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Tomographic particle image velocimetry experiments were conducted in the near and
intermediate fields of two different types of jet, one fitted with a circular orifice and
another fitted with a repeating-fractal-pattern orifice. Breda & Buxton (2018a,b) showed
that this fractal geometry suppressed the large-scale coherent structures present in the
near field and affected the rate of entrainment of background fluid into, and subsequent
development of, the fractal jet, relative to the round jet. In light of these findings we now
examine the modification of the turbulent/non-turbulent interface (TNTI) and spatial
evolution of the small-scale behaviour of these different jets, which are both important
factors behind determining the entrainment rate. This evolution is examined in both
the streamwise direction and within the TNTI itself where the fluid adapts from a non-
turbulent state, initially through the direct action of viscosity and then through non-
linear inertial processes, to the state of the turbulence within the bulk of the flow over a
short distance. We show that the suppression of the coherent structures in the fractal jet
leads to a less contorted interface, with large-scale excursions of the inner TNTI (that
between the jet’s azimuthal shear layer and the potential core) being suppressed. Further
downstream, the behaviour of the TNTI is shown to be comparable for both jets. The
velocity gradients develop into a canonical state with streamwise distance, manifested as
the development of the classical tear-drop shaped contours of the statistical distribution
of the velocity-gradient-tensor invariants Q and R. The velocity gradients also develop
spatially through the TNTI from the irrotational boundary to the bulk flow; in particular
there is a strong small-scale anisotropy in this region. This strong inhomogeneity of the
velocity gradients in the TNTI region has strong consequences for the scaling of the
thickness of the TNTI in these spatially developing flows since both the Taylor and
Kolmogorov lengthscales are directly computed from the velocity gradients.

1. Introduction
Axisymmetric jets have been the subject of numerous studies in the past due to their

common use as mixing and thrust producing devices (Ho & Gutmark 1987). An axisym-
metric round jet issuing directly from a contraction produces a flat-topped (“top-hat”)
velocity profile in the near field and develops towards a turbulent state in the far field
by entraining and mixing background (quiescent) fluid into the turbulent stream. En-
trainment describes a process through which there is an exchange of momentum, energy,
vorticity, mass and other properties between the surrounding fluid and the turbulent
stream across the sharp turbulent/non-turbulent interface (TNTI). This process can take
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place in two ways, through engulfment (ingestion of irrotational fluid into the turbulent
stream) and nibbling (small-scale diffusion across the interface). These two processes
do not exclude each other and based on the state of any coherent structures embedded
within the flow one may be more important than the other. Establishing which process
is dominant across the evolution of the jet is somewhat open to debate (da Silva et al.
2014), since some authors have suggested that in turbulent jets engulfment is dominant,
whilst others have pointed to nibbling. Dahm & Dimotakis (1987); Dimotakis (2000) sug-
gested that engulfment would be the dominant process in the far field of axisymmetric
jets and a similar conclusion was reached by Mungal et al. (1991) for diffusion flames.
Contrastingly, Westerweel et al. (2005) pointed to nibbling as the dominant entrainment
process in the far field of a jet between 60− 100 jet diameters downstream of the exit.

Examining the state of the TNTI has posed significant challenges in the past due
to its very small thickness. The first significant work on this topic (Corrsin & Kistler
1954) suggested the existence of a viscous laminar superlayer (VSL) which matched
the irrotational background to the turbulent, vortical flow. Corrsin & Kistler (1954)
suggested that the thickness of this layer would scale with a viscous lengthscale, usually
assumed to be the Kolmogorov lengthscale η. Note that the outer-most extremity of the
TNTI/viscous superlayer is usually referred to as the irrotational boundary. Decades-
later works have suggested that the TNTI is not only composed of the VSL, but also of
a turbulent sublayer (TSL) where the vorticity reaches a local maximum and which has
a thickness that scales with the Taylor legthscale λf (Bisset et al. 2002; van Reeuwijk &
Holzner 2014) or simply to the radius of the large-scale vortical structures (LVS) near
the interface (da Silva & Taveira 2010).

Traditionally, the smallest scales present in a turbulent flow have been thought to be
independent of the large scales, however recent work, particularly at modest Reynolds
number, has started to cast doubt on this (Buxton 2015; Fiscaletti et al. 2016a,b). This
gives rise to the possibility that as well as directly influencing the engulfment into a
turbulent jet the large-scale coherent structures may also indirectly influence entrainment
through small-scale nibbling processes, for example if the small scales are “slaved” to the
large scales. In this manuscript we examine this by comparing a “classic” round jet with
a particular non-circular exit geometry - a repeating fractal pattern. Breda & Buxton
(2018a,b) recently compared axisymmetric jets fitted with a circular and fractal-shaped
orifice with identical open area and at identical Reynolds numbers and showed that the
fractal jet substantially suppressed the coherent structures in the near field of the jet in
relation to the round jet. In particular, they showed that this modified the entrainment
rate into the jet’s near field before both jets evolved into an axisymmetric self-similar
state further downstream. The objective of this manuscript is thus to try and link this
modified entrainment rate to the behaviour of the TNTI and properties of the small-scale
turbulence in the near-interface region of these two jets.

The behaviour of the small scales will be examined through the velocity-gradient tensor
(VGT), which can be split into a symmetric and skew-symmetric part (or a strain-rate
and rotation tensor):

aij =
∂ui

∂xj
= sij + ωij =

1

2

(

∂ui

∂xj
+

∂uj

∂xi

)

+
1

2

(

∂ui

∂xj
− ∂uj

∂xi

)

(1.1)

Here the flow velocity is split into its mean and fluctuating part following the Reynolds
decomposition Ui = Ui + ui. Chong et al. (1990); Chacin & Cantwell (2000) defined
the invariants of the VGT, so-called because they remain constant regardless of which
coordinate system is used, from the roots of the characteristic equation for aij written
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as
ξ3 + Pξ2 +Qξ +R = 0, (1.2)

where P , Q and R are the invariants. The first invariant P describes the negative trace
of the VGT (P = −aii) and is therefore zero for an incompressible flow, hence leaving Q
and R to describe the flow topology

Q =
1

4
(ωiωi − 2sijsij) = Qω +Qs (1.3)

R = −1

3
(sijsjkski +

3

4
ωisijωj) = Rs +Rω (1.4)

where ωi is the ith component of the vorticity vector. The invariant Q can be considered
as the local excess of swirling over strain rate, with its constituent parts Qω being half the
magnitude of the enstrophy whilst Qs = −ε/4ν is proportional to the turbulent kinetic
energy dissipation rate ε. Since P = 0, Q and R can be used to describe the state of an
incompressible fluid element.

The joint probability density function (j.p.d.f.) of Q and R has been found to have a
characteristic “tear-drop” shape in a variety of “fully-developed” turbulent flows includ-
ing homogeneous isotropic turbulence, mixing layers and wall-bounded flows (Soria et al.
1994; Blackburn et al. 1996; Tsinober 2009; Buxton & Ganapathisubramani 2010). This
“ubiquity” led to the belief that the tear-drop shaped j.p.d.f. is a universal signature of
“fully-developed” fine-scale turbulent motions (Chacin & Cantwell 2000; Elsinga & Maru-
sic 2010). Recently, however, Buxton et al. (2017) has observed this tear-drop shaped
distribution of Q and R in the inhomogeneous, spatially-developing near-wake region
downstream of a square cylinder suggesting that it may be more ubiquitous than previ-
ously thought. Contrastingly, Gomes-Fernandes et al. (2014); Paul et al. (2017) found
that the tear-drop shape developed with distance downstream from a fractal-square grid
and single-scale grid, respectively. In this manuscript we will also document the spatial
development of the Q − R distribution, if it exists, in the round and fractal jets we ex-
amine, both in the streamwise direction and in the TNTI-normal direction, i.e. moving
from the interface itself into the turbulent bulk. The objective will be to assess what, if
any, effect the different state of the coherence in the near fields of the different jets has
on the evolution of this Q−R distribution towards a “fully-developed” state.

2. Methodology
2.1. Jet structure

The flow was generated by an open jet facility at Imperial College London, previously
described in Breda & Buxton (2018a,b). In order to prevent biasing the particle images
with unseeded, quiescent air becoming entrained into the jet a seeded, mild co-flow of
air was used as described in Breda & Buxton (2018a,b). The exit flow was found to have
a sharp “top-hat” mean velocity profile and turbulence intensity < 1%. Two different
orifices (round and fractal) of thickness 0.1 mm and of identical open area D2

e (De =
15.78 mm) were attached to the nozzle, as shown in fig. 1. The repeating fractal pattern
was formed of three iterations and has a fractal dimension of Df = 1.5, first described
in Nedić et al. (2013). Each jet thus has the same exit flow velocity Ue =9.93 ms−1 for a
given volumetric flow rate,

De =
√

Exit area Ue =
Volumetric flow rate

Exit area . (2.1)
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(a) (b)

Figure 1: Exit geometries studied, (a) round and (b) fractal.

meaning that the Reynolds number was kept the same for both jets, defined as

ReG =
UeDe

ν
= 104. (2.2)

The flow rates through the jet were carefully controlled using an Omega FMA-26 mass
flow controller to ensure that these operating conditions were repeatable.

2.2. Nomenclature and coordinate system
The data from the tomographic particle image velocimetry (TPIV) experiments are ac-
quired in a Cartesian coordinate system. This coordinate system is defined with x as the
streamwise component and y and z the orthogonal ones. The instantaneous velocities
are U , V and W respectively. In some places the Cartesian coordinate system has been
converted to a cylindrical one. In that case, r is used to indicate the radial component,
whilst θ indicates the azimuthal one. In the potential core, where the round jet has a
“top-hat” velocity profile, the location of the jet centre (r = 0) was determined as the
minimum value of the root-mean-square (rms) of the streamwise velocity fluctuations.
After the azimuthal shear layer coalesces, the location of the jet centre was determined
by fitting a Gaussian curve to the streamwise mean velocity profile to find the maximum
value. The instantaneous velocity components were then converted to Ux, Ur and Uθ,
as shown in fig. 2. The mean (time-average) and fluctuating velocity are subsequently
decomposed following the Reynolds decomposition.

2.3. Tomographic PIV
The tomographic PIV (TPIV) interrogation volumes were centred on x/De = 2, x/De =
10 and x/De = 25 to study the spatial evolution of the velocity-gradient statistics of the
jet, as shown in fig. 3. The three regions were chosen to study the jet in three different
phases (Breda & Buxton 2018b):

• x/De = 2: here the jets are in a state of development. The first Kelvin-Helmholtz
vortex rings have already developed and the turbulent kinetic energy is in a production
phase, where the velocity fluctuations increase with streamwise distance x.
• x/De = 10: the azimuthal shear layer has coalesced and both round and fractal jet

have passed the peak of turbulent kinetic energy (along the centre-line).
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Figure 2: (a) Jet’s coordinate system for the tomographic PIV data and (b) velocity
components.

Coflow
x/De = 2

x/De = 10

x/De = 25

Figure 3: Schematics of volumes studied with TPIV.

• x/De = 25: the mean velocity and Reynolds stresses are self-similar.
Keeping the illuminated volume’s thickness to a minimum allows an increased seeding

density to be used and hence improves the spatial resolution, which is important to study
the velocity gradients. The illuminated-volume thickness was set to be 5 mm (of which
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≈ 3mm was retained after the PIV processing) with a variable aperture slit in order
to compromise between a reasonable spatial resolution and thick enough volume depth
whilst ensuring a sharp light intensity gradient at the edge of the volume.

This thickened light sheet was generated by a double cavity Nd:YAG low speed laser
running at 15 Hz. The images were acquired with four cameras, 4 Megapixel Imager
SX fitted with four lenses of type AF DC-Nikkor 105 mm f/2D (f-number f/16). An
optical calibration was performed by traversing a dotted plate across the whole volume
at the positions x̃ = 0 mm, 2.5 mm† and 5 mm and acquiring an image from the cameras
in each step. The commercial software DaVis was then used to generate the optical
three-dimensional calibration knowing the distance between the three streamwise views.
In order to improve the calibration quality, a volume self-calibration was completed as
discussed by Wieneke (2008). In order to have an homogeneous disparity map, the images
were recorded running the co-flow only. After these initial calibrations, images were
acquired switching both the co-flow and jet on. The TPIV images were processed using
the MART algorithm (6 iterations), a multiplicative algebraic reconstruction (Herman
& Lent 1976).

In order to improve the quality of the reconstruction of the images a dark background,
previously acquired, was subtracted. Sliding minimum subtraction, Gaussian smoothing
using a 3× 3 pixels kernel to reduce the background noise and sharpening to reduce the
number of “ghost particles” were also performed on the raw images, allowing the particle
diameter to be of the order of 2 pixels and the ppp (particles per pixel) to be within
0.04 - 0.05. In order to reduce the processing time sparse cross-correlation (Discetti &
Astarita 2012) was implemented.

The vectors were reconstructed in three steps: an initial recursive direct correlation‡,
followed by two iterations of motion tracking enhancement (MTE) (Novara et al. 2010)
to reduce the number of “ghost particles” and a final recursive direct correlation¶.

Finally, in order to correct the non-zero divergence of the resultant velocity fields,
the data were corrected using the divergence correction scheme (DCS) of De Silva et al.
(2013). This non-zero divergence is due to experimental noise which, as shown by Buxton
et al. (2011), can significantly alter the VGT invariants, obscuring the shape (for example)
of the Q − R joint probability density function (j.p.d.f.). The DCS scheme is based on
a non-linear optimisation based constraint which minimally alters the acquired velocity
field, whilst restricting the magnitude of the divergence to a maximum tolerance. The
objective function to be minimised is the ensemble average of twice the “turbulent kinetic
energy” added to the measured velocity field, i.e. q̃2 =

∑

3

i=1
⟨(Ũi−Ui)

2⟩. The divergence
error was set to be |∂ũi/∂xi| ≤ 10s−1 ∥ after a convergence study, which led to an average
q̃/U cl < 5% (compensated by the jet streamwise centreline velocity).

2.4. Spatial resolution
The spatial resolution was evaluated based on the measured dissipation rate, ε = 2νsijsij .
The Kolmogorov lengthscale was subsequently estimated as η = (ν3/ε)1/4. The transverse

† Here, x̃ = 2.5mm is the approximate centre of the laser volume at a given measurement
station.

‡ The first recursive direct correlation was done in steps of specific correlation volume voxel
size (passes): 160× 160× 160(10) → 96× 96× 96(2) → 64× 64× 64(2). The volume overlap was
75%.

¶ The second recursive direct correlation was: 160 × 160 × 160(10) → 96 × 96 × 96(2)
→ 64× 64× 64(2) → 48× 48× 48(2). The volume overlap was 75%.

∥ The notation ·̃ is used to denote the corrected velocity field for tomographic PIV after the
DCS is applied. Later it is dropped since the analysis on the 3D-3C data is based solely on the
corrected fields.
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Taylor lengthscale λg was calculated as in Goto & Vassilicos (2016) by inserting the
dissipation rate ε into

λg =

√

10ν
q2

ε
, (2.3)

and this was subsequently converted into the longitudinal λf as

λf =
√
2λg =

√

20ν
q2

ε
, (2.4)

where q2 is the turbulent kinetic energy. This led to a spatial resolution (worst case) for
the TPIV experiment of 11η at x/De = 2, of 9η at x/De = 10 and of 5η at x/De = 25.
These worst case figures are quoted assuming a Kolmogorov length scale computed from
the bulk of the turbulent flow, although since the dissipation rate is known to reduce as
the irrotational boundary is approached (van Reeuwijk & Holzner 2014; Buxton et al.
2019) the “local” Kolmogorov length scale is around 20-25% larger hence the spatial
resolution is accordingly finer than these worst-case scenarios. In terms of the longitudinal
Taylor lengthscale, the spatial resolution ranged between 0.3λf and 0.1λf at the three
locations studied. A summary of the spatial and of the camera’s digital resolution† is
reported in table 1.

Figure 4 gives an indication of the spatial resolution and convergence of the dissipation
computation achieved in the present study. Comparison is made between the dissipation
rate estimated from planar PIV (PPIV) in the study of Breda & Buxton (2018b) and
the present tomographic PIV (TPIV) dataset. Figures 4(c) and (d) show the round and
fractal jets probed at the farthest downstream location of x/De = 25. The quoted worse-
case spatial resolution of Breda & Buxton (2018b) at this downstream measurement
station is 3.7η, which is sufficient to resolve the velocity gradients (e.g. Worth et al. 2010;
Buxton et al. 2011). Since only planar data was available in this case the dissipation
rate was estimated by assuming local isotropy from the PPIV data, whereas a direct
computation, i.e. ε = 2νsijsij , was used for the TPIV data. It can clearly be seen that the
TPIV slightly underestimates the dissipation rate in comparison with the PPIV as may
be expected due to the coarser spatial resolution. However, the trends are extremely well
captured and at least a portion of the difference between the two estimated dissipation
profiles may be down to the assumption of local isotropy. This gives us confidence in
our ability to draw meaningful conclusions relating to the VGT phenomenology in the
present manuscript. (N.B. the joint p.d.f.s between Q and R extracted from along the
irrotational boundary presented in figure 16 gives us further confidence that our spatial
resolution is adequate to draw meaningful conclusions.)

Special note should be made here specifically about the spatial resolution at x/De = 2
which is given as 11η in the worst case scenario. Clearly this is the coarsest of any of
the measurement stations (in terms of turbulent length scales) and therefore the velocity
gradients are likely to be an underestimate as a result of this spatial filtering. Indeed
figures 4(a) and (b) show the dissipation rate ε and ε−1/4 which is the constituent part
of the Kolmogorov length scale, at the x/De = 2 measurement station which is clearly
under-resolved. However, in terms of the Taylor length scale the resolution is always bet-
ter than 0.3λf . Buxton (2015) showed that the tear-drop shape of the Q−R distribution
relied upon resolving structures of characteristic length scale > λf in addition to the
finest scales ∼ η. We finally note that our spatial resolution is thus always finer (includ-
ing at x/De = 2) than the finest filter size (∆ = 0.4λ) used in the large eddy simulation

† The digital resolution refers to how close the camera is to the object, whilst the spatial
resolution is also a function of the final interrogation window of the PIV cross-correlation.
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Figure 4: Comparison of the mean dissipation rate computed from the tomographic PIV
(TPIV) of the present study and planar PIV (PPIV) from Breda & Buxton (2018b) at
x/De = 2 (a) and (b) and at x/De = 25 (c)–(e). Estimates in which the dissipation
rate is computed using an assumption of local isotropy from the TPIV data are also
presented in (a) and (b) for direct comparison against the PPIV data. (b) presents ε−1/4

to illustrate the computation of the Kolmogorov length scale η = (ν3/ε)1/4. (c) and (d)
are for the round and fractal jets respectively. (e) Convergence of the calculation for the
mean dissipation rate from five data points chosen at random at x/De = 25.

study of da Silva (2009) to examine velocity gradient phenomenology in the TNTI region
of an axisymmetric jet. For this reason we are confident that we are able to draw at least
qualitative conclusions from this measurement station even if we underestimate the VGT
phenomenology quantitatively.

Figure 4(e) indicates the convergence of the calculation of the mean dissipation rate.
Five data points were chosen at random from the dataset at x/De = 25 and the mean
dissipation rate was computed as a function of number of snapshots used in the calcula-
tion. It can be seen that the results lie well within the ±5% confidence intervals denoted
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Table 1: Processing details for Planar and Tomographic PIV. The worst case scenario for
the spatial resolution is reported.

Initial interrogation window 160× 160× 160 voxels
Final interrogation window 48× 48× 48 voxels
Overlap 75%
Spatial resolution (“far field”) 5η
Digital Resolution (px/mm) 45.7
Size of Field of View (mm) 33× 29× 5
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Figure 5: ω2
∗ at various streamwise locations for the round jet, compensated by (a,b,c)

the mean bulk η and (d,e,f) λf . The change of growth rate are shown with the dashed
magenta lines.

by the dashed lines. We thus estimate the convergence of our dissipation rate estimate
to be conservatively ±3%.

3. Properties of the TNTI
3.1. Detection of the TNTI

The irrotational boundary between the turbulent and non-turbulent fluid (the outermost
surface of the TNTI) was identified based on a vorticity-magnitude (twice enstrophy)
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Table 2: Normalised vorticity magnitude thresholds used to define the irrotational bound-
ary.

Jet x/De = 2 x/De = 10 x/De = 25

Round Ω
∗ ≥ 1.91 Ω

∗ ≥ 0.40 Ω
∗ ≥ 0.08

√

ω2
∗

≥ 1.18× 10
−2

√

ω2
∗

≥ 1.26× 10
−2

√

ω2
∗

≥ 1.95× 10
−2

Fractal Ω
∗ ≥ 1.91 Ω

∗ ≥ 0.40 Ω
∗ ≥ 0.08

√

ω2
∗

≥ 1.41× 10
−2

√

ω2
∗

≥ 1.41× 10
−2

√

ω2
∗

≥ 1.45× 10
−2

threshold as has been used in previous studies (e.g. Bisset et al. 2002; Holzner & Lüthi
2011). This threshold is necessarily non-zero due to experimental/numerical noise. Clas-
sically, in numerical studies the proportion of fluid identified as being in a turbulent state
as a function of chosen vorticity-magnitude threshold yields a plateau region in which the
turbulent proportion remains insensitive to small changes (da Silva et al. 2014). This is
not possible for our experimental data due to the existence of (unavoidable) experimental
noise and the weakly vortical, mild co-flow which was necessary to seed the background
in order to avoid biasing the PIV experiments as (potentially unseeded) fluid is entrained
into the jet with streamwise distance x. As a result the threshold was chosen by use of
an iterative procedure in which conditional statistics were produced as a function of dis-
tance from the irrotational boundary, ri. These statistics were then checked to ensure
that they were insensitive to small changes in chosen threshold. These statistics included
the conditional mean vorticity-magnitude jumps of figure 5, and ensuring that the joint
p.d.f.s between Q and R extracted only from data points along the irrotational boundary
contained minimal swirling states (see figure 16).

The threshold (discussed later in the paragraph) of the square root of vorticity-
magnitude was selected and the radial distance r from the jet centre was converted into
distance ri from the irrotational boundary, where ri = 0 corresponds to the irrotational
boundary and positive ri is in the direction of the turbulent bulk. The conditional mean
vorticity-magnitude ω2

∗ (i.e. conditioned to the distance from ri = 0) is premultiplied
by the kinematic viscosity and dissipation rate

ω2
∗

= ω2

(

ν

ε

)

, (3.1)

and then plotted in fig. 5a. As shown, the threshold chosen captures the point where
ω2

∗ sharply increases across the irrotational boundary, whilst for ri < 0 the vorticity
magnitude is approximately zero. The threshold had to be adjusted for the three different
streamwise locations studied, since the co-flow would slow down moving up vertically from
the jet exit, showing as a consequence a reduced background vorticity. The values chosen
were Ω∗ =

(

ω2

)1/2

De/Ue ≥ 1.91 for x/De = 2, Ω∗ ≥ 0.40 for x/De = 10 and Ω∗ ≥ 0.08

for x/De = 25. These thresholds were chosen based on the magnitude of the vorticity
but when normalised by the kinematic viscosity and dissipation rate they are observed to
be reasonably consistent between measurement stations, in particular for the fractal jet.
This information is presented in table 2. A sensitivity study, which is not included for
brevity, showed that all subsequent results were insensitive to small changes in threshold.

In Bisset et al. (2002), it was shown that for a fully developed turbulent wake ω2
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Figure 6: Mean conditional interface for round and fractal jet at x/De = 2.

would be close to zero in the non-turbulent zone. It would then sharply increases across
the TNTI and finally it would have a different and slower growth rate inside the wake.
In figs. 5a to 5c, two different behaviours can be identified as expected. There has been
some debate as to the correct scaling of the TNTI thickness in “fully-developed” turbulent
flows. Scaling of the TNTI thickness with λf has been widely reported in the literature
(e.g. Westerweel et al. 2009; da Silva & Taveira 2010; Attili et al. 2014) although some
doubt has now been cast on this for high Reynolds number flows (e.g. Watanabe et al.
2015; Silva et al. 2018) who suggests that the correct scaling should be ∼ O(10)η. The
purpose of this manuscript is not to examine the scaling of the TNTI thickness for
developing flows, we do not compare against a broad range of Reynolds numbers, and so
figs. 5a to 5c depict ri compensated by η and figs. 5d to 5f depict ri compensated by λf .
Without determining a scaling it is merely reported that at x/De = 2, the TNTI has a
thickness of ≈ 1.2λf , at x/De = 10 of ≈ 0.7λf and of ≈ λf at x/De = 25. Moreover,
at x/De = 2, the TNTI of the fractal jet appears to have a thickness of ≈ 0.6λf , which
is almost half that of the round jet. This suggests that in the near field, the coherent
structures present for the round jet alter the development of the TNTI, increasing the
thickness of the outer TNTI, between the jet and the background fluid, whilst the TNTI
between the jet and the core appears to have a comparable thickness between the round
and fractal jets (fig. 6). Note that at x/De = 2 the flow should not be considered as a
turbulent flow in the classical sense. Breda & Buxton (2018a) showed that for the round
jet the there was a strong presence of azimuthally coherent vortical structures present
at this location that were suppressed to a certain extent in the fractal jet. It is thus
more instructive to think of the flow here as being transitional, nevertheless so as not
to overburden the reader with additional terminology we refer to the interfacial region
adjacent to the internal and external irrotational boundaries as TNTIs. Once the jet’s
azimuthal shear layer coalesces and the core is absorbed, the TNTI’s thickness is initially
less than a Taylor lengthscale but then evolves towards ≈ λf once the turbulent flow is
fully developed in the weakly self-similar region (x/De = 25). Further remarks are given
in section 4.2.
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Figure 7: r̂(θ) for round and fractal jet at x/De = 2.

3.2. Tortuosity and radial locus of the TNTI
Breda & Buxton (2018a,b) showed that a consequence of the fractal geometry, considered
here, breaking-up the coherent structures in the near field of the fractal jet (in comparison
to the round jet) was a reduction of the entrainment and mixing rates. It is hypothesised,
therefore, that the different coherent structures may affect the wrinkling of the interfaces
and hence the surface area over which diffusion of vorticity may take place. The analysis
focuses on two different types of TNTI. At x/De = 2, two interfaces are present: the outer
interface (OTNTI), between the jet and the background flow, and the inner interface
(ITNTI)†, between the laminar potential core and the turbulent part of the jet. The
tortuosity is calculated for the ITNTI only, since the field of view was not big enough to
always capture the complete OTNTI. This was estimated as a function of the averaged
contorted interface length LTNTI across all time steps and the average radial distance r̂
of the TNTI from the jet centre (illustrated in fig. 7):

tortuosity =
LTNTI

2πr̂
. (3.2)

The interface length was directly calculated by following the Cartesian coordinates that
defined the ITNTI. It is found that the round jet has a tortuosity of 1.49± 0.5%, whilst
for the fractal jet it is 1.40 ± 0.5%. Hence, this hints that the break-up of the coherent
structures may (slightly) reduce the wrinkling and the tortuosity of the ITNTI. In order
to investigate this further, the probability density function (p.d.f.) of r̂ is examined. As
shown in fig. 8a, the round jet has wider p.d.f.s at both ITNTI and OTNTI signifying
more common large-scale excursions of the TNTIs. However, it is unclear if this is due to
the suppression of the large scale structures or simply due to the different exit geometry
influencing the mean interface shape.

As shown in fig. 7, both the ITNTI and the OTNTI of the fractal jet have a non-circular
shape resembling the exit geometry, hence the radial fluctuations based on a single mean
value for r̂ may not be actually influenced by the exit geometry. Therefore, in order to
evaluate the fluctuations of r̂, a different mean r̂(θ) was calculated every 2◦, to account
for the different shape of the two TNTIs. The p.d.f. of the fluctuations of r̂ is examined
in fig. 8b, where the abscissa has been re-ordered so that when it is positive the TNTI

† Note that at x/De = 10 and x/De = 25, the terminology TNTI refers to the outer interface
of the jet since it is the only one present.
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Figure 8: (a) P.d.f. of r̂ for round (◦) and fractal (∗) jet. (b) P.d.f. of fluctuations of
the TNTI based on the angular mean radial distance (same legend applied). Here the
abscissa has been oriented so that positive represents the turbulent zone, whilst negative
represents non-turbulent areas (either in the jet core or in the quiescent background).

is moving towards the turbulent zone, whilst when negative towards the non-turbulent
zone. It is found that the OTNTI and ITNTI of both jets have a comparable positive tail
of the p.d.f., suggesting therefore that the movement towards the turbulent zone is not
affected by the break-up of the coherent structures. On the negative side of the p.d.f.,
the OTNTI appears to have a larger tail compared to the ITNTI. Small differences are
found on the ITNTI between the two jets, where the round jet has a larger negative tail
indicating it is fluctuating more with respect to r̂(θ) due to the influence of the large
coherent structures. However, no appreciable differences are found on the negative side of
the OTNTI of round and fractal jets, suggesting therefore it is insensitive to the state of
the coherent structures. N.B. the mean location of the OTNTI for the round jet is slightly
non-circular. We ascribe this to slight asymmetries in the experimental configuration, for
example due to a slightly non-uniform co-flow and the small wakes left by the four taut
piano wires that were used to keep the central jet structure vertical.

In Breda & Buxton (2018a), it was suggested that the break-up of the coherent struc-
tures produced a thinner shear layer that coalesced further downstream for the fractal
jet, influencing the two-point correlations of the velocity fluctuations. This finding is
here confirmed in terms of physical thickness, however it is shown that in terms of Tay-
lor lengthscales the shear layer is in effect thicker for the fractal jet (fig. 6). The ITNTI is
also more corrugated in the presence of the strong coherent structures of the round jet,
but this process is driven by large-scale excursions of the ITNTI - presumably driven by
the coherent structures themselves. Interestingly, the primary difference between the two
jets are the more common large excursions of the ITNTI into the potential core of the
jet, as opposed to the excursions of the OTNTI towards the background fluid. Further
downstream, comparable p.d.f.s are found between the two jets for (r̂ − r̂(θ)) showing
that this effect is confined to the near field. Note that the entrainment rates between
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Figure 9: Instantaneous TNTIs, both inner and outer, with Cartesian spatial coordinates
normalised by the Kolmogorov length scale for the round and fractal jets at x/De = 2.

the two jets also tended towards the same value further downstream, indicating that
the modified entrainment rate in the near field may be a consequence of the modified
ITNTI dynamics. Context to this finding is provided in fig. 9a and fig. 9b which show
typical instantaneous TNTIs for the round and fractal jets respectively, scaled by the
Kolmogorov length scale.

3.3. Fractal dimension of the TNTI
Since the work of Sreenivasan & Meneveau (1986), it has been believed that the the area
of a turbulent surface S of a TNTI would follow a power-law in the form S ∼ ∆2−Df ,
where Df is the three-dimensional fractal dimension and ∆ is the side length of a cube.
As discussed by Mistry et al. (2018), invoking Reynolds’ similarity hypothesis and Kol-
mogorov scalings leads to a prediction of Df = 2 + 1/3. Various computational and
experimental works have attempted to verify this hypothesis, however strong limitations
were posed by the spatial resolution and by the dimensions available (2D or 3D). There-
fore, rather than evaluating the area of the TNTI, the “fractality” of its length was tested
to check it would follow a power law. A popular method to verify this has been the “box
counting” technique (Mandelbrot 1982; Sreenivasan et al. 1989; Mistry et al. 2016; Zhou
& Vassilicos 2017). This technique consists in covering the field of view with squares of
the same size and counting how many of them contains the TNTI.

Varying the box size Bs and counting the number N of boxes containing the TNTI,
it should be found that there is a power law in the form N ∼ Bm

s . The exponent m
is related to the fractal dimension as Df = 1 − m. Therefore, if a Kolmogorov scaling
were to be found it would be expected that m = −4/3. The box-counting technique was
applied to the present data at the various streamwise locations to probe the evolution
of the TNTI further downstream. In order to test if they follow the Kolmogorov scaling,
they are premultiplied so that if a specific scaling was followed, the data would lie on a
straight horizontal line.

The data indicates that the TNTI follows a power law at all streamwise locations, how-
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Figure 10: Box counting of different interfaces at various streamwise locations for round
(◦) and fractal (∗) jets.

ever it does not seem to follow a Kolmogorov scaling. As shown in fig. 10, the interfaces
premultiplied by (Bs/De)

6/5 in fig. 10a appears to follow a −6/5 scaling rather than the
−4/3 Kolmogorov scaling, as shown in fig. 10b. Only the fractal jet at x/De = 25 appears
to start approaching the Kolmogorov scaling, whilst the round jet does not. This may be
linked to a different state of development of the TNTI at this stage since Breda & Bux-
ton (2018b) showed that the number of eddies overturned, computed from integrating
the eddy-turnover time and comparing it to the advection time-scale required to advect
distance x, was substantially different between the round and fractal jets. However, more
streamwise locations would need to be probed to confirm this and it should be noted that
the p.d.f.s of r̂ between the round and fractal jets did not show any discernible differences
at this location.

This fractal dimension of −6/5 has been previously reported as the minimum value
measured in jets and plumes by Lane-Serff (1993). The −6/5 scaling has also been previ-
ously discussed by Zhou & Vassilicos (2017), who completed 3D DNS simulations, looking
at the TNTI in 2D planes normal to the mean flow direction of an axisymmetric wake
at various streamwise locations. However, in the present study a −4/3 Kolmogorov scal-
ing was found for the fractal jet at x/De = 25 despite non-equilibrium dissipation being
measured for this jet at this location, as discussed in Breda & Buxton (2018b). Therefore,
further streamwise locations are needed in order to unveil the transition from a −6/5
to a Kolmogorov scaling and which phenomena are determining it. The present findings
differ from the results of Mistry et al. (2018), who investigated the scaling of the TNTI in
the streamwise direction for an axisymmetric jet emitted by a round nozzle. The authors
found that up to x/De = 5, the TNTI would have a 2D fractal dimension lower than 4/3
up to x/De = 5 and then it would be approximately 4/3 (hence a Kolmogorov scaling)
from there up to x/De = 73 (x/D = 65 in the original work where D is simply defined as
the round jet diameter), where the jet was self-similar. The authors investigated the jet
acquiring data in r− x planes rather than r− θ planes as in the current work. It may be
argued that it is more accurate to count the boxes in a r − θ plane, as was also done by
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Zhou & Vassilicos (2017), at a specific streamwise location rather than counting them in
the streamwise direction where the scaling may vary due to streamwise inhomogeneity.

4. Spatial evolution of the microscales of the jet
As outlined in section 1 one of the objectives of this manuscript is to investigate

the spatial variation of the microscale flow physics in the near-interface region. This will
reveal the adjustment of the small-scale properties of the turbulence from purely viscous-
dominated flow physics in the viscous superlayer to the inertially-dominated flow physics
in the turbulent bulk portion of the flow. To do this, however, we must first examine
the spatial evolution of the velocity gradients in the turbulent bulk of the jets, as the
turbulence develops with streamwise distance x.

4.1. State of the microscales of the jet
4.1.1. Spatial development of the j.p.d.f. of Q and R

As discussed in section 1, the smallest scales of the flow are typically thought to be
isotropic and statistically homogeneous and in “fully developed” turbulence the joint
probability density function (j.p.d.f.) between Q and R is found to have the so-called
“tear-drop” shape. However, Buxton et al. (2017) found this shape also in the turbulence
production region (the region in which turbulent kinetic energy is an increasing function
of x) for a wake generated by a high-aspect-ratio square cylinder, arguing that the tear-
drop shaped j.p.d.f. may be a signature of turbulent flows in general. This contrasted
previous findings from Gomes-Fernandes et al. (2014) who investigated the evolution of
the microscales of grid-generated turbulence at close and intermediate distances from the
grid. They found that the j.p.d.f. of Q and R would gradually acquire its tear-drop shape
with increasing distance downstream, a finding also observed by Paul et al. (2017). Hence
it is now examined to determine whether the tear-drop develops in space or exists from
the onset for axisymmetric jets. The region of the flow studied is the bulk of the turbulent
flow, where Ω∗ > threshold as discussed in section 3.1. Despite the spatial resolution not
being sufficient to resolve the Kolmogorov scale in the near field, Buxton (2015) showed
that a mix of inertial and dissipative scales is needed to recover the tear-drop shape.
Hence, the current spatial resolution is sufficient to study some structural aspects of the
small-scale behaviour of the flow.

Figure 11 shows this spatial evolution of the j.p.d.f. of Q and R for both jets. At
the farthest upstream station, x/De = 2 where the disturbance/randomness has just
been introduced, there is a close balance between events of R > 0 and R < 0. We ac-
knowledge that the spatial resolution, in terms of Kolmogorov length scale, is coarsest at
this location meaning that it is possible that we have been unable to resolve a possible
tear-drop shaped j.p.d.f. Nevertheless, this shape closely resembles the shape produced
from the synthetic, Gaussian-distributed (i.e. less intermittent than “developed” turbu-
lence) data set produced in Cheng (1996); Chertkov et al. (1999) in which constraints on
incompressibility and isotropy have been enforced. Given that we naturally expect the
disturbance/randomness to originate at this spatial location the shape of the contours of
fig. 11b(a) agreeing with a Guassian distribution of VGT states in which incompressibil-
ity/isotropy is enforced is somewhat reassuring that indeed these contours are physical
rather than a result of lack of spatial resolution. Further, the potential effect of experi-
mental noise at this station was investigated since, as discussed by Buxton et al. (2011),
this j.p.d.f. can be highly susceptible to it. A further, more restrictive DCS was applied
so that |∂ui/∂xi| ≤ 1s−1, however the same shaped j.p.d.f. was found, giving additional
confidence that this result is physical and not a result of experimental noise. We observe
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Figure 11: J.p.d.f. of Q and R for the round and fractal jet. Isocontours range from 10−4

to 100. The regions of positive and negative D (the discriminant of the velocity gradient
tensor) are separated by a black dashed line.

that the Q − R contours begin to extend along the separatrix 4Q3 + 27R2 = 0, which
is the discriminant of eq. (1.2), or the so-called Vieillefosse tail (Vieillefosse 1982) at the
intermediate station x/De = 10. Note that at this location the turbulence intensity along
the centre-line of the jet is close to maximum and is decaying (Breda & Buxton 2018b).
At the farthest downstream location, x/De = 25, a recognisable tear-drop shape is found
which is where the turbulence is the most “fully developed” of any of the measurement
stations (Breda & Buxton 2018b).

In general, when a “classical” tear-drop shape is present, in regions where strain dom-
inates over rotation (Q < 0) strain production usually exceeds enstrophy production
(R > 0), whilst in regions where rotation dominates (Q > 0) it is more likely that R < 0.
At x/De = 2, the j.p.d.f. is approximately symmetrical and there is no trace of the so-
called Viellefosse tail. Moreover, it is found that there is an approximately equal balance
between events where strain production exceeds enstrophy production and vice-versa.
Therefore, it may be stated that at the start of the turbulence production region of a
jet there is a balance between strain production and enstrophy production dominated
events. This differs from the grid flow of Gomes-Fernandes et al. (2014), where the sepa-
rated flow is immediately turbulent. However, similarly to grid-generated turbulence the
tear-drop shape clearly evolves to a steady (developed) state with streamwise distance,
via transient states originating from a Gaussian-like distribution. This is in contrast to a
statistically two-dimensional bluff body wake in which the tear-drop shaped distribution
is observed from immediately downstream of the body (Buxton et al. 2017).

4.1.2. Evolution of enstrophy and strain production
We now consider some of the constituent terms of the invariant R. Equation (1.4)

shows that R can be interpreted as a local departure from equilibrium between the
inviscid strain-rate and enstrophy amplification terms. The analysis now focuses on the
evolution of these terms, −sijsjkski and ωisijωj respectively.

In fig. 12a, the strain-rate production/destruction is analysed. The p.d.f.s at the three
streamwise locations indicate that at x/De = 2 strain destruction is favoured with re-
spect to strain production. However, the flow then develops indicating a prevalence of
strain production (−sijsjkski) further downstream of the jet exit with an amplification of
−sijsjkski at the farthest location. The same behaviour was found by Gomes-Fernandes
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Figure 12: P.d.f. of enstrohpy and strain for round jet (-) and fractal jet (- -).

et al. (2014), who showed an increasing tendency for positive strain self-amplification
(−sijsjkski) moving further away from their space-filling fractal-square grid. We note that
the strain destruction of the round jet appears to reach a minimum level at x/De ≈ 10
before regaining its strength further downstream.

As discussed by Taylor (1938), the inviscid vortex stretching term, ωisijωj , is respon-
sible for allowing the flow’s energy to be transferred inertially from the large to the small
scales. On average ⟨ωisijωj⟩ > 0, indicating therefore that vortex stretching is favoured
over compression, and this has been verified in a wide range of flows (Tsinober et al.
(1992) amongst others). At x/De = 10 and x/De = 25, the ensemble average of ωisijωj

is positive for both jets, in accordance with previous literature. This is also shown in
fig. 12b, where the p.d.f. indicates a slight skewness towards the positive side. However,
at x/De = 2 ⟨ωisijωj⟩ is negative for both jets, indicating a predominance of vortex
compression over stretching.

4.1.3. Strain-vorticity coupling
As discussed by Betchov (1956), the vortex stretching term can be rewritten as ωisijωj =

ω2si(ei ·ω)2, where si are the eigenvalues of the strain-rate tensor, ei are the correspond-
ing (unit) eigenvectors, ω a unit vector indicating the direction of the vorticity vector
and summation over index i is implicit. Here, s3 represents the compressive eigenvalue
(always negative), s1 the extensive one (always positive) and s2 the intermediate one
(either positive or negative). These eigenvalues can be ordered as s1 ≥ s2 ≥ s3 and for
an incompressible flow

∑

3

i=1
si = 0.

As shown in fig. 13a, the symmetrical p.d.f. of ωisijωj is confirmed at x/De = 2. At
x/De = 10, ω2s1 cos

2(e1,ω) and ω2s3 cos
2(e3,ω) have an almost symmetrical p.d.f.,

whilst ω2s2 cos
2(e2,ω) has a clear skewness for vortex stretching which persists up to

x/De = 25. At this station, the p.d.f.s of ω2s1 cos
2(e1,ω) and ω2s3 cos

2(e3,ω) are
again similar, even though ω2s3 cos

2(e3,ω) appears to be slightly more intermittent,
whilst the clear skewness of ω2s2 cos

2(e2,ω) points to the importance of the inter-
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Figure 13: P.d.f. of the spatial evolution of ω2si cos
2(ei,ω) for round jet (-) and fractal

jet (- -).

mediate eigenvalue/vector s2/e2 in the process of vortex stretching. The findings in
fig. 13 show some similarities to the evolution of vortex stretching studied by Gomes-
Fernandes et al. (2014). The authors found that, up to the turbulence production peak,
ω2si cos

2(ei,ω) displayed symmetrical p.d.f.s, whilst in the decay region ω2s2 cos
2(e2,ω)

would show a clear skewness towards positive values. However, differently from the
present study, the authors found that ω2s1 cos

2(e1,ω) would have a wider p.d.f. com-
pared to ω2s3 cos

2(e3,ω), suggesting the behaviour of ω2si cos
2(ei,ω) might be inti-

mately related to the particular flow studied.
We shall now attempt an explanation for the non-canonical behaviour of the velocity

gradients at x/De = 2 and why this canonical behaviour evolves towards x/De = 25.
Clearly the coherent structures wane in influence with streamwise distance which is
coupled to a departure from Gaussianity of the velocity gradients, which is necessary to
enforce non-linear behaviour such as ⟨ωisijωj⟩ > 0. In addition, near the jet exit, the
evolution of the strain field is somewhat constrained by the presence of the potential core,
where the ITNTI and the OTNTI act like barriers to the development of the vortical
structures. This idea is explored further in section 4.3. We may define a characteristic
lengthscale separating the OTNTI and ITNTI as Lω = r̂OTNTI − r̂ITNTI , or simply the
difference between the mean radius of the OTNTI and of the ITNTI. It is hypothesised
that Lω may constrain the evolution of the turbulent structures if there is insufficient
space to achieve a natural scale separation. Ishihara et al. (2013) noted in their DNS work
on homogeneous turbulence that thin layers of thickness 2.8λf (4λg) exist, which consist
of clusters of strong vortex tubes that contribute significantly to the mean dissipation
rate. Elsinga et al. (2017) confirmed these findings for homogeneous turbulence (DNS)
suggesting that the non-local strain width was 2.8λf (4λg) and that the local strain scaled
with η. They were then able to attribute Reynolds number transitions in turbulence
behaviour to those Reynolds numbers at which λf/η was sufficiently large to allow such
structures to form. In the present study, it was found that Lω ≈ 1.8λf for the round jet
and Lω ≈ 2.4λf for the fractal one.

Since Lω is less than 2.8λf for both jets, this may suggest that the physical space avail-
able is not sufficient for the non-local strain to develop. Hamlington et al. (2008) showed
that strain-rate and vorticity are linked by a non-linear, non-local coupling. They showed
that the non-local strain-rate contributed significantly to the vortex stretching since the
vorticity vector preferentially aligned with the background extensional strain-rate, i.e. ẽ1,
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Figure 14: Example of turbulent lengthscales (a) constrained between the OTNTI and
the ITNTI and (b) unconstrained (Round jet). The turbulent area is shaded in light blue.
(c) P.d.f. of the fluctuations of Lω with respect to its mean Lω.

with its correspondingly high magnitude eigenvalue s̃1, whereas it preferentially aligned
with the intermediate local strain-rate e2 which has the lowest magnitude eigenvalue of
any of the (local) principal strain-rates. We thus postulate that the blocking effect of
both TNTIs hinders vortex stretching through inhibiting the contribution of non-local
strain. Later on, when the shear layer coalesces and the ITNTI is absorbed into the tur-
bulent bulk, the strain has all the physical space necessary to evolve towards its (natural)
non-local state. A schematic is shown in figs. 14a and 14b.

The round and fractal jets have a comparable p.d.f. of the fluctuations of Lω, where
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Figure 15: Example of an area probed between 15-20 η at x/De = 2 (black). The ITNTI
is shown in red and the OTNTI in blue (Round jet).

the positive side of the p.d.f. is wider than the negative one. In general, the p.d.f. of the
fractal jet is only marginally wider than the one of the round jet as shown in fig. 14c,
suggesting that the break-up of the coherent structures does not significantly alter the
behaviour of Lω.

4.2. Small-scale evolution across the TNTI
We now focus on the spatial evolution of the state of the velocity gradients across the
TNTI. This is done by extracting the joint p.d.f. between Q and R from specific spatial
regions at a given distance from the irrotational boundary. The intervals chosen were
0 − 5 η, 5 − 10 η, 10 − 15 η and so on up to 55 − 60 η. An example is shown in fig. 15.
It is noted that due to the low spatial resolution the findings in the near field of the jet
(x/De = 2) may appear filtered with respect to the stations further donwstream.

The data presented in fig. 16 suggests that at ri ≈ λf the contours become comparable
between the evolving TNTI and the turbulent bulk region. For an incompressible flow
(P = −aii = 0) the discriminant of eq. (1.2) is given by D = 27/4R2+Q3 and hence the
curve D = 0, marked onto the figures, separates purely real roots for D < 0 (straining
motion only) from one real and a complex conjugate pair of roots for D > 0 (swirling
motion). Examining in detail the contours at the interface location, it is found that at
x/De = 10 and x/De = 25 all the points are associated with D < 0, indicating purely
straining motion. This is consistent with the original intuition of Corrsin & Kistler (1954)
and the DNS results of da Silva & Pereira (2008), who found the same behaviour at the
irrotational boundary of a plane jet and provides further validation of our irrotational
boundary detection threshold. The fact that this is not observed at x/De = 2 is likely a
result of the spatial filtering introduced as a consequence of the coarser spatial resolution
(in terms of η) at this measurement station coupled to the stronger background freestream
turbulence (c.f. the increased Ω∗ threshold at x/De = 2 in table 2) resulting from the
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Figure 16: J.p.d.f. of Q and R, at a isocontour of 10−2 for the round jet (a comparable
behaviour is found for the fractal jet as well).

mild co-flow. The contribution of swirling dynamics, typically associated with vortex
stretching/compression (Buxton & Ganapathisubramani 2010), increases with ri, i.e.
within the turbulent sublayer of the TNTI. Note that the tear-drop shape begins to
develop over a distance as small as 5η at x/De = 10 and x/De = 25. This is similar
to the finding of Watanabe et al. (2017) who showed that the tear-drop shape emerged
after ≈ 5.5η in their DNS of shear-free turbulence.

These findings suggest that the microscale properties vary inside the turbulent sub-
layer, whose thickness is comparable to λf . After that, the microscale properties remain
the same as in the turbulent bulk at each streamwise location. Given that the present
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study considers two different jets, with differing contributions from large-scale coher-
ent motions, at multiple streamwise measurement stations along the jets’ streamwise
development this is a robust finding.

4.3. Consequences for the scaling of the TNTI thickness
Whilst the thickness of the TNTI has been reported to scale with λf (e.g. Bisset et al.
2002; Westerweel et al. 2005; Attili et al. 2014) or η (Silva et al. 2018) this literature has
not covered from which regions of the turbulent fluid these two lengthscales should be
computed. Often, an average value of these two lengthscales has been calculated in the
turbulent bulk or along the centre-line of the flow. This is physically meaningful for a
sufficiently “fully-developed” flow that the profiles of the relevant turbulent statistics have
become self-similar. In such a flow the profile of the mean dissipation rate, a constituent
in the computation of both λf and η can be correctly scaled with just a single value
of the dissipation, typically the centre-line value ε0. In developing, i.e. non-self-similar,
flows such as the jets studied here this is not the case and it is not clear from where
the mean dissipation rate should be extracted within the flow. It is usual to extract the
value of λf or η from within the turbulent bulk under the assumption that the turbulent
behaviour of the TNTI is “slaved” to the turbulent dynamics of the bulk flow (e.g. Attili
et al. 2014).

However, for shearless interfaces at least, doubt has been cast on this assumption. For
example da Silva (2010) argued that for shearless flows the TNTI consisted simply of the
dissipative intense vorticity structures immediately adjacent to the irrotational boundary.
More recently, Watanabe et al. (2017) made reasonable predictions of the conditional
statistics across TNTIs using a model of a Burgers vortex placed within the turbulent
sublayer of the TNTI of shear-free turbulence. In both cases the properties of the TNTI
itself was shown to depend on the turbulence characteristics of the TNTI layer as well as
the turbulent bulk and hence it is reasonable to probe the variability of turbulent length
scales in this region. Figure 16 clearly shows that the state of the velocity gradients, and
hence dissipation rate, is highly variable across the TNTI region. This opens the question
as to whether a turbulent lengthscale computed from the turbulent bulk is relevant to a
local scale computed within the TNTI region.

Therefore, the evolution of η and λf is examined “locally”, to verify how they change
across the TNTI. To do so, the two local scales λ̂f and η̂ are introduced. These are
defined as η̂ = (ν3/ε̂)1/4 and λ̂f = (20νq̂2/ε̂)1/2 where ε̂ is a local dissipation rate and q̂2

is a local turbulent kinetic energy computed from an ensemble situated at a particular
distance from the TNTI. The local scales are computed at the irrotational boundary first
and then in “slices” of thickness 5 η at various distances away from the TNTI in the same
intervals as before: 0 η, 0− 5 η, 5− 10 η, 10− 15 η and so on. Only the data points which
are above the vorticity threshold previously discussed are included in the calculation.
The findings are also evaluated in terms of the mean ratio between bulk λf and η to
verify if the local quantities vary across the TNTI only or not. The ratio for the two jets
at various streamwise distances is shown in fig. 17. This ratio represents scale separation
in the flow and so the fact that both jets have an identical global Reynolds number
of ReG = 104 but different λf/η ratios illustrates the effects that the fractal geometry
has on the inertial/dissipative scales of the turbulence. Note that the difference reduces
with streamwise distance as the turbulence develops which is consistent with our other
findings.

As shown in fig. 18, both λ̂f and η̂ vary significantly from the irrotational boundary
towards the turbulent bulk. The greatest ratio between both lengthscales and their mean
bulk value is at the interface. At the three streamwise locations, λ̂f appears to evolve up
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Figure 17: Evolution of the ratio between bulk λf and η for round (◦) and fractal jet (∗).
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Figure 18: Evolution of (a) local Kolmogorov and of (b) local Taylor lengthscale for round
(◦) and fractal jet (∗).

to a distance of λf away from the interface, after which it reaches a plateau. This would
therefore suggest that the lengthscales evolve inside the TNTI of thickness λf , however
they do not vary any more once the turbulent bulk is reached. The local η̂ appears to take
slightly longer to reach a plateau compared to λ̂f , even though the most rapid changes
take place within a distance of λf again.

Examining the relationship between the local length scales, the ratio between these
two scales changes based on the streamwise location and in general it increases from the
irrotational boundary moving towards the turbulent bulk as shown in fig. 19a. At ri ≈
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Figure 19: Evolution of (a) λ̂f/η̂ and of (b) Reλ̂f
for round (◦) and fractal jet (∗). The

legend is the same as fig. 18

30− 40 η, this ratio decreases for the ITNTI and the OTNTI at x/De = 2, however this
could be due to the fact that the points furthest away from one interface are approaching
the other one. This is also reflected in fig. 19b, where the evolution of the local Taylor
Reynolds number is examined. This is calculated as Reλ̂f

= û′

xλ̂f/ν, where û′

x is the
root-mean-square of the streamwise velocity fluctuations calculated in the same region
as λ̂f . As shown, Reλ̂f

increases with increasing distance from the irrotational boundary,
reflecting the behaviour of λ̂f/η̂. This shows that there is a significant scale evolution
from the TNTI moving towards the turbulent bulk and that choosing the mean bulk
value to describe the state of a turbulent flow may not be representative.

Now a potential reason for such evolution is examined. The TNTI separates the non-
turbulent from the turbulent fluid, acting like a “barrier” between the two types of flow,
as mentioned in section 4.1.3. This “blocking” effect by the TNTI is similar to the concept
of “shear sheltering”, discussed at length in Hunt & Durbin (1999), with the contrast
that vortical motions are only present on one (the turbulent) side of the interface. The
“blocking effect” of the TNTI may be hypothesised to have a similar role to a wall in a
turbulent boundary layer, which would lead to an increase of the small-scale anisotropy
of the flow near the TNTI. Hence, this would affect the velocity gradients and as a
consequence ε, λf and η, since the interface-normal direction, similar to the wall-normal
direction of a turbulent boundary layer, is highly anisotropic. In addition, the thin layer
closest to the wall of a wall-bounded flow is dominated by viscous processes as is the
outermost part of the TNTI. Bechlars & Sandberg (2017) showed that, for a compressible
boundary layer, the wall-normal velocity gradient (and hence its anisotropy) would be
dominant at the wall with respect to the other terms of the velocity gradient tensor and
it would decrease moving away from the viscous sublayer. We thus examine the state of
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Figure 20: Evolution of (a) K1, (b) K2 and (c) K3 for round (◦) and fractal jet (∗). The
legend is the same as fig. 18

the anisotropy in the TNTI through three ratios Ki

K1 = 2
(∂ux/∂x)2

(∂ur/∂x)2
, K2 = 2

(∂ux/∂x)2

(∂uθ/∂x)2
, K3 = 2

(∂ux/∂x)2

(∂ux/∂r)2
, (4.1)

to verify how the velocity gradients evolve from the irrotational boundary towards the
turbulent bulk.

As shown in fig. 20, the anisotropy is the greatest at the irrotational boundary for
all streamwise locations and for all the three Ki. The trends of K1 and K2 appear to
decrease moving further downstream, as expected due to the reduced influence of the
coherent structures, however an isotropic state where Ki = 1 is not yet reached for all
ratios. Moreover, at x/De = 2 the flow is constrained by the presence of two TNTIs,
which may not leave enough space to the flow to recover any “bulk” isotropy. In general
a plateau or a constant trend is found after a distance of λf . It appears that these
anisotropy ratios vary mainly inside the TNTI as λ̂f and η̂. Therefore, this suggests that
the local quantities are strongly influenced by the anisotropy of the flow especially inside
the TNTI.

5. Discussion and conclusions
It was found that the break-up of the coherent structures by the fractal orifice affects

the tortuosity of the ITNTI and also reduces the thickness of the OTNTI in the near
field. The excursions of the TNTI are similar for both jets when the interface moves
towards the turbulent side whilst they vary if the interface moves towards the non-
turbulent side. Whilst the excursions of the OTNTI were comparable between the two
jets it was shown that the round jet, with a stronger contribution from the coherent
structures, sees more common large-scale excursions of the ITNTI into the potential
core. This leads to a slightly more tortuous ITNTI for the round jet, with a presumably
correspondingly greater surface area over which entrainment via nibbling may take place.
It thus seems that the difference in entrainment rates in the near fields of both jets
reported in Breda & Buxton (2018b) may be a result of both enhanced engulfment (large-
scale excursions of the TNTI are likely to promote this) and enhanced nibbling through a
more contorted interface. Using a box-counting technique, it was verified that the TNTI
follows a scaling of N ∼ B

−6/5
s in the regions studied, whilst only the fractal jet appears
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to start approaching the Kolmogorov scaling of N ∼ B
−4/3
s in the furthest downstream

measurement station. Despite N ∼ B
−6/5
s having been linked before to the presence of

non-equilibrium dissipation, the fractal jet was previously found to have both this type of
dissipation (Breda & Buxton 2018b) and a Kolmogorov scaling for the fractal dimension
of the TNTI. This perhaps suggests that there is a difference between examining the
fractal dimension of the TNTI in a streamwise - radial plane as opposed to an azimuthal
- radial plane.

We report here the spatial development of the Q−R j.p.d.f. for an axisymmetric turbu-
lent jet for the first time. Its spatial development, like that for grid-generated turbulence
in Gomes-Fernandes et al. (2014), contrasts to the tear-drop shaped distribution being
observed throughout the near-wake region of a statistically two-dimensional bluff body
wake in Buxton et al. (2017). An analysis of the microstructure of the jets indicated
that, in the near field, turbulence is constrained between the ITNTI and of the OTNTI.
This inhibits the background non-local strain field, which occurs concurrently to a sup-
pression of the inviscid vortex stretching term. Comparing the present work with that
of Gomes-Fernandes et al. (2014), it is confirmed that the Q − R j.p.d.f. develops with
streamwise distance from the jet exit. Other similarities are represented by the initial
balance between the inviscid production and destruction of strain-rate and enstrophy.
However, some differences are present in the near field, where for a round jet there are
two TNTIs and the flow is initially not fully turbulent. In fact, the symmetrical j.p.d.f.
of Q−R at x/De = 2 was not found by Gomes-Fernandes et al. (2014).

By comparing the round and fractal jets a comparison was also made between two
flows with identical global Reynolds numbers but different coherent structures embed-
ded into the flow, and hence initial conditions. The ratio λf/η is indicative of the range of
scales present within the flow, and hence the local turbulent Reynolds number. Despite
the different initial conditions, and a different range of length scales present i.e. differ-
ent λf/η ratios, the velocity-gradient phenomenology of the round and fractal jets was
extremely similar at the intermediate measurement station x/De = 10. This highlights
the short “memory” that the microscales of the flow have of their initial conditions and
the robustness of the Q−R statistical distribution.

The analysis then moved towards understanding how the velocity gradients varied
through the TNTI of nominally axisymmetric jets, into the turbulent bulk. It was found
that in most cases the contours of the joint p.d.f.s between the invariants Q and R start
collapsing after a distance of λf away from the irrotational boundary, suggesting that the
microscale structure of the jet evolves across the interface before becoming comparable
to the turbulent bulk. This variation of the behaviour of the velocity-gradient invariants
in the interface region is coupled to a sharp increase in the small-scale anisotropy. This
behaviour of the velocity gradients results in a substantial change of the local Taylor
and Kolmogorov lengthscales, λ̂f and η̂ respectively, with distance from the irrotational
boundary. It appears that a distance of λf is necessary for the lengthscales to have a
comparable value spatially. The evolution of turbulent properties also takes place across
a distance of λf for both jets, indicating that the initial conditions may only impact
large-scale phenomena directly, whilst the fine structure of the flow remains relatively
unaltered. This does not, however, discount an indirect effect on small-scale processes
such as nibbling through an increase in the surface area of the TNTI over which it may
take place.
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