
Behaviour Analysis of Software Architectures

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou
Department of Computing, Imperial College of Science, Technology and Medicine,

180 Queensgate, London, SW7 2BZ, U.K.

{jnm,dgl,jkj@doc.ic.ac.uk

Key words: Software architecture, behaviour analysis

Abstract: The overall structure of a system described by a set of components and their

interconnections is termed its software architecture. In this paper, we associate

behavioural specifications with components and use these specifications to

analyze the overall system architecture . The approach is based on the use of

Labelled Transition Systems to specify behaviour and Compositional

Reachability Analysis to check composite system models. The architecture

description of a system is used directly in the construction of the model used

for analysis. Analysis allows a designer to check whether an architecture

satisfies the properties required of it. The paper uses examples to illustrate the

approach and discusses some open questions arising from the work.

1. INTRODUCTION

Software architecture has been identified as a promising approach to

bridging the gap between requirements and implementations in the design of

complex systems. Software architecture describes the gross organisation of a

system in terms of its components and their interactions. The initial

emphasis in Software architecture specification has thus been in capturing

system structure [5,8,13]. The authors have previously published papers on

the use of the architecture description language Darwin for specifying the

structure of distributed systems and subsequently directing the construction

of those systems [8,9, 10]. Darwin can also be used to organise CORBA

based distributed systems [11]. Darwin describes a system in terms of

components, which manage the implementation of services. Interconnection

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture

© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

36 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

structure is specified by bindings between the services required and provided

by component instances. Darwin has both a graphical and a textual form

with appropriate tool support [9,12] .

Structural View

Behavioural View ervice View

Analysis Construction!

implementation

Figure 1. Common structural view with service and behavioural views

In this paper, we describe the use of Darwin structural descriptions as a

framework for behaviour analysis rather than system construction. Darwin

has been designed to be sufficiently abstract to support multiple views (cf.

[7]), two of which are the behavioural view (for behaviour analysis) and the

service view (for construction) (Figure 1). Each view is an elaboration of the

basic structural view: the skeleton upon which we hang the flesh of

behaviour specification or service implementation [14].

In previous papers, we have discussed the use of Darwin to produce the

service view, with components providing and requiring services at their

interfaces and with implementation definitions for the primitive components.

For example, when used to structure CORBA systems [11], the

computational behaviour of Darwin primitive components is determined by

CORBA object implementations and these object implementations interact

via interfaces specified in IDL using the ORB in the usual way. Primitive

components encapsulate objects and specify their instantiation, their required

interfaces and provided interfaces. As depicted in figure 2, a primitive

component may embed one or more objects.

In this paper we concentrate on the behavioural view using Labelled

Transition Systems (LTS) for behaviour specification and analysis . The

analysis approach is Compositional Reachability Analysis CRA [4] . We have

developed techniques for analysing system models in the CRA setting with

respect to both safety [2] and liveness [3] properties. The techniques are

supported by software tools, which provide for automatic composition,

analysis, minimisation, animation and graphical display. We first describe

the relationship between components and their behavioural specifications.

Behaviour Analysis of Software Architectures 37

Darwin

D- component • - provided service 0 -required service

CORBA

<:=:> -object 1- -interface --+ - interface reference

Figure 2. Embedding objects in components

2. PRIMITIVE COMPONENTS

A primitive component is one with no substructure of components. In the

service view of architecture, a primitive component has an implementation

defined by an object or objects programmed in a programming language such

as C++. In the behavioural view, a primitive component is defined as a finite

state LTS. The example of figure 3 depicts the Darwin graphical and textual

description of a primitive component with two interfaces.

In the behavioural view, we do not distinguish between provided and

required services, service access points are simply declared as portals.

Consequently, implementation details such as invocation direction can be

deferred, although, in many cases, it is obvious from the behavioural model

as to which component is providing a service and which is using it.

A major objective of our work in architectural analysis is to provide tools

that are both accessible and usable by practising engineers. To this end, we

originally conceived that the behaviour of primitive components should be

specified graphically as state transition diagrams since these should be

familiar in one form or another to software engineers. However, it quickly

became apparent that this is an extremely cumbersome method for other than

trivial behaviour specifications. With our focus on actions rather than states

in specifying behaviour, it was natural to use process algebra as a concise

notation for describing behaviour. However, it is unlikely that most software

engineers have a working knowledge of process algebra. To mitigate this

problem, we have included the facility to depict textual specifications as

labelled transition diagrams. These diagrams may be animated, by an

38 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

interactive behaviour simulation, to check that the specification corresponds

to the engineer's intuition.

interface BUTTON (red; blue;}
DRINKS

()press pour¢ interface BEVERAGE(coffee; tea;}

component DRINKS (

portal press:BUTTON;

portal pour :BEVERAGE;

Figure 3. Darwin description of DRINKS component

The behaviour of the drinks component is modelled in Figure 4 both

graphically as a Labelled Transition System and textually in our process

algebra notation FSP (Einite Erocesses).

DRINKS

press.blue

pour. lea

(press . red -> pour.coffee -> DRINKS

lpress.blue -> pour . tea -> DRINKS

) @ {press, pour}.

Figure 4. Behavioural description of DRINKS component

Primitive components are defined as finite state processes in FSP using

action prefix "->" and choice "I". If x is an action and P a process then

(x->P) describes a process that initially engages in the action x and then

behaves exactly as described by P. If x and y are actions then

(x->P I y->Q) describes a process which initially engages in either of the

actions x or y. After the first action has occurred, the subsequent behaviour

Behaviour Analysis of Software Architectures 39

is described by P if the first action was x and Q if the first action was y.

Thus the DRINKS component offers a choice of the actions press. red

and press. blue. As a result of engaging in one of these actions the

appropriate drink is poured. The behavioural view does not distinguish

between input and output actions although, as in the example, input actions

generally form part of a choice offered by a component while output actions

do not. The @{press, pour} states that all actions labelled or prefixed by

press or pour can be shared with other components. The next example is

a component that has internal actions that cannot be shared with other

components. Figure 5 gives the Darwin graphical description for the

primitive component LOSSYCHAN together with its behaviour modelled in

FSP and the corresponding LTS diagram.

LOSSYCHAN

range T = 0 .. 1

LOSSYCHAN =
{in[x:T)->out[x)->LOSSYCHAN

lin[x:T)->fail ->LOSSYCHAN

)@{in,out}.

Figure 5. LOSSY CHAN component

1n.1

tau

The component LOSSYCHAN models a channel which inputs values in

the range 0 .. 1 and then either outputs the value or fails. In other words,

the component models a transmission channel that can lose messages.

Failure is modelled by non-deterministic choice on the input, which leads to

the internal action fail, if failure is chosen. Since fail does not appear

at the interface of the component, it becomes the silent action tau in the

LTS diagram for the component. In many Architectural Description

Languages, LOSSYCHAN would be represented as a connector rather than a

component [1,13] . However, Darwin does not have a separate connector

construct. Connectors can be distinguished as a particular class of

components. It is clear from the above that connectors are modelled in

exactly the same way as components.

The modelling notation FSP-finite state processes-includes guarded

choice, local processes and conditional processes. However, these are

40 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

syntactic conveniences to allow concise model definition. Definitions using

these constructs can all be expressed using action prefix, choice and

recursion as described in this section.

3. COMPOSITE COMPONENTS

A composite component is constructed from interconnecting instances of

more primitive components. A composite component defines a structure and

no additional behaviour. Its behaviour can therefore be computed based on

this structure and the behaviour of its components.

customer[1]:

CUSTOMER

SERVICE

• •
customer[N]:
CUSTOMER

SERVICE

const int N = 3; 1 1 #customers

interface SERVICE {

prepay(int); gas(int);

component CUSTOMER

portal

SERVICE;

component STATION

portal

customer[l . . N] :SERVICE;

GASSTATION

STATION

customer[1 .. N]

component GASSTATION
inst

STATION;

forall i = 1 to N {

inst

customer[i] :CUSTOMER;

bind

customer[i] .SERVICE

--STATION.customer[i];

Figure 6. GASSTATION composite component

To illustrate composition, we will use the gas station problem, originally

stated in [16] and more recently addressed in [2, 17]. The gas station problem

concerns a set of N customers who obtain gas by prepaying a cashier who

Behaviour Analysis of Software Architectures 41

activates one of M pumps to serve the customer. The overall GASSTATION

component is depicted in figure 6.

In an implementation such as CORBA discussed in the introduction,

Darwin bindings (drawn as arcs between portals) are generally references to

objects. In the behavioural view, a binding denotes an action shared between

two components. Each customer in figure 6 shares the actions prepay and

gas, which constitute the SERVICE interface, with the STATION

component. Component instances in the behavioural view are finite state

processes as described in the previous section. The composite behaviour is

the parallel composition of these processes. Consequently, the behaviour of

GASSTATION is the parallel composition of its constituent components:

II GASSTATION = (customer [1. . Nl :CUSTOMER II STATION) .

Note that to create multiple copies of CUSTOMER we use process

labelling. Each action label of the customer process (namely prepay and

gas) is prefixed with the process label. Thus customer I has the action

labels customer [1] .prepay and customer [1] . gas. The STATION

is itself a composite component consisting of the cashier and one or more

pumps as depicted in figure 7. A DELIVER component is also required to

associate pump actions with customer actions. The need for this component

is discussed later in the paper.

A binding in Darwin always denotes a shared action in the behavioural

view. Shared actions are the means by which processes synchronise and

interact in FSP. It is sometimes necessary to relabel actions to ensure that the

shared action has the same name in all the processes that share that action.

Re-labelling is required in the FSP description of the STATION component

based on the particular bindings:

//STATION= (CASHIER II pump[l. .M] :PUMP I/ DELIVER)

/{pump[i:l .. M] .start/start[i],

pump[i:l. .M] .gas/gas[i]}

@{customer}.

The general form of the relabeling function is:

I { newlabel_lloldlabel_l , ... newlabel_nloldlabel_n}.

This section has outlined how the FSP composition expressions for the

behavioural model can be generated directly from the Darwin composite

component structure. In the next section, we discuss analysis using the

behavioural model.

42 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

custom er[1 .. N].prepay CASHIER

s ta rt[1..M)

custom er(1 .. N].gas DELIVER

gas (1..M)

STATION

const M = 2 ; I I #pumps

component STATION {

portal customer[1 .. N] :SERVICE;

inst CASHIER;

inst DELIVER;

forall i = 1 to N bind

customer[i] .prepay

customer[i] .gas

forall i = 1 to M {

inst pump[i] : PUMP;

bind

pump[i] .start

pump[i] .gas

CASHIER . customer[i] . prepay ;

DELIVER.customer[i] . gas;

CASHIER . start[i) ;

DELIVER .gas[i];

Figure 7. STATION composite component

4. ANALYSIS

The complete behavioural model for the gas station is listed in figure 8. It

includes behaviour definitions for the primitive components, CUSTOMER,

CASHIER, PUMP and DELIVER. A CUSTOMER makes a prepayment of

some amount (a) chosen from the range (A) and then inputs some amount of

gas (x). The process definition includes a test to check that the amount of

gas actually delivered is the same as the amount paid for. In this simplified

model of the gas station, the cashier does not give change and pumps are

expected to deliver the amount of gas that has been paid for. The CASHIER

starts any pump that is ready and passes to it the identity of the customer (c)

and the amount of gas required (x). The PUMP outputs the correct amount of

gas, which is delivered to the CUSTOMER by the DELIVER component. The

Behaviour Analysis of Software Architectures 43

composition expressions for the composite components STATION and

GASSTATION are as described in the previous section.

const N 3 //number of customers

const M 2 //number of pumps

range c 1. .N //customer range

range p 1. .M I /pump range

range A 1.. 2 //amount of money or Gas

CUSTOMER= (prepay[a:A]->gas[x:A)->

if (x==a) then CUSTOMER else ERROR) .

CASHIER =

(customer[c:C] .prepay[x:A]->start[P] [c] [x]->CASHIER).

PUMP =

(start[c:C] [x:A] -> gas[c] [x] -> PUMP).

DELIVER=

(gas[P] [c:C) [x :A) -> customer[C] .gas[x] -> DELIVER) .

II STATION = (CASHIER II pump [1. . M] :PUMP II DELIVER)

I {pump [i: 1. . M] . start/ start [i] ,

pump[i:l . . M) .gas/gas[i)} @{customer} .

IIGASSTATION (customer[!. .N] :CUSTOMER II STATION).

Figure 8. Gas station behavioural model

Animation

Our analysis tool LTSA (labelled transition system analyser) allows a user

to explore different execution scenarios using the behavioural model.

EJ

customer.3.prepay.1
pump.1.start.3.1

pump.1.gas.3.1

customer.3.gas.1

CU$lomer. l .prepay.1

cuuomer. l .prepay.2

cuuomer.2..prepay.1

customer.2..prepay.2

customer.3.prepay.2

Figure 9. Animating the gas station

44 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

To do this, the user must specify the set of actions that he/she wants to

control. The controlled set is defined by a menu, which for figure 9 is:

menu RUN= {customer[C) . prepay[A)}

Figure 9 depicts the trace of actions that result from instigating a prepay

action from customer 3. The cashier allocates pump 1, which delivers the

requisite gas to the customer via the DELIVER process.

Reachability Analysis

Animation allows a user to explore different execution scenarios,

however, it does not allow general properties concerning the model to be

checked. For example, does a customer always receive the correct amount of

gas? Reachability analysis performs an exhaustive search of the state space

to detect ERROR and deadlock states (no outgoing transitions). In fact the

behaviour model of figure 7 has a bug that permits incorrect behaviour. The

output of the analyser is shown below:

property customer.3:CUSTOMER violation.

property customer.2 : CUSTOMER violation.

property customer.l : CUSTOMER violation

States Composed: 3409 Transitions: 11862 in 1468ms

Trace to violation in customer.2:CUSTOMER:

customer.l . prepay.l

pump.l.start.l.l

customer.2 . prepay.2

pump.l.gas.l.l

customer.2.gas.l

The output shows that a property violation in each of the customer

components is detected. In addition, an example trace, which causes one of

the violations, is produced. Remembering that the CUSTOMER model

requires that the amount of gas delivered to the customer should be the

amount paid for, the trace is an execution in which customer 2 gets the gas

paid for by customer 1. This error is essentially the same as the race

condition discussed in [17] . The error in the model is that the DELIVER

process delivers gas to any ready customer C rather than to the customer

identity c passed to it by the cashier. The corrected DELIVER process is:

DELIVER

=(gas[P) [c : C) [x:A) -> customer[c) .gas[x) -> DELIVER) .

Safety properties

We can specify safety properties that a composition of components must

satisfy using property automata [2]. These specify the set of all traces that

Behaviour Analysis of Software Architectures 45

satisfy the property for a particular action alphabet. If the model can produce

traces, which are not accepted by the property automata, then a violation is

detected during reachability analysis. For example, the following automaton

specifies that for, two customers, if one customer makes a payment then he

or she should get gas before the next customer makes a payment. In other

words, service should be FIFO.

range T = 1.. 2

property

(customer[i:T] .prepay[A] -> PAID[i)), FIFO

PAID[i : T] -> FIFO

PAID[i] [j]

(customer[i] .gas[A]

lcustomer[j : T) .prepay[A] ->

) '

PAID[i:T] [j :T] = (c ustomer[i].gas[A) -> PAID[j]) .

A gas station with a single pump satisfies this property, however, a

station with two pumps does not and leads to the following violation:

Composing

property FIFO violation.

States Composed: 617 Transitions: 1398 in 94ms

Trace to property violation in FIFO:

customer.1.prepay . 1

pump . 1.start . 1.1

customer.2.prepay.1

pump.2.start.2.1

pump . 2.gas.2.1

customer.2.gas.1

The trace describes the scenario in which customer 1 pays first and gets

pump 1 followed by customer 2 paying and getting pump 2. Clearly in a two

pump system, pump 2 can finish first, thereby violating the FIFO property.

Liveness properties

The LTSA analysis tool allows behavioural models to be checked against

specific liveness properties specified in Linear Temporal Logic. However,

we have found a check for a general liveness property which we term

progress to provide sufficient information on liveness in many examples.

Progress asserts that in an infinite execution of the system being modelled,

all actions can occur infinitely often. In the gas station example, it would

assert that customers will always eventually be served. In performing the

progress check, we assume fair choice which means that if an action is

eligible infinitely often, then it is executed infinitely often. With this

assumption, the progress check finds no problem with the gas station.

However, we can examine the behaviour of the system under different

46 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

scheduling constraints by applying action priority. For example, the system

below states that the actions of customer 1 have lower priority than other

actions:

I I GAS STATION (customer [1 .. N] : CUSTOMER II STATION)

>>(customer[l]}.

Unsurprisingly, this causes a progress check violation since it is now

possible for the cashier to ignore customer 1 in favour of other customers.

Customer 1 may never be served. The tool gives the following output.

Progress violation for actions:

{customer.l . prepay.l, customer.l.gas.l , customer.l.gas.2,

customer.l.prepay.2, pump.1.start.1.1, pump.2.start.1 . 1,

pump.1.start.1.2, pump.2.start.1.2, pump.1.gas.1.1,

pump. 1. gas. 1. 2 }

Trace to terminal set of states :

Actions in terminal set:

{customer . 2 . prepay . 1, customer . 2.gas.1, customer.2.gas.2,

customer . 2 . prepay . 2, customer.3 .prepay . 1, customer . 3 . gas.1 ,

customer . 3.gas.2, customer.3 . prepay . 2, pump.1.start.2 . 1,

pump.2.start.2.1 }

This includes the set of actions that do not occur infinitely often in the

system and the set of action that can occur infinitely often. It is clear that

actions for customer 1 occur in the former set and the actions for customer 2

in the latter. The tool gives a trace that leads to the execution in which the

violation occurs. In the example, this trace is empty, as customer 1 never

gets an opportunity to get gas.

5. DISCUSSION & CONCLUSIONS

We have presented an approach that associates behaviour descriptions

with architectural components and supports behaviour analysis of the

composition of these components according to the software architecture.

Although relatively small, the example exhibits non-trivial behaviour. It

demonstrates that we can produce concise and flexible behavioural models

in which it is easy to add additional components and interactions. In the gas

station, it is trivial to modify the numbers of customers and pumps. In fact,

the gas station as presented is an instantiation of a common distributed

software architecture style known as a multi-server or multithreaded server.

Behaviour Analysis of Software Architectures 47

In a multi-server system, a separate server thread allocated by an

administrator thread handles each client request.

In the introduction we stated that we could use the same structural

description for system construction as for behaviour modelling. This is not

always the case. For example, the gas station behavioural view includes the

DELIVER component which routes pump actions to customers. This

component would not appear in the service view since this routing would be

implicit in the service invocation mechanism. DELIVER is modelling an

aspect of architectural connection and it is specific to the behavioural view.

In other words, we recognise that there is a need to augment the structural

description with connector components for the behavioural view of

architecture. In contrast to Wright [1] we have resisted requiring that a

connector component is always interposed between application components

since this seems to lead to large numbers of auxiliary actions.

An issue that always arises when considering exhaustive state space

search methods is scalability. We have used the current toolset, which has

not yet been optimised for performance, to analyse an Active Badge

System[21] in which the final model has 566,820 reachable states and

2,428,488 possible transitions. This took 400 seconds to construct and check

on a 200MHz Pentium Pro and required 170Mb of store. Although not

addressed in this paper, our tools support compositional reachability analysis

in which intermediate composite components can be minimised with respect

to their interface actions using observational equivalence. Previous work

[15] has addressed the problem of intermediate state explosion.

We believe that analysis and design are closely inter-linked activities

which should proceed hand in hand. The FSP notation and its associated

analysis tool LTSA have been carefully engineered to facilitate an

incremental and interactive approach to the development of component

based systems. Analysis and animation can be carried out at any level of the

architecture. Consequently, component models can be designed and

debugged before composing them into larger systems. The analysis results

are easily related to the architectural model of interconnected components.

The LTSA analysis tool described in this paper is written in Java™ and can

be run as an application or applet. 1\ is availabl¢ at http://www

dse.doc.ic.ac.uk/-jnm. The approach we have described in this paper to

analysing component-based systems is a general one that is not restricted to

a particular tool-set. For example, CSP/FDR [6,19] has been used with the

architectural description language Wright[!] and both LOTOS/CADP [18]

and Promela/SPIN [20] have been used in the context of analysing software

architectures. The objective, whatever the tool, is to use behaviour analysis

during design to discover architectural problems early in the development

cycle.

48 Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou

REFERENCES

[1] Allen R. and GarlanD., A Formal Basis for Architectural Connection, ACM

Transactions on Software Engineering Methodology TOSEM, 6 (3), July 1997,213-249.

[2] Cheung S.C. and Kramer J., Checking Subsystem Safety Properties in Compositional

Reachability Analysis, 18th IEEE Int. Conf on Software Engineering (ICSE-18), Berlin,

1996), 144-154.

[3] Cheung S.C., Giannakopou1ou D., and Kramer J., Verification ofLiveness Properties

using Compositional Reachability Analysis, 6th European Software Engineering

Conference/5th ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE 97), Zurich, Sept. 1997), LNCS 1301, (Springer-Verlag), 1997,227-243.

[4] Giannakopoulou D., Kramer J. and Cheung S.C., Analysing the Behaviour of Distributed

Systems using Tracta, Journal of Automated Software Engineering, special issue on

Automated Analysis of Software (to appear), vol. 6(1). R. Cleaveland and D. Jackson,

Eds.

[5] GarlanD. and Perry D.E., Introduction to the Special Issue on Software Architecture,

IEEE Transactions on Software Engineering, 21 (4), April1995, 269-274.

[6] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs,

N.J., 1985.

[7] Kruchten P.B., The 4+1 Model of Architecture, IEEE Software , 12 (6), Nov. 1995, 42-

50.

[8] Magee J., Dulay N., Eisenbach S., Kramer J., Specifying Distributed Software

Architectures, 5th European Software Engineering Conference (ESEC '95), Sitges,

September 1995), LNCS 989, (Springer-Verlag), 1995, 137-153.

[9] Magee J., Dulay N. and Kramer J., Regis: A Constructive Development Environment for

Distributed Programs, Distributed Systems Engineering Journal, 1 (5), Special Issue on

Configurable Distributed Systems, (1994), 304-312.

[10] Magee J. and Kramer J., Dynamic Structure in Software Architectures, 4th ACM

S/GSOFT Symposium on the Foundations of Software Engineering (FSE 4), San

Francisco, October 1996), SEN, Vo1.21, No.6, November 1996,3-14.

[11] Magee J., Tseng A., Kramer J., Composing Distributed Objects in CORBA, Third

International Symposium on Autonomous Decentralized Systems (ISADS 97), Berlin,

Germany, April9- 11, 1997.

[12] Ng K., Kramer J. and Magee J., Automated Support for the Design of Distributed

Software Architectures, Journal of Automated Software Engineering (lASE) , 3 (3/4),

Special Issue on CASE-95, (1996), 261-284.

[13] Shaw M., et al., Abstractions for Software Architecture and Tools to Support Them,

IEEE Transactions on Software Engineering, 21 (4), April 1995, pp 314-335.

[14] Kramer J. and Magee J., Exposing the Skeleton in the Coordination Closet, 2nd IEEE

International Conference on Coordination Models and Languages, Coord '97, Berlin,

September 1997), LNCS 1282, (Springer-Verlag), Sept 1997, pp. 18-31.

[15] Cheung S.C. and Kramer J., Context Constraints for Compositional Reachability

Analysis, ACM Transactions on Software Engineering Methodology TOSEM, 5 (4),

(1996), 334-377.

[16] Hembold, D. and Luckham, D.C., Debugging Ada Tasking Programs, IEEE Software,

2(2), March 1985,47-57.

[17] Naumovich, G., Avrunin G.S., Clarke L.A. and Osterweil L.J. Applying Static Analysis

to Software Architectures, 6th European Software Engineering Conference I 5th ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 97),

Zurich, Sept. 1997), LNCS 1301, (Springer-Verlag), 1997,77-93.

Behaviour Analysis of Software Architectures

[18] Jean-Pierre Krirnm and Laurent Mounier. Compositional state space generation from

LOTOS programs. In Ed Brinksma, editor, Proceedings ofTACAS'97 (Tools and

Algorithms for the Construction and Analysis of Systems), Enschede, The Netherlands,

April 1997. Springer Verlag.

[19) Formal Systems, Failues Divergence Refinement: FDR 2.0 User Manual, ed. Formal

Systems (Europe) , Oxford, U.K, August 1996.

49

[20) Holtzman G.J., The Model Checker SPIN, IEEE Transactions on Software Engineering,

23(5) May 1997,279-295.

[21] Magee J., Kramer J. and Giannakopoulou D., Analysing the Behaviour of Distributed

Software Architectures: a Case Study, 5th IEEE Workshop on Future Trends in

Distributed Computing Systems, FTDCS'97, Tunsia, October 1997.

	Behaviour Analysis of Software Architectures
	1. INTRODUCTION
	2. PRIMITIVE COMPONENTS
	3. COMPOSITE COMPONENTS
	4. ANALYSIS
	5. DISCUSSION & CONCLUSIONS
	REFERENCES

