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Summary 12 

In passive fisheries, such as angling, the fishing success depends on the ultimate decision of a fish to 13 

ingest the bait, based on an individual’s internal state, previous experience and threat perception. Fish 14 

surviving capture by anglers are known to be less vulnerable, and catch rates usually quickly decline with 15 

increasing fishing effort. Previous theoretical models have thus suggested fishing closures as a means to 16 

recover responsiveness of fish to angling gear and maintain catch rates, yet empirical support remains 17 

limited. In a controlled replicated pond experiment, we evaluated the effects of temporal variation in 18 

fishing pressure on catch rates of rainbow trout (Oncorhynchus mykiss) by simulating short term fishing 19 

closures. Fishing closures increased catch rates and population-level catchability, by reducing threat 20 

perception at the population level and allowing released individuals to return to a vulnerable state. Our 21 

experimental results show that periodic fishing closures benefit catch-rates but at the risk of aggravating 22 

the likelihood of overharvesting.  23 

 24 

Keywords: angling vulnerability, avoidance behaviour, catchability, temporal fishing closure, risk 25 

allocation 26 

  27 
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Introduction 28 

 29 

In increasingly human-dominated landscapes, wildlife is facing new threats. Unlike with natural 30 

predators animals have co-evolved with and developed specific defense tactics against (Johnsson 2009), 31 

prey species may not necessarily had the time to adapt to threats and risks associated with a range of 32 

human-related activities. They therefore need to increasingly rely on their non-specific vigilance to sense 33 

the environment, and on their behavioural flexibility to adjust to new human-induced challenges (Van 34 

Buskirk 2012). In urban environments for instance, roe-deer (Capreolus capreolus) inhabiting agricultural 35 

landscapes display an increased vigilance to general disturbances that permits them to benefit from rich 36 

feeding resources associated with these landscapes, despite increased exposure to hunting (Padié et al. 37 

2015). In marine systems, relative to fish from fished areas, fish inhabiting protected no-take zones 38 

show reduced flight initiation distances when experimentally exposed to spearfishing (Januchowski-39 

Hartley et al. 2013) and are more vulnerable to angling (Alós et al. 2015), indicating that fish respond 40 

differently to the same cues based on the habitat specific perceived risk. These examples highlight that 41 

in addition to evolutionary adaptation of populations to harvest selection (Claireaux et al. 2018; Olsen 42 

and Moland 2011), the plastic behavioural response of animals to perceived threats appears to be a 43 

central component of importance to harvest regulations, wildlife conservation and management (e.g. 44 

Arlinghaus et al. 2017a; Paton et al. 2017; Goetze et al. 2018).  45 

In passive gear-type fisheries, such as recreational angling, fishing success depends on the 46 

ultimate decision of a fish to approach and ingest the bait (Lennox et al. 2017), which is influenced by an 47 

individual’s internal state, previous experience and risk perception which vary over time. The idea that 48 

fish vary over time in their vulnerability to predators, and fishing gear, has been conceptualized in the 49 

foraging arena theory (Ahrens et al. 2012), according to which fish move from vulnerable to invulnerable 50 
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states over time, as they adjust their behaviour and space use to balance risks (e.g. predation) and gains 51 

(e.g. fitness associated gains through access to resources, social- and mating behaviour) (Cox and 52 

Walters 2002; Ahrens et al. 2012).  Rates, at which fish move from a vulnerable to an invulnerable state, 53 

and vice versa, have classically been regarded as a function of spatial overlap between fish and gear, i.e. 54 

encounter rate (Cox and Walters 2002). However, and especially for passive fishing gear, encounter 55 

between fish and gear is not sufficient to lead to a capture event (Monk and Arlinghaus 2017). In 56 

addition to spatial overlap of fish and gear deployment, vulnerability of fish to fishing gear may also vary 57 

over time as a function of a fishes internal state (e.g. satiation level, parasitic load) and in response to 58 

the exposure to threats and disturbances (Andersen et al. 2016), related to fishing activity for instance 59 

(e.g. boat noise, gear deployment, alarm cues released by conspecifics).  60 

In recreational fisheries, the concept of vulnerable pool dynamics has been used to model the 61 

observation that with increasing fishing effort, catchability (i.e. population level vulnerability of fish) 62 

does tend to quickly decrease (Cox and Walters 2002), either because the pool of vulnerable fish 63 

decreases as fish get captured (Askey et al. 2006) and/or because increased exposure to fishing 64 

increases their vigilance and reduces their vulnerability to fishing gear (Beukema 1969; van Poorten and 65 

Post 2005; Arlinghaus et al. 2017b). From a management perspective, fisheries exploitation models 66 

assuming total catch-and-release fisheries have suggested that periodic harvest strategies or temporal 67 

fishing closures would be a means to maintain a larger pool of vulnerable fish and therefore maintain 68 

high catch rates (Camp et al. 2015). However no experiment has been completed to test this idea. 69 

Although catch-rates are known to decrease with increasing fishing effort (e.g. angler-hours per unit of 70 

surface; Beukema 1970; Kuparinen et al. 2010; Wegener et al. 2018), it is, to the best of our knowledge, 71 

unknown to what extent the temporal variation in fishing pressure, affects the avoidance response of 72 

individual fish and overall catch rates.  73 
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Using a salmonid model, we explored the effects of temporal variation in fishing pressure on 74 

catch rates under controlled experimental conditions (i.e. known population sizes, individually 75 

identifiable fish, and standardized fishing treatments in replicated systems). We simulated short term 76 

fishing closures and experimentally manipulated threat perception by exposing naïve hatchery reared 77 

rainbow trout (Oncorhynchus mykiss) to different angling frequency treatments, i.e. variable intervals 78 

between angling events but standardized for total fishing effort. We expect longer intervals between 79 

fishing events to reduce threat perception in rainbow trout, leading to the maintenance of a larger pool 80 

of vulnerable fish and therefore to higher catch rates. 81 

Material and Methods 82 

Mesocosm setup and experimental fish  83 

Full-scale replicated angling experiments were carried out between 21st September and 20th 84 

October 2015 in four semi-natural ponds (dimensions: 30 x 24 m, average depth: 2 m) belonging to the 85 

Swedish anglers association Sportfiskarna in Gothenburg, Sweden (57.693°N, 12.037°E). Each pond was 86 

supplied with unfiltered lake water (Lake Delsjön) and removed from vegetation to create comparable 87 

conditions prior to the experiment. 150 rainbow trout (mean ± s.d: mass M = 382.2 ± 56.1 g; fork 88 

length FL = 31.3 ± 1.6 cm) and 150 brown trout (Salmo trutta) (mean ± s.d: M = 392.9 ± 66.1 g; FL = 89 

32.5 ± 1.7 cm) were stocked in equal densities in the ponds (25 of each species per replicated pond). 90 

Both trout species originated from the same hatchery and were reared under comparable conditions 91 

(Källefalls Fiskodling). The brown trout were F1 offspring from wild parents captured in the near-by Lake 92 

Vättern. The rainbow trout were of a domesticated strain, now bred since 1997 within the hatchery and 93 

used exclusively for stocking for angling in Swedish waters. Fish were supplied once a day with fish 94 

pellets (Skretting T-2P Optiline ME SF; 1% of total body mass of fish in each pond), but could also feed 95 

on naturally occurring prey, such as aquatic invertebrates and insects. 96 
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Prior to release to the ponds, fish were anesthetized (2-phenoxyethanol at 0.5 ml L-1), measured 97 

for initial body wet mass and FL, and a 23 mm passive integrated transponder (PIT-tag; HDX ISO 98 

11784/11785, 0.6 g in air, Texas Instrument Inc.) was inserted into the coelomic cavity (using an 11-99 

blade scalpel) for individual identification during the angling trials. At the end of the experiment, fish 100 

were anesthetized and final individual body wet mass and FL were measured to calculate specific growth 101 

rates. Because of very low catch rates, likely induced by the presence of a large majority of mature 102 

individuals (identified after draining the ponds at the end of the experiment), brown trout were 103 

ultimately excluded from data analysis. Results on the relative catchability of rainbow trout and brown 104 

trout are reported elsewhere in an independent experiment as part of the same project (Koeck et al. 105 

2018). The present study thus focuses exclusively on catch rates of rainbow trout. 106 

Fishing treatments  107 

The fishing experiments started after a 5 day period of acclimation in the experimental ponds and 108 

consisted of three different duplicated angling intensity treatments, which were standardized for fishing 109 

effort and only varied in terms of intervals between angling events. This way, effects related to 110 

differences in fishing effort itself could be ruled out when investigating the response of fish to fishing. 111 

Variable angling intensities were achieved by applying different intervals between fishing events 112 

modulating angling frequencies. Treatment 1 corresponded to a 1 day interval, treatment 2 to a 4 days 113 

interval and treatment 3 to a 7 days interval between successive fishing events (Fig. 1). Each replicate 114 

received a total fishing effort  𝐸 of 10 hours (𝐸 =  𝑛𝑏 𝑜𝑓 𝑎𝑛𝑔𝑙𝑒𝑟𝑠 × 𝑛𝑏 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 × 𝑛𝑏 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠; Fig. 115 

1). With four experimental ponds available, each treatment could be duplicated by repeating treatments 116 

1 and 2 over time and rotating between ponds to avoid possible pond effects (Fig. 1).  117 

Two common angling techniques were used simultaneously in the angling trials, natural baits and 118 

artificial spinner lures (for more details on the angling methods, see Koeck et al. 2018). During each 119 
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angling event, two anglers were fishing for one hour while rotating every tenth minute within or 120 

between ponds using alternatively natural bait or lure following a randomization schedule to control for 121 

bias in fishing skills of anglers, site preference and gear effects. Landed fish were identified with a hand-122 

held PIT reader (BTS-ID, Helsingborg, Sweden) and kept in a holding tank until released to their initial 123 

pond at the end of the fishing event. A fish could thus be captured only once per fishing event, but 124 

recaptured at each new event.  125 

Data analysis  126 

Two semi-parametric Cox-proportional hazard regression models were used to compare the 127 

capture rates between angling frequency treatments for right censored data, i.e. incorporating 128 

information of caught and uncaught individuals. The first model included time until first capture of each 129 

fish as response variable and was used to identify angling treatment effects on population level 130 

vulnerability, i.e. to see if more or less individuals are at risk of capture for a given angling frequency 131 

treatment. The second model allowed for repeated captures where all fish had the chance to be 132 

captured at each angling event. This model was used to mimic a context of catch-and-release fishing, 133 

accounting for recaptures in the assessment of total catch rates. The hazard function was of the form: 134 

ℎ(𝑡|𝑧) = ℎ0(𝑡) exp(𝛽), 135 

where ℎ0 is the baseline hazard and 𝛽 is the hazard coefficient, estimated using a partial likelihood 136 

function. Data analysis and graphical representations of survival curves were computed using the 137 

package survival (Therneau 2014) and the package survminer (Kassambara and Kosinski 2018) for the R 138 

statistical environment (R Core Team 2018).  139 

Results 140 
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While in all treatments catch rates declined over time, strong differences were found between angling 141 

frequency treatments in terms of number of captured fish and total catches (Table 1, Fig. 2). At the end 142 

of the five angling events, 28, 40 and 46  fish were respectively captured in the 1-day, 4-days and 7-days 143 

angling frequency treatments (respectively 56 %, 80 % and 92 %;  Table 1). Additionally, the number of 144 

recaptured individuals was also higher when angling was practiced at longer intervals between 145 

successive angling events (Table 1, Fig. 3). Survival models accounting for time to first capture (Table 2, 146 

Fig. 4) and accounting for time until capture including the possibility for recapture (Table 3) provided 147 

similar model statistics (Tables 2, 3: similar hazard coefficient 𝛽 between angling treatments). Both 148 

models showed that the probability of survival was significantly lower when angling was practiced at 7-149 

days intervals and highest when it was practiced every day (Fig. 4), with a respective 57 % and 79 % 150 

increase in hazard of being captured in the 4 days and 7 days angling frequency treatments compared to 151 

when fishing was practiced daily (Table 2, 3).  152 

Discussion 153 

While it is known that fish that have experienced hooking display a reduced vulnerability to capture 154 

(Young and Hayes 2004; Askey et al. 2006; Lennox et al. 2017; Wegener et al. 2018) and that catch rates 155 

tend to quickly decline with increasing fishing effort (van Poorten and Post 2005; Kuparinen et al. 2010), 156 

it is largely unexplored to what extent threat perception and temporal variation of fishing pressure plays 157 

a role in the mechanism leading to observed hook avoidance and hyper depletion of catch. We found 158 

that even short closures of just a few days had substantial impacts on catch rates. Catch rates of 159 

rainbow trout were lower when angling in ponds was practiced at higher frequency (daily) as opposed to 160 

a less frequent angling with either 4 or 7 day intervals, indicating that beyond total fishing effort, the 161 

temporal variation in fishing pressure also affects avoidance behaviour of fish towards fishing gear. Our 162 

results highlighted two mechanisms by which short term fishing closures affect catch rates: by increasing 163 
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the overall number of captured individuals (i.e., by increasing catchability), but also by increasing the 164 

number of recaptures of previously captured and released fish (i.e., by increasing the rates at which fish 165 

return to a vulnerable state).  166 

While catch rates were generally declining with increasing frequency of fishing, indicative of 167 

hook avoidance as reported elsewhere for salmonids (van Poorten and Post 2005; Askey et al. 2006), we 168 

found an increase in number of recaptures in response to lower angling frequencies, indicating that 169 

short-term fishing closures can allow captured individuals to recover from the acute physiological 170 

hooking-related stress (reviewed in Cooke and Suski 2005) and return to vulnerable states within a few 171 

days (as assumed in Camp et al. 2015). Rainbow trout, particularly of domesticated strain, is a relatively 172 

fast recovering species (Ruane et al. 1999), which is confirmed by our results showing that recaptures 173 

are significantly increased when allowing only a few days recovery between angling events. Similar fast 174 

recovery times of just a few days have been reported for other freshwater and marine fish species in the 175 

wild after catch and release angling when handled following best practice (Suski et al. 2003; Ferter et al. 176 

2015). Recovery from capture related stressors is however not alone a sufficient condition for a fish to 177 

return to a vulnerable state after catch and release. For example, although physiologically recovered 178 

after just 12 hours (Rapp et al. 2014), prolonged periods of hook-avoidance was observed in carp 179 

(Cyprinus carpio) for up to a year after an initial capture event (Beukema 1969; Raat 1985), indicating 180 

species-specific differences in learning abilities (Coble et al. 1985) to affect the rates at which hooking 181 

experienced fish return to a vulnerable state.  182 

Importantly, under low angling frequency, in addition to higher rates of recapture, we also 183 

observed an increase in the total number of captured fish, suggesting population-level decrease in 184 

threat perception and vigilance level rendering a larger pool of fish vulnerable to capture. Previous 185 

studies have shown that individual fish differ in their intrinsic vulnerability to capture and have 186 
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identified several drivers related to individual differences in risk-taking behaviour and stress resilience 187 

(also termed coping styles; Louison et al. 2017; Koeck et al. 2018). In particular, it has been shown that 188 

individual differences in the activation of the hypothalamic–pituitary–interrenal axis (HPI axis) were 189 

related to individual differences in vulnerability to angling in rainbow trout (Koeck et al. 2018). Although 190 

this remains to be tested, less frequent angling may possibly cause moderately stress resilient fish, that 191 

are generally less vulnerable to angling (Louison et al. 2017; Koeck et al. 2018), to move into a 192 

vulnerable state rendering them catchable and increasing population-level catchability.  193 

While a number of studies have highlighted differences in wariness of fish from fished and 194 

fishing free-habitats (e.g., Januchowski-Hartley et al. 2013; Alós et al. 2015), i.e. a behavioural 195 

adjustment to spatial differences in threat perception, fewer studies have explored the effects of 196 

temporal variation in fishing pressure. However, following the ‘Predation Risk Allocation Hypothesis’ 197 

(Lima and Bednekoff 1999), prey adopt and adjust the strength of anti-predator tactics also to the 198 

temporal variation of the threat (Foam et al. 2005; Brown et al. 2006). Our results confirm that the 199 

temporal dimension of threat perception is an important driver of behavioural adjustment and 200 

responsiveness to angling gear. In terms of management implications, our experimental study is of 201 

relevance to understanding the impacts of temporal fishing closures in a catch-and-release or put-and-202 

take fishing context and also extends to periodic or rotating harvest fishing contexts, including fisheries 203 

with naturally temporal varying fishing intensities (e.g., where fishing is concentrated on weekends and 204 

absent during weekdays). While these different management strategies aim at increasing fishing 205 

efficiency and catch rates (Camp et al. 2015; Wegener et al. 2018; Abesamis et al. 2014; Goetze et al. 206 

2016; Goetze et al. 2018; Chagaris et al. 2019), their effects on fish populations are substantially 207 

different. In catch-and-release type fisheries, short term fishing closures are expected to reduce the 208 

general threat perception of fish, thereby reducing the depletion of catch normally observed under 209 

sustained fishing effort, which in turn can positively affect anglers’ satisfaction (Camp et al. 2015; 210 
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Wegener et al. 2018). In periodically harvested areas however, the reduced wariness of fish in response 211 

to fishing closures may accentuate the risks of overfishing (Goetze et al. 2016). Because of its 212 

experimental nature, this study is limited in its’ spatio-temporal scale, and even though realistically 213 

representing pond and small-scale put-and take fisheries, the transferability of results to larger systems 214 

need to be further evaluated. To fully appreciate the extend at which temporal variation in fishing effort 215 

affects catchability of fish beyond the context of this study and for temporal fishing closures to be 216 

effectively implemented, further investigations are required across fisheries context and for wild 217 

populations. 218 

Our results raise further questions regarding threat identification and avoidance learning 219 

mechanisms in the context of fishing. While direct experience or private learning are obvious ways to 220 

take informed decisions, animals in the wild usually do not have the opportunity for trial-and-error 221 

when for instance escaping a predator or a fishing gear (Mathis et al. 1996). Fish may therefore, as also 222 

demonstrated in many other taxa (Danchin et al. 2004), rely on social information use, i.e. on 223 

information transmitted by conspecifics, to increase their performances in various contexts (Brown and 224 

Laland 2003). In a context of threat, socially transmitted visual and chemical alarm cues produced by 225 

injured skin of conspecifics (Wisenden 2000; Hall and Clark 2016) are most commonly used to inform 226 

about risk-levels and adopt an adapted behavioural response. Only a couple of studies have so far 227 

investigated the importance of social learning in a recreational fisheries context, showing no effect 228 

(Wegener et al. 2018) or only a trend for the effect of social information use on hook avoidance (Lovén 229 

Wallerius et al. in press). Because of known species-specific differences in learning abilities (Coble et al. 230 

1985), it remains to be fully explored whether social information use affects the avoidance response of 231 

individual fish and overall catch rates, which is of particular interest to catch-and-release fishing in the 232 

context of periodic fishing closures.  233 
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Conclusion. Our results indicate that short term fishing closures have the potential to 234 

substantially increase catch rates by altering the general threat perception, rendering less risk-taking 235 

individuals more vulnerable, and by allowing the highly vulnerable fraction of the population to recover 236 

and return to a vulnerable state after initial capture. Our work provides experimental evidence that, in 237 

addition to evolutionary adaptation of populations to harvest selection, the behavioural flexibility of 238 

animals to temporal variation of anthropogenic threats is of relevance to fish conservation and 239 

management.  240 

  241 
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Tables 384 

 385 

Table 1. Number of captured fish (and number of recaptures) per replicated pond (R1, R2) and 386 

treatment. Per treatment N=50 rainbow trout, i.e. 25 per replicated pond. 387 

Treatment 
Captured fish Cumulated 

catch 
Proportion of 
captured fish R1 R2 

1-day 12 (2) 16 (1) 31 56% 

4-days 19 (5) 21 (7) 52 80% 

7-days 25 (8) 21 (10) 64 92% 
 388 

 389 

Table 2. Cox-proportional hazards regression model examining the effect of angling frequency 390 

treatments (1, 4 and 7 days of interval between successive angling days) on the hazard of being 391 

captured by angling of rainbow trout. The response variable in this model is time until first capture, 392 

assuming that fish are removed from the population. The 1-day angling treatment is coded as the 393 

baseline level of the treatment factor of the model. 394 

       

 
β eβ se(β) z p-value  

Treatment 4-days 0.580 1.786 0.247 2.35 0.019  
Treatment 7-days 0.758 2.134 0.242 3.13 0.0017  
n = 150, number of events = 114, Likelihood ratio test = 10.98  on 2 df,   p = 0.004  

       
 395 

 396 

  397 
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Table 3. Cox-proportional hazards regression model examining the effect of angling frequency 398 

treatments (1, 4 and 7 days of interval between successive angling days) on the hazard of being 399 

captured by angling. In addition to the model in Table 2, this model allows for repeated events, i.e. 400 

individuals are released back to the population and can be recaptured at successive events. The 1-day 401 

angling treatment is coded as the baseline level of the treatment factor of the model. 402 

       

 
β eβ se(β) z p-value  

Treatment 4-days 0.574 1.776 0.227 2.53 0.0114  
Treatment 7-days 0.790 2.204 0.219 3.61 0.0003  
n = 750, number of events = 147, Likelihood ratio test = 14.4  on 2 df,   p = 7e-04  

       
 403 

  404 



22 

 

Figures 405 

 406 

 407 

Figure 1. Sampling design of the angling experiment: angling treatments were duplicated and differed 408 

only in the interval between successive angling days but corresponded to the same total fishing effort of 409 

5 angling events. 410 

 411 

 412 

 413 

Figure 2. Cumulative catch in the two ponds per angling frequency treatment (1, 4 and 7 days intervals) 414 

over the successive angling events.  415 

 416 
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 417 

Figure 3. Cumulative recaptures in the two ponds per angling frequency treatment (1, 4 and 7 days 418 

intervals) over the successive angling events. 419 

 420 

 421 

Figure 4. Survival plot representing the survival probability of rainbow trout at each successive angling 422 

event (time 1 to 5) for the three angling frequency treatments (1, 4 and 7 days intervals), (i.e. the 423 

response variable in the survival analysis corresponds to time until first capture only for each fish). 424 


