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Behavioral Modeling of RF Power Amplifiers Based
on Pruned Volterra Series

Anding Zhu, Member, IEEE, and Thomas J. Brazil, Fellow, IEEE

Abstract—Behavioral modeling techniques provide a convenient
and efficient means to predict system-level performance without
the computational complexity of full circuit simulation or physics-
level analysis of nonlinear systems, thereby significantly speeding
up the analysis process. General Volterra series based models have
been successfully applied for radio frequency (RF) power amplifier
(PA) behavioral modeling, but their high complexity tends to limit
their applications to ‘“weakly”” nonlinear systems. To model a PA
with strong nonlinearities and long memory effects, for example,
the general Volterra model involves a great number of coefficients.
In this letter, we propose a new simplified Volterra series based
model for RF power amplifiers by employing a ‘“near-diagonality”
pruning algorithm to remove the coefficients which are very small,
or else not sensitive to the output error, therefore dramatically re-
ducing the complexity of the behavioral model.

Index Terms—Behavioral model, FIR digital filters, power am-
plifier, Volterra series.

1. INTRODUCTION

EHAVIORAL modeling is generally proposed to char-

acterize a complete nonlinear system, or a very large
section of such a system, in terms of input and output sig-
nals using relatively simple mathematical expressions. In this
kind of system-level model, the modeled device is considered
as a “black-box,” i.e., in principle, no knowledge of the in-
ternal structure is required and the modeling information is
completely contained in the external responses of the device.
Owing to this feature, the parameters of the model can be
effectively estimated from measured transient responses or sim-
ulated results from detailed reference transistor-level models.
Behavioral models are reduced-order models of circuit-level
devices, which can provide fast prediction of system perfor-
mance in top-down designs.

A truncated Volterra series has been successfully used to
derive some behavioral models for RF power amplifiers by
many researchers in recent years. However, high computational
complexity makes standard methods of this kind limited to
“weak” nonlinearity [1], [2], e.g., only up to third or fifth order,
which is not enough in many practical situations. In this letter,
we present a “near-diagonality” structural restriction approach
to prune some redundant kernels in the general Volterra series
based model. With this method, the number of coefficients
of the Volterra model can be dramatically reduced and the
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structure of the model can be significantly simplified, without
substantially compromising the accuracy of the model. This
technique allows us to model a PA with higher-order nonlin-
earities and longer-term memory effects.

The remainder of the letter is organized as follows. In Sec-
tion II, we review the background of Volterra series based mod-
eling techniques. In Section III, we introduce a new pruning
algorithm to effectively remove redundant coefficients of a PA
model, then illustrate measured results in Section IV. A conclu-
sion is contained in Section V.

II. VOLTERRA SERIES BASED MODELING

A truncated Volterra series can be used to represent a wide
class of time-invariant nonlinear systems with memory effects.
Consider z(t) = Re[#(t) - e/*°!] and y(t) = Re[j(t) - eI«0?]
as the input and output signals of a power amplifier, where wy
is carrier frequency and Z(t) and y(¢) represents the complex-
valued envelope of the input and output signal, respectively.

Using A/D conversion, a discrete time-domain finite-memory
complex baseband Volterra model of a power amplifier has the
form
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where h (i1, 2, .. ., Ll) is the [th-order Volterra kernel, m; rep-

resents the “memory” of the corresponding nonlinearity, and
(+)* represents the conjugate transpose. In the above equation,
we have removed the redundant items associated with kernel
symmetry, and also the even-order kernels, whose effects can
be omitted in band-limited modulation systems. Furthermore,
in practical situations, we generally truncate the model to finite
order N.

A new Volterra series based behavioral model for power
amplifiers has been proposed by authors [3]. In this model, a
rearrangement is performed on the elements of the input vector
to create a nonrectangular vector, the so-called V-vector [4]
(as shown in Fig. 1). The time-shift property can be preserved
in this approach, thereby avoiding permutations in the process
of model extraction, which significantly reduces the compu-
tational complexity. We can define a set of primary signals
that carry all the information needed for the estimation of the
convolution, corresponding to the first column of the input data
V-vector X (n), and then use a linear FIR filter to implement
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Fig. 1. V-vector of input data.
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Fig. 2. Block diagram for model extraction.

the convolution for each row of X (n) separately. Summing
together all the filter outputs, the final output of the Volterra
behavioral model is obtained. The primary signals are actually
computed recursively from lower order products. A diagram
representing the process of model extraction is shown in Fig. 2.

III. PRUNING ALGORITHM

The fast parallel behavioral modeling technique proposed in
[3] significantly improves the data processing speed and saves
on computation time. However, this model still inherits the high
complexity of general Volterra models because no effort has
been made to simplify the underlying model structure. To model
a power amplifier with strong nonlinearities and long memory
effects, a model of this kind still involves a very large number
of filters in the filter-bank, which makes it impractical in some
real applications. Fortunately, in practical situations, memory
effects in real amplifiers decline with time. This means that in
the discrete domain, elements with longer time delay taps in the
input vector of the model, have less effect on the output signal,
and the coefficients corresponding to them are accordingly very
small. It is therefore reasonable to force them to zero during
model extraction, a process which is described as pruning [5].
The result is a simplification of the structure of the model and
an improvement in simulation speed.

Generally, a brute-force pruning method involves setting in-
dividual coefficients to zero and evaluating the change in the
error. If the error is increased unacceptably then the coefficient
is restored, otherwise it is removed. Probably the simplest non-
trivial pruned Volterra model is the diagonal Volterra model,
also called the memory polynomial model [6], where all off-
diagonal terms are zero. Although this restriction reduces the
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Fig. 3. Pruned Volterra series based behavioral model.

number of model parameters tremendously, it also has signif-
icant behavioral consequences, e.g., decreasing fidelity of the
model, because, in some cases, the off-diagonal terms are more
important than the diagonal terms. As a result, a potentially in-
teresting approach involves relaxing the restriction condition. It
may be noted that in the diagonal Volterra model |, — i,| = 0
forall 1 < m,n < j, where %, or i, represents the memory
length of the input signal and 7 is the maximum memory length.
Relaxing this condition to |z, — i, | < [ for some small integer
[ would correspond to imposing a “near-diagonality” structural
restriction, giving some increase in flexibility at the expense
of a corresponding increase in the number of parameters. This
“near-diagonality” structure was used for internal model con-
trol (IMC) in chemical engineering applications [7]. Here, we
extend the pruning approach to power amplifier behavioral mod-
eling since this kind of solution is quite suitable for the kind of
filter-bank-based behavioral model that we have proposed in [3],
where coefficients in the same diagonal line of the weight vector
fall within the same FIR filter. With the “near-diagonality” struc-
tural restriction, i.e., restricting [, the coefficients, which are “far
away” from the main diagonal in the model, are removed, then
the corresponding FIR filters in the filter-bank can be deleted
thereby, as shown in Fig. 3. This approach to restriction has the
capability to dramatically simplify the structure of the model
and reduce the computational complexity of model extraction.
Furthermore, the “near-diagonality” reduction approach al-
lows us to model a power amplifier with stronger nonlinearity
or longer memory effects. As mentioned previously, the general
Volterra model is limited to model weakly- or moderately-non-
linear systems, e.g., only reaching to the fifth order for the cases
we discussed earlier. When the model order is over seven, the
system does not always converge due to large number of coef-
ficients required. However, if we remove many coefficients in
each lower-order Volterra model using the “near-diagonality”
restriction, the total number of coefficients is reduced, which
allows us to add higher order coefficients/kernels into the model
to take account of the higher order distortion. Meanwhile, for
modeling longer-term memory effects, the number of coeffi-
cients increases linearly with respect to the memory length in
this new model. This is because no new primary signal, which is
in the first column of the input V-vector in Section II, is needed
for the new model construction when the [ is fixed. To further
reduce the complexity, we can choose a different value for [ in
|im — in| < [ for different orders, e.g., smaller { for higher order
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Fig. 4. Sample of time domain waveform.

nonlinearities. How to select [ depends on the practical charac-
teristics of power amplifiers and the model fidelity required.

IV. MODEL VALIDATION

In order to validate the modeling technique proposed, a class
AB medium power LDMOS amplifier with noticeable memory
effects was used. This PA was operated at 2.14 GHz, and excited
by a downlink 3GPP W-CDMA signal with 3.84 Mcps chip
rate. The test bench setup used to characterize the amplifier
was based on the ADS-ESG-VSA connected solution from
Agilent Technologies [8]. In the measurement, we considered
the power amplifier as a real “black-box.” The baseband 1/Q
signals were generated from Agilent ADS software running on a
PC, and downloaded to an E4438C ESG vector signal generator.
These test signals were then passed through the device under
test (DUT) and into an Agilent E4406A vector signal analyzer
(VSA). The DUT output test signals were read from the E4406A
VSA back into the ADS simulation environment using the
Agilent 89 601A VSA software, which was dynamically linked
from within ADS. Around 2000 sampling data points were
gathered from the measured input and output complex envelope
signals, which were sent to the fast adaptive filter depicted in
Fig. 2. Here, we truncated the Volterra series to fifth order,
and memory length to three. Several Volterra-based behavioral
models with different restriction conditions were extracted
for this power amplifier using in-house software implemented
in MATLAB. A sample of the time-domain output envelope
waveforms of W-CDMA signals is shown in Fig. 4. Table I
gives the performance comparison of the models with different
[ for the PA we tested. The unrestricted “full” model is the case
of [ = 3 while [ = 0 leads to the memory polynomial model.
The results indicate the model still keeps good performance
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TABLE 1
COMPARISON OF THE MODELS WITH DIFFERENT [
l 3 2 1 0
number of coefficients 244 133 54 12
Relative error(%) 0.024 | 0.026 | 0.028 | 0.063
NMSE (dB) -36.1 -359 | -355 | -32.0

after some restrictions while the number of coefficients required
to be extracted has been significantly reduced. When [ = 1,
for instance, the average relative error between modeled and
measured responses is only 0.028%, corresponding normalized
mean square error (NMSE) is up to —35.5 dB, but the number
of coefficients has dropped from 244 to 54 in this case.

As mentioned earlier, we can model a power amplifier with
stronger nonlinearities and longer term memory effects by em-
ploying the “near-diagonality” reduction. For example, in this
case, we can select [ = 1 for third and fifth order, and [ = 0 for
seventh order kernels. We obtain the nearly same NMSE per-
formance as that from the fifth order general model in the time
domain, but we can predict the seventh order distortion more
accurately in the frequency domain. Also, we may increase the
memory length in the model to take account of longer term
memory effects induced by the PA.

V. CONCLUSION

A “near-diagonality” model reduction method for RF power
amplifier behavioral modeling has been introduced in this letter.
This kind of coefficient-restriction technique leads to simpler
model structure, which may significantly reduce the complexity
of the Volterra based behavioral model. The agreement obtained
between the measured and modeled response proves this ap-
proach makes the application of the Volterra model more flex-
ible and effective, in practical situations.
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