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Parkinson’s disease (PD) is a neurodegenerative disorder with symptoms that

progressively worsen with age. Pathologically, PD is characterized by the aggregation of

α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons.

This pathology is associated with impaired movement and reduced cognitive function.

The etiology of PD can be attributed to a combination of environmental and genetic

factors. A popular animal model, the nematode roundworm Caenorhabditis elegans,

has been frequently used to study the role of genetic and environmental factors in the

molecular pathology and behavioral phenotypes associated with PD. The current review

summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced

PD models of C. elegans.

Keywords: Parkinson’s disease (PD), Caenorhabditis elegans (C. elegans), behavioral phenotyping, dopamine,

pathological markers

INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent age-related neurodegenerative disorder after
Alzheimer’s disease. It affects seven to 10million individuals worldwide (Beitz, 2014), with themean
age of onset at 60 years, where 1% of all individuals over the age of 60 and 4% of those over 80 years
present with PD symptoms. PD is characterized by the progressive loss of dopaminergic neurons
in the substantia nigra pars compacta (nigrostriatal pathway) area of the brain (Michel et al.,
2013; Kalia and Lang, 2015). At the cellular level, the hallmarks of PD include intra-cytoplasmic
inclusions that contain a disease-specific protein: α-synuclein, a primary component of Lewy bodies
and dystrophic Lewy neurites in neurons (Bethlem and Den Hartog Jager, 1960; Spillantini et al.,
1997; Dickson, 2012). The loss of dopaminergic neurons results in motor impairments, including
tremors, hypokinesia, bradykinesia, rigidity, and postural instability (Samii et al., 2004; Jankovic,
2008; Yao S. C. et al., 2013). Other recognizable motor deficits include festination, speech and
swallowing disorders, and handwriting in small letters (Jankovic, 2008; Russell et al., 2010). Since
PD affects neurons in the central and peripheral nervous systems, patients typically also exhibit
multiple non-motor symptoms including anxiety, depression, memory loss, and olfactory deficits
(Doty, 2012; Grover et al., 2015). While the cause of PD is currently unknown, genetic (familial)
and environmental (sporadic) triggers are two major factors that play a role in the development
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of the disease, with the environment accounting for over two-
thirds of all cases (Fleming et al., 1994; Warner and Schapira,
2003; Gatto et al., 2010; Goldman et al., 2012; Trinh and Farrer,
2013). The predisposition to both sporadic and familial types
of PD is linked to multiple genes whose function is an area of
active investigation. These include α-synuclein, LRRK2, PARK2,
DJ-1, GBA, UCHL1 and others. For example, a mutation in
the glucocerebrosidase (GBA) gene, which codes for an enzyme
essential for metabolism of lysosomal substrates is linked to
the pathogenesis of sporadic PD (Gegg et al., 2012). Similarly,
a mutation in the ubiquitin carboxyl-terminal hydrolase L1
(UCHL1), an enzyme which is involved in the removal and
recycling of ubiquitin molecules from degraded proteins, and
ligation of ubiquitin to proteins to mark them for degradation,
has been linked to the early-onset of familial PD (Dawson and
Dawson, 2003). The identification of these and other genes, and
the discovery that certain toxins such as MPTP, 6-OHDA, and
paraquat lead to PD symptoms, has informed the development
of genetic and toxin-induced PD models (Polymeropoulos et al.,
1997; Bonifati et al., 2003; Paisán-Ruiz et al., 2004; Valente
et al., 2004; Zimprich et al., 2004) and resulted in a better
understanding of disease etiology, pathology, and molecular
mechanisms (Harrington et al., 2010; Whitworth, 2011; Blesa
et al., 2012a).

In mammalian models, genetically modified rodents
have proven critical to the understanding of PD pathology
and the exploration of new therapeutic strategies (Ribeiro
et al., 2013). Rodent models display many of the clinical
features of PD such as the loss of dopaminergic neurons
(Meredith and Rademacher, 2011; Thiele et al., 2012; Torres
and Dunnett, 2012), neurochemical changes in dopamine
transmission and signaling, motor dysfunction, and non-motor
symptoms including cognitive decline, autonomic dysfunction,
depression, and hyposmia (Taylor et al., 2010; Schirinzi et al.,
2016). However, these models do not mimic some important
pathological hallmarks of the disease (Fleming and Chesselet,
2006; Visanji et al., 2016) such as the gradual neurodegenerative
process, gross morphological abnormalities and overt motor
alterations (Yue and Lachenmayer, 2011; Ribeiro et al., 2013;
Schirinzi et al., 2016). Moreover, gene editing techniques in
rodents involve complex experimental design, significant time
investment and considerable expense. Environmental toxin-
induced rodent models have also provided valuable information
about PD pathology. For example, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) induces a severe and permanent
parkinsonism syndrome that features the major symptoms of
human PD including rigidity, tremor, postural instability, and
slowness of movement (Liou et al., 1997; Bove et al., 2005). In
addition, environmental exposure to paraquat is a risk factor for
PD; paraquat administration increases α-synuclein levels and α-
synuclein-positive inclusion bodies in substantia nigra neurons
(Manning-Bog et al., 2002). A major drawback of toxin-induced
models is that acutely induced neurodegeneration investigates a
phase of PD when nearly 70–80% of dopaminergic neurons are
already lost, thus lacking the age-dependent progressive lesions
and Lewy bodies that are typical of human patients (Blandini
and Armentero, 2012; Schirinzi et al., 2016).

Non-mammalian, including invertebrate models such as
Drosophila melanogaster and Caenorhabditis elegans are also
useful in understanding the molecular mechanisms of PD
(Jagmag et al., 2015). These models facilitate investigations of
PD-associated molecular signaling pathways and first-round
screening that can be followed-up in mammalian models
(Jagmag et al., 2015). For example, D. melanogaster transgenic
models have helped clarify the role of PD candidate genes in
mitochondrial physiology (Venderova et al., 2009; Dawson et al.,
2010; Guo, 2012). Similarly, the nematode C. elegans is a useful
model organism for studying healthy and abnormal neuronal
aging, including cellular symptoms of PD. Caenorhabditis
elegans share many conserved cellular pathways and mechanisms
with mammals, including humans (Consortium, 1998; Lai
et al., 2000; Shaye and Greenwald, 2011). These cellular
pathways can be genetically manipulated using RNA interference
(RNAi) by gene-specific bacterial feeding (Fire et al., 1998),
which enables rapid screening of target genes (Jorgensen and
Mango, 2002; Wang and Sherwood, 2011). RNAi screening
is an important tool for predicting pathogenic mechanisms
before moving to complex organisms for further investigation
(Jorgensen and Mango, 2002; Leung et al., 2008; O’Reilly et al.,
2014). Despite major anatomical differences from humans,
the C. elegans nervous system consists of a circumpharyngeal
nerve ring, and contains key cellular and molecular features
of mammalian neurons, including conserved neurotransmitter
systems (dopamine, GABA, acetylcholine, serotonin, etc.),
receptors, axon guidance molecules, ion channels, and synaptic
features. Although α-synuclein is not endogenous to C. elegans,
expression of this human PD-associated protein in C. elegans
dopaminergic neurons results in neurodegeneration in an age-
dependent manner (Lakso et al., 2003; Kuwahara et al., 2006;
Hamamichi et al., 2008; Karpinar et al., 2009). Moreover, most
familial PD genes such as PINK1, PARK,DJ-1, and LRRK2 have at
least one C. elegans homolog (Sakaguchi-Nakashima et al., 2007;
Sämann et al., 2009; Chege and Mccoll, 2014; Lee and Cannon,
2015). Hermaphroditic C. elegans have 302 neurons, of which
eight (ADEL, ADER, CEPDL, CEPDR, CEPVL, CEPVR, PDEL,
and PDER) are dopaminergic such as those implicated in PD in
humans (Sulston et al., 1975). Four dopamine receptors (DOP-1,
DOP-2, DOP-3, and DOP-4) have been identified in C. elegans,
including homologs of each of the two classes of mammalian
dopamine receptors (D1- and D2-like) (Chase and Koelle, 2007).
Caenorhabditis elegans neuronal morphology can be linked to
functional abnormalities for easy visualization and quantification
making it possible to establish a correlation between behaviors
and aberrations in the target neurons, which are induced by
mutations or exposure to toxins (Nass et al., 2002; Toth et al.,
2012; Scerbak et al., 2014; Vayndorf et al., 2016). In addition,
C. elegans have low maintenance costs, and their shorter lifespan
(2–3 weeks) reduces the time needed for each experiment. These
advantages make C. elegans a valuable model system for genetic
and chemical screening, and pre-clinical research. In contrast,
the limitations of a C. elegans PD model include a lack of
defined organs, including the complex brain structure seen in
humans and, therefore, the inability to recapitulate the same set
of complex interactions involving various brain cells and tissues
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seen in human PD patients (Tissenbaum, 2015). In addition, the
mostly impermeable cuticle and inability of intestinal cells to take
up some types of chemicals may require high exposure doses to
affect the animal’s physiology (Leung et al., 2008; Tissenbaum,
2015). Despite these limitations, C. elegans have proven useful in
aging research (Tissenbaum, 2015) and numerous studies have
used C. elegans to investigate the cellular mechanisms associated
with PD (see Table 1). The aim of this review is to highlight
the genetic and chemical tools and reagents, as well as genetic,
biochemical, physiological, and behavioral endpoints associated
with investigating the cellular and behavioral symptoms of PD in
C. elegans.

CAENORHABDITIS ELEGANS MODELS OF
PARKINSON’S DISEASE

In this section, we discuss the link between genetic and
environmental factors and PD. All existing C. elegansmodels are
the result of genetic manipulation or exposure to toxic chemicals.

Genetic C. elegans Models Linked to
Familial PD
Over the last decade, transgenic models of C. elegans have been
successfully used to study PD-like pathologies and behaviors
(Caldwell and Caldwell, 2008; Harrington et al., 2010). In
humans, monogenic forms of PD, caused by a single gene
mutation in a dominant or recessive fashion, are well-established,
though relatively rare types of the disease. They account for
approximately 30% of the familial cases (Klein andWestenberger,
2012).

Alpha-Synuclein
Alpha-synuclein is a small, highly soluble, predominantly
presynaptic cytoplasmic protein composed of 140 amino acids
with three domains. It is highly conserved in vertebrates and
has been implicated in PD and other synucleinopathies (Snead
and Eliezer, 2014). In humans, α-synuclein is largely present
in the brain, with smaller amounts also present in the heart,
muscles, and other tissues (Xu and Pu, 2016). While the normal
physiological structure and function of α-synuclein is unclear,
studies suggest that it is important for compartmentalization,
storage, and recycling of neurotransmitters (Lee et al., 2002).
In addition, α-synuclein can regulate a variety of enzymes,
is thought to increase the number of dopamine transporters,
and has molecular chaperone activity, which is linked to
neurotransmitter release (Nemani et al., 2010). The α-synuclein
gene, SNCA, is causatively related to PD and its mutation was
the first gene to be linked to the disease (Polymeropoulos et al.,
1997). Mutations in SNCA, including rare point mutations in
the N-terminal domain of α-synuclein as well as duplications
and triplications of wild-type α-synuclein cause familial forms of
PD in humans (Ross et al., 2008; Klein and Westenberger, 2012;
Singleton et al., 2013).

Caenorhabditis elegans do not have an α-synuclein
homolog. Thus, to study the pathogenicity of α-synuclein
overexpression and aggregation in PD, several transgenic

C. elegans strains with human α-synuclein have been
created. These strains are particularly useful for studying
the toxicity of protein aggregates, and cellular and behavioral
abnormalities (Hamamichi et al., 2008; van Ham et al., 2008).
Strains OW13 ([unc-54p::α-synuclein::YFP + unc-119(+)]),
NL5901 ([unc-54p::α-synuclein::YFP+unc-119(+)]), and
DDP1 (uonEx1[unc-54p::α-synuclein::CFP + unc-54::α-
synuclein::YFP(Venus)] express α-synuclein in body wall
muscle cells (van Ham et al., 2008; Bodhicharla et al., 2012).
In these strains, the human α-synuclein gene is fused to yellow
fluorescent protein (YFP), which drives the expression of
α-synuclein in the body wall muscle cells under the control of
the unc-54 promoter (Hamamichi et al., 2008; van Ham et al.,
2008; Bodhicharla et al., 2012). These strains have been used to
study α-synuclein aggregation, changes in movement, animal
behavior and genes that modulate these and other PD-related
hallmarks. For example, the brains of PD patients contain
electron-dense filamentous and granular protein inclusions filled
with aggregated protein. Similarly, C. elegans body wall muscle
cells accumulate clearly visible aggregates with age, providing a
defined target for screening of candidate genes via RNAi. Van
Ham and colleagues have identified 80 suppressors of inclusion
formation, with 49 of these genes having an established human
ortholog. These authors also found an increase in the number
of “immobile” inclusions relative to “mobile” inclusions during
aging (van Ham et al., 2008). The accumulation of α-synuclein
aggregates in these strains is associated with locomotory and
movement impairments (Bodhicharla et al., 2012) providing
additional screening targets. All three strains containing α-
synuclein in body wall muscle cells are available from the
Caenorhabditis Genetics Center at the University of Minnesota
for a nominal shipping charge (see Table 1).

In addition to strains that overexpress α-synuclein in body
wall muscle cells, strains that overexpress wild-type or mutant
(A53T) human α-synuclein in dopaminergic neurons have been
generated by multiple research groups (Lakso et al., 2003;
Kuwahara et al., 2006, 2008; Cooper et al., 2015). In these
models, the dopamine transporter promoter dat-1 is fused to
GFP, following co-expression of wild-type or mutant (A53T)
α-synuclein and GFP. The A53T mutation causes a change
from alanine to threonine at position 53, is highly penetrant,
and is associated with the autosomal dominant form of PD
(Polymeropoulos et al., 1997; Lakso et al., 2003). In C. elegans
expressing both wild-type and mutant α-synuclein, neuronal
abnormalities, including accumulation of aggregates and cell loss
were observed in some or all dopaminergic neurons, typically in
an age-dependent manner (Lakso et al., 2003; Kuwahara et al.,
2006, 2008; Cooper et al., 2015). Moreover, neurodegeneration
of dopamine neurons was enhanced in transgenic lines in which
mRNA levels of α-synuclein were expressed at higher levels
(Dexter et al., 2012).

In humans, fibrils of α-synuclein aggregate to form Lewy
bodies, intracellular inclusions of protein complexes made
of α-synuclein aggregates and other components such as
neurofilaments, lipids and membrane materials (Spillantini et al.,
1997; van Ham et al., 2008). Lewy bodies are a major hallmark
of PD. When human α-synuclein is expressed in C. elegans

Frontiers in Genetics | www.frontiersin.org 3 June 2017 | Volume 8 | Article 77

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Maulik et al. C. elegans Models of Parkinson’s Disease

TABLE 1 | Strains of C. elegans commonly used to study PD pathology.

Strain Name Genotype Available

through

the CGC?

Pathological markers Behavioral

phenotype

References

N2 Wild isolate Bristol Yes Estimation of DA content post treatment

with MPTP/6-OHDA/insecticides and

compounds.

Not reported. Ali and Rajini, 2012; Fu et al., 2014a; Chen P.

et al., 2015; Satapathy et al., 2016

Not reported. Locomotion. Ali and Rajini, 2012; Li J. et al., 2016; Xu

et al., 2017

Fecundity. Fitsanakis, 2012; Nidheesh et al., 2016;

Satapathy et al., 2016

NL5901 unc-54p::α-

synuclein::YFP +

unc-119(+)

Yes 1. α-synuclein overexpression. Not reported. van Ham et al., 2008; Jadiya et al., 2011,

2012; Bodhicharla et al., 2012; Jadiya and

Nazir, 2012; Jensen et al., 2012; Shukla

et al., 2012; Shi et al., 2013; Fatima et al.,

2014; Munoz-Lobato et al., 2014;

Sashidhara et al., 2014; Cooper et al., 2015;

Edwards et al., 2015; Heiner et al., 2015; Liu

et al., 2015; Asthana et al., 2016; Li J. et al.,

2016; Xu et al., 2017

2. Estimation of Lipid content using Nile red. Jadiya et al., 2011; Jadiya and Nazir, 2012

Not done. Chemotaxis

(Nonanol repulsion

assay).

Fatima et al., 2014; Sashidhara et al., 2014

OW13 unc-54p::α-

synuclein::YFP +

unc-119(+)

Yes 1. α-synuclein overexpression. Not reported. van Ham et al., 2008; Fu et al., 2014a,b;

Chen Y. M. et al., 2015

2. Estimation of Lipid content using Nile red. Not reported. Fu et al., 2014a,b; Chen Y. M. et al., 2015

DDP1 uonEx1 [unc-54::alpha-

synuclein::CFP +

unc-54::alpha-

synuclein::YFP

(Venus)]

Yes Monitoring the influence of genetic and/or

environmental factors on the extent of

α-synuclein aggregation using FRET signals.

Reduced lifespan,

reduced pharyngeal

pumping compared

to N2.

Bodhicharla et al., 2012

BZ555 dat-1p::GFP Yes Dopaminergic degeneration using agents

such as 6-OHDA, MPTP, insecticide like

monocrotophos.

Not reported. Pu and Le, 2008; Jadiya et al., 2011; Ali and

Rajini, 2012; Fitsanakis, 2012; Fatima et al.,

2014; Fu et al., 2014a; Chen Y. M. et al.,

2015; Li J. et al., 2016; Nidheesh et al.,

2016; Satapathy et al., 2016; Xu et al., 2017

Not reported. Basal response to

food.

Li J. et al., 2016

JVR105 cwrIs730 [dat-1p::GFP,

lin-15(+)]

No Neuronal morphology. 1. Basal slowing.

2. Ethanol

avoidance.

3. Area restricted

searching.

Cooper et al., 2015

BY200 dat-1p::GFP,

pRF4(rol-6(su1006)

No Dopaminergic degeneration using agents

such as 6-OHDA, MPTP.

Locomotion. Nass et al., 2002; Benedetto et al., 2010;

Settivari et al., 2013; Masoudi et al., 2014

BY250 dat-1p::GFP No Dopaminergic degeneration using agents

such as 6-OHDA, Manganese, Uranium,

bacterial metabolite, methyl mercury,

aluminum.

Not reported. Nass et al., 2005; Jiang et al., 2007; Settivari

et al., 2009; VanDuyn et al., 2010, 2013;

Zhou et al., 2013; Gonzalez-Hunt et al.,

2014; Ray et al., 2014

JVR103 dat-1p::GFP No Dopaminergic degeneration. 1. Basal response to

food.

Cooper et al., 2015

2. Locomotion.

3. Area restricted

searching.

4. Ethanol avoidance.

(Continued)
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TABLE 1 | Continued

Strain Name Genotype Available

through

the CGC?

Pathological markers Behavioral

phenotype

References

UA57 dat-1p::GFP +

dat-1p::CAT-2

Yes 1. Dopaminergic degeneration using MPTP. Not reported. Braungart et al., 2004; Yao et al., 2010a;

Masoudi et al., 2014; Liu et al., 20152. Age dependent dopaminergic

degeneration.

UA44 dat-1p::α-

synuclein+dat-1p::GFP

No α-synuclein-induced DA neuronal death. Not reported. Cao et al., 2005; Buttner et al., 2014;

Munoz-Lobato et al., 2014

BY273 dat-1p::GFP;

dat-1p::WTα-synuclein

No Dopaminergic degeneration induced by

α-synuclein using manganese and

aluminum.

Not reported. Settivari et al., 2009; VanDuyn et al., 2013

JVR107 (Strain

name not

published for

Kuwahara et al.,

2006, 2008)

dat-1p::

α-synuclein[A53T]

No Dopaminergic degeneration. 1.Basal response to

food.

Cooper et al., 2015

2. Locomotion.

3. Area restricted

searching.

4. Ethanol avoidance.

1. Dopaminergic degeneration. Basal response to

food.

Kuwahara et al., 2006, 2008

2. Estimation of DA content.

JVR203 dat-1p::α-

synuclein[A53T];

vtIs7[dat-

1p::GFP(pRB490)]

No Dopaminergic degeneration. 1. Basal response to

food.

Cooper et al., 2015

2. Locomotion.

3. Area restricted

searching.

4. Ethanol avoidance.

JVR104 cwrIs856 [dat-1p::GFP,

datp-1::LRRK2(WT),

lin-15(+)], cwrIs722

[dat-1p::GFP,

Pdat-1::LRRK2 (WT),

lin-15(+)]

No Dopaminergic degeneration. 1. Basal response to

food.

Cooper et al., 2015

JVR168 2. Locomotion.

SGC722 3. Area

restricted searching.

4. Ethanol avoidance.

1. Age-dependent degeneration of DA

neurons due to overexpression of LRRK2

(WT).

1. Basal response to

food.

Yao et al., 2010a

2. Estimation of DA content. 2. Locomotion.

Not published dat-1p:: α-synuclein No Dopaminergic degeneration. Not reported. Cao et al., 2005; Kautu et al., 2013

Not published dat-1p::

α-synuclein[A53T]

No Dopaminergic degeneration. Locomotion. Lakso et al., 2003

SGC851 lin-15(n765ts) X;

cwrIs851 [dat-1p::GFP,

dat-

1p::LRRK2(R1441C),

lin-15(+)]

No 1. Age-dependent degeneration of DA

neurons due to overexpression of LRRK2

(R1441C).

1. Basal response to

food.

Yao et al., 2010a; Yao C. et al., 2013

2. Estimation of DA content. 2. Locomotion.

SGC856 lin-15(n765ts) X;

cwrIs856 [dat-1p::GFP,

dat-

1p::LRRK2(G2019S),

lin-15(+)]

No 1. Age-dependent degeneration of DA

neurons due to overexpression of LRRK2

(G2019S).

1. Basal response to

food.

Yao et al., 2010a; Yao C. et al., 2013

2. Estimation of DA content. 2. Locomotion.

MAB147 (mjaEx109)

[djr-1.1p::GFP;

rol6(su1006)]

No Not reported. Dauer dependant

behavior.

Chen P. et al., 2015

(Continued)
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TABLE 1 | Continued

Strain Name Genotype Available

through

the CGC?

Pathological markers Behavioral

phenotype

References

MAB82 (mjaEx050

[djr-1.2p::GFP; Rol

6(su1006)]; otls181)

No Not reported. Dauer dependant

behavior.

Chen P. et al., 2015

BR3646,

BR3645

(pha-1(e2123);byEx686

[pink-1]),(pha-

1(e2123);byEx687

[pink-1])

No Mitchondrial homeostasis and oxidative

stress response.

Fecundity. Sämann et al., 2009

Not published dat-1p::GFP + dat-

1p::α–synco-expressed

with dat-1p::FLAG-

W08D2.5

No Age-dependent degeneration of DA neurons

due to over-expression of α-synuclein.

Not reported. Gitler et al., 2009

VC1024 pdr-1 (gk448) III Yes Not done. Basal response to

food.

Martinez-Finley et al., 2013

dopaminergic neurons, expression as inclusion bodies is rare
and aggregation of α-synuclein is not observed in Western
blots (Lakso et al., 2003). However, α-synuclein misfolding can
be followed in body wall muscle cells as translational fusion
YFP inclusions. In strains NL5901, OW13, and DDP1, which
express these inclusions, α-synuclein aggregates and leads to
toxicity with age. Importantly, large-scale reverse genetic RNAi
screens have revealed enhancers and suppressors of α-synuclein
misfolding, including genes that protect against α-synuclein
neurodegeneration when co-expressed with α-synuclein in
dopaminergic neurons (Hamamichi et al., 2008; van Ham et al.,
2008).

LRK-1 and PINK-1
In PD patients, mutations in the multi-domain protein leucine-
rich repeat kinase 2 (LRRK2) are the most common genetic
risk factors for both familial and sporadic PD, accounting for
4% of familial and 1% of sporadic PD across all populations
(Healy et al., 2008). Mutations are prevalent within the GTPase
(R1441C/G) and kinase (G2019S) domains of LRRK2. The
normal function of LRRK2 is an area of active investigation,
with research suggesting remarkably diverse pathways including
regulation of transcription (Kanao et al., 2010), translation (Imai
et al., 2008), apoptosis (Ho et al., 2009), and mitochondrial
function (Smith et al., 2005). LRRK2 is consistently located
at intracellular membranous structures including mitochondria
(West et al., 2005; Biskup et al., 2006; Gloeckner et al.,
2006; Hatano et al., 2007), the endo-lysosomal system (Alegre-
Abarrategui et al., 2009), the endoplasmic reticulum (ER)
(Gloeckner et al., 2006; Vitte et al., 2010), and Golgi C. elegans
(Biskup et al., 2006; Gloeckner et al., 2006; Hatano et al.,
2007).

In C. elegans, the lrk-1 gene is homologous to mammalian
LRRK1 and LRRK2, human and mouse leucine-rich repeat
kinases, respectively. LRRK1 is necessary for polarized
localization of synaptic vesicle proteins to presynaptic regions

(Shin et al., 2008; Esposito et al., 2012). LRK-1 is expressed in
many tissues, including head and tail neurons, hypodermis,
intestine and muscles, and localizes to the Golgi apparatus
(Sämann et al., 2009).

Two types of C. elegans genetic models have been used to
study the leucine-rich repeat kinase and its contribution to
PD-like symptoms. In the first, two lrk-1 mutant strains that
each contain severe loss-of-function alleles (tm1898) and (km41)
that express truncated LRK-1 proteins consisting of the N-
terminal ankyrin repeat, have been used to study pink-1, a
PTEN-induced kinase and homolog of the PD-related human
PINK1. Both alleles of lrk-1 suppressed the paraquat sensitivity
of pink-1(tm1779) mutants to restore survival to wild-type levels
(paraquat toxicity is detailed in the Insecticides and Herbicides
subsection of the Toxin-Induced Models section below). Lrk-
1(tm1898) also suppressed the mitochondrial cristae defects
of pink-1(tm1779) animals to wild-type levels suggesting that
genetic deletion of lrk-1 could compensate for both the oxidative
stress sensitivity and the mitochondrial integrity observed in a
pink-1 loss-of-function allele. Interestingly, both C. elegans lrk-
1 allele mutants are not sensitive to paraquat and have an intact
mitochondrial cristae, but exhibit an enhanced sensitivity to ER
stress that can be rescued by pink-1(tml779). Moreover, both lrk-
1mutations suppressed pink-1(tml779)-mediated axon guidance
defects suggesting that LRK-1 and PINK-1 act antagonistically
in stress response and neurite outgrowth (Sämann et al., 2009).
These results link pink-1/PINK1 and lrk-1/LRRK2 function to
the pathological processes involved in PD, and highlight stress
sensitivity and cytoskeletal defects as factors that may contribute
to the onset of PD.

In the second approach, human wild-type andmutant G2019S
and R1441C LRRK2 have been overexpressed in dopaminergic
neurons of C. elegans under the expression of the dopamine
transporter dat-1 promoter co-injected with dat-1p::GFP to
generate [dat-1p::GFP, dat-1p::LRRK2(WT), lin-15(+)] and [dat-
1p::GFP, dat-1p::LRRK2(G2019S), lin-15(+)] (Yao et al., 2010b;
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Yao S. C. et al., 2013; Cooper et al., 2015). Overexpression
of these LRRK2 proteins caused age-dependent degeneration
of dopaminergic neurons, behavioral deficits, locomotory
dysfunction, and reduced dopamine levels in transgenic models
of C. elegans. In comparison to the overexpression of wild-
type LRRK2, R1441C and G2019S mutants showed more severe
phenotypes. Treatment with exogenous dopamine rescued the
LRRK2-induced behavioral and locomotory deficits (Yao et al.,
2010b; Yao S. C. et al., 2013).

PDR-1
Some autosomal recessive forms of PD are associated with
mutations in PARKIN (PARK2), an E3 ubiquitin ligase that
is important for neuronal protein homeostasis (Lücking et al.,
2000; Bonifati et al., 2003; Valente et al., 2004; Trempe and Fon,
2013). In C. elegans, the PARK2 homolog pdr-1 is an essential
component in the degradation machinery during the response
to proteotoxic stressors (Springer et al., 2005). Specifically, pdr-1
was shown to play a role in the UPR pathway, and co-expression
of mutant α-synuclein A53T and truncated pdr-1 exacerbated
mutant α-synuclein-induced toxicity in a UPR-independent way
(Springer et al., 2005). Previously, Morimoto and colleagues
showed that heat shock proteins and molecular chaperones
play an important role in maintaining protein homeostasis
(Morimoto et al., 1997; Morimoto, 2008). Failure of these
proteins to prevent misfolding and clearance of toxic aggregated
proteins disrupts protein homeostasis and contributes to aging
in C. elegans (Satyal et al., 2000; David et al., 2010). Conversely,
overexpression of chaperones can improve proteostasis and
reduce aggregation in protein misfolding diseases (Calamini
et al., 2011). Recently, a new proteostasis mechanism of protein
clearance for toxic, misfolded, and aggregated proteins in
C. elegans neurons was proposed by Melentijevic et al. (2017).
In this model, extracellular vesicles called exophers pinch off
from the soma of some types of neurons to jettison toxic protein
aggregates and damaged organelles including mitochondria and
lysosomes for downstream degradation. The authors note that
fluorescently-labeled touch receptor neurons of animals that have
a pdr-1(gk448) mutant genetic background or those treated with
pink-1 RNAi produce significantly more exophers than animals
of a wild-type background (Melentijevic et al., 2017). These
observations suggest that impairedmitochondrial genes linked to
PD can increase exopher production and provide a potential new
area of investigation for cellular hallmarks of PD (Melentijevic
et al., 2017).

DJR-1.1 and DJR-1.2
In humans, the DJ-1 gene is causally linked to familial PD
(Bonifati et al., 2003). First identified as an oncogene (Nagakubo
et al., 1997), its functions include transcriptional regulation,
antioxidant activity (in particular after toxic insults), chaperone
activity, protease cleavage, and mitochondrial regulation. DJ-
1 activity is regulated by its oxidative status and excess
oxidation renders the protein inactive, a hallmark observed
in patients with sporadic and familial PD as well as some
patients with Alzheimer’s disease (Choi et al., 2006). DJ-1 can
also act as a stress sensor and its expression is increased

with stresses such as oxidative stress (Ariga et al., 2013).
C. elegans have two DJ-1 orthologs: djr-1.1, and djr-1.2;
both encode a type of glyoxylase. This enzyme facilitates the
removal of α-oxoaldehydes, byproducts of glucose oxidation,
lipid peroxidation and DNA oxidation, which can react non-
enzymatically with amino groups of proteins to form advanced
glycation end-products (AGEs), which are linked to PD (Lee
et al., 2012). DJR-1.2 localizes to the cytosol and is expressed
throughout life in a variety of cell and tissue types such as head
neurons (including dopaminergic neurons), pharyngeal muscle,
the ventral nerve cord, spermatheca, excretory canal cells, and
coelomocytes. Manganese (Mn) (discussed in more detail in
the Manganese subsection of the Toxin-Induced Models section
below) is an essential nutrient needed for protein and energy
metabolism, metabolic regulation, protection from reactive
oxygen species (ROS), and enzymes function. Environmental
exposure to large doses of Mn can lead to manganism, which
shares multiple features with PD and is an established risk factor
for PD occurrence (Aschner et al., 2009). Previously, Benedetto
and colleagues have shown that intracellular dopamine can lead
to Mn-induced dopaminergic neurodegeneration in C. elegans,
and that this process depends on a functional dopamine-reuptake
transporter (DAT-1) and is associated with elevated oxidative
stress and reduced lifespan (Benedetto et al., 2010). Neuronal
expression of DJR-1.2 in the head and ventral nerve chord
neurons is elevated after exposure to acute Mn (Chen P. et al.,
2015) and djr-1.2 is protective against Mn-induced dopaminergic
toxicity in an age-dependent manner (Chen P. et al., 2015).
Specifically, deletion of djr-1.2 decreases survival and dopamine-
dependent dauer movement behavior after Mn exposure, and
lifespan could be rescued by overexpression of djr-1.2 or daf-
16 (Chen P. et al., 2015) mitigating Mn-dependent lifespan
reduction and dopamine signaling alterations, involving DAF-
2/DAF-16 signaling. The C. elegans djr-1.1, also orthologous
to DJ-1, localizes to the intestine and plays a primary role in
protecting animals from glyoxal. Treatment of djr-1.1, and to a
lesser extent djr-1.2 deletion animals with glyoxal significantly
improved their survival suggesting that this gene can protect
animals from glyoxal-induced death (Lee et al., 2012).

DAT-1 and CAT-2
The human dopamine transporter (DAT) pumps dopamine out
of the synapse back into the cytosol where other transporters
deliver it to specialized vesicles for storage and eventual release.
Reuptake via DAT is a major mechanism through which
dopamine is cleared from synapses. Dopaminergic neurons in the
substantia nigra of PD patients express higher levels of DAT (Uhl,
1998; Nass and Blakely, 2003) and greater DAT levels are linked
to reduced dopamine turnover and smaller changes in synaptic
dopamine concentration (Longo et al., 2017). This implies that
an important functional role of DAT is to maintain relatively
constant synaptic dopamine levels and to preserve dopamine in
nerve terminals (Sossi et al., 2007, 2009; Lee et al., 2008).

The eight dopaminergic neurons of C. elegans have been
fluorescently tagged with GFP using the DAT-1 promoter
in neuronal transgenic strains BZ555 ([dat-1p::GFP]), BY200
[dat-1p::GFP, pRF4(rol-6(su1006)], and TG2435 ([dat-1p::GFP
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+ rol-6(su1006)]) (Nass et al., 2002; Pu and Le, 2008; Masoudi
et al., 2014; Cooper et al., 2015). Studying these cells in a genetic
background of overexpressed α-synuclein or after treatment with
the environmental toxin 6-OHDA has revealed that DA neurons
degenerate with age and identified alleles that confer 6-OHDA
resistance (Nass et al., 2005; Hamamichi et al., 2008).

The C. elegans cat-2 gene encodes tyrosine hydroxylase, a rate-
limiting enzyme for dopamine synthesis (Sulston et al., 1975;
Omura et al., 2012; Masoudi et al., 2014). Overexpression of
CAT-2 in C. elegans leads to age-dependent degeneration of
dopaminergic neurons (Cao et al., 2005; Masoudi et al., 2014).
Table 1 summarizes the most commonly used C. elegans strains
for studying the molecular pathology and behavioral phenotypes
of PD.

Toxin-Induced Models
MPTP and 6-OHDA
In addition to transgenic C. elegans models involving the
overexpression or mutation of PD-linked genes to study the
genetic causes of PD, environmental agents have also been
used to study PD-related neuronal degeneration and cell death
(Nass et al., 2002; Pu and Le, 2008; Ali and Rajini, 2012;
Zhou et al., 2013). Previous studies have modeled the motor
aspects of PD using in vivo exposure to toxins that cause an
overload of ROS and disrupt the electron transport chain in
mitochondria leading to neuronal abnormalities and eventually
cell death (Varcin et al., 2012; Dias et al., 2013; Hwang, 2013;
Chege and Mccoll, 2014). The best studied neurodegeneration-
inducing chemicals in C. elegans PD models are the toxins 6-
OHDA (6-hydroxydopamine) and MPTP (1-methyl-1, 2, 3, 6-
tetrahydropyidine) (Nass et al., 2001; Chakraborty et al., 2013;
Chen P. et al., 2015).

MPTP was first identified as a PD-causing neurotoxin
in humans in the 1980s after drug addicts in California
inadvertently administered the agent in synthetic heroin
(Langston et al., 1983). MPTP is highly lipophilic and can cross
the blood brain barrier. In the brain, it is converted to 1-
methyl-4-phenylpyridinium ion (MPP+) by glial monoamine
oxidase B (Smeyne et al., 2005). MPP+ exerts neuronal
toxicity by inhibiting complex I of the mitochondrial electron
transport chain to induce mitochondrial dysfunction, decreasing
the mitochondrial DNA content, and impairing autophagic
degradation (Zhu et al., 2012; Miyara et al., 2016). Braungart and
colleagues showed that wild-type C. elegans treated with 1.4 mM
MPP+ at the L1 stage display developmental delays and exhibit
an uncoordinated behavioral phenotype (twitcher and coiler) 3
days after treatment compared to untreated controls (Braungart
et al., 2004). Further, MPP+ was actively taken up by the
dopamine transporter and selectively degenerated dopaminergic
neurons. In a screen that tested compounds for ameliorating the
toxic effects of MPP+, two dopamine receptor agonists, lisuride
and apomorphine, improved mobility and reduced coiling with
no effect on development and mobility of wild-type animals,
suggesting that improved symptoms resulted from the reduction
of MPP+ toxicity (Braungart et al., 2004). Treating cat-2::GFP
animals with 1.0 and 1.5 mMMPP+, degenerated dopaminergic
neurons and led to reduced mobility (Braungart et al., 2004).

6-OHDA was first isolated in the 1950s (Senoh and Witkop,
1959; Senoh et al., 1959); it has a chemical structure similar to
dopamine but with the addition of a hydroxyl group that makes
it toxic to dopaminergic neurons (Blesa et al., 2012b). In PD
research, the administration of 6-OHDA causes mitochondrial
failure by inhibiting complex I of the mitochondrial electron
transport chain. This results in ATP depletion and elevated
oxidative stress, which ultimately leads to dopamine neuron
damage (Glinka et al., 1997, 1998; Nass et al., 2002; Meredith
et al., 2008; Pu and Le, 2008; Meredith and Rademacher,
2011; Ali and Rajini, 2012; Thiele et al., 2012). In C. elegans,
6-OHDA administration leads to the loss of GFP-labeled
dopaminergic cell bodies and processes (Masoudi et al., 2014).
Interestingly, two dopamine D2 receptor agonists, bromocriptine
and quinpirole, ameliorate 6-OHDA toxicity in a dose-dependent
manner via receptor-independent mechanisms (Marvanova and
Nichols, 2007). CAT-2 overexpression confers resistance to 6-
OHDA in wild-type and CAT-2 mutant backgrounds possibly
due to reduced 6-OHDA uptake into dopaminergic neurons
when excess dopamine is present (Masoudi et al., 2014).
Due to the conservation between mammalian and C. elegans
dopamine receptors, these and other results from toxin-induced
neurodegeneration studies in C. elegans may help shed light
on novel mechanisms leading to dopaminergic neuroprotection
(Chen Y. M. et al., 2015).

Insecticides and Herbicides
Rotenone (a broad spectrum insecticide), paraquat (an
herbicide), and several other insecticides have been used to
induce PD-like pathology in C. elegans (Ved et al., 2005; Settivari
et al., 2009; VanDuyn et al., 2010, 2013; Jadiya and Nazir,
2012; Jadiya et al., 2012; Zhou et al., 2013; Gonzalez-Hunt
et al., 2014). Both paraquat and rotenone trigger excessive
ROS production in neurons, which leads to cellular damage
(Ved et al., 2005; Miller et al., 2007; Tanner et al., 2010, 2011;
Spivey, 2011; Zhou et al., 2013). Caenorhabditis elegans strains
including BY250 (dat-1p:GFP), BZ555 (dat-1p:GFP), and UA57
([dat-1p::GFP+dat-1p::cat-2]) can be exposed to these toxins to
visualize and quantify abnormalities in neuronal morphology
(Nass et al., 2002; Pu and Le, 2008; Liu et al., 2015; Li H. et al.,
2016). Jadiya and colleagues selected specific neurotoxins to
represent different pesticide classes including a botanical, an
herbicide, a pesticide, a fungicide, an organophosphate, and a
pyrethroid. The authors found that in strain NL5901 ([unc-
54p::α-synuclein::YFP+unc-119(+)]), superoxide dismutase and
heat shock protein genes exhibit a unique pattern of expression
for each pesticide class (Jadiya and Nazir, 2012; Jadiya et al.,
2012). In addition, rotenone significantly increased α-synuclein
aggregation and oxidative stress, while reducing mitochondrial
and lipid content in NL5901 animals (Jadiya and Nazir, 2012).

Manganese
Mn is an essential transition metal required for growth,
development and cellular homeostasis (Prohaska, 1987; Takeda
et al., 2003). It is a co-factor for multiple enzymes such
as Mn superoxide dismutase, pyruvate carboxylase, arginase,
and glutamine synthase, and can substitute for magnesium
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(Mg) in enzymatic reactions catalyzed by kinases (Horning
et al., 2015). However, inhaling toxic levels of Mn can lead
to nasal and pulmonary inflammation, renal dysfunction, and
neurodegeneration (Aschner and Aschner, 1991). For example,
occupational exposure through Mnmining, steel manufacturing,
and welding are linked to increased risk for parkinsonian
syndrome (Myers et al., 2003). Specifically, exposure to toxic
levels of Mn can cause oxidative injury in the substantia nigra,
the loss of dopaminergic neurons and phenotypes such as
tremor, rigidity, and bradykinesia (Calne et al., 1994; Olanow,
2004). In C. elegans, Benedetto et al. found that extracellular
and not intracellular dopamine is responsible for Mn-induced
dopaminergic neurodegeneration, and that this process depends
on a functional DAT-1 receptor and is linked to oxidative
stress and lifespan reduction. Overexpression of the antioxidant
transcription factor, SKN-1, reduces Mn toxicity, and dopamine-
dependent Mn toxicity requires the NADPH dual-oxidase BLI-3.
The authors proposed that in vivo BLI-3 (which has over 99%
homology to the human DUOX genes) facilitates the conversion
of extracellular dopamine into toxic reactive species, which
get taken up by DAT-1 in dopaminergic neurons and cause
oxidative stress and cell degeneration (Benedetto et al., 2010).
Mn neurotoxicity was also studied in genetic DJ-1 models of
C. elegans exposed to Mn (Chen P. et al., 2015); the results
suggest that DJ-1 has a protective role and improves lifespan in
Mn-exposed nematodes in an age-dependent manner.

MARKERS OF PATHOLOGY IN GENETIC
AND TOXIN-INDUCED PD C. ELEGANS

MODELS

Alpha-Synuclein Expression
To model α-synuclein aggregation and accumulation in vivo,
researchers have generated transgenic C. elegans strains that
express the human α-synuclein gene in body wall muscle cells
and in neurons (Table 1). In these models, increased or decreased
fluorescence intensity associated with YFP linked to α-synuclein
can be quantified to determine the levels of protein expression
(Jadiya et al., 2011; Jadiya and Nazir, 2012; Fatima et al., 2014;
Fu et al., 2014a; Chen Y. M. et al., 2015; Liu et al., 2015). Loss
of fluorescence intensity indicates reduced protein expression,
whereas increased fluorescence indicates increased α-synuclein
expression. Such changes in protein expression can be visualized
using microscopy (Figure 1) and analyzed using freely available
programs such as FIJI (Schindelin et al., 2012). Alterations in
protein expression can also be assessed using techniques such as
fluorescence resonance energy transfer (FRET) or fluorescence
recovery after photobleaching (FRAP) (Bodhicharla et al., 2012).

Neuronal Morphology
Aberrant neuronal morphologies caused by exposure to
neurotoxins or heavy metals can be visualized using fluorescence
microscopy and quantified by counting the types and
frequencies of aberrations. Such investigations typically
focus on dopaminergic neurons of the head, i.e., the four CEPs
and two ADEs (Figures 2a,b). Aberrant morphologies include

FIGURE 1 | Representative image of the head region of a day-7 adult of strain

NL5901 ([unc-54p::α-synuclein::YFP+unc-119]), maintained at 22◦C, showing

α-synuclein protein expression in the body wall muscle cells. The white arrow

indicates one of multiple visible protein aggregates. Scale bar, 50µm;

magnification, 50×. (Original image taken by the authors for this paper on a

Zeiss LSM 510 laser scanning confocal microscope).

the loss of neuronal cell bodies (Figure 2c), the absence of
neuronal processes, broken neurites (Figure 2d), shrinking of
dendritic endings, and the appearance of vacuoles (Nass et al.,
2002; Pu and Le, 2008; Yao et al., 2010b; Masoudi et al., 2014). In
addition, neurons exposed to toxins may appear dark, rounded
and/or small, exhibit neuritic blebbing (Figure 2e), and lose
GFP expression (Nass et al., 2002; Berkowitz et al., 2008; Pu
and Le, 2008; VanDuyn et al., 2010; Ali and Rajini, 2012; Fu
et al., 2014a; Masoudi et al., 2014). Selective degeneration can
be scored based on any of these morphological changes or the
absence of the neurons. In addition, C. elegans dopaminergic
neurons that express human α-synuclein degenerate by mid-life
(Hamamichi et al., 2008). In contrast, most genetic mouse
models of α-synuclein fail to show degeneration of dopamine
neurons (Blesa et al., 2012a; Blesa and Przedborski, 2014).

Dopamine Content
Dopamine reuptake transporters (DAT-1 in C. elegans)
play a crucial role in the uptake of environmental toxins
such as 6-OHDA and MPTP, which enter neurons, cause
cell degeneration, and decrease the levels of endogenous
dopamine (Gainetdinov et al., 1997; Nass et al., 2002; Pu and
Le, 2008; Ali and Rajini, 2012; Masoudi et al., 2014). The
dopamine content in C. elegans treated with a neurotoxin
can be measured by reverse phase high performance liquid
chromatography (RP-HPLC) with electrochemical detection
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FIGURE 2 | Representative images of the head regions of day-5 adults of strain BZ555 ([dat-1p::GFP]), maintained at 22◦C. The images show (a) six healthy

dopaminergic neurons (four CEPs [white arrows] and two ADEs [yellow arrows]), (b) two intact cell processes or dendrites (white arrows) of the four CEP neurons,

which extend from the pharynx to the tip of the nose (c) the shrinkage of a cell body (white arrow), (d) neuritic blebbing (white arrows), and (e) abrupt gaps or breaks

in the dendrites or cell processes (white arrows) caused by 50 mM 6-OHDA. (Scale bars, 50µm; magnification, 50×. Original image taken by the authors for this

paper on a Zeiss LSM 510 laser scanning confocal microscope).

(Pehek et al., 2005; Yao et al., 2010b; Satapathy et al., 2016).
Reduced levels of dopamine and the resulting behavioral
deficits are found in C. elegans overexpressing LRRK2 (both
wild-type and mutated forms; Yao et al., 2010b). LRRK2
animals have a 50–72% reduction in dopamine levels
compared to the wild-type control strain N2 (Yao et al.,
2010b).

An alternative method is to measure dopamine content
using HPLC followed by the detection of chemiluminiscence
(Kuwahara et al., 2006; Tsunoda, 2006; Fu et al., 2014a). Post
separation, colorimetric oxidation, fluorescence derivatization
with ethylenediamine, and peroxyoxalate chemiluminiscence
reaction detection are then performed on the extracts containing
dopamine and its metabolites (Tsunoda, 2006). This method
is highly sensitive, with detection limits in the fentomolar
range, and makes it possible to measure dopamine in small-
volume samples. HPLC with chemiluminiscence was used to
show reduced dopamine levels and a reduced locomotory
phenotype in transgenic C. elegans strains expressing A30P
or A53T mutant α-synuclein in dopamine neurons (Kuwahara
et al., 2006). In another study, the same technique revealed
that the dopamine content of 6-OHDA-treated animals was 64%
less than untreated controls (Fu et al., 2014a). Interestingly,
the levels of dopamine in 6-OHDA-treated animals are
elevated after treatment with the natural compound n-
butylidenephthalide (Fu et al., 2014a). Additionally, using HPLC
with UV detection, Ali and Rajini showed that the dopamine
levels of MPTP and organophosphorous insecticide-exposed

C. elegans are lower than in untreated controls (Ali and Rajini,
2012).

Lipid Content
Prior research suggests that the aggregation of α-synuclein
oligomers is associated with lipid peroxidation due to ROS
overload, which can alter cellular membrane composition
(Binukumar et al., 2010; Angelova et al., 2015). In C. elegans,
intracellular fat droplets can be stained with the fluorescent dye
Nile red (a lipophilic stain that fluoresces in a lipid environment),
visualized with fluorescence microscopy (Figure 3), and
quantified by analyzing the fluorescence staining. Several studies
have shown that the NL5901 and OW13 strains have lower
Nile red fluorescence than wild-type control N2 animals of
the same age, indicating a reduced lipid content in PD strains
(Jadiya et al., 2011; Jadiya and Nazir, 2012; Fu et al., 2014a).
However, further investigation is warranted to describe the
role of lipid content in C. elegans models of PD. For example,
the lipid content of PD strains should be directly compared
to their corresponding genetic controls, not just to wild-type
N2 control strains. In addition, another widely used stain for
measuring lipid content in C. elegans, Oil Red O, is a fat-soluble
diazo dye that has been widely used to stain lipid droplets in
mammalian cells and tissues, and has recently been applied
to observing lipid stores in C. elegans (O’Rourke et al., 2009;
Elle et al., 2010; Wahlby et al., 2014). This stain measures fat
stores contained only in lipid droplets, which correlate well with
biochemically-measured lipids (total fatty-acid methyl esters).
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FIGURE 3 | Representative images of Nile red staining of lipid content in live,

day-5 adult C. elegans in (a) a wild-type N2 animal under fluorescence

microscopy and (b) an OW13 [unc-54p::α-synuclein::YFP + unc-119(+)]

animal under fluorescence microscopy. Image (c) depicts an overlay of phase

contrast and fluorescence microscopy of a wild-type N2 animal and (d) shows

an overlay of phase contrast and fluorescence microscopy of an OW13 animal.

Strains were maintained at 22◦C. White arrows represent stained fat droplets.

Scale bar, 50µm; magnification, 60x. Original image taken by the authors for

this paper on an Olympus FLUORVIEW FV10i confocal microscope.

Whereas Nile red primarily stains acidic lysosome-related gut
granules in live or fixed animals (Elle et al., 2010; Wahlby et al.,
2014), Oil Red O shows a better correlation with triglyceride
levels. Depending on the solvent, Oil Red O can also stain
cellular structures in non-adipogenic cell lineages (Elle et al.,
2010). Yen and colleagues showed that fixed, but not Nile red-fed
(live) wild-type N2 animals reveal fat stores that match label-free
coherent anti-Stokes Raman scattering (CARS) imaging or Oil
Red O and Nile Red fixed imaging (Yen et al., 2010). Another
study by Barros and coworkers compared different methods
(Nile red, BODIPY, Sudan Black and Oil Red O) to study the
effect of dopamine signaling on fat content in C. elegans. Results
showed similarity between fixative based dyes (Sudan Black and
Oil Red O) and vital dyes (BODIPY and Nile Red) with smaller
measurable decreases for the vital dyes (Barros et al., 2014). It
will be interesting to further elucidate the role of lipid content in
cellular hallmarks of PD by using these additional tools.

BEHAVIORAL PHENOTYPING

In humans, movement is controlled by synergistic inputs
from the neuronal networks located in the substantia nigra
of the ventral midbrain (Groves, 1983). These nerve cells
together form an intricate network of axonal processes that
synapse with dendritic spines by innervating the basal ganglia

(Pickel et al., 1981; Freund et al., 1984). Crosstalk between
neurons of the substantia nigra and basal ganglia results in
dopamine release, which plays a crucial role in modulating
movement (Bernheimer et al., 1973; Lanciego et al., 2012). This
modulation is lost in PD due to the loss or degeneration of the
dopaminergic neurons in the substantia nigra, which leads to
motor dysfunction (Greengard, 2001). In spite of advancements
in our understanding of the pathophysiology of PD and the
development of several dopamine-based therapies, the exact
molecular mechanisms by which dysfunctional dopaminergic
systems lead to movement impairments in PD are not fully
understood. In addition, dopamine also has been implicated in
other functions such as eye movement, motor planning, learning,
motivation, and addiction (Wise, 2004; Schultz, 2007). These
multiple roles of dopamine in a complicated nervous system
pose several questions about its precise role in movement-related
disorders like PD. In C. elegans, the dopaminergic system has
been well described and found to have structural and functional
similarities to that of humans (Duerr et al., 1999; Lee and
Ambros, 2001; Nass and Blakely, 2003; Suo et al., 2003; Chase
et al., 2004; Chase and Koelle, 2007). In addition, some of the
mechanisms of dopamine synthesis, storage, and transport in
humans are conserved in C. elegans, and the nerve endings
of dopaminergic neurons and synaptic vesicles have similar
dopamine levels to those in mammalian neurons (Fuxe and
Jonsson, 1973; Bargmann, 1998; Chege andMccoll, 2014). Studies
have established that disrupting dopamine signaling can lead
to behavioral phenotypic changes in C. elegans such as altered
movement (Omura et al., 2012), defecation (Vidal-Gadea and
Pierce-Shimomura, 2012), egg-laying (Weinshenker et al., 1995),
food sensing (Sawin et al., 2000), and response to external
environmental cues including ethanol and nonanol (Lee et al.,
2009; Kimura et al., 2010). In C. elegans, dopamine also controls
acclimatization to mechanical stimuli (Sanyal et al., 2004),
foraging (Hills et al., 2004), and transitions between crawling and
swimming behavior (Vidal-Gadea et al., 2011).

Basal Slowing or Food-Sensing Behavior
The locomotion rates of C. elegans change in the presence or
absence of food, and feeding status. For example, well-fed,
wild-type animals move more slowly in the presence of bacteria
versus when there is no bacterial food source on the petri dish.
This foraging behavior is dependent on dopaminergic neurons,
which mechanically sense the presence and availability of
bacterial food by its texture, and when food is present, decrease
the animals’ locomotion (Sawin et al., 2000). This slowing in
response to abundant food in well-fed animals is called basal
slowing. Deficits in dopaminergic function are associated with
higher locomotion in the presence of food in well-fed animals,
as evidenced by their lower basal slowing response (Yao et al.,
2010b; Chen et al., 2013). Starved C. elegans slow down more
dramatically in the presence of food, a phenomenon referred
to as the enhanced slowing response, which ensures that the
animals do not leave their newly found food source (Sawin
et al., 2000; Rivard et al., 2010). Unlike basal slowing, which
is controlled by dopaminergic neurons, the enhanced slowing
response is regulated by serotonin (Sawin et al., 2000).
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To determine the basal slowing response, animals are washed
in buffer (typically M9) and then transferred to NGM plates
with or without OP50 bacterial lawns. Basal slowing, which is
measured as the frequency of body bends, is then recorded
for 20–60 s and analyzed using data acquisition software as
follows: (basal slowing = [rate of movement in the absence
of food − rate of movement in the presence of food]/rate
of movement in the presence of food) (Cooper et al., 2015).
Basal slowing or food sensing behavior can also be measured
as: (basal slowing = [movement rate of the animals in the
presence of bacteria/movement rate in absence of bacteria] ×
100) (Kuwahara et al., 2006). The study by Cooper et al. used
food-sensing behavior to assess the functional loss of dopamine
neurons in C. elegans expressing the familial Parkinson mutant
human α-synuclein in dopamine neurons. The results showed
that C. elegans expressing either human mutant α-synuclein
(A53T) or human mutant LRRK2 (G2019S) exhibited deficits
in this dopamine-related behavior (Cooper et al., 2015). This
deficiency can be rescued by a mutation in the insulin-IGF1
receptor C. elegans ortholog, daf-2, a key modulator of aging
pathways (Kenyon et al., 1993). Interestingly, the overexpression
of LRRK2 (both wild-type and G2019S mutated forms) and cat-2
deletion disrupt the age-dependent basal slowing response. This
diminished behavior can be rescued by treatment with exogenous
dopamine (Yao et al., 2010b; Johnson et al., 2015).

Area-Restricted Searching (ARS) Behavior
Area-restricted searching (ARS) is a foraging behavior in
which wild-type animals minimize searching in areas that have
abundant food and extend the search to larger areas when
food is scarce. As the time since removal from food increases,
animals turn less frequently towards the food (Hills et al.,
2004; Gray et al., 2005; Chen et al., 2013). This is a goal-
directed behavior that involves dopamine signaling. Removing
or damaging dopaminergic neurons can lead to abnormal or
abolished ARS behavior. For example, ARS behavior was rescued
by administering exogenous dopamine to animals with defective
dopamine signaling (Hills et al., 2004). ARS can be measured
by transferring well-fed animals to NGM plates and videotaping
them for 60 s after 5 and 30min. The number of turns that exceed
90 degrees are counted from the tracks of each animal at each
time-point (Cooper et al., 2015). ARS is impaired in both α-
synuclein and LRRK2 PD mutants (Cooper et al., 2015). Daf-2
mutations increase searching in both PD strains, suggesting a
role for aging in modulating dopamine-dependent behaviors in
nematode models of PD (Cooper et al., 2015).

Chemotaxis Assay
Caenorhabditis elegans can sense and respond to a multitude
of environmental cues. These responses can be both aversive
and attractive (Bargmann, 2006). For example, under standard
laboratory culturing conditions, untreated wild-type (N2)
animals avoid ethanol. However, when these animals are
continuously exposed to ethanol, they develop a tolerance to
and preference for ethanol, a response which is controlled by
the dopamine system (Davies et al., 2004; Lee et al., 2009).
Unlike wild-type animals, cat-2 and tph-1 mutants lacking

a functional dopamine system do not develop an ethanol
preference to chronic ethanol exposure (Lee et al., 2009). Ethanol
avoidance is significantly decreased in non-ethanol-pretreated
animals that express human mutant α-synuclein and mutant
LRRK2 compared to those expressing wild-type α-synuclein and
wild-type LRRK2 (Cooper et al., 2015). Interestingly, ethanol
avoidance is restored in an α-synuclein mutant with a deletion
of the daf-2 gene, indicating that slowing aging also slows PD
symptoms. To assay ethanol preference as a surrogate measure
of the dopamine system, animals are incubated on an ethanol
plate and transferred to assay plates that are divided into equal
quadrants. Ethanol is provided in two quadrants, and animals
are allowed to move freely for 30 min; the time preference for
the quadrants is scored during this time. A preference index (PI)
is calculated as ([number of animals in the ethanol quadrants]–
[number of animals in control quadrants])/the total number of
animals tested (Lee et al., 2009). This assay could also be used
to assess the PI of PD animals with an impaired dopaminergic
system caused by chemical exposure.

In C. elegans, the response to the aversive odorant nonanol is
regulated by dopamine signaling (Bargmann, 2006; Kimura et al.,
2010; Fatima et al., 2014; Sashidhara et al., 2014; Satapathy et al.,
2016). When a drop of nonanol is placed near the head of a wild-
type worm, the worm senses it and moves away as a chemotactic
“aversive” response. However, when its dopamine content is
diminished, the animals take longer to respond to the chemical
stimulus. The response time to nonanol is increased 2-fold in the
α-synuclein overexpressing strain NL5901 after treatment with
ida-1 (ortholog of mammalian diabetes autoantigen IA-2) RNAi
(Fatima et al., 2014). In contrast, certain botanical compounds
have shown to reduce the time required by both wild-type (N2
exposed to 6-OHDA/pesticide) and α-synuclein overexpressing
strains (NL5901) to respond to nonanol (Sashidhara et al., 2014;
Satapathy et al., 2016). This suggests that the “nonanol repulsion
assay” can be used as an indirect measure of dopamine content in
nematodes with impaired dopamine signaling.

Swim to Crawl Transition
Gait can be defined as alterations in the patterns of movement
based on the environment currently occupied by an animal.
In humans, the basal ganglia regulate motor movement during
gait, which activates dopaminergic neurons (Marsden, 1982;
Mink and Thach, 1991; Fukuyama et al., 1997; Koepp et al.,
1998). In PD, dysfunction in the basal ganglia region contributes
to impaired gait functions and rhythms (Morris et al., 1996;
Hausdorff et al., 1998; Sofuwa et al., 2005). Gaits in C. elegans
are mainly characterized as crawling (on solid “agar” media)
and swimming (in liquid media) (White et al., 1986; Pierce-
Shimomura et al., 2008). On agar, nematodes move or crawl
in a classical sinusoidal fashion. This changes to “thrashing” or
swimming when the animals are moved to liquid media. The
mechanisms behind this gait transition are unknown; however,
roles for bioamine neurotransmitters such as dopamine and
serotonin have been implicated (Mesce and Pierce-Shimomura,
2010).

In C. elegans, dopamine is responsible for a wide array of
behaviors including the gait transition from swim to crawl
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(Vidal-Gadea et al., 2011). The activation of dopamine neurons
by optogenetics confirmed that the switch from crawling
to swimming involves signaling through D1-like dopamine
receptors, which is similar to the pattern the animals exhibit
when they crawl off the bacterial food source (Sawin et al., 2000;
Vidal-Gadea et al., 2011). Under both conditions, dopamine
functions by decreasing the speed of the animal’s movement.
Animals with impaired dopaminergic signaling can exhibit
opposing behavioral phenotypes, and the genetic ablation of
all dopaminergic neurons can impair the transitions between
swimming and crawling and lead to paralysis in animals due to
incessant swimming (the swimming-induced paralysis or SWIP
phenotype; Vidal-Gadea et al., 2011). The dopamine transporter
DAT-1 plays an important role in dopamine reuptake and
clearance. In animals that exert maximal physical activity during
swimming, mutations in DAT-1 lead to SWIP (McDonald et al.,
2007). In humans, PD is characterized by impaired gait and
the failure to transition between locomotory patterns (Jankovic,
2008). The failure of C. elegans to transition between swimming
and crawling when the dopamine system is impaired reinforces
the validity of C. elegans PD models.

A swim-to-crawl assay involves growing animals on NGM
plates seeded with OP50 bacteria and then changing the
environmental conditions to affect movement. Such changes
could include increasing or decreasing the viscosity of the
medium or providing mechanical stimulation with magnetic
particles, as described by Vidal-Gadea et al. (2011). Gait
transitions are evaluated by video recording movement before
and after altering the conditions. For swim-to-crawl transition,
C. elegans lacking dopaminergic neurons will exhibit truncated
movement upon transitioning from a liquid to an agar medium.
Similarly, animals lacking the DAT-1 receptor accumulate high
amounts of endogenous dopamine, which induces a switch from
the swim to crawl phenotype before causing the SWIP phenotype
(McDonald et al., 2007; Vidal-Gadea et al., 2011). In C. elegans,
the swim-to-crawl assay has been used to demonstrate that the
membrane protein tetraspanin (TSP-17) protects dopaminergic
neurons against 6-OHDA-mediated neurodegeneration and the
toxicity caused by increased concentrations of endogenous
intracellular dopamine (Masoudi et al., 2014).

Mechanosensory Responses
Previous studies in C. elegans indicate that dopaminergic
neurons are mechanosensory (Loer and Kenyon, 1993; Liu
and Sternberg, 1995; Duerr et al., 1999; Sawin et al., 2000;
Bettinger and McIntire, 2004; Hills et al., 2004; Sanyal et al.,
2004; Abdelhack, 2016). Dopaminergic neurons respond to
anterior touch stimulation (Sanders et al., 2013). Caenorhabditis
elegans lacking tyrosine hydroxylase (cat-2 mutants) display
defective food-sensing behavior because they fail to slow
down when they encounter a bacterial food source. This
basal slowing response is mediated by dopamine signaling
and depends on physically touching the bacterial food source
(Sawin et al., 2000). Such interactions between dopamine and
mechanosensory touch responses are not well understood.
Nevertheless, these interactions appear to be necessary for
regulating foraging in nematodes (Sawin et al., 2000). This

confirms a role for dopamine in modulating the response to a
non-localized mechanical stimulus (such as taps) administered
to the NGM plate (Sanyal et al., 2004). Animals respond to
external tapping by escalating their forward or backward motion.
Repeated tapping attenuates the reversal frequencies and leads
to habituation (Rose and Rankin, 2001). The time required to
respond to the tap can be used as a measure of dopaminergic
function as the loss of dopaminergic function can alter this
behavior (Sanyal et al., 2004). Although this behavior has not
yet been studied in animals with Parkinson’s-like symptoms,
mechanosensory touch responses have been studied in C. elegans
neurodegenerative models of Huntington’s disease, Alzheimer’s
disease, and tauopathies (Parker et al., 2001; Miyasaka et al.,
2005; Gordon et al., 2008). Therefore, this behavior can be used
to assess healthy/impaired dopaminergic function in wild-type
and PD animals using cat-2 mutants as a negative control, since
these mutants habituate to tapping faster than wild-type strains
(Chen et al., 2013).

Dauer-Dependent Behavior
Under favorable conditions, the life cycle of C. elegans includes
the egg stage, four larval stages (L1-L4), and an adult stage, which
is reproductive in hermaphrodites and lasts for 3–5 days. When
exposed to overcrowded conditions, limited food, or chemical
or physical stressors, animals enter an alternative stage after L2
known as dauer diapause (Cassada and Russell, 1975; Fielenbach
and Antebi, 2008). The entry to dauer is regulated by daf-16
(forkhead box O or FOXO) and its upstream regulator daf-
2 (insulin receptor), which are important modulators of aging
and lifespan (Kenyon et al., 1993; Lee et al., 2001). Although
this behavior occurs independent of dopamine signaling, once
the animals enter the arrest phase they respond to any changes
in dopamine signaling by increasing their body movement
(Gaglia and Kenyon, 2009). Therefore, dauer movement assays
can be used to assess this behavioral change. For example,
dauer formation can be induced by exposing djr-1.2 mutants
to the heavy metal Mn, transferring them to NGM plates
without bacterial food, and storing for 72 h (Chen P. et al.,
2015). The dauer diapause can then be determined using body
movements which is defined as one complete body bend in
forward or backwards direction in a 1 min duration (Gaglia
and Kenyon, 2009; Chen P. et al., 2015). The cat-2 deletion
mutants that have diminished DA signaling are used as a positive
control. Both djr-1.2 and cat-2 mutants exhibit increased dauer
movement compared with controls. When exposed to Mn, the
djr-1.2 mutants show a further increase in movement compared
with untreated controls, indicating reduced dopamine signaling
(Chen P. et al., 2015). However, this behavior can be rescued
by the overexpression of DAF-16. This behavioral assay was
also important for assessing the interactions between aging, a
PD environmental risk factor (i.e., Mn), and the PD-associated
homolog DJ-1 (Chen P. et al., 2015).

Fecundity
Fecundity is an important assay for determining the egg-laying
behavior of C. elegans and is controlled by dopamine (Schafer
and Kenyon, 1995; Weinshenker et al., 1995). The exposure
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to environmental toxins can lead to changes in dopamine
signaling, which in turn can alter fecundity or brood size in
C. elegans (VanDuyn et al., 2010). Fecundity can be measured
by performing progeny count assays. Age-synchronous adults are
placed on individual plates each day until they cease reproducing.
The number of eggs or viable progeny is then counted. When
the assays are performed by counting progeny, the plates are
incubated at a specific temperature and the eggs are allowed to
develop for 48 h before the brood size is determined (Hodgkin
and Barnes, 1991; Scerbak et al., 2016). The assessment of brood
size or total progeny has been performed in neurotoxin-treated
(6-OHDA and insecticide) models (Satapathy et al., 2016) and in
different PD mutants (Cooper et al., 2015) of C. elegans. LRRK2
mutants have decreased fecundity due to decreased levels of DA,
and this decrease cannot not be rescued by the daf-2 mutation
(Yao et al., 2010b; Cooper et al., 2015). Also, a significant
decrease in brood size (25–31%) occurs in animals exposed to
6-OHDA, which can be slightly increased by curcumin treatment
(Satapathy et al., 2016). Overall, fecundity can be used to measure
healthspan in wild-type and PD animals to assess the effects of
experimental treatments on the overall pathology and behavioral
phenotypes of C. elegans.

Rate of Defecation
In C. elegans, defecation is a behavior controlled by a series
of muscle contractions, i.e., a motor program that occurs in
the intestinal “enteric” muscles of the animals. On average,
it occurs every 50 s (Dal Santo et al., 1999) and this cycle
remains constant at 20◦C. Dopamine has been implicated in
controlling the defecation cycle (Weinshenker et al., 1995;
McDonald et al., 2006; Vidal-Gadea and Pierce-Shimomura,
2012). Previous studies have demonstrated that excess dopamine
reduces the defecation rate by decreasing expulsion muscle
contractions (Weinshenker et al., 1995). Defecation is carried
out in three steps: posterior body muscle contraction (pBoc),
anterior body muscle contraction (aBoc), and expulsion muscle
contraction (Branicky et al., 2001; Kwan et al., 2008). The
length of the defecation cycle can be determined by viewing
animals with a dissectingmicroscope andmeasuring the duration
between two consecutive pBoc contractions in adult animals
at 20◦C or as specified (Branicky et al., 2001; Cooper et al.,
2015). A recent study showed slower rates of defecation in α-
synuclein and LRRK2 mutants compared to normal rates in cat-2
mutants, suggesting that defecation behavior occurs independent
of dopamine in these PD models (Cooper et al., 2015). However,
cat-2 mutants may not completely lack dopamine (Sanyal et al.,
2004). The rate of defecation should be further investigated as an
indicator of physiological outcome in PD animals.

Locomotion
In C. elegans, locomotion or motility is a useful marker to
assess healthspan (Bansal et al., 2015). The dorsal and ventral
muscles coordinate to control the classical sinusoidal locomotion
patterns in nematodes (Croll, 1975; Donnelly et al., 2013).
Motility can be assessed in aged individuals using an A-B-C
class-based system (Herndon et al., 2002). Class A represents
a normal sinusoidal pattern, class B represents spontaneous

reversals or induced motion with gentle prodding, and class
C represents no movement or only movement of the head in
response to gentle prodding. These patterns are also influenced
by the presence or absence of food and exposure to mechanical
or chemical stimuli (Omura et al., 2012). Studies have shown
that disrupting DA signaling using genetic mutations or exposure
to environmental toxins (6-OHDA or MPTP) can change the
locomotory behavior of C. elegans (Ali and Rajini, 2012; Cooper
et al., 2015; Liu et al., 2015). Such altered behavior can be
assessed by observing changes in the typical sinusoidal pattern,
including irregular body bends or thrashing behavior. Body
bends are counted as one muscle contraction that leads to a
complete bend of the dorsal or ventral side of the animal (Ghosh
and Emmons, 2008). The term “thrashing” is used to define
motility when nematodes are placed in a drop of liquid (e.g.
M9 buffer), and it is determined by measuring the frequency
of lateral movements or the direction of mid-body bending
(Buckingham and Sattelle, 2009). Locomotory behavior can be
quantified by viewing or recording worm movements through a
stereomicroscope. Numerous automated programs facilitate the
analysis of digitally recorded data, including Worm Tracker 2.0,
OptoTracker, The Parallel Worm Tracker, Nemo, Multimodal
illumination and tracking system, the Multi Worm Tracker, and
CoLBeRT (Husson et al., 2013). Recently, a microfluidic device
was also used to measure the locomotion of C. elegans using an
electric signal (Jung et al., 2016).

CONCLUSIONS

Well-developed imaging techniques and genetic malleability
make C. elegans a useful model for testing compounds to treat the
cellular and related behavioral symptoms of PD and investigating
the basic molecularmechanisms underlying potential therapeutic
approaches. The pathological and behavioral markers discussed
in this review could be useful for performing screening
experiments and establishing crucial connections between
PD-like pathology, possible susceptibility factors, and the
mechanisms triggered by exposure to novel drug molecules.
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