropout Rate {0.4, 0.5, 0.6} {0.4, 0.5, 0.6} {0.4, 0.5, 0.6}

Mini-Batch Size {32, 64, 128} {32, 64, 128} {32, 64, 128}

Number of Epochs {10, 20, 30} {10, 20, 30} {10, 20, 30}

W (0) or H {31, 137, 261, 402} {17, 71, 126, 182} {10, 40, 70, 100}

W (1) {} {17, 71, 126, 182} {}

Table 2. Evaluation metrics for the tuned models.

Metric / Model Model-1 Model-2 LSTM

AUC-ROC 0.9613 0.9732 0.9761

F1-Score 0.7523 0.7613 0.7389

Precision 0.8039 0.7247 0.6466

Recall 0.7069 0.8017 0.8621

outputs the result to a sigmoid layer for binary classification, ac-
cording to Algorithm 3. Three experiments were set up to perform
model selection, training, and evaluation. In total, 648 models were
defined, trained, and evaluated, resulting in three optimized models
for malware detection using API call sequences. The total running
time for the hyperparameter optimization was about 40 hours on an
Intel Xeon D-1540, 8 cores, 16 threads, 2.6 GHz, 64 GB RAM, 2
TB SSD, and a GPU card NVIDIA RTX 2080 Ti. We used Jupyter
Notebook, PyTorch , Pandas , scikit-learn, imbalanced-learn, sko-
rch and Matplotlib for the implementations, which are available in
[38].

5.1 Model Selection

First of all, a stratified train-test split was performed, where the
size of the test set was 0.3 of the total, resulting in a training set of
731 goodware samples (class 1) and 29982 malware samples (class
0), and a test set of 348 goodware samples and 12815 malware
samples. Next, to perform model selection (i.e., hyperparameters
optimization), an exhaustive grid search was executed on the train-
ing set using stratified 5-fold cross-validation with AUC-ROC as
the validation metric. In an exhaustive grid search, the model is
trained and evaluated with all the hyperparameters combinations.
The stratified k-fold cross-validation ensures that each training set
split contains a similar proportion of positive and negative samples.
Then, the model is trained with k − 1 folds and its performance is
evaluated using the fold that was left out of the training process.
This process is repeated k times, each time considering a different
set of folds. The average of the evaluation performances is an es-
timate of the model’s performance on unseen data. The number of
folds was set to 5, considering the computational resources needed
to perform the grid search and the degree of bias and variance on
the resulting metric [39]. In addition, AUC-ROC was chosen as the
validation metric because it provides a summary of performance
across all possible classification thresholds and can be used in bal-
anced and imbalanced datasets [40].
In order to reduce the bias of the classifiers for the majority class,
a random oversampling of the minority class was performed on
the training set before each training session. Random oversampling
was chosen based on the assumption presented in Section 4.1 that
our goodware dataset is representative of software usually found on
the average user’s computer and because the training examples are
composed by API call sequences represented by ordinal categori-
cal values only; therefore, more advanced oversampling techniques

such as Synthetic Minority Over-sampling Technique (SMOTE)
[41] and its variations are not applicable.
Taking into account that we desired to compare conceptually differ-
ent models, the following hyperparameters were considered for the
grid search: Number of parameters per layer, dropout rate, mini-
batch size, and the number of epochs. In order to define the sets
of parameters per layer for the search, we first defined 4 possible
values for the size of the LSTM hidden layer, then, considering Al-
gorithm 2, it is possible to show that the total number of parameters
for a 2-layer DGCNN with one fully connected layer followed by
a sigmoid layer is given by:

P = L× P1 + P1 × P2 + |N | × (P1 + P2) + 1 (7)

where Pi ∈ N is the number of parameters of layer i. Equation (7)
was used to build sets of numbers of parameters per layer, where the
maximum number of parameters for each DGCNN model is less
than the maximum number of parameters of the LSTM network,
thus ensuring that all models are limited to a maximum complexity
regarding the number of parameters while having the same degree
of freedom for tuning.
Finally, Binary Cross-Entropy function was set as the loss func-
tion, and Adam optimizer [42] was used on a learning rate of 0.001,
beta1 of 0.9, and beta2 of 0.999. Table 1 summarizes the hyperpa-
rameters optimization search space. Once the best sets of hyperpa-
rameters were found, the models were trained on the entire training
set using those hyperparameters and tested against the test set.

6. RESULTS, DISCUSSION, LIMITATIONS, AND

FUTURE WORK

Our results show that our method is indeed applicable to the prob-
lem of behavioral malware detection using API call sequences, and
its performance is similar to LSTM networks, which are widely
used as the base architecture for behavioral malware detection
methods, thus indicating that DGCNNs can also be useful as the
base architecture for more complex and deeper models for the same
purpose. Fig. 4 depicts the ROC curves of Model-1, Model-2, and
the LSTM network trained and evaluated using the tuned hyperpa-
rameters presented in Table 3.
As we can see in Table 2, our models achieve the highest F1-score
and precision. Taking into account that the minority class (good-
ware) is usually defined as the positive class, a particularly impor-
tant performance metric when evaluating malware detectors is the
precision, since a high precision implies a low number of false pos-
itives, which can be interpreted as a high malware detection rate.
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Table 3. Hyperparameters resulting from the

model selection process.

Model Best Configuration # Parameters

Model-1 (0.6, 128, 20, 137) 55,760

Model-2 (0.6, 128, 10, 71, 17) 35,324

LSTM (0.5, 64, 20, 10) 12,771

High recall implies a low number of false negatives, which is less
critical but is desired for malware detectors. Ideally, both precision
and recall should be high, implying a high F1-score.
In general, our models achieved similar performances to LSTM
networks on the proposed task. As Table 2 shows, Model-1 and
Model-2 dropout rates are the highest as opposed to the number of
parameters. In fact, our models overfitted the training set just after
ten epochs on average, indicating that additional dropout layers or
L2 regularization, as well as the addition of more examples, could
further improve their performance. We plan to investigate deeper
architectures in future work.
The addition of one graph convolutional layer did not greatly im-
prove the models’ performance. Further improvement could be pos-
sible by introducing a larger dataset containing more goodware
samples to reduce the imbalance instead of random oversampling
the minority class.
Although in this work, it was considered only the task of malware
detection or binary classification, DGCNNs can also be applied to
the problem of multiclass classification [15], suggesting that our
method can also be extended to multiclass behavioral malware clas-
sification. Future work will investigate this possibility. In addition,
notice that our work only took into account one kind of execution
trace, the API call sequences. In future work, we plan to augment
our datasets to include other dynamic traces such as the API call
parameters, return values, and execution status.

7. CONCLUSION

In this paper, we propose a new behavioral malware detection
method based on DGCNNs to learn directly from API call se-
quences. In order to train, evaluate, and test the models, we in-
troduced a new public domain dynamic analysis dataset of more
than 40k API call sequences of malware and goodware. By ex-
tracting behavioral graphs from the API calls sequences and using
both as inputs for a simplified version of the DGCNN, our method
achieves similar performance to LSTM networks, which are largely
applied as the base architecture for malware detection and classi-
fication methods using dynamic analysis data, including API call
sequences, thus indicating that our method can also be useful as the
base architecture for more complex and deeper models for the same
purpose. Even though DGCNNs are memory-less networks, as op-
posed to LSTM networks, our results show that the graph structure
of the API call sequences plays an essential role in the problem of
detecting whether a program is malware. Future work will explore
deeper architectures as well as the problem of multiclass malware
classification using API call sequences and their associated behav-
ioral graphs.
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