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The development of behavioral stereotypy is a common result of exposure to both response-dependent
and response-independent reinforcement procedures. The generalized matching equation and two
dynamic versions of that equation, which take into account the time differential between reinforcements
and their effect on behavior, predict this outcome of many procedures involving reinforcement. Fol-
lowing from the assumption that distinct response topographies, distinct response sequences, or ori-
entations to distinct stimuli can be treated in the equations as distinct classes of behavior, the equations
predict that—at least for matching and undermatching—the behavior class that is most biased relative
to other behavior classes of the same type will tend to predominate to the exclusion or near exclusion

of those behavior classes.
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Behavioral stereotypy is a well-established
result of repeated applications of reinforce-
ment. For example, reinforcing a particular
response over a period of time reduces the vari-
ability in the force, duration, and topography
of the response, even when no explicit contin-
gency is programmed to restrict variability (e.g.,
Antonitis, 1951; Eckerman & Lanson, 1969;
Guthrie & Horton, 1946; Notterman & Mintz,
1965; Skinner, 1938). In addition, reinforcing
many different behavior sequences leads to the
predominance of a small number of those se-
quences (e.g., Morris, 1987; Pisacreta, 1982b;
Schwartz, 1980, 1982; Vogel & Annau, 1973).
Moreover, reinforcement delivered on long
variable-interval schedules produces repetitive
sequences of behavior between responses, at
least in pigeons (e.g., Pear, 1985). Further-
more, delivering reinforcement independent of
behavior also generates stereotypic behavior
(e.g., Skinner, 1948; Staddon & Simmelhag,
1971; Timberlake & Lucas, 1985). A final
example of a reinforcement operation that re-
sults in behavioral stereotypy is the phenom-
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enon of autoshaping, whereby a stereotypic
response comes to be directed toward a pre-
viously neutral stimulus as a result of that
stimulus being paired with a reinforcer (e.g.,
Brown & Jenkins, 1968; Jenkins & Moore,
1973).

It will be shown in this article that predic-
tions of the development of behavioral ster-
eotypy can be derived from the generalized
matching equation (Baum, 1974, 1979), pro-
vided that certain assumptions are made. There
are two forms of the generalized matching
equation: one describes relative response rate
and the other relative time allocation as a func-
tion of relative reinforcement rate. The latter
form is used here because the present treat-
ment encompasses topographically different
classes of behavior, and the same response-rate
scale is not generally applicable across topo-
graphically different responses. (Note, how-
ever, that the relevant derivations could be car-
ried out for response rate with the same general
conclusions as arrived at below, if an appro-
priate scaling factor were inserted in the equa-
tions.) The time form of the generalized
matching equation can be written

b b(ﬁ)i
tj 7

where ¢, and ¢, are the amounts of time allo-
cated to two independent classes of behavior,
7; and 7; are the corresponding reinforcement

(1)
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rates, and & and s are nonnegative constants.
The constant s, termed sensitivity, describes the
degree to which relative time allocation is con-
trolled by relative reinforcement rate. If sen-
sitivity is less than one, undermatching is said
to occur; if it is greater than one, overmatching
is said to occur. The constant b, termed bias,
describes the tendency to allocate more time
to one alternative than would be predicted sim-
ply on the basis of relative reinforcement rate.
If bias is greater than one, the behavior cor-
responding to ¢; is biased relative to the be-
havior corresponding to ¢;; if bias is less than
one, the reverse is the case. :

To derive behavioral stereotypy from the
generalized matching equation, it is assumed
that distinct response topographies, distinct re-
sponse sequences, or orientations to distinct
stimuli can be treated as distinct classes of
behavior that conform to Equation 1. Thus, if
t;and ¢; in Equation 1 are the times allocated
to two distinct response topographies, two dis-
tinct behavior sequences, or orienting to two
distinct stimuli, b represents a tendency to al-
locate more time to one of these behavior classes
than to the other when both are reinforced
equally. According to Davison and McCarthy
(1988), bias describes behavior in several ways,
two of which are relevant to the present treat-
ment: (a) it describes the effects of differences
between reinforcement parameters; and (b) it
““can act as an individual parameter, describing
a preference on the part of the subject to re-
spond on the left alternative, or to respond on
the red key, and so on” (p. 51). The latter
corresponds to what Baum (1974, p. 234), in
his enumeration of sources of bias, termed re-
sponse bias. Two types of behavioral tendencies
are included under this category: preferences
for particular response topographies or be-
havior sequences and preferences for partic-
ular stimuli. Thus, a particular response to-
pography or sequence may have a greater
tendency to occur than another because of the
physiology of the organism (e.g., the structure
of an animal’s musculature or nervous system).
For example, a given topography may be “eas-
ier” to perform than another. Similarly, a par-
ticular stimulus preference may be exhibited
because of the physiology of the organism. For
example, an animal may show a tendency to
orient toward a particular stimulus during
conditions of food reinforcement, even though
this orientation does not result in any advan-
tage with regard to obtaining food.

DERIVATION OF BEHAVIORAL
STEREOTYPY FROM THE
GENERALIZED MATCHING
EQUATION

Assume that B = {B,, B,, ..., By} is the
set of all behavior classes (i.e., response to-
pographies, behavior sequences, or orienta-
tions to specific stimuli) maintained by exper-
imentally programmed reinforcement in a given
experimental space. It should be noted that B
does not include behavior classes that might
occur and be reinforced by nonprogrammed
reinforcers (i.e., “self-reinforcing” behavior;
Herrnstein, 1970, 1977a, 1977b). For exam-
ple, if the reinforced response is pressing a
single lever, the members of B might be the
different topographies of lever pressing that
can be reinforced by the programmed rein-
forcement. Usually a distinction is made be-
tween structural and functional definitions of
behavior (Catania, 1973). Here it is assumed
that although consisting of structurally similar
members, the behavior classes under consid-
eration can be defined functionally; that is,
they are assumed to consist of members that
vary together. The issue of distinguishing be-
tween different behavior classes of the same
type (e.g., different response topographies) is
therefore an empirical one. (An interesting
property of the following derivations, which
will not be pursued here, is that they hold even
if there is overlap among the behavior classes.)

It will be assumed for now that the behavior
classes under consideration are equally effi-
cient, so that the average rate of reinforcement,
R, is unaffected by which members of B occur.
As a consequence of this assumption, the fol-
lowing treatment logically applies to response-
independent as well as to response-dependent
reinforcement procedures. (The effect of re-
moving this assumption will be considered
later.) Thus, the overall rate of reinforcement
for any B; is R (t;/T), where T is the total
time of the experimental session. It then fol-
lows from Equation 1 that

b b(ﬁ),
L L

@)

and hence that
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If sensitivity is not equal to one, it follows from
Equation 3 that

L
== b,

f)

o

“

o~

Note that for sensitivity less than one, the
proportion of time allocated to the class of
behavior with the larger bias (the more biased
behavior class) can be quite large relative to
the amount of time allocated to the less biased
behavior class. If b, is the bias of the behavior
class with the largest time allocation relative
to the behavior class with the second largest
time allocation, b, is the bias of the behavior
class with the second largest time allocation
relative to the behavior class with the third
largest time allocation, and so on, the time
allocation of the behavior class with the largest
time allocation will be larger than that of any
given B, by a factor of (b,"/'=*)(b,'/'~) ...
(b,'/'~*). Thus, for sensitivity less than one, the
behavior class with the largest bias relative to
other behavior classes of the same type (i.e.,
response topographies, behavior sequences, or
orientations to specific stimuli) could predom-
inate to the near exclusion of those behavior
classes. As sensitivity approaches one, exclu-
sive preference is approached for the behavior
class with the highest bias, resulting in extreme
stereotypy.

In the case of sensitivity equal to one, Equa-
tion 4 cannot be used. However, Equation 3
shows that in this case exclusive preference
will occur, although the equation does not
specify which behavior class will be exclusively
preferred. Thus, for the case of sensitivity equal
to one, stereotypy will be maximal although
the stereotyped behavior class need not (ac-
cording to the generalized matching equation,
at least) be the one with the highest bias. In
the next section, modifications of the gener-
alized matching equation will be considered
that do specify that in the case of sensitivity
equal to one the most biased behavior class
will be the one that occurs.

If sensitivity is greater than one, the expo-
nent in Equation 4 is negative; this implies
that time allocation is inversely related to bias.
This paradoxical result is a problem for the
present treatment, because overmatching is not
uncommonly reported in the literature. More-
over, it appears to be especially problematic
because the present treatment is based on the
time-allocation form of the generalized match-

ing equation, and overmatching has been re-
ported more frequently for time allocation than
for response rate. However, the conditions that
give rise to overmatching and the extent to
which it accurately describes behavior are still
unresolved issues in the matching literature.
For example, there is evidence that the use of
programmed delays in the availability of re-
inforcement following changeovers between
concurrently reinforced activities may increase
sensitivity, resulting in more instances of ov-
ermatching than would otherwise occur (Baum,
1979; Myers & Myers, 1977; Scown, 1983 —
cited by Davison & McCarthy, 1988, p. 82;
Shull & Pliskoff, 1967). Most studies on
matching have used such changeover delays,
which are not assumed in the present treat-
ment. Moreover, Davison and MdcCarthy
(1988, p. 85) have argued that the fact that
the distribution of sensitivity values through-
out the matching literature is skewed toward
values less than one suggests that values above
one are due to estimation errors. In addition,
although sensitivity has often been found to be
closer to one for time-allocation matching than
for response-rate matching, Davison and his
colleagues (Aldiss & Davison, 1985; Davison
& McCarthy, 1988, p. 84; Taylor & Davison,
1983) have argued and obtained data indicat-
ing that sensitivity for time-allocation match-
ing has been overestimated in many studies by
the inclusion of pause time (i.e., time allocated
to nonexperimentally reinforced activities) in
the time measures. Thus, additional research
is necessary before the meaning of overmatch-
ing data for the present treatment can be de-
termined. In the next section, two modifica-
tions of the generalized matching equation are
presented for which the possibility of over-
matching poses a somewhat less serious prob-
lem.

MODIFICATIONS OF THE
GENERALIZED MATCHING
EQUATION

The generalized matching equation applies
only to behavior in the stable state and does
not deal with transition states. A more dynamic
equation would describe how previous rein-
forcements result in current behavior and
would specify the time intervals over which
these reinforcements are integrated to produce
current behavior (cf. Hineline, 1984, p. 506;
Staddon, 1982, p. 255). Several dynamic models
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have been proposed (e.g., Killeen, 1981; Myer-
son & Miezin, 1980; Staddon, 1982). Two
equations are considered here which differ from
these in being modifications of the generalized
matching equation. The basic motivation for
considering these particular equations is im-
plied by Davison and McCarthy (1988) when
they ask:

The generalized matching law serves to specify
quite accurately both the beginning and end
points of transitions between concurrent sched-
ules. Given such effective anchoring, can the
performance between these end points be de-
scribed using the generalized matching law ex-
tended in some way? (p. 120)

That is, the effectiveness of the generalized
matching equation in describing stable-state
behavior suggests that the equation might be
modified to describe effectively behavior in
transition as well. Moreover, a modified gen-
eralized matching equation that accurately de-
scribes behavior in transition might also de-
scribe behavior in the stable state more
accurately than does the unmodified general-
ized matching equation.

The two equations considered here are sim-
ilar to the multiplicative and additive models
examined by Davison and Hunter (1979) and
are therefore supported to some extent by their
data and by data obtained by Hunter and Dav-
ison (1985). In presenting these equations it
is assumed that animals sample relative re-
inforcement rates occurring in discrete inter-
vals, called here sampling intervals. As consid-
ered here, unlike in Davison and Hunter’s
working assumptions, these sampling intervals
do not necessarily represent sessions. Although
both functions are discrete whereas the correct
function may be continuous, discrete functions
often provide reasonable approximations to
continuous ones. Moreover, the rapid transi-
tions that sometimes have been reported in
studies on matching (e.g., Davison & Hunter,
1979; Hunter & Davison, 1985) as well as in
simple conditioning experiments (e.g., Pear &
Legris, 1987; Skinner, 1938, pp. 69-72) sug-
gest that behavior acquisition may be a discrete
process.

The Multiplicative Model
The multiplicative equation can be written

5y 5 Sk
bin _ b Tin-t } [ Tin-2 Tin—k (5)
.. s
tin Tin-1) \Tjn—2 ik

where n, ..., n — k designate sampling in-
tervals, s, . . ., 5, are decreasing positive num-
bers, and the other terms are as defined for
Equation 1. The series of exponents is de-
creasing to represent the fact that the more
recent sampling intervals would have more ef-
fect on relative time allocation than would the
more remote sampling intervals (i.e., that rel-
atively recent experiences have more effect on
behavior than do earlier experiences). It is as-
sumed that there is a finite number, &, of the
exponents because of data indicating that the
effect of a previous distribution of reinforce-
ments decreases to zero as the number of ses-
sions increases following a change in the dis-
tribution of reinforcements (Davison &
Hunter, 1979; Davison & McCarthy, 1988,
p- 125; Hunter & Davison, 1985). It is as-
sumed that behavior in the nth sampling in-
terval is not determined by the distribution of
reinforcements in that interval because the
principle of causality dictates that current
events be caused by prior events. This as-
sumption addresses the limitation of Davison
and Hunter’s (1979) multiplicative equation
with respect to describing within-session
changes in behavior and is consistent with the
alternative theoretical function suggested by
Davison and McCarthy (1988, p. 126).

The Additive Model
The additive equation can be written

tin _ b(w,r,-,,,-, +wyr .t .+ w,,r,-’,,_,,>
tin WiTjnt T Wl o t oo o+ Wiy,

(6)
where w;, ..., w, are weighting factors for
the reinforcement rates in the sampling inter-
vals, n, ..., n — k, and the other terms are
as defined for Equation 1. To weight more
recent reinforcements more heavily than less
recent reir.forcements, it is assumed that the
weighting factors are decreasing positive num-
bers. As with the multiplicative equation, and
for the reasons given in connection with that
equation, it is assumed that £ is finite and that
behavior in the nth sampling interval is not
determined by the distribution of reinforce-
ments in that interval. The following deri-
vations show that both the multiplicative and
the additive models lead to the same general
predictions concerning behavioral stereotypy
that are made by the generalized matching
equation.
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Derivations from the Models

Because the relative reinforcement rate for
any behavior is equal to the overall reinforce-
ment rate times the proportion of time allo-
cated to that behavior, it follows from Equa-
tion 5 that for the multiplicative model

bin o (tincr (tinez)” [tint)
L - b( ’ 7) ( , 2) o ( ’ k) ’ (7)
tj,n tj,n—I tj,n—Z tj,n—lz
and from Equation 6 that for the additive model
Lin b Wilipy + Wil t . .+ Wt ’
t wltj,,,_l + wztj"n_z + ...+ w,,tjj,,_,, ’
(8

Assume that the models describe behavior
at or approaching a stable state; that is, assume
that for all n, either

li ti,n—l

Jn

£ > (9a)
tj,n tj,n—l

or
tz n ti n—
Pt 1 (9b)
'jn tj,n—l

The arbitrary assignment of the numerators
and denominators in Equations 5 and 6, and
consequently in Equations 7 and 8, means that
the reciprocals of the two sides of Inequality
9b satisfy Inequality 9a. Therefore, we need
only consider Inequality 9a in deriving the
steady state predicted by each model. It follows
from Inequality 9a and Equation 7 for the
multiplicative model, and from Inequality 9a
and Equation 8 for the additive model, that

b(‘—‘) > linp oy (t—*> . (10)
tj,n—l tj,n tj,n—lt

where s =5, + 5, + ... + s, in the multipli-

cative model.
From the left side of Inequality 10 we obtain

iﬂ < b<li,n—1>
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52
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and from the right side of Inequality 10 we
obtain

v

s 52
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It follows from Inequalities 11a and 11b that
for sensitivity not equal to one,

a1 A
—gn—t K 1=s¢ | ti
11+ Lin Lin - ol I
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(12)

If sensitivity is less than one, the limiting
form of Inequality 12 as n grows increasingly
large is

1
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and it therefore follows that for n approaching
infinity

l_.

|

bin i, (13)
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Because Equation 13 is essentially the same
as Equation 4, it follows that for the case of
undermatching the multiplicative and additive
models both make the same quantitative pre-
diction for the stable state that is made by the
generalized matching equation. That is, both
models imply that behavioral stereotypy will
develop during response-dependent and re-
sponse-independent reinforcement.

If sensitivity is equal to one, it can be seen
from Inequality 11b that both the multipli-
cative and the additive models predict that as
n grows increasingly large exclusive prefer-
ence will be approached for the alternative
with the larger bias. Again, this is essentially
the same as the prediction made by the gen-
eralized matching equation for the case in
which sensitivity is equal to one. However, the
generalized matching equation does not specify
the alternative toward which exclusive pref-
erence will be directed, whereas the prediction
made by the two modified models is both spe-
cific and reasonable.

If sensitivity is greater than one, examina-
tion of Inequalities 11a and 11b reveals that
relative time allocation is predicted by the mul-
tiplicative and additive models to be a direct
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joint function of both bias and the initial rel-
ative time allocation, because the contribution
of each of these factors increases exponentially
as n increases. This differs from the general-
ized matching equation, which predicts an in-
verse relation between bias and relative time
allocation in the stable state and no effect of
initial relative time allocation on behavior in
the stable state. Clearly, a direct relationship
between relative time allocation and bias is
more reasonable than an inverse one. In ad-
dition, the prediction of an exponentially in-
creasing relationship between initial and final
relative time allocation implies that arbitrary
behavior that initially happens to occur by
“chance” (i.e., as a result of unspecified vari-
ables) could increase over time to become pre-
dominant. Consequently, the idiosyncratic
stereotypic behavior reported by Skinner
(1948), which he described as “superstitious,”
could conceivably be accounted for by over-
matching. Thus, knowledge of the conditions
that produce overmatching might help to ex-
plain inconsistencies in the literature concern-
ing the effects of response-independent rein-
forcement (Skinner, 1948; Staddon &
Simmelhag, 1971; Timberlake & Lucas, 1985).

DISCUSSION

It was shown in the previous section that
two plausible dynamic modifications of the
generalized matching equation give rise to pre-
dictions with regard to behavioral stereotypy
that are similar or identical to those of the
generalized matching equation. All three
models predict that, at least in the cases of
matching and undermatching, stereotypy will
occur in the direction of the most biased rein-
forced behavior class in a given experimental
situation. Overmatching is problematic for the
present treatment, especially with respect to
the unmodified generalized matching equa-
tion. However, as indicated earlier in this ar-
ticle, most studies report undermatching, and
the extent to which reported cases of over-
matching may be artifactual or caused by sam-
pling error has not been resolved (Davison &
McCarthy, 1988, p. 85).

Two sources of bias relevant to the present
treatment were mentioned in the introduc-
tion—response bias and differences between
reinforcement parameters. With regard to re-
sponse bias, response topographies that re-

quire less effort than others would be expected
to be biased relative to topographies that re-
quire more effort. For example, rats that begin
pressing a lever in various ways for food typ-
ically show “an increasing tendency to use an
economical paw movement to press the lever”
(Millenson & Leslie, 1979, p. 35). Also in-
cluded in the category of response bias are
tendencies to respond more to some stimuli
than to others. For example, Pisacreta (1982a)
found that pigeons develop a dominant pattern
of matching-to-sample behavior when given a
choice of stimuli to match, with each bird in
the study appearing to have its own stimulus-
preference hierarchy. An example of a differ-
ence between reinforcement parameters in the
present context would be response topogra-
phies that are not equally efficient in procuring
reinforcers. It can be shown that multiplying
relative reinforcement rate by a factor of ¢ has
the effect of multiplying bias by a factor of ¢
in all three models discussed in this article.
Differences between other reinforcement pa-
rameters such as amount or delay of reinforce-
ment would have a similar effect if, as pro-
posed by Baum and Rachlin (1969), these
parameters are incorporated as factors in the
matching formulation.

Response biases and differences between re-
inforcement parameters would be expected
from the present treatment to interact in a
multiplicative fashion. There is some evidence
that this is the case. Usmg a computer system
that tracked pigeons’ responding in an operant
chamber, Pear (1985) found that stereotypic
behavior sequences developed between key
pecks reinforced by food on variable-interval
schedules. The dominant pattern depended on
the value of the schedule. The birds usually
remained close to the key and pecked during
a short variable-interval schedule, but engaged
in stereotypic movements away from the key
during a long variable-interval schedule. Con-
sideration of the various feedback functions
that have been suggested for variable-interval
schedules (Nevin & Baum, 1980) indicates that
reinforcement rate is reduced proportionately
more on short than on long variable-interval
schedules by behavior resulting in long inter-
response times. Pear’s finding is consistent with
the present treatment if it is assumed that pi-
geons have a bias toward movements such as
looping or circling in the presence of stimuli
paired with food reinforcement, but that this
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bias is effectively overridden by the dispro-
portionately large decrease in reinforcement
rate it causes on short variable-interval sched-
ules. It should be noted that this bias is not
attributable to any strong self-reinforcing
property of looping, circling, pacing, and so
on, because pigeons rarely engage in these ster-
eotypic activities under baseline conditions in
which no food is available.

Timberlake and Lucas (1985) reported data
with a fixed-time 15-s schedule indicating an
interaction between reinforcement parameters
and response bias. They conducted a series of
experiments that showed that pigeons exposed
to response-independent food presentations
tend to engage in locomotor behavior away
from the feeder immediately after food pre-
sentations and in feeder-wall-directed activity
prior to food presentations. In one experiment
(Experiment 2) a specific response that had
been shaped decreased sharply in favor of ster-
eotypic feeder-wall-directed activity when the
birds were exposed to response-independent
food presentations. A similar result was ob-
tained by Eldridge, Pear, Torgrud, and Evers
(in press). Although the behavior that had been
shaped in that study (a locomotor response)
persisted above its baseline level after the re-
turn to response-independent reinforcement, it
occurred immediately after reinforcement and
feeder-wall-directed behavior occurred toward
the end of the 15-s interreinforcement interval
so that the birds were close to the food source
when the feeder operated. Thus, the bias to-
ward a particular behavior class may vary as
a function of the temporal proximity of rein-
forcement.

In another experiment by Timberlake and
Lucas (1985, Experiment 5) feeder-wall-di-
rected behavior was replaced by another ster-
eotypic activity when the former behavior
caused reinforcement to be omitted. It appears
that the pigeons in Timberlake and Lucas’
study and in Eldridge et al.’s (in press) study
had strong response biases toward locomotor
activity and orienting toward a wall in situa-
tions involving intermittent food presentations.
The fact that it was usually the feeder wall
toward which they directed their activity near
the end of the interreinforcement interval was
probably due to the greater efficiency of this
behavior in procuring reinforcers. When con-
tingencies were introduced that rendered this
behavior ineffective, its bias apparently de-

creased relative to that of the other behavior,
which therefore replaced it.

Findings regarding autoshaping also seem
to be consistent with the present treatment.
For example, the fact that pigeons’ autoshaped
key pecks are redirected to a region near the
key when key pecks cause scheduled food pre-
sentations to be omitted (Barrera, 1974; El-
dridge & Pear, 1987) may be the result of an
interaction between a relatively high bias to
orient toward and peck at stimuli paired with
food and the relatively low reinforcement rate
for that behavior. Unlike the Pavlovian ac-
count of autoshaping, the present interpreta-
tion has no difficulty with the fact that, al-
though highly stereotypic, an autoshaped
response need not resemble the response elic-
ited by the reinforcer (Timberlake & Grant,
1975; Wasserman, 1973).

A possible limitation of the extensions of the
generalized matching equation discussed here
should be noted. Studies by Page and Neurin-
ger (1985) and by Neuringer (1986) showing
that response variability can be increased by
reinforcement contingent on variability are not
readily accommodated by the present treat-
ment. However, Morris (1987) has found that
this result occurred only with a discrete-trials
procedure in which each response was fol-
lowed by a brief timeout. Thus, the present
treatment may apply only to data obtained
under free-operant procedures. Alternatively,
interruptions of key pecking by a timeout after
each key peck in procedures designed to rein-
force variability may facilitate the formation
and reinforcement of complex behavior se-
quences between key pecks, producing in-
creased variability in key-pecking patterns.

Although speculative, the treatment pre-
sented in this paper appears to be testable. For
example, one test would be to evaluate the bias
for a particular stereotypic activity developed
under response-independent reinforcement
relative to a more arbitrary activity. This as-
sessment could be done by placing the two
activities on concurrent variable-interval vari-
able-interval schedules. If the present account
is correct, bias should be greater for the activity
that developed under response-independent
reinforcement. In addition, the relative weight-
ings of activities with regard to bias should
correspond directly to their order of emergence
under response-independent reinforcement
when reinforcement omission contingencies are
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applied to the more dominant activities. The
means necessary for detecting and recording
specific topographies in such experiments may
be provided by future developmentsin tracking
and shaping systems (e.g., Eldridge & Pear,
1987; Pear & Legris, 1987).
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