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PAVEL ZEMÁNEKy
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Abstract. The way in which reflection of the trapping beam from a dielectric
interface influences the distance of the trapped sphere from the beam waist is
studied theoretically and experimentally. The reflected wave interferes with the
incident wave and they create a standing-wave component in the total axial
intensity distribution. This component then modulates the trapping potential
and creates several possible equilibrium positions for the trapped sphere. When
the beam waist approaches the surface, the potential profile changes, which
consequently causes jumps of the trapped probe from its current location to a
deeper potential well. We suggested theoretically and proved experimentally
that the magnitude of these unwanted jumps between the neighbouring
equilibrium positions can be decreased by a suitable size of the sphere.

1. Introduction
The single-beam optical trap (SBT) has become a routinely used experimental

tool in the fields of molecular and cell biology, colloidal chemistry and surface
analysis within the past 15 years [1–3]. In the classical trapping scheme, a probe (a
dielectric particle) is confined in a tightly focused laser beam [4] and its
equilibrium position is, apart from external disturbances, essentially fixed relative
to the trapping beam focus. Recently, an alternative to optical trap generation was
suggested, which exploits the interference of counter-propagating incident and
reflected laser beams in front of a highly reflective slide [5,6]. In this case, the
periodically modulated Gaussian standing-wave (GSW) created by superposition
of both beams generally contains multiple trapping positions, that is the standing-
wave traps (SWTs), which are spatially fixed with respect to the reflective slide.
Generation of the oscillating GSW component of the total field, however, is not
limited to the surfaces of reflectivity approaching 100% [5]. Thus, in a wide class of
experiments, where the SBT is used as a force transducer [7,8] or a tool for
fabrication of mesoscopic structures [9] and where one operates in close proximity
to a liquid–solid interface, the reflected beam is present and the probe is subject to
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the combined forces of the SBT and SWTs. Consequently, the response of the
probe to the displacements of the SBT obtained by moving the beam focus within
the sample can change significantly. Some volume elements can even become
inaccessible to SBT manipulation.

The extent to which the reflection from a dielectric interface modifies the SBT
manipulation of polystyrene spheres (radius a¼ 0.108 mm) has already been
studied theoretically and experimentally [10]. It was demonstrated that, even for
an ordinary glass–water interface with a reflectivity as low as R� 0.4%, the SWTs
dominate the trapping up to 5 mm from the glass surface and affect the trapping to
distances several times longer. The region of the dominance of SWTs grows with
increasing reflectivity R of the surface and reaches tens of microns for R¼ 98%. On
the other hand, it was shown theoretically that this unwanted grabbing of the probe
by SWTs can be suppressed by using a probe with a radius which is a suitable
fraction of the trapping wavelength [11]. A sphere of this particular radius is pulled
by neighbouring SWTs in opposite directions and, therefore, the resulting SWT
axial forces tend to cancel out. We briefly analyse this effect theoretically and
demonstrate it experimentally in this article.

2. Theory
2.1. Optical force calculation

Theoretical analysis of the interaction between a particle and an electro-
magnetic wave generally consists of description of the incident beam, the field
established owing to the interaction of the incident beam and the particle, and,
finally, the forces acting on the particle surrounded by the resulting field. Single-
beam optical trapping requires a tightly focused laser beam with a spot diameter
comparable with the trapping wavelength. To achieve this, high-quality immer-
sion objectives are usually used. In this case the beam passes through a number of
dielectric interfaces (optical elements inside the objective, immersion oil layer,
coverslip and water layer) which makes a correct description of the field in the
focal region quite complex. The effects caused by diffraction of the beam on the
objective back aperture and by spherical aberration due to the refractive index
mismatch at the dielectric interfaces below the objective influence strongly the
final intensity distribution [12,13]. Despite this fact, the simple Gaussian beam is
still the most frequently considered form of the incident beam even though it is
only a paraxial solution of the wave equation and it does not treat the polarization
components in the focused beam properly. Therefore, to obtain more appropriate
formulae for the focused beam, we used a theoretical treatment describing the
incident wave as the Gaussian beam corrected to fifth order [14].

Description of the field produced as the result of the interaction of the incident
beam and the sphere is a general problem studied by the generalized Lorenz–Mie
theory (GLMT) [15,16]. The force interaction between the total outer field and
the particle can then be quantified on the basis of the momentum conservation
principle (forces acting on any finite volume in a material body can be expressed
through the forces applied to the surface of that volume) and on the assumptions
that a fluid surrounding the particle is isotropic, non-magnetic, linear in its
response to the applied field and in hydrodynamic equilibrium [15,17,18].

Theoretical methods for calculation of the optical forces acting on a sphere
placed in a single corrected Gaussian beam (CGB) have been presented indepen-
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dently by Ren et al. [19] and Schaub et al. [15]. For our study we have adapted the
approach in [15,20]. We assume that the initial field distribution close to the
dielectric interface is created as the interference of the incident CGB and CGB
retroreflected from the surface. Because we suppose that the retroreflected beam is
onlyweak, the final axial optical intensity distribution has an incident CGB envelope
modulated by a weak standing-wave component with modulation depth propor-
tional toR1/2 (R is the surface reflectivity) [5]. Therefore, negligibly lowR (a water–
glass interface has R� 0.04%) can produce a noticeable standing-wave component.
If a sphere is inserted into the interference field of the incident and retroreflected
CGBs close to a reflective surface, a complex scattering–reflection event occurs [11].
To simplify and speed up the calculation, however, we omitmultiply scattered fields
between the reflective surface and the sphere. Thus, the incident field distribution
that is scattered by the sphere occurs solely by interference of the incident CGB and
the counter-propagating reflected CGB. It is thus this distribution which is inserted
into the above-mentioned GLMT formalism. To speed up the calculation even
more, we assume that the spherical object is located on axis and we can thus employ
radial symmetry of the problem [20]. We wrote the modified code for the force
evaluation ourselves but we do not present a detailed mathematical description
because the method has been well described in the literature [14,15,20].

2.2. Beam waist approaching the reflective surface
We want to simulate the behaviour of the trapped sphere while the trapping

beam waist approaches the reflective surface. Therefore, we decrease gradually the
beam waist distance zw from the surface, and at each beam waist position we
calculate the axial profiles of the intensity I(z) and optical force F(z) acting on the
sphere placed within the axial positions 3zR> z>� zR. Here, z is the distance of
the sphere centre from the beam waist and zR is the beam Rayleigh length
ðzR ¼ �w20=�, where w0 is the beam waist and � the trapping wavelength in water).
We calculate the potential energy of the sphere in the beam as the axial force
integralWðzÞ ¼

R z
�1

FðtÞdt. Because the only important parameter of the potential
profile is the depth of individual potential wells, we set its minimal value equal to
zero. Initially (at the most distant position of the beam waist from the surface) we
assume that the sphere is trapped at the equilibrium position which has the deepest
potential well. When the waist is moved closer to the surface, we assume that the
sphere stays trapped at the current potential well, unless one of the potential
barriers surrounding the sphere becomes lower than 10 kT (the generally accepted
criterion for the confinement of the particle in the trap). In such a case we assume
that the particle escapes over this lowered potential barrier and settles at the
neighbouring deeper potential well that is created owing to the interference of
incident and reflected waves. If the neighbouring potential well is not deep enough
to confine the sphere, the whole process is repeated; the sphere jumps to the
nearest deeper trap satisfying the confinement condition. If none of these cases
occurs, the particle is released from the trap and settles on the surface. This occurs
if the beam waist is very close to the surface or behind it. If the sphere can be
trapped, we record its distance from the beam waist as a function of the beam waist
position zw. In the experiments, we monitor the distance of the sphere from the
beam waist by measuring the intensity of the two-photon fluorescence (TPF)
which is excited in the volume-dyed sphere by the trapping beam. Therefore, we
also calculate a quantity that is proportional to the TPF signal at each zw. This
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quantity is obtained as the integral of the square of the incident beam intensity
over the sphere volume (we assumed at this stage that the intensity inside the
sphere is the same as it would be if no sphere were present). The described
algorithm together with an illustration of sphere jumps between neighbouring
equilibrium positions are schematically shown in figure 1.

It has already been shown [11] that the maximal axial force in the standing-
wave trap depends on the sphere size and for certain sphere radii the influence of
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Figure 1. Origin of the trapped probe jumps during approaching of the trapping beam

waist to the surface (a.u., arbitrary units). (a), (d ), (g) The theoretical profiles of the

on-axis intensity I(z)¼ jEx(z)j
2 (where Ex(z) is the on-axis component of electric field

vector), (b), (e), (h) the axial force F(z) and (c), ( f), (i) the depth of the potential well

W(z) as functions of the sphere–surface distance z at three chosen positions of the

beam waist zw. The trapped sphere is located at zsph (places of zero force and potential

minima). The modulations of the envelopes of the single-beam intensity, force and

potential are caused by interference of the incident and reflected waves. This means

that more than one probe equilibrium position can exist and they could fuse together

and create a wider potential well while the beam waist approaches the surface (see (d )–

( f )). Only a 10 nm shift in the beam waist position then causes deformation of the

potential well bottom in such a way that the sphere equilibrium position moves by

157 nm (see (d )–(i )). This change results in a sphere jump of 157 nm further away

from the beam waist position (closer to the surface). ( j) The distance (zw�zsph)

between the beam waist and sphere equilibrium positions as a function of the beam

waist position. (k) Since the trapping beam intensity is different at each equilibrium

position, the two-photon fluorescence (TPF) that is excited by the beam in the dyed

sphere is another sensitive indicator of the non-uniform sphere motion due to the

influence of the reflected wave. The simulation results were obtained for a polystyrene

sphere of radius equal to a¼ 345 nm (see the thick lines in (c), ( f ), and (i )), a water–

glass interface of reflectivity R¼ 0.4%, a laser power P¼ 10mW, a beam waist size

w0¼ 0.4 mm, a sphere refractive index nsph¼ 1.585 and a water refractive index

nwater¼ 1.332.
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the standing-wave is completely eliminated. We deduced that a similar effect must
exist also at lower surface reflectivities and its existence should decrease the length
of the sphere jump between equilibrium positions. Therefore, we proceeded to
more extensive simulations and analysed how the length of the sphere jumps
depends on the polystyrene particle radius and beam waist size. As shown in
figure 2, the length of the jumps can indeed be reduced by appropriate size of the
sphere. This jump-suppressing sphere radius also depends on the beam waist size
(it slightly decreases with increasing beam waist).

3. Experimental confirmation
3.1. Experimental procedure

We wanted to prove experimentally our theoretical conclusions and, therefore,
we analysed the behaviour of optically trapped dyed polystyrene spheres as they
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Figure 2. Dependence of the jump length on the polystyrene sphere size. Using the

procedure described in figure 1 we analysed behaviour of trapped polystyrene spheres

(radii from 30 to 570 nm) as the beam waist approached the surface from a distance of

4mm. (a) The results of this analysis for two beam waist sizes (w0¼ 0.40 mm and

w0¼ 0.45 mm). The quantity zw � zsph is an average value of five subsequent jump

lengths starting from the first jump which occurs for zw<4 mm. This procedure

provides a smooth curve with visible tendencies of the studied effect. It is seen that a

wider beam waist causes longer jumps of the sphere but it is not possible to confine

spheres of radii 0.32 mm< a<0.38 mm. (a)–(e) We choose two representative sphere

radii (one is very sensitive (a¼ 0.35 mm) and the other is insensitive (a¼ 0.42 mm) to

the standing-wave component) to show (b), (c) the distance (zw� zsph) of the sphere

from the beam waist and (d ), (e) the TPF signal (a.u., arbitrary units) as functions of

the beam waist distance from the surface. In these (b)–(e), the difference in the sphere

behaviour is clearly seen together with the fact that the overall maximum of TPF

occurs very close to the place where the beam waist position zw overlaps the sphere

centre position zsph (zw� zsph¼ 0). We used the following parameters for the simula-

tion: water–glass interface of reflectivity R¼ 0.4%, laser power P¼ 1W, sphere

refractive index nsph¼ 1.585 and water refractive index nwater¼ 1.332.
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approached a reflective surface. To achieve this, we enhanced the standard
experimental apparatus of optical tweezers with two independent particle position
detection systems (figure 3). The first detection system employs a PMT to detect
weak TPF which is excited in a trapped fluorescent-dyed sphere by the trapping
beam. This TPF signal is proportional to the square of the excitation intensity and,
therefore, it is very sensitive to the motion of the sphere with respect to the beam
waist position but without distinguishing between lateral and longitudinal
displacements [22]. Thus, we combined it with the second detection system based
on a QPD which was placed behind the condenser to monitor the lateral and
longitudinal motions of the sphere from the changes in the intensity pattern
[21,23,24].

The sample chamber was formed between a coverslip on the top and a micro-
scope slide, from which the trapping beam was actually reflected, on the bottom
(see the detail in figure 3). The space between the two glasses was filled with water
that contained suspended probe particles. The thickness of the sample chamber
was defined by polystyrene spheres of 9.14 mm diameter (Polysciences, Polybead).
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Figure 3. Experimental set-up: TV, television; CCD, charge-coupled device; PZT,

piezoelectric transducer; A/D, analogue-to-digital; D/A, digital-to-analogue; IR,

infrared. A laser beam emitted by a neodymium-doped YLF laser (Spectra Physics

T20-W-105C; �¼ 1053 nm) passes through a filter that blocks the wavelength of the

laser-pumping diode light and then it is transformed by a pair of telescopes that enlarge

the beam to a diameter of 20mm. The beam enters the microscope (Olympus, BX 50),

reflects from a dichroic mirror (transparent for visible wavelengths) and is finally

focused by the microscope objective (Olympus, Ph3 100x OI). The focused beam

which has passed through the sample chamber is collimated again by the condenser

and then impacts on the quadrant photodiode (EG&G, UV-140BQ-4). The vertical

position of the condenser is chosen so that the beam overfills the detector area and

condenser numerical aperture is set to 0.5 [21] by an adjustable iris aperture. The

TPF from the trapped probe is collected by the objective and detected by a

photomultiplier tube (Hamamatsu, R1527). One signal from the photomultiplier tube

(PMT) and three from the quadrant photodiode (QPD) are acquired by 12 bit A/D–

D/A card (Computer Boards, PCI-DAS4020/12) with a sampling frequency of

60 kHz. The distance between the beam waist and the reflective surface is adjusted by

a piezo-stage (Physik Instrumente, PI-517.3C) which is controlled by a (home-made)

18 bit D/A converter via a controlled area network from the computer.
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As the probes, we chose two types of red-fluorescent polystyrene microsphere
(Duke Scientific; radii, 0.345 and 0.41 mm) that were close to the theoretically
predicted jump-enhancing and jump-suppressing radii respectively (see figure 2).
The whole sample chamber was sealed with gum adhesive to prevent evaporation.
We tested two types of microscope slide: the first with a plain glass surface
providing reflectivity in water of R¼ 0.4%; the second one coated by a system of
dielectric TiO2, and SiO2 layers of total reflectivity R¼ 13%. We could, therefore,
study the changes in the probe behaviour with respect to the probe radius and
reflectivity of the surface.

The change in the distance between the beam waist and microscope slide
surface was accomplished by vertical movement of the piezo-driven nanoposition-
ing stage that was operated in a closed-loop regime controlled by the computer. At
the beginning of the experiment we trapped a sphere and pushed it against the
coverslip surface to the point where the TPF signal emitted from the sphere
dropped to approximately 60% of its maximum value. Consequently, the sample
chamber was vertically scanned in 20 nm steps so that the probe approached the
studied microscope slide on the sample chamber bottom. At each vertical position
we waited for 20ms to stabilize the probe in the new trapping location and then we
collected 2048 samples from the QPD and PMT. Mean values and standard
deviations of the x, y, z positions of the sphere together with the TPF signals were
stored. The chamber scanning was repeated six times (three scans in both direc-
tions) to obtain enough data to eliminate the effect of photobleaching of the
fluorescent dye on the acquired TPF signals. Such a measurement took typically
less than 5min.

3.2. Comparison of theoretical and experimental results
In the theoretical part we defined zw as the distance between the beam waist

and the reflective surface. During the experiment, however, we only know the
change �zstg in the vertical position of the stage. Thus, we must first express zw in
terms of �zstg. Owing to refractive index mismatch between the coverslip glass
and water in the sample chamber, the actual shift �zw in the trapping beam waist
is scaled with a factor less than 1 with respect to �zstg. Simple paraxial ray optics
considerations can be used to find the relation between the two quantities:
�zw ¼ ðnwater=nglassÞ�zstg [25]. After insertion of the actual values of refractive
indices we obtain �zw � 0:854�zstg.

Secondly, we have to choose a common reference point on the axial axis for
both simulation and experiment. We choose the position of the maximum of the
TPF signal as this point. A detailed theoretical study revealed that the position of
the maximum TPF signal does not precisely coincide with the zero value of
zw� zsph. This effect is caused by the presence of the reflected wave and it is more
significant for higher surface reflectivity. Therefore, the theoretically found shift
was added to the scaled experimental axial positions so that the reference points of
theoretical and experimental axis truly overlap.

In the third step we calibrated the QPD axial signal. Here, we employed the
part of the experimental QPD curve taken in the proximity of the microscope slide
where the sphere was not trapped but, instead, rested on the surface. In this case,
the change in distance between the beam waist and the sphere is the same as the
change �zw in the distance between the beam waist and the surface. One can, thus,
use the slope of the dependence of the measured QPD signal on zw for the QPD
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signal calibration. We calculated this slope over the distance of 200 nm from the
zero value of zw� zsph and divided the measured QPD values by the slope to
obtain the shift in the sphere position with respect to the beam waist position in
micrometres.

In the fourth step we normalized the theoretical and experimental TPF values
to their respective local maxima achieved at the point of contact of the sphere with
the reflective surface (position of zero of axial axis).

We calculated the theoretical profiles of TPF and QPD signals for the sphere
radii a¼ 0.345 and 0.41 mm, sphere and water refractive indices, nsph¼ 1.585 and
nwater¼ 1.332, and laser power incident on the trapped bead, P¼ 50mW.
Reflectivities of the uncoated and coated glass–water interfaces were assumed to
be R¼ 0.4 and 13% respectively. The only free parameter, namely the beam waist
size w0, could be in principle obtained from a fit of the expected axial TPF profile
shape to the experimental profile of TPF signal for the sphere lying on the surface.
Because this peak is not always significant (especially for a larger sphere) and the
length of the sphere jumps depends on beam waist size (see figure 2), we calculated
instead the theoretical profiles for w0¼ 0.38, 0.40 and 0.42 mm and choose that
value w0 which gave better coincidence with the measurement.

The results of both simulations and experiments are summarized in figures 4
and 5 for reflectivities R¼ 0.4 and 13%, respectively. At the beginning of the scans
(distance close to 10 mm above the reflective surfaces), the sphere is pressed
against the coverslip by moving the trapping beam waist into the coverslip bulk.
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Afterwards, the beam waist is moved towards the reflective slide. As the beam
waist approaches the sphere, the TPF signal increases until the moment that the
sphere is trapped and starts to follow the beam waist motion. The decrease in the
TPF signal that occurs afterwards is mainly due to the spherical aberration (caused
by the refractive index mismatch between the coverslip and water), which makes
the beam waist wider and consequently decreases the on-axis intensity. We also
tested the influence of the bleaching of the dye by comparing subsequent records
of the TPF signals taken with a known time delay in the same direction. We found,
however, that its influence is much smaller than the effect of the spherical
aberrations and therefore it was not taken into account. When the beam waist
approaches the reflective surface, the QPD signals also decrease. This is due to the
increase in the beam width after passing through the condenser lens, which in turn
leads to overfilling of the detector. The effects of spherical aberration and
overfilling the detector were not considered in the theoretical model used and
therefore theoretical TPF and QPD profiles do not decrease as the experimental
profiles.

As the beam waist approaches the reflective surface, the intensity modulation
due to the GSW component increases and has a stronger influence on the
behaviour of the trapped sphere; jumps form a sawtooth-like structure in the
profiles. It is clearly seen that these jumps are really caused by the reflection from
the surface, since their size generally increases with increasing surface reflectivity.
If we compare the position of sphere jumps and their length, we found very good
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coincidence between the theory and experiment (see details in figures 4(a) and (b)
and figures 5(a) and (b)). Moreover, it is seen that the lengths of these measured
jumps are indeed much smaller for the larger sphere, which agrees with the
conclusions from the theoretical work. More sphere radii should be tested in future
to obtain an experimental profile similar to the theoretical profile shown in
figure 2(a).

4. Conclusion
We demonstrated in this article that the influence of the wave reflected from a

dielectric interface on single-beam optical trapping can be suppressed by an
appropriate size of the trapped sphere. We tested experimentally polystyrene
spheres of radii equal to a¼ 0.345 and 0.410 mm which, according to the theoretical
predictions, should be more sensitive and less sensitive, respectively, to the
intensity modulation caused by the reflected beam. This effect was indeed
observed for two types of reflective interface: water–glass (reflectivity R¼ 0.4%)
and water-coated glass (R¼ 13%). The agreement between the predicted and
measured behaviour of the trapped sphere while the beam waist approached the
surface was very good in terms of location and size of discrete jumps of the trapped
sphere between neighbouring stable trapping positions.

Acknowledgment
The work was supported by the Grant Agency of the Czech Republic, project

101/00/0974.

References
[1] GREULICH, K.-O., 1999, Micromanipulation by Light in Biology and Medicine (Basel:

Birkhauser).
[2] MASUHARA, H., SCHRYVER, F. C. D., KITAMURA, N., and TAMAI, N., 1994,

Microchemistry, Spectroscopy, and Chemistry in Small Domains (Amsterdam:
North-Holland).

[3] SHEETZ, M. P., WILSON, L., and MATSUDAIRA, P., 1998, Methods in Cell Biology, Vol.
55, Laser Tweezers in Cell Biology (San Diego, California: Academic Press).

[4] ASHKIN, A., DZIEDZIC, J.M., BJORKHOLM, J. E., and CHU, S., 1986,Optics Lett., 11, 288.
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[11] ZEMÁNEK, P., JONÁŠ, A., and LIŠKA, M., 2002, J. opt. Soc. Am. A, 19, 1025.
[12] ROHRBACH, A., and STELZER, E. H. K., 2001, J. opt. Soc. Am. A, 18, 839.
[13] ROHRBACH, A., and STELZER, E. H. K., 2002, Appl. Optics, 41, 2494.
[14] BARTON, J. P., and ALEXANDER, D. R., 1989, J. appl. Phys., 66, 2800.
[15] BARTON, J. P., ALEXANDER, D. R., and SCHAUB, S. A., 1989, J. appl. Phys., 66, 4594.
[16] GOUESBET, G., and GREHAN, G., 2000, Atom Sprays, 10, 277.
[17] ROBINSON, F. N. H., 1975, Phys. Rep., 16, 313.
[18] DE GROOT, S. R., and SUTTORP, L. G., 1971, Foundations of Electrodynamics

(Amsterdam: North-Holland).
[19] REN, K. F., GREHAN, G., and GOUESBET, G., 1996, Appl. Optics, 35, 2702.
[20] SCHAUB, S. A., BARTON, J. P., and ALEXANDER, D. R., 1989,Appl. Phys. Lett., 55, 2709.
[21] ROHRBACH, A., and STELZER, E. H. K., 2002, J. appl. Phys., 91, 5474.

1624 P. Jákl et al.
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