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Abstract: The overall structure of a system described by a set of components and their 

interconnections is termed its software architecture. In this paper, we associate 

behavioural specifications with components and use these specifications to 

analyze the overall system architecture . The approach is based on the use of 

Labelled Transition Systems to specify behaviour and Compositional 

Reachability Analysis to check composite system models. The architecture 

description of a system is used directly in the construction of the model used 

for analysis. Analysis allows a designer to check whether an architecture 

satisfies the properties required of it. The paper uses examples to illustrate the 

approach and discusses some open questions arising from the work. 

1. INTRODUCTION 

Software architecture has been identified as a promising approach to 

bridging the gap between requirements and implementations in the design of 

complex systems. Software architecture describes the gross organisation of a 

system in terms of its components and their interactions. The initial 

emphasis in Software architecture specification has thus been in capturing 

system structure [5,8,13]. The authors have previously published papers on 

the use of the architecture description language Darwin for specifying the 

structure of distributed systems and subsequently directing the construction 

of those systems [8,9, 10]. Darwin can also be used to organise CORBA 

based distributed systems [11]. Darwin describes a system in terms of 

components, which manage the implementation of services. Interconnection 
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structure is specified by bindings between the services required and provided 

by component instances. Darwin has both a graphical and a textual form 

with appropriate tool support [9,12] . 

Structural View 

Behavioural View ervice View 

Analysis Construction! 

implementation 

Figure 1. Common structural view with service and behavioural views 

In this paper, we describe the use of Darwin structural descriptions as a 

framework for behaviour analysis rather than system construction. Darwin 

has been designed to be sufficiently abstract to support multiple views (cf. 

[7]), two of which are the behavioural view (for behaviour analysis) and the 

service view (for construction) (Figure 1). Each view is an elaboration of the 

basic structural view: the skeleton upon which we hang the flesh of 

behaviour specification or service implementation [14]. 

In previous papers, we have discussed the use of Darwin to produce the 

service view, with components providing and requiring services at their 

interfaces and with implementation definitions for the primitive components. 

For example, when used to structure CORBA systems [11], the 

computational behaviour of Darwin primitive components is determined by 

CORBA object implementations and these object implementations interact 

via interfaces specified in IDL using the ORB in the usual way. Primitive 

components encapsulate objects and specify their instantiation, their required 

interfaces and provided interfaces. As depicted in figure 2, a primitive 

component may embed one or more objects. 

In this paper we concentrate on the behavioural view using Labelled 

Transition Systems (LTS) for behaviour specification and analysis . The 

analysis approach is Compositional Reachability Analysis CRA [4] . We have 

developed techniques for analysing system models in the CRA setting with 

respect to both safety [2] and liveness [3] properties. The techniques are 

supported by software tools, which provide for automatic composition, 

analysis, minimisation, animation and graphical display. We first describe 

the relationship between components and their behavioural specifications. 
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Darwin 

D- component • - provided service 0 -required service 

CORBA 

<:=:> -object 1- -interface --+ - interface reference 

Figure 2. Embedding objects in components 

2. PRIMITIVE COMPONENTS 

A primitive component is one with no substructure of components. In the 

service view of architecture, a primitive component has an implementation 

defined by an object or objects programmed in a programming language such 

as C++. In the behavioural view, a primitive component is defined as a finite 

state LTS. The example of figure 3 depicts the Darwin graphical and textual 

description of a primitive component with two interfaces. 

In the behavioural view, we do not distinguish between provided and 

required services, service access points are simply declared as portals. 

Consequently, implementation details such as invocation direction can be 

deferred, although, in many cases, it is obvious from the behavioural model 

as to which component is providing a service and which is using it. 

A major objective of our work in architectural analysis is to provide tools 

that are both accessible and usable by practising engineers. To this end, we 

originally conceived that the behaviour of primitive components should be 

specified graphically as state transition diagrams since these should be 

familiar in one form or another to software engineers. However, it quickly 

became apparent that this is an extremely cumbersome method for other than 

trivial behaviour specifications. With our focus on actions rather than states 

in specifying behaviour, it was natural to use process algebra as a concise 

notation for describing behaviour. However, it is unlikely that most software 

engineers have a working knowledge of process algebra. To mitigate this 

problem, we have included the facility to depict textual specifications as 

labelled transition diagrams. These diagrams may be animated, by an 
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interactive behaviour simulation, to check that the specification corresponds 

to the engineer's intuition. 

interface BUTTON (red; blue;} 
DRINKS 

()press pour¢ interface BEVERAGE(coffee; tea;} 

component DRINKS ( 

portal press:BUTTON; 

portal pour :BEVERAGE; 

Figure 3. Darwin description of DRINKS component 

The behaviour of the drinks component is modelled in Figure 4 both 

graphically as a Labelled Transition System and textually in our process 

algebra notation FSP (Einite Erocesses). 

DRINKS 

press.blue 

pour. lea 

(press . red -> pour.coffee -> DRINKS 

lpress.blue -> pour . tea -> DRINKS 

) @ {press, pour}. 

Figure 4. Behavioural description of DRINKS component 

Primitive components are defined as finite state processes in FSP using 

action prefix "->" and choice "I". If x is an action and P a process then 

(x->P) describes a process that initially engages in the action x and then 

behaves exactly as described by P. If x and y are actions then 

(x->P I y->Q) describes a process which initially engages in either of the 

actions x or y. After the first action has occurred, the subsequent behaviour 
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is described by P if the first action was x and Q if the first action was y. 

Thus the DRINKS component offers a choice of the actions press. red 

and press. blue. As a result of engaging in one of these actions the 

appropriate drink is poured. The behavioural view does not distinguish 

between input and output actions although, as in the example, input actions 

generally form part of a choice offered by a component while output actions 

do not. The @{press, pour} states that all actions labelled or prefixed by 

press or pour can be shared with other components. The next example is 

a component that has internal actions that cannot be shared with other 

components. Figure 5 gives the Darwin graphical description for the 

primitive component LOSSYCHAN together with its behaviour modelled in 

FSP and the corresponding LTS diagram. 

LOSSYCHAN 

range T = 0 .. 1 

LOSSYCHAN = 
{in[x:T)->out[x)->LOSSYCHAN 

lin[x:T)->fail ->LOSSYCHAN 

)@{in,out}. 

Figure 5. LOSSY CHAN component 

1n.1 

tau 

The component LOSSYCHAN models a channel which inputs values in 

the range 0 .. 1 and then either outputs the value or fails. In other words, 

the component models a transmission channel that can lose messages. 

Failure is modelled by non-deterministic choice on the input, which leads to 

the internal action fail, if failure is chosen. Since fail does not appear 

at the interface of the component, it becomes the silent action tau in the 

LTS diagram for the component. In many Architectural Description 

Languages, LOSSYCHAN would be represented as a connector rather than a 

component [1,13] . However, Darwin does not have a separate connector 

construct. Connectors can be distinguished as a particular class of 

components. It is clear from the above that connectors are modelled in 

exactly the same way as components. 

The modelling notation FSP-finite state processes-includes guarded 

choice, local processes and conditional processes. However, these are 
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syntactic conveniences to allow concise model definition. Definitions using 

these constructs can all be expressed using action prefix, choice and 

recursion as described in this section. 

3. COMPOSITE COMPONENTS 

A composite component is constructed from interconnecting instances of 

more primitive components. A composite component defines a structure and 

no additional behaviour. Its behaviour can therefore be computed based on 

this structure and the behaviour of its components. 

customer[1]: 

CUSTOMER 

SERVICE 

• • 
customer[N]: 
CUSTOMER 

SERVICE 

const int N = 3; 1 1 #customers 

interface SERVICE { 

prepay(int); gas(int); 

component CUSTOMER 

portal 

SERVICE; 

component STATION 

portal 

customer[l . . N] :SERVICE; 

GASSTATION 

STATION 

customer[1 .. N] 

component GASSTATION 
inst 

STATION; 

forall i = 1 to N { 

inst 

customer[i] :CUSTOMER; 

bind 

customer[i] .SERVICE 

--STATION.customer[i]; 

Figure 6. GASSTATION composite component 

To illustrate composition, we will use the gas station problem, originally 

stated in [ 16] and more recently addressed in [2, 17]. The gas station problem 

concerns a set of N customers who obtain gas by prepaying a cashier who 
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activates one of M pumps to serve the customer. The overall GASSTATION 

component is depicted in figure 6. 

In an implementation such as CORBA discussed in the introduction, 

Darwin bindings (drawn as arcs between portals) are generally references to 

objects. In the behavioural view, a binding denotes an action shared between 

two components. Each customer in figure 6 shares the actions prepay and 

gas, which constitute the SERVICE interface, with the STATION 

component. Component instances in the behavioural view are finite state 

processes as described in the previous section. The composite behaviour is 

the parallel composition of these processes. Consequently, the behaviour of 

GASSTATION is the parallel composition of its constituent components: 

II GASSTATION = (customer [ 1. . Nl :CUSTOMER II STATION) . 

Note that to create multiple copies of CUSTOMER we use process 

labelling. Each action label of the customer process (namely prepay and 

gas) is prefixed with the process label. Thus customer I has the action 

labels customer [ 1] .prepay and customer [ 1] . gas. The STATION 

is itself a composite component consisting of the cashier and one or more 

pumps as depicted in figure 7. A DELIVER component is also required to 

associate pump actions with customer actions. The need for this component 

is discussed later in the paper. 

A binding in Darwin always denotes a shared action in the behavioural 

view. Shared actions are the means by which processes synchronise and 

interact in FSP. It is sometimes necessary to relabel actions to ensure that the 

shared action has the same name in all the processes that share that action. 

Re-labelling is required in the FSP description of the STATION component 

based on the particular bindings: 

//STATION= (CASHIER II pump[l. .M] :PUMP I/ DELIVER) 

/{pump[i:l .. M] .start/start[i], 

pump[i:l. .M] .gas/gas[i]} 

@{customer}. 

The general form of the relabeling function is: 

I { newlabel_lloldlabel_l , ... newlabel_nloldlabel_n}. 

This section has outlined how the FSP composition expressions for the 

behavioural model can be generated directly from the Darwin composite 

component structure. In the next section, we discuss analysis using the 

behavioural model. 
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custom er[1 .. N].prepay CASHIER 

s ta rt[1..M) 

custom er(1 .. N].gas DELIVER 

gas (1..M) 

STATION 

const M = 2 ; I I #pumps 

component STATION { 

portal customer[1 .. N] :SERVICE; 

inst CASHIER; 

inst DELIVER; 

forall i = 1 to N bind 

customer[i] .prepay 

customer[i] .gas 

forall i = 1 to M { 

inst pump[i] : PUMP; 

bind 

pump[i] .start 

pump[i] .gas 

CASHIER . customer[i] . prepay ; 

DELIVER.customer[i] . gas; 

CASHIER . start[i) ; 

DELIVER .gas[i]; 

Figure 7. STATION composite component 

4. ANALYSIS 

The complete behavioural model for the gas station is listed in figure 8. It 

includes behaviour definitions for the primitive components, CUSTOMER, 

CASHIER, PUMP and DELIVER. A CUSTOMER makes a prepayment of 

some amount (a) chosen from the range (A) and then inputs some amount of 

gas (x). The process definition includes a test to check that the amount of 

gas actually delivered is the same as the amount paid for. In this simplified 

model of the gas station, the cashier does not give change and pumps are 

expected to deliver the amount of gas that has been paid for. The CASHIER 

starts any pump that is ready and passes to it the identity of the customer (c) 

and the amount of gas required (x). The PUMP outputs the correct amount of 

gas, which is delivered to the CUSTOMER by the DELIVER component. The 
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composition expressions for the composite components STATION and 

GASSTATION are as described in the previous section. 

const N 3 //number of customers 

const M 2 //number of pumps 

range c 1. .N //customer range 

range p 1. .M I /pump range 

range A 1.. 2 //amount of money or Gas 

CUSTOMER= (prepay[a:A]->gas[x:A)-> 

if (x==a) then CUSTOMER else ERROR) . 

CASHIER = 

(customer[c:C] .prepay[x:A]->start[P] [c] [x]->CASHIER). 

PUMP = 

(start[c:C] [x:A] -> gas[c] [x] -> PUMP). 

DELIVER= 

(gas[P] [c:C) [x :A) -> customer[C] .gas[x] -> DELIVER) . 

II STATION = (CASHIER II pump [ 1. . M] :PUMP II DELIVER) 

I {pump [ i: 1. . M] . start/ start [ i] , 

pump[i:l . . M) .gas/gas[i)} @{customer} . 

IIGASSTATION (customer[!. .N] :CUSTOMER II STATION). 

Figure 8. Gas station behavioural model 

Animation 

Our analysis tool LTSA (labelled transition system analyser) allows a user 

to explore different execution scenarios using the behavioural model. 

EJ 

customer.3.prepay.1 
pump.1.start.3.1 

pump.1.gas.3.1 

customer.3.gas.1 

CU$lomer. l .prepay.1 

cuuomer. l .prepay.2 

cuuomer.2..prepay.1 

customer.2..prepay.2 

customer.3.prepay.2 

Figure 9. Animating the gas station 
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To do this, the user must specify the set of actions that he/she wants to 

control. The controlled set is defined by a menu, which for figure 9 is: 

menu RUN= {customer[C) . prepay[A)} 

Figure 9 depicts the trace of actions that result from instigating a prepay 

action from customer 3. The cashier allocates pump 1, which delivers the 

requisite gas to the customer via the DELIVER process. 

Reachability Analysis 

Animation allows a user to explore different execution scenarios, 

however, it does not allow general properties concerning the model to be 

checked. For example, does a customer always receive the correct amount of 

gas? Reachability analysis performs an exhaustive search of the state space 

to detect ERROR and deadlock states (no outgoing transitions). In fact the 

behaviour model of figure 7 has a bug that permits incorrect behaviour. The 

output of the analyser is shown below: 

property customer.3:CUSTOMER violation. 

property customer.2 : CUSTOMER violation. 

property customer.l : CUSTOMER violation . . .. 

States Composed: 3409 Transitions: 11862 in 1468ms 

Trace to violation in customer.2:CUSTOMER: 

customer.l . prepay.l 

pump.l.start.l.l 

customer.2 . prepay.2 

pump.l.gas.l.l 

customer.2.gas.l 

The output shows that a property violation in each of the customer 

components is detected. In addition, an example trace, which causes one of 

the violations, is produced. Remembering that the CUSTOMER model 

requires that the amount of gas delivered to the customer should be the 

amount paid for, the trace is an execution in which customer 2 gets the gas 

paid for by customer 1. This error is essentially the same as the race 

condition discussed in [17] . The error in the model is that the DELIVER 

process delivers gas to any ready customer C rather than to the customer 

identity c passed to it by the cashier. The corrected DELIVER process is: 

DELIVER 

=(gas[P) [c : C) [x:A) -> customer[c) .gas[x) -> DELIVER) . 

Safety properties 

We can specify safety properties that a composition of components must 

satisfy using property automata [2]. These specify the set of all traces that 
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satisfy the property for a particular action alphabet. If the model can produce 

traces, which are not accepted by the property automata, then a violation is 

detected during reachability analysis. For example, the following automaton 

specifies that for, two customers, if one customer makes a payment then he 

or she should get gas before the next customer makes a payment. In other 

words, service should be FIFO. 

range T = 1.. 2 

property 

(customer[i:T] .prepay[A] -> PAID[i)), FIFO 

PAID[i : T] -> FIFO 

PAID[i] [j] 

(customer[i] .gas[A] 

lcustomer[j : T) .prepay[A] -> 

) ' 

PAID[i:T] [j :T] = (c ustomer[i].gas[A) -> PAID[j]) . 

A gas station with a single pump satisfies this property, however, a 

station with two pumps does not and leads to the following violation: 

Composing 

property FIFO violation. 

States Composed: 617 Transitions: 1398 in 94ms 

Trace to property violation in FIFO: 

customer.1.prepay . 1 

pump . 1.start . 1.1 

customer.2.prepay.1 

pump.2.start.2.1 

pump . 2.gas.2.1 

customer.2.gas.1 

The trace describes the scenario in which customer 1 pays first and gets 

pump 1 followed by customer 2 paying and getting pump 2. Clearly in a two 

pump system, pump 2 can finish first, thereby violating the FIFO property. 

Liveness properties 

The LTSA analysis tool allows behavioural models to be checked against 

specific liveness properties specified in Linear Temporal Logic. However, 

we have found a check for a general liveness property which we term 

progress to provide sufficient information on liveness in many examples. 

Progress asserts that in an infinite execution of the system being modelled, 

all actions can occur infinitely often. In the gas station example, it would 

assert that customers will always eventually be served. In performing the 

progress check, we assume fair choice which means that if an action is 

eligible infinitely often, then it is executed infinitely often. With this 

assumption, the progress check finds no problem with the gas station. 

However, we can examine the behaviour of the system under different 
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scheduling constraints by applying action priority. For example, the system 

below states that the actions of customer 1 have lower priority than other 

actions: 

I I GAS STATION (customer [1 .. N] : CUSTOMER II STATION) 

>>(customer[l]}. 

Unsurprisingly, this causes a progress check violation since it is now 

possible for the cashier to ignore customer 1 in favour of other customers. 

Customer 1 may never be served. The tool gives the following output. 

Progress violation for actions: 

{customer.l . prepay.l, customer.l.gas.l , customer.l.gas.2, 

customer.l.prepay.2, pump.1.start.1.1, pump.2.start.1 . 1, 

pump.1.start.1.2, pump.2.start.1.2, pump.1.gas.1.1, 

pump. 1. gas. 1. 2 ........... } 

Trace to terminal set of states : 

Actions in terminal set: 

{customer . 2 . prepay . 1, customer . 2.gas.1, customer.2.gas.2, 

customer . 2 . prepay . 2, customer.3 .prepay . 1, customer . 3 . gas.1 , 

customer . 3.gas.2, customer.3 . prepay . 2, pump.1.start.2 . 1, 

pump.2.start.2.1 ......... . . } 

This includes the set of actions that do not occur infinitely often in the 

system and the set of action that can occur infinitely often. It is clear that 

actions for customer 1 occur in the former set and the actions for customer 2 

in the latter. The tool gives a trace that leads to the execution in which the 

violation occurs. In the example, this trace is empty, as customer 1 never 

gets an opportunity to get gas. 

5. DISCUSSION & CONCLUSIONS 

We have presented an approach that associates behaviour descriptions 

with architectural components and supports behaviour analysis of the 

composition of these components according to the software architecture. 

Although relatively small, the example exhibits non-trivial behaviour. It 

demonstrates that we can produce concise and flexible behavioural models 

in which it is easy to add additional components and interactions. In the gas 

station, it is trivial to modify the numbers of customers and pumps. In fact, 

the gas station as presented is an instantiation of a common distributed 

software architecture style known as a multi-server or multithreaded server. 
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In a multi-server system, a separate server thread allocated by an 

administrator thread handles each client request. 

In the introduction we stated that we could use the same structural 

description for system construction as for behaviour modelling. This is not 

always the case. For example, the gas station behavioural view includes the 

DELIVER component which routes pump actions to customers. This 

component would not appear in the service view since this routing would be 

implicit in the service invocation mechanism. DELIVER is modelling an 

aspect of architectural connection and it is specific to the behavioural view. 

In other words, we recognise that there is a need to augment the structural 

description with connector components for the behavioural view of 

architecture. In contrast to Wright [1] we have resisted requiring that a 

connector component is always interposed between application components 

since this seems to lead to large numbers of auxiliary actions. 

An issue that always arises when considering exhaustive state space 

search methods is scalability. We have used the current toolset, which has 

not yet been optimised for performance, to analyse an Active Badge 

System[21] in which the final model has 566,820 reachable states and 

2,428,488 possible transitions. This took 400 seconds to construct and check 

on a 200MHz Pentium Pro and required 170Mb of store. Although not 

addressed in this paper, our tools support compositional reachability analysis 

in which intermediate composite components can be minimised with respect 

to their interface actions using observational equivalence. Previous work 

[15] has addressed the problem of intermediate state explosion. 

We believe that analysis and design are closely inter-linked activities 

which should proceed hand in hand. The FSP notation and its associated 

analysis tool LTSA have been carefully engineered to facilitate an 

incremental and interactive approach to the development of component 

based systems. Analysis and animation can be carried out at any level of the 

architecture. Consequently, component models can be designed and 

debugged before composing them into larger systems. The analysis results 

are easily related to the architectural model of interconnected components. 

The LTSA analysis tool described in this paper is written in Java™ and can 

be run as an application or applet. 1\ is availabl¢ at http://www

dse.doc.ic.ac.uk/-jnm. The approach we have described in this paper to 

analysing component-based systems is a general one that is not restricted to 

a particular tool-set. For example, CSP/FDR [6,19] has been used with the 

architectural description language Wright[!] and both LOTOS/CADP [18] 

and Promela/SPIN [20] have been used in the context of analysing software 

architectures. The objective, whatever the tool, is to use behaviour analysis 

during design to discover architectural problems early in the development 

cycle. 
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