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Abstract

Beliefs and expectations often persist despite disconfirming evidence. We examine two potential 

mechanisms underlying such ‘self-reinforcing’ expectancy effects in the pain domain: Modulation 

of perception and biased learning. In two experiments, cues previously associated with symbolic 

representations of high or low temperatures preceded painful heat. We examined trial-to-trial 

dynamics in participants’ expected pain, reported pain, and brain activity. Subjective and neural 

pain responses assimilated towards cue-based expectations, and pain responses in turn predicted 

subsequent expectations, creating a positive dynamic feedback loop. Furthermore, we found 

evidence for a confirmation bias in learning: Higher- and lower-than-expected pain triggered 

greater expectation updating for high- and low-pain cues, respectively. Individual differences in 

this bias were reflected in the updating of pain-anticipatory brain activity. Computational modeling 

provided converging evidence that expectations influence both perception and learning. Together, 

these effects promote self-reinforcing expectations, helping to explain why beliefs can be resistant 

to change.

Introduction

Our past experiences drive our expectations about the future. This principle is a fundamental 

tenet underlying learning theory1,2. At the same time, our expectations can strongly 

influence how we experience events. This principle underlies decades of work on placebo 

effects3–9, top-down influences on perception10–13, and predictive coding14–19. The 

bidirectional interaction between expectations and experience can result in self-reinforcing 

phenomena—so-called “self-fulfilling prophecies”—in many areas of human endeavor, 

including placebo and nocebo effects in medicine, stereotype effects on performance and 

behaviour, and economic growth and recession20.
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One domain in which self-reinforcing expectancy effects may be particularly powerful, and 

have important clinical implications, is pain perception. Previous studies have found that 

expectations about pain intensity—induced by previous experiences and/or instructions—

result in the adjustment of pain responses toward the expected pain level5,16,21–23. Moreover, 

several studies have shown that expectancy effects on pain persist, or even grow over time, 

in the absence of confirming evidence24–31. Such self-reinforcing expectancy effects are 

inconsistent with conventional reinforcement-learning principles1,32. In standard models of 

reinforcement learning, discrepancies between expected and actual outcomes—or 

‘prediction errors’—trigger expectation updating, such that expectations that are not 

confirmed by experience will extinguish.

The behavioural and brain mechanisms underlying resistance to extinction are largely 

unknown, and previous studies have not empirically demonstrated reciprocal, positive 

associations between expectations and experience. Thus, the idea of ‘self-fulfilling 

prophecies’ in brain-behaviour systems remains a theoretical conjecture. Here, we address 

this question in a laboratory setting, examining trial-to-trial dynamics in behaviour and 

fMRI activity related to expectations and pain. In two studies, we independently 

manipulated predictive cues and painful stimulus intensity, which allowed us to decouple the 

bidirectional influences of expectation and pain on one another.

Using this platform, we examine two non-mutually exclusive ways in which expectations 

about pain can be self-reinforcing. First, expectations may modify the perceptual processing 

of nociceptive input, such that people actually feel what they expect. Findings that placebo 

and nocebo manipulations—involving suggestions of decreased and increased symptoms, 

respectively—influence pain-related activation in the spinal cord provide evidence that 

expectations can modify pain processing at a very early stage33,34. Similar modulation of 

perceptual processing may account for expectancy effects on appetitive experiences35. If the 

assimilation of sensory input toward expectations occurs at a processing stage prior to 

prediction-error computation, prediction errors will be diminished and hence expectation 

updating will be impeded.

A second possible mechanism underlying self-reinforcing expectancy effects is that 

expectations may bias experience-based learning. Specifically, people may update their 

expectations more when new evidence confirms, compared to when it disconfirms, their 

initial beliefs. Consistent with this idea, prior information about reinforcement probabilities 

can bias choices and suppress learning-related brain activation in probabilistic reward-

learning tasks36–40. Expectations may induce biases in both (a) evaluation, i.e., the 

reinforcement value assigned to outcomes38,41, and (b) learning, i.e., the degree to which 

new outcomes trigger expectation updating37.

In the present study, we provide evidence that cue-based expectations influence both pain 

perception and learning. Higher pain expectations predicted larger subjective and neural pain 

responses, and larger pain responses in turn predicted higher subsequent expectations, 

generating a positive feedback loop between expectations and pain. Additionally, 

expectation updating for high-pain cues was strongest following higher-than-expected pain, 

while updating for low-pain cues was strongest following lower-than-expected pain, 
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consistent with a confirmation bias in learning. Together, these effects promote persistent 

effects of initial expectations on pain in the face of predominantly disconfirming evidence.

Results

In two studies (N = 28 and N = 34), participants performed a learning procedure followed by 

a test phase27. During learning, participants viewed abstract visual cues paired with 

symbolic representations of heat, i.e., pictures of thermometers (Figure 1A). Some cues 

(low-pain cues) were consistently followed by low-temperature pictures (25–51% of the 

thermometer scale), and other cues (high-pain cues) were consistently followed by high-

temperature pictures (73–93% of the thermometer scale). The purpose of this procedure was 

to create learned, conceptual associations between cues and heat intensity. In the subsequent 

test phase, both types of cues were repeatedly followed by noxious contact heat stimuli 

applied to participants’ inner forearm (47–48°C; Study 1) or lower leg (48–49°C; Study 2). 

Importantly, unbeknownst to the participants, heat intensities during the test phase were 

matched for all cues (Figure 1A), allowing a test of the causal effects of the cues on pain. 

Participants rated how much pain they expected following each cue, and how much pain 

they experienced following each heat stimulus (Figure 1B). We focused our analyses on the 

test phase, including pain ratings in both studies and fMRI activity in Study 2. We 

previously reported the cue effects on pain ratings and skin-conductance responses in Study 

127. Other results, including those on learning dynamics and computational modeling, were 

not included in previous reports.

We analyzed the behavioural and Neurologic Pain Signature (NPS) results using multi-level 

regression analyses on the single-trial data (also see Methods). Unless otherwise stated, the 

reported t-tests are tests of the distribution of the first-level regression coefficients against 0, 

and the reported confidence intervals (CI) are the 95% confidence intervals of the regression 

coefficients. We used bootstrapping for significance testing, which does not require the 

assumption of normality for valid inference.

Cue effects on pain ratings

As expected, participants’ pain ratings increased with increasing temperature (t(27) = 9.4, 

bootstrap p < .001, Cohen’s d = 1.9, CI = 2.2 to 3.2 and t(33) = 9.4, bootstrap p < .001, d = 

1.9, CI = 3.5 to 5.1 in Study 1 and Study 2, respectively). Importantly, pain ratings were 

higher following high- than low-pain cues (Figure 1C; t(27) = 7.6, bootstrap p < .001, d = 

1.5, CI = 4.6 to 7.5 and t(33) = 8.9, bootstrap p < .001, d = 1.6, CI = 3.4 to 5.2 in Study 1 

and Study 2, respectively). In Study 1, the effect of cue type on pain rating was stronger for 

more intense heat, reflected in an interaction between cue type and temperature (t(27) = 3.2, 

bootstrap p < .001, d = .91, CI = .17 to .41). In Study 2, the effect of cue type did not differ 

between the two temperatures (t(33) = .54, bootstrap p = .50, CI = −.48 to .26). In Study 2, 

we also included test trials with a novel, ‘neutral’ cue that had not been presented during the 

learning phase. Pain ratings on neutral-cue trials fell between those for low- and high-pain 

cues, and pain ratings for all three cue types differed significantly from each other, for both 

temperature levels (all bootstrap ps < .001; Figure 1C).
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The effect of cue type on pain rating was stable across test trials even though the cues no 

longer predicted heat intensity, providing initial evidence for potential ‘self-reinforcing’ 

effects (Figure 1D). There was a trend towards a negative interaction between cue type and 

time (trial number) during the test phase (t(27) = 1.8, bootstrap p = .07, d = .38, CI = −.04 to 

−.0004 and t(33) = 2.1, bootstrap p= .05, d = .34, CI = −.04 to −.0004 in Study 1 and Study 

2, respectively), reflecting a slight decrease in the cues’ effects on pain over time. However, 

the effect of cue type was still large and highly significant at the end of the test phase (pain 

rating on the last high- vs. the last low-cue trial: t(27) = 4.6, p < .001, d = .87 and t(33) = 

5.9, p < .001, d = 1.0 in Study 1 and Study 2, respectively).

Cue effects on pain expectations

Analyses of expected-pain ratings showed that, in both studies, participants expected higher 

pain following high- than low-pain cues (Figure 1D; t(27) = 10.0, bootstrap p < .001, d = 

1.9, CI = 8.9 to 13.1 and t(32) = 13.5, bootstrap p < .001,d = 2.5, CI = 10.0 to 13.2 in Study 

1 and Study 2, respectively). Furthermore, pain expectations for high-pain cues were 

consistently worse than experience (t-tests on average expected minus average experienced 

pain, t(27) = 7.5, p < .001, d = 1.4, CI = 3.5 to 6.2 and t(32) = 7.1, p < .001, d = 1.2, CI = 8.6 

to 15.5 in Study 1 and Study 2, respectively), whereas pain expectations for low-pain cues 

were consistently better than experience (t-tests on average expected minus average 

experienced pain, t(27) = 4.5, p < .001, d = .85, CI = −7.5 to −2.8 and t(32) = 3.1,p = .005, d 

= .54, CI = −3.8 to −.77 in Study 1 and Study 2, respectively), indicating a lack of 

extinction. Pain expectations for the neutral cues fell between those for low- and high-pain 

cues. In contrast to the low- and high-cue trials, pain and expected-pain ratings on neutral-

cue trials converged over time (Figure 1D).

Cue effects on pain-related brain activity

We previously reported that, like pain ratings, heat-evoked skin conductance responses were 

also larger following high- than low-pain cues27. In Study 2, we examined the effects of the 

cues on pain-related brain activity. Heat-evoked activity in several areas—including the 

anterior midcingulate cortex (aMCC), insula, thalamus, and parts of the midbrain—was 

stronger on high- than low-cue trials (Figure 2A). These brain areas have been related to 

various aspects of pain processing42–45. For example, electrical stimulation of the insula can 

produce pain in humans46, and lesions and pharmacological inactivation of the ACC disrupt 

pain-avoidance behaviours in animals47,48. However, all these brain areas have also been 

associated with cognitive and emotional functions that are unrelated to pain; hence they are 

not specific to pain.

To address this issue, we recently developed a multivariate pattern of fMRI activity found to 

be sensitive and specific to physical pain in multiple previous studies49–52: The Neurologic 

Pain Signature (NPS)53. We computed the strength of expression of the NPS by calculating 

the dot product of the NPS pattern weights and the activation map for each heat application 

period (obtained from the subject-level fMRI analysis; see Methods). This resulted in one 

scalar value—the NPS response—per trial for each participant.
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As expected, higher NPS responses predicted higher pain ratings within participants, 

controlling for temperature and cue type (t(33) = 3.1, bootstrap p< .001, d = .53, CI = .01 to .

03; Figure 2B), and NPS responses were stronger for 49°C than for 48°C heat (t(33) = 3.9, 

bootstrap p < .001, d = .77, CI = 2.8 to 7.1; Figure 2C). Importantly, NPS responses were 

larger on trials with high- than low-pain cues (main effect of cue type, t(33) = 3.2, bootstrap 

p < .001, d = .63, CI = 1.3 to 4.4; Figure 2C), indicating that the cues modulated the 

nociceptive and/or pain-generation processes that drive the NPS response. Furthermore, 

individual differences in the cue effect on pain rating predicted the magnitude of 

participants’ cue effect on the NPS response (r(32) = .47, p = .007; Figure 2D). The effect of 

cue type was larger for more intense heat, as reflected in a Cue type × Temperature 

interaction (t(33) = 2.0, bootstrap p = .04, d = .37, CI = .25 to 5.1). Follow-up t-tests showed 

that NPS responses were significantly larger on high- than low-cue trials for 49°C heat (t(33) 

= 3.1, p = .004, d = .53), but not necessarily for 48° heat (t(33) = 1.9, p = .07, d = .33). 

Comparisons with neutral-cue trials showed that for 49°C heat, there was a trend toward 

lower NPS responses following low vs. neutral cues (t(33) = 1.9, p = .06, d = .33), but no 

significant difference between neutral and high cues (t(33) = 1.4, p = .17). For 48°C heat, the 

NPS response on neutral-cue trials did not differ significantly from the NPS response on 

either low- (t(33) = 1.7, p = .11) or high-cue trials (t(33) = 0.7, p = .49).

Although the cue effect on the NPS response was numerically strongest in the first half of 

the test phase (Figure 2E), there were no significant interactions between cue type and the 

linear (t(33) = 1.5, bootstrap p = .12, d = .21, CI = −.13 to .03) or quadratic (t(33) = 0.8, 

bootstrap p = .37, d = .15, CI = −.002 to .005) effects of time. Thus, we cannot say 

definitively whether the cue effect on the NPS extinguished over time, but it appears to 

persist throughout the test phase. Together, these findings show that the cues robustly and 

persistently modulated both behavioural and brain markers of pain.

Reciprocal positive associations between expectations and pain

The resistance to extinction of the cue effects on pain may be supported by reciprocal 

positive influences of expectations and pain perception on one another: Expectations modify 

pain perception, and this modified perception drives subsequent expectations, resulting in 

the maintenance of expectations even when these do not reflect sensory input (Figure 3A). 

To examine evidence for both halves of this putative reciprocal circuit, we first analyzed the 

effects of expectations on subsequent pain ratings and NPS responses (left arrow in Figure 

3A), and then analyzed the effects of pain ratings and NPS responses on subsequent cue-

based expectations (right arrow in Figure 3A). We controlled for cue type and temperature in 

all four analyses.

Consistent with the first half of the reciprocal circuit—expectation effects on subsequent 

pain—higher pain expectations predicted higher pain ratings in both studies (t(27) = 8.8, 

bootstrap p < .001, d = 1.5, CI = .37 to .61 and t(32) = 7.4, bootstrap p < .001, d = 1.4, CI = .

25 to .41, in Study 1 and 2, respectively; Figure 3B). Higher pain expectations also predicted 

higher NPS responses in Study 2 (t(32) = 4.2, bootstrap p < .001, d = .71, CI = .26 to .74; 

Figure 3C). Furthermore, a multilevel-mediation analysis showed that trial-to-trial variation 

in NPS response formally mediated the effect of expectations on pain ratings (controlled for 
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cue type and temperature; p < .001, d = .70). When controlled for NPS response, the effect 

of expectations on pain ratings remained highly significant (path c’, p < .001, d = 1.1), 

implying a partial mediation.

Consistent with the second half of the reciprocal circuit—pain effects on subsequent 

expectations—higher pain ratings on a trial predicted higher pain expectations the next time 

the same cue was presented (t(27) = 8.0, bootstrap p < .001, d = 1.4, CI = .17 to .29 and 

t(32) = 4.5, bootstrap p < .001, d = .90, CI= .10 to .22, in Study 1 and 2, respectively; Figure 

3D). In Study 2, there was a non-significant trend in the same direction for the NPS 

response: Higher NPS responses on a trial predicted higher pain expectations the next time 

the same cue was presented (t(32) = 1.2, bootstrap p = .10, d = .27, CI = −.001 to .01; Figure 

3E). Together, these results suggest that expectations modified pain perception, and that 

participants updated their expectations based on new pain experiences.

Confirmation bias in expectation updating

Bidirectional interactions between expectations and experience can contribute to persistent 

expectations in spite of inconsistent evidence. Importantly, however, the component of the 

pain response that is affected by prior expectations may differ from the component that 

drives expectation updating. Specifically, if expectancy-based pain modulation occurs at a 

processing stage subsequent to prediction-error signaling, expectancy effects on pain may 

not carry over to affect subsequent expectations (also see Discussion). Moreover, even if 

there is a closed feedback loop between pain and expectations, this is sufficient for the 

creation of self-reinforcing expectancy effects only when experience fully conforms to the 

expectation. If experience adjusts only partially towards expectations, as was the case in our 

studies (Figure 1D), we would expect a weakening of expectations and eventual extinction 

over time. Thus, to explain our findings of persistent cue effects on expected- and 

experienced-pain ratings, an additional mechanism is needed. One possible additional 

mechanism is a confirmation bias in learning37: stronger expectation updating when new 

experiences are consistent, than when they are inconsistent, with the initial expectation of 

high or low pain.

In our paradigm, a confirmation bias would be reflected in strongest expectation updating 

when high- and low-pain cues are followed by, respectively, higher- and lower-than-expected 

pain. For conciseness, we refer to these as aversive and appetitive pain prediction errors, 

respectively, although this is not meant to suggest that lower-than-expected pain is processed 

by the same system as reward or pleasure. In reinforcement-learning models, the degree of 

expectation updating following prediction errors is controlled by the learning rate. Thus, a 

confirmation bias can be statistically formalized as an interaction between cue type (high- 

vs. low-pain cue) and prediction error sign (aversive vs. appetitive) on learning rate. 

Prediction errors and learning rate are typically inferred from behavioural or autonomic data, 

but the trial-specific expectation and pain ratings in our paradigm provide direct estimates of 

these variables on each trial, requiring fewer assumptions about latent variables and 

providing an empirical estimate of learning in each condition. Specifically, we defined an 

estimated prediction error δ  on each trial t as the difference between the ratings of pain (P) 

and expected pain (E):δ
t

= P
t
− E

t
 Additionally, we defined an estimate of trial-specific 
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learning rate α  as the change in expected-pain rating across two successive presentations of 

the same cue c (trials t and t′), divided by the most recent prediction error for that cue: 

α
c, t

= E
c, t′

− E
c, t

/δ
t
. We report additional model-based analyses in the ‘Computational 

models’ section.

In Study 1, estimated learning rate did not differ between high- and low-pain cues (t(25) = 

0.2, bootstrap p = .81, d = .05, CI = −.12 to .16), but was marginally higher for aversive than 

appetitive prediction errors (t(25) = 1.2, bootstrap p = .07, d = .31, CI = −.03 to .33). 

Importantly, learning rates were highest for appetitive prediction errors following low-pain 

cues and for aversive prediction errors following high-pain cues, resulting in an interaction 

between cue type and prediction error sign (t(25) = 2.5, bootstrap p < .001, d = .68, CI = .08 

to .28; Figure 4A), consistent with a confirmation bias. Study 2 confirmed these findings. In 

Study 2, participants showed higher estimated learning rates for high- than low-pain cues 

(t(20) = 2.5, bootstrap p < .001, d = .49, CI = .17 to .95) and for aversive than appetitive 

prediction errors (t(20) = 2.1, bootstrap p = .005, d = .40, CI = .08 to .94). As in Study 1, 

learning rates were highest for appetitive prediction errors following low-pain cues and 

aversive prediction errors following high-pain cues, resulting in an interaction between cue 

type and prediction error sign (t(20) = 2.4, bootstrap p < .001, d = .46, CI = .16 to 1.1; 

Figure 4A). Thus, learning rates were consistent with a confirmation bias in both studies. We 

also performed the same analysis on raw expectancy updates (not divided by prediction 

error), which yielded similar results (Supplementary Results and Supplementary Figure 1), 

demonstrating that the results are not driven disproportionately by high learning rates on 

trials with very small prediction errors.

The previous analysis considered the sign, but not the magnitude, of prediction errors. Also, 

a limitation of the previous analysis is that there were relatively few high-cue trials with 

aversive prediction errors (on average 9.1 and 4.2 trials per participant in Studies 1 and 2, 

respectively) and low-cue trials with appetitive prediction errors (on average 8.7 trials per 

participant in both studies). Two participants in Study 1 and 12 participants in Study 2 never 

experienced aversive prediction errors on high-cue trials, and hence were excluded from the 

previous analysis (leaving 26 and 21 participants in Studies 1 and 2, respectively).

To address these issues, we conducted an additional analysis in which we tested for effects 

of cue type and signed prediction error magnitude on (signed) expectation updating. All 

participants were included in this analysis. As expected, expectation updating increased with 

increasing prediction error magnitude (t(27) = 12.7, bootstrap p < .001, d = 2.3, CI = .30 to .

42 and t(32) = 7.1, bootstrap p< .001, d = 1.6, CI = .22 to .34 in Studies 1 and 2, 

respectively; Figure 4B). In addition, there was a main effect of cue type (t(27) = 4.8, 

bootstrap p < .001, d = 1.6, CI = .76 to 1.2 and t(32) = 5.0, bootstrap p < .001, d = 1.1, CI = .

86 to 1.6 in Study 1 and 2, respectively), indicating that high-pain cues, relative to low-pain 

cues, caused an upward shift in expectation updating. There was no Prediction error × Cue 

type interaction (bootstrap p > .17 in both studies), suggesting that this cue effect on 

expectation updating was independent of prediction error magnitude. Together, these effects 

reflect that upward updating of pain expectations following aversive prediction errors was 

stronger for high- than low-pain cues, while downward updating of pain expectations 
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following appetitive prediction errors was stronger for low- than high-pain cues (Figure 4B). 

Thus, the cues influenced expectation updating in accordance with a confirmation bias. 

Finally, the effect of the cues on expectation updating varied substantially across participants 

(Figure 4C).

Computational models

To formalize and quantify the latent processes that we hypothesized to underlie the observed 

cue effects, we developed two computational models: a reinforcement learning model and a 

Bayesian model. The two models embody the same ideas from different perspectives and are 

formally closely related; hence, they can be seen as complementary rather than competing. 

The reinforcement learning model explains pain perception as a mechanistic process 

involving prediction and error correction, whereas the Bayesian model explains it at a 

rational level in terms of probabilistic inference. Full descriptions of the models, and their 

equations, can be found in the Methods; here we provide a brief overview of their main 

points. The models observe the sequence of cues and noxious stimuli presented to 

participants; each cue is initially associated with a low or high pain value. Both models 

contain (i) a perceptual inference mechanism, which models the pain experienced on a given 

trial as a weighted average of the sensory (noxious) input and cue-based pain expectation, 

and (ii) a learning mechanism, which governs how each new pain experience is used to 

update the predictive value (expectation) of the cue that preceded it (Figure 5). Model 1, the 

reinforcement learning model, assumes that participants represent expectations and pain 

outcomes as point values that are updated based on prediction error, as in standard 

reinforcement learning models. It has three free parameters (which are estimated for each 

participant) that control the relative weighting of expectations and sensory input during 

perceptual inference, and the learning rates for cue-pain associations following cue-

consistent and cue-inconsistent prediction errors (see below). Model 2, the Bayesian model, 

assumes that participants track not only the expected values of cue-pain associations but also 

their uncertainties (variances), and it determines the influence of expectations on pain and 

the learning update following a given trial based on these uncertainty estimates. Both 

expected values and variances are updated over time.

Model 1: Reinforcement learning model—Model 1 is a mechanistic model expressed 

in the framework of reinforcement learning. The perceptual inference component of this 

model computes the pain evoked by a noxious stimulus as a weighted average of the current 

sensory input (stimulus intensity) and the current cue-based expectation. The weighting of 

sensory input versus expectation is controlled by a parameter γ ∈ [0,1], which is constant 

across trials. Higher γ yields a stronger impact of expectations on pain. The learning 

component of this model assumes that each new pain experience triggers the updating of the 

relevant cue’s pain expectation in proportion to the prediction error (pain minus expected 

pain), according to a standard reinforcement-learning algorithm (delta rule)32. A learning-

rate parameter, α, controls the degree of expectation updating: High values of α result in 

strong updating toward the latest pain experience, whereas low values of α result in strong 

updating toward the latest pain experience, whereas low values of a result in more slowly 

varying expectations. To model confirmation bias, we assume that on each trial one of two 

different learning rates is used—αc or αi—depending on whether the sign of the prediction 
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error is consistent or inconsistent, respectively, with the cue’s initial low or high pain 

association (as acquired in the learning phase). If αc is higher than αi this implies a 

confirmation bias. Thus, this model has three free parameters: γ, αc and αi. Parameter γ 
controls the impact of the current expectation on pain, and αc and αi govern learning and its 

dependence on initial beliefs.

Model 2: Bayesian model—Model 2 considers pain perception and learning in terms of 

Bayesian inference, representing expectations and perceived pain as probabilistic beliefs 

obeying Gaussian probability distributions16,54–56. Under this model, perceived pain is 

treated as the subject’s inferred belief regarding how threatening (in terms of potential tissue 

damage) a situation truly is. The perceptual inference component of the model computes this 

belief on each trial in a Bayesian fashion, by combining prior expectations based on 

environmental cues with current nociceptive input. The mean of the resulting posterior belief 

is a weighted average of these two sources, as in Model 1, but their relative impact depends 

on their precisions (inverse variances), such that more precise expectations are weighted 

more heavily. The learning component of the model is based on a Kalman filter, which 

tracks estimates of the mean level of potential harm signaled by each cue (i.e., the 

objectively correct cue-pain association) as well as the precision of those estimates57,58. The 

effective learning rate on each trial depends on the precision of the expectation at the onset 

of that trial, with less precise expectations leading to greater updating based on current 

perceived pain. In addition, the Kalman filter assumes that the objective cue-pain 

associations vary over time according to a Gaussian random walk process, adding some 

uncertainty to the cue-based pain expectations after each trial. To model a persistent 

influence of initial expectations, we incorporated an assumption that the dynamics of the 

random walk can be biased toward the values of the initial cue-pain associations (see 

“Comparison of Models 1 and 2” in the Methods for an explanation of how this relates to 

biased learning). The amount of bias is controlled by free parameter β ∈ [−1,1]: If β equals 

0 the random walk process has no directional bias, values of β above 0 yield a drift toward 

the initial cue- based pain expectations (bias toward initial beliefs), and values of β below 0 

yield a drift in the opposite direction of the initial expectations (bias away from initial 

beliefs). Besides β, this model has three parameters characterizing the subject’s belief about 

the generating process: the variance of the random walk process σ
η
2 , the variance in level of 

harm on a given trial around the average predicted by the current cue σ
Ψ
2 , and the variance 

of noise in the noxious input σ
ε
2 . Only the ratios among these three parameters matter; 

hence we fixed σ
ε
2 to 1 and estimated σ

η
2 and σ

Ψ
2  as free parameters (see Methods). Thus, like 

Model 1, Model 2 also has three free parameters.

Parameter estimates—To obtain quantitative estimates of the model parameters, we fit 

each model (and several reduced versions; see below) to participants’ trial-to-trial sequences 

of pain and expected-pain ratings, using hierarchical Bayesian parameter estimation (see 

Methods). The hierarchical procedure assumes every participant has a different set of model 

parameters, drawn from some population distribution. As we are primarily interested in 

average participant behaviour, the primary variables of interest are the means of the 
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population distributions, which we denote with overbars (e.g., γ denotes the population mean 

for γ in Model 1). Posterior distributions of the population means for all model parameters 

are shown in Figure 6. The estimated population distributions of each parameter are shown 

in Supplementary Figure 2.

The posterior distribution of ÿ in Model 1 (Study 1: median = .38, 95% credible interval [CI] 

= .32 to .45; Study 2: median = .29, 95% CI = .24 to .35) suggests that perceived pain is 

jointly determined by expectations and noxious input, and that, for the average participant, 

noxious input is weighted roughly twice as strong as expectations. Furthermore, α
c
 was 

considerably higher than α
i
, consistent with a confirmation bias on learning rate: for Study 1, 

posterior medians were .98 for α
c
 (95% CI = [.93,1.0]) and .16 for α

i
 (95% CI = [.13,.21]); 

for Study 2, posterior medians were .63 for α
c
 (95% CI = [.42,.80]) and .11 for α

i
 (95% CI = 

[.07,.16]). At the individual level, the median of the posterior distribution was higher for αc 

than for αi in 100% and 91% of the participants in Studies 1 and 2, respectively (sign tests, 

ps < .001).

In Model 2, the relative impact of expectations and noxious input on perceived pain 

(governed by γ in Model 1) is determined on a trial-to-trial basis by the current level of 

uncertainty about the objective cue-pain association, and by σ
ε
2 and σ

Ψ
2  (see the Comparison 

of Models 1 and 2 subsection in the Methods). The average weighting of expectations vs. 

noxious input in Model 2 (the grand-average estimate of γt, as defined in Equation 3.1, 

using the medians of the group-level parameter estimates) was .40 and .32 in Studies 1 and 

2, respectively, resembling the median posterior estimates of γ in Model 1. Parameter β in 

Model 2 indexes the degree to which expectations drift toward (if β > 0) or away from (if β 
< 0) their initial values after updating, which is a Bayesian way to capture biased learning. In 

both studies, 100% of the numerical estimate for the posterior distribution of β lay above 0 

(Study 1: median = .24, 95% CI = .17 to .32; Study 2: median = .36, 95% CI = .27 to .46), 

consistent with a persistent contribution of initial beliefs.

Model comparison—To further examine evidence for expectation-based pain modulation 

and a confirmation bias in learning, we fitted three reduced versions of each model that 

omitted (a) expectancy-based pain modulation (γ = 0 in Model 1a, and σ
ε
2 = 0 in Model 2a), 

(b) biased learning (αc = αi in Model 1b, and β = 0 in Model 2b), or (c) either of those 

processes (Model 1c and Model 2c). Note that when σ
ε
2 is 0 (Models 2a and 2c), there is no 

unexplained error in the noxious input (Equation 2.1) and therefore no possibility for 

expectations to affect the inferred pain (Equation 2.7). When σ
ε
2 is 0, only the ratio between 

σ
Ψ
2  and σ

η
2 matters. Therefore we fixed σ

Ψ
2  to 1 and estimated σ

η
2 as a free parameter for 

Models 2a and 2c. We compared the different models using Bayes factors, which quantify 

how much more likely the data are to occur under one model compared to another model 

(Table 1). For both studies, Bayes factors clearly favored the full versions of Models 1 and 2 

over all their reduced versions, indicating that the data are best explained by models 

including both expectation-based pain modulation and a confirmation bias in learning. In 
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addition, models with only confirmation bias and only expectancy-based pain modulation 

were both favored over reduced models with neither component. Also note that Model 1 (the 

reinforcement learning model) was favored over Model 2 (the Bayesian model), suggesting 

that participants did not adapt their learning rates or pain inferences over time as a function 

of the precision of their expectations. Of course this result bears only on the utility of these 

particular models, and does not imply that reinforcement learning models fit better than 

Bayesian models in general.

Model simulations—To assess whether our models capture the key features of the 

behavioural results, we simulated expectation and pain ratings according to our full and 

reduced models, using the best-fitting parameter values (Supplementary Figure 3). Only 

models including both expectancy-based pain modulation (γ > 0 and σ
ε
2

> 0 in Models 1 and 

2, respectively) and biased learning (αc > αi and β > 0 in Models 1 and 2, respectively) 

capture the key features of the data: A persistent cue effect on both expectation and pain 

ratings, with a stronger cue effect on expectations than on pain. Although expectations 

become less extreme over time, indicating that learning is taking place, expectations and 

pain never fully converge. In contrast, models without expectancy-based pain modulation 

predict that the cues do not affect pain, and models without biased learning predict that 

expectations and pain converge to the actual noxious-input intensity. Thus, none of these 

reduced models fits the pattern of data we observed in these studies, qualitatively or 

quantitatively, indicating that both expectancy-based pain modulation and biased learning 

towards initial expectations occur.

Persistent effects of initial beliefs on pain as an alternative to biased 

learning?—The parameter estimates and model comparisons support the existence of a 

confirmation bias in learning. However, a potential alternative explanation for these results is 

a persistent influence of participants’ initial expectations on pain perception: The 

assimilation of pain towards the initial expectation on all trials would reduce cue-

inconsistent prediction errors, which could result in an apparent confirmation bias without 

affecting learning rate per se.

To test this alternative explanation, we extended the perceptual-inference component of 

Model 1 by adding an effect of the initial expectation acquired during the learning phase, 

such that pain was computed as a weighted average of the initial expectation, the current 

(updated) expectation and the noxious input. The weights of these three terms were 

controlled by parameters λ, γ, and (1 – λ – γ), respectively, where γ, λ ≥ 0 and (γ + λ) ϵ 
[0,1]. We refer to this extended model as Model 1+. We also defined Model 1b+ as the 

corresponding extension of Model 1b. Thus Models 1+ and 1b+ both include a persistent 

effect of initial beliefs on pain, and they differ in that Model 1+ includes biased learning (αc 

> αi) whereas Model 1b+ does not (αc = αi). Comparing these models provides a test of 

whether there was still evidence for a confirmation bias in learning when allowing for a 

persistent effect of initial beliefs on pain. Bayes factors strongly favored Model 1+ over 

Model 1b+ in both studies (loge Bayes factor = 78 and 102 for Studies 1 and 2, respectively). 

In addition, Model 1+ was favored over our original Model 1 in Study 2 (loge Bayes factor = 

8) but not in Study 1 (loge Bayes factor = −12). Supplementary Table 1 reports Bayes factors 
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for comparisons of all versions of Model 1. Thus, these results provide mixed support for a 

persistent effect of initial beliefs on pain perception. More importantly, they strengthen our 

conclusions regarding confirmation bias in learning rate, showing that this mechanism is 

strongly supported regardless of any direct, persistent effects of initial beliefs on pain.

Confirmation bias in the updating of pain-anticipatory brain activity

When pain expectations are updated during learning, this likely causes changes in pain-

anticipatory brain responses. Specifically, cues followed by more pain than expected 

(aversive prediction errors) should increase pain-anticipatory activity on subsequent 

presentations. Conversely, cues followed by less pain than expected (appetitive prediction 

errors) should reduce pain-anticipatory activity on subsequent presentations. If confirmation 

biases are present, this updating of anticipatory activity should be particularly strong when 

the sign of prediction errors is consistent with the cue’s original low or high pain 

association. Therefore, we hypothesized that the confirmation bias in expectation updating 

would be paralleled by a confirmation bias in the updating of cue-specific pain-anticipatory 

brain activity (during the interval between expectation rating and heat onset).

Within-person parametric modulation analyses revealed that anticipatory brain activity 

increased in proportion to pain expectations in several regions, including the supplementary 

motor area (SMA), sensorimotor cortex, anterior midcingulate cortex (aMCC), anterior 

insula and frontal operculum (aINS), temporal pole, and inferior cerebellar vermis 

(Supplementary Figure 4; p < .001, uncorrected). While anticipatory activity in some regions 

(aMCC, aINS, temporal pole) is predicted from prior studies6,59–62, the activation did not 

reach significance in whole-brain False Discovery Rate (FDR) correction. Preliminary 

evidence for activation of these regions may reflect increased anticipatory anxiety and 

alertness with increasing pain expectations.

To test for a confirmation bias in the updating of cue-specific pain-anticipatory brain 

activity, we estimated an fMRI activation map for each pain-anticipation period using single-

trial modeling49,63,64. We then computed the change in anticipatory activity across 

successive presentations of the same cue, resulting in anticipatory activity ‘update’ images 

(Figure 7A). To examine evidence for a confirmation bias in the updating of anticipatory 

activity, we computed contrast images for (i) activity updates following aversive prediction 

errors that were stronger following high-pain cues than following low-pain cues; and (ii) 

activity updates following appetitive prediction errors that were stronger following low-pain 

cues than following high-pain cues. To test whether cue effects on activity updates were 

related to individual differences in susceptibility to confirmation bias, we added a regressor 

coding for each participant’s confirmation bias on learning rate (computed directly from the 

rating data; centered) for the corresponding contrast. Participants who never experienced 

aversive prediction errors on high-cue trials were excluded from this analysis (leaving 21 

participants).

At the group-mean level, the cues did not significantly affect anticipatory activity updates 

following aversive prediction errors after whole-brain FDR correction. However, individual 

differences in the confirmation bias on learning rate predicted activity for this contrast in 

several brain regions (q < 0.05, FDR-corrected). In participants with larger confirmation 
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biases, aversive prediction errors following high- relative to low-pain cues resulted in greater 

increases in anticipatory activity in the aMCC, sensorimotor cortex, mid-insula, striatum 

(caudate and putamen, but not the nucleus accumbens), a midbrain region encompassing the 

periaqueductal gray (PAG), a region in the pons, and the inferior cerebellar vermis (Figure 

7B; Supplementary Table 2). Note that several, but not all, of those regions overlapped with 

regions tracking pain expectations (Supplementary Figure 4). Negative correlations (shown 

in blue in Figure 7B) were found in the ventromedial prefrontal cortex (vmPFC), as well as 

the dorsal anterior insula and the superior cerebellum. Thus, in individuals with a stronger 

confirmation bias, aversive prediction errors following high-pain cues (relative to low-pain 

cues) resulted in increased subsequent anticipatory responses in regions broadly associated 

with threat and anxiety (aMCC, insula, PAG), and decreased subsequent anticipatory 

responses in regions commonly associated with appetitive value (vmPFC; see Discussion).

In a complementary analysis, we tested for an effect of cue type on the updating of 

anticipatory activity following appetitive prediction errors. If learning from aversive and 

appetitive prediction errors is subserved by one underlying threat/safety system, this analysis 

should reveal opposite activity patterns to those reported in the previous section. 

Alternatively, if there are different systems for threat and safety learning, this analysis may 

reveal different regions. At the group-mean level, the cues did not significantly affect 

anticipatory activity updates following appetitive prediction errors (FDR corrected). 

However, individual differences in the confirmation bias on learning rate predicted activity 

for this contrast in several brain regions. In participants with a greater confirmation bias, 

appetitive prediction errors following low-pain cues (relative to high-pain cues) resulted in a 

greater increase in anticipatory activity in the vmPFC and posterior cingulate cortex—both 

often considered ‘default mode’ regions—as well as the orbitofrontal cortex, temporal pole 

and pre-SMA (Figure 7C; Supplementary Table 3). Negative correlations (blue in Figure 7C) 

were found in the lateral PFC. Thus, the vmPFC showed parallel learning effects in analyses 

of both aversive and appetitive prediction errors. In individuals with a stronger confirmation 

bias, anticipatory vmPFC responses decreased more following aversive prediction errors on 

high-cue than low-cue trials, and increased more following appetitive prediction errors on 

low-cue than high-cue trials. In other respects, however, effects of cue type on anticipatory-

activity updating were largely distinct for aversive and appetitive prediction errors.

Discussion

Positive feedback loops between expectations and experiences can create self-fulfilling 

prophecies—persistent beliefs, behaviours, and decisions that are driven by initial 

expectations and are resistant to corrective experience. Although such reciprocal systems 

may operate in many aspects of human behaviour20,65, empirical studies investigating them 

are rare, and their underlying mechanisms largely unknown.

Our findings provide evidence that cue-based expectations about pain can become self-

reinforcing through their combined effects on perception and learning. First, we identified 

reciprocal effects of expectations and pain responses on one another: Expectations 

influenced reported pain and pain-specific brain activity, and these pain responses in turn 

influenced subsequent expectations. Second, expectation updating was strongest when the 
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direction of prediction errors was consistent with the initial high or low pain value of the 

preceding cue. Third, computational modeling results provided additional evidence that self-

reinforcing expectancy effects on pain result from a combination of expectancy-based pain 

modulation and a confirmation bias in learning. Fourth, individual differences in 

confirmation bias in learning predicted confirmation bias in the updating of pain-

anticipatory brain activity in regions associated with threat and affective value.

Our results contribute to a basis for understanding self-fulfilling predictions in various 

domains. In principle, either expectancy effects on perception or a confirmation bias in 

learning alone, if sufficiently strong, would be sufficient to maintain expectations for a 

period of time. If perception fully assimilates toward expectations, we always experience 

what we expect, and learning may be short-circuited. Similarly, if we do not at all learn from 

expectancy-disconfirming evidence, our initial expectations will be maintained indefinitely. 

However, extreme biases in perception and learning are unlikely to be functionally 

advantageous. Complete adjustment of perception to expectations is a form of hallucination, 

and would prevent the detection of unexpected harmful or rewarding events. Similarly, a 

complete suppression of learning from expectancy- disconfirming events would prevent 

adaptive future responding to those events. Our results show that, when combined, even 

moderate degrees of perception modulation and biased learning can produce persistent 

expectations, with substantial impacts on perceived pain.

These results complement those of previous computational-modeling studies in other 

domains that explained effects of prior information on people’s choice behaviour by a 

modulation of outcome evaluation or a confirmation bias in learning36–38,41. Although these 

two mechanisms are computationally distinct—affecting the input to the learning process 

and the learning rule itself, respectively—they make similar predictions about trial-to-trial 

dynamics of expected value, and hence are difficult to dissociate based on choice data alone. 

By directly measuring trial-to-trial dynamics of both expected and perceived outcomes, our 

paradigm enables the dissociation of these two effects.

Our results also contribute to the discussion about predictive coding and the strength, 

importance, and locus of ‘top-down’ influences on perception. Previous studies have shown 

that higher-level cognitive processes, such as expectations and attention, can affect 

perceptual judgments of stimuli in visual10–12, pain23, auditory66, and taste13 domains. It has 

recently been questioned whether these findings—specifically those in the visual domain—

really reflect the modulation of perception, or merely the interpretation of perceived 

events67. The present study contributes to this debate by showing that expectations modulate 

pain signaling in the central nervous system in functionally important, and clinically 

relevant, ways. The NPS is a cerebral pain signature that is strongly affected by noxious-

stimulus intensity49,53 and by drugs that are thought to act in part at a spinal level53,68. In 

contrast, changes in reported pain due to reappraisal49, pain controllability69,70, and reward 

manipulations71 are not reflected in the NPS response, suggesting that the NPS is largely 

insensitive to higher-order cognitive processes. Thus, our finding that cue-based expectations 

modulate the NPS response implies that they affect the cerebral processes that give rise to 

pain.
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With regard to ‘predictive coding’, recent work has proposed that pain perception results 

from the Bayesian integration of afferent nociceptive input with ‘top-down’ expectations 

and/or other informational cues16,54–56, as is also assumed by our Bayesian model. 

According to these accounts, the precision of each information source determines its 

influence on perceived pain and the degree of expectation updating; in particular, very 

precise expectations strongly shape pain and reduce experience-driven expectation updating. 

Our data are compatible with this view, but they suggest that prior expectancies have an 

additional effect not captured in standard Bayesian or non-Bayesian learning models. 

Specifically, our data suggest that initial beliefs about cue-pain associations modify learning 

rates, creating long-lasting confirmation biases that impede extinction.

Such effects have a history of study in social psychology, under the label of ‘attribution’, 

which relates to a person’s theory about the causal structure underlying experienced 

associations72,73. In short, attributions govern what a person ‘takes away’ or learns from 

experience. When experiences confirm expectations, individuals attribute experienced 

effects to the cues that predicted them. When they do not, however, experiences are more 

likely to be judged to be anomalies or ‘flukes’, or the result of lapses in attention, and 

discounted. More generally, confirmation biases may reflect a broader principle of 

regularizing predictions by down-weighting outliers, which is the basis of robust statistics74. 

This principle can in some cases improve perceptual inference by making our estimates 

resistant to outliers75,76; hence it can be seen as a functionally adaptive strength. However, 

when initial beliefs are no longer valid, e.g., due to a change in the environment, this 

principle also impedes belief updating, a vulnerability that goes along with its advantages.

Though our data suggest that cues modulate the brain mechanisms underlying pain 

perception, they do not exclude the possibility that expectations also influence later, post-

perceptual processes. That the NPS response partially mediated the effect of expectations on 

pain ratings suggests that part of this effect is due to modulation of relatively early pain 

signaling, while another part reflects effects at a later stage (e.g., evaluation or response). 

Studies using signal-detection theory have shown that placebo treatments can increase 

observers’ pain criterion values77,78, implying an effect at the decision or response level. 

Likewise, a recent study applying evidence-accumulation models of perceptual decision 

making to a pain-discrimination task suggested that pain-predictive cues introduce response 

bias to the decision process79. When combining these findings with findings that 

expectations modify pain-related activity in the spinal cord33,34, it seems that expectations 

can affect multiple stages of pain processing and evaluation. The relative strength of early 

and late expectancy effects likely varies across people and situations, and may depend on the 

magnitude of expectancy violations. Further specification of the pain-processing stages that 

are modified by expectations is an important objective for future research.

How prior beliefs affect perception and learning may strongly depend on how those beliefs 

were acquired as well. In our studies, cue-pain associations were established using a learning 

procedure in which cues were repeatedly paired with pictures of thermometers displaying 

low or high heat levels. This procedure differs from conventional classical conditioning as it 

did not involve primary affective outcomes, and because expectations and pain were reported 

on each trial. The reinforcement with pictures of thermometers instead of painful heat, 
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which we call ‘symbolic conditioning’, is closely aligned with sensory preconditioning 

paradigms in animals80,81and humans82, and this type of learning may involve interactions 

between the hippocampus (traditionally associated with explicit memory) and other value-

based learning systems83. In a recent study we found only weak effects of a standard 

classical conditioning procedure on the NPS70, suggesting that symbolic, conceptual 

learning procedures may have unique effects. The act of explicitly rating expectations may 

have important effects as well84. In support of this view, recent work suggests that when 

threat is engaged by explicit, instruction-driven mechanisms, it produces physiological threat 

responses via pathways that bypass the amygdala85. It is possible that the expectancy ratings 

in our paradigm promoted the persistent explicit recall of the initial pain expectations, 

preventing participants from forgetting these initial expectations. Our Bayesian model 

captures such ‘resistant priors’ by the drift of expectations toward their initial values after 

updating, and our extended reinforcement learning model by a persistent effect of initial 

beliefs on pain. Whether and how the resistance to extinction depends on the specific task 

structure, such as the presence of explicit expectancy ratings, remains to be tested in future 

studies.

In addition to perception modulation, confirmation biases in learning appear to be critical for 

explaining the persistent influences of cues we observed. The reinforcement learning model 

that included confirmation bias in learning updates outperformed all other models, providing 

evidence for a contribution of biased learning over and above direct resistant-prior effects. 

However, we found substantial individual differences in the degree to which participants 

showed a confirmation bias in learning. Furthermore, individual differences in confirmation 

bias in learning rate predicted the degree to which participants showed a confirmation bias in 

the updating of pain-anticipatory activity in several brain regions. When worse-than-

expected pain was preceded by a high- relative to a low-pain cue, participants with stronger 

confirmation biases on learning rate also showed a greater increase in subsequent pain-

anticipatory activity in the aMCC, sensorimotor cortex, mid-insula, posterior striatum, PAG 

and pons. These regions have previously been associated with anticipatory anxiety86, pain 

prediction errors and aversive action policy87, and cues predictive of high pain25,88. The 

vmPFC showed the opposite correlation: participants with stronger confirmation biases 

showed greater reductions in anticipatory vmPFC activity following worse-than-expected 

pain preceded by high- relative to low-pain cues, and greater increases in anticipatory 

vmPFC activity following less-than-expected pain preceded by low- relative to high-pain 

cues. Activity in the vmPFC tracked appetitive value in many studies89–91, and has been 

shown to negatively track pain expectations87. Thus, our results suggest that for high 

confirmation-bias learners, combining high pain expectancy with worse-than-expected 

outcomes activates systems associated with anticipatory anxiety, threat, and negative 

affective value. However, as these results were based on differences between single-trial 

fMRI activation maps—with low signal-to-noise ratio—and on a relatively small number of 

participants, they must be considered preliminary, awaiting replication.

The effects of expectations on pain and learning circuits demonstrated in our studies could 

be applied to the study of chronic pain. Self-reinforcing expectancy effects may facilitate the 

transition from acute to chronic pain, which is all too common after surgery or injury92,93. 

Indeed, the inability to extinguish pain memories has been proposed as a defining aspect of 
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chronic pain94,95. Relatedly, previous treatment experiences predict people’s analgesic 

response to subsequent placebo treatments96–98 and to active medical treatments99, 

suggesting that positive and negative beliefs are important determinants of pain responses. 

Furthermore, a few studies have demonstrated impaired cue-pain contingency learning in 

chronic-pain patients, with a particular impairment in safety learning100,101. If chronic-pain 

patients expect pain in more situations than healthy people, these deficits may reflect 

reduced learning from belief-disconfirming (no pain), relative to belief-confirming (pain) 

outcomes; hence it is possible that many pain patients have a high confirmation-bias 

phenotype. The interactions between perceptual and learning processes in the development 

of chronic pain remain to be clarified102. One promising approach would be to quantify 

effects like those identified in our studies in people at risk for developing chronic pain.

Effects of expectations on perception and learning may also contribute to psychological 

disorders that are characterized by persistent negative expectations and beliefs, such as 

anxiety and depression. Recent studies showed that more anxious people are less able to 

flexibly adapt their learning rate in a dynamic aversive learning task103, and that—unlike 

healthy people—socially anxious people do not show a positivity bias when updating self-

related information based on social feedback104. Whether these findings reflect a 

confirmation-bias mechanism similar to that observed in our studies—e.g., the down-

weighting of evidence that disconfirms previously learned associations or beliefs—is 

currently unknown. Another open question concerns the potential contribution of 

fluctuations in mood to our findings. In the reward domain, expectations and prediction 

errors have been shown to affect people’s self-reported mood on a trial-to-trial basis105. 

Furthermore, mood can bias how people perceive and learn from rewards, especially in 

people with high mood instability106. Future research is needed to further investigate the 

interactions between expectations, mood and affective learning.

A limitation of our studies is that prediction errors were inconsistent with the initial cue-pain 

associations on most of the trials. According to our models, a larger proportion of ‘cue-

consistent’ prediction errors should produce even stronger persistence of cue-based 

expectations and pain modulation over time. Future studies could increase the proportion of 

consistent prediction errors, by using more extreme noxious-stimulus intensities, to test this 

hypothesis. In addition, it is unknown to which degree our expectation-updating results 

reflect explicit versus implicit learning processes. We previously demonstrated that self-

reported expectations and autonomic anticipatory responses have opposite effects on 

autonomic pain responses27. Thus, it is possible that there are additional learning processes 

that also influence pain and operate in parallel to the mechanisms revealed here. Finally, 

although our results provide strong evidence that the cue effects are highly resistant to 

extinction, we cannot be sure whether our cue effects will never extinguish, or whether they 

would eventually extinguish but at a much slower rate than would be expected in the absence 

of confirmation bias. Studies using a larger number of test trials are needed to differentiate 

between these possibilities.

To conclude, our findings demonstrate that initial beliefs can become self-fulfilling 

prophecies through their combined effects on perceptual and learning processes. Future 

studies may examine the generalizability of our findings to self-reinforcing phenomena in 
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other domains, and the clinical relevance of individual differences in the effects revealed in 

our studies. These insights can help understand—and may eventually help to counteract—

self-fulfilling phenomena in various domains of human behaviour.

Methods

Participants

Thirty participants took part in Study 1 (Behavioural study, previously published by 27), and 

thirty-four participants took part in Study 2 (fMRI study). We chose the sample sizes based 

on large effect sizes in previous cue-based pain modulation studies conducted in our lab25. 

Sample sizes of ~30 provide approximately 80% power to detect an effect size of Cohen’s d 

= 0.54 or larger, which is near the lower bound of what we would expect for the predictive-

cue effects on pain responses. All participants were healthy and reported no history of 

psychiatric, neurological, or pain disorders, and no current pain. All participants gave 

informed consent and the experiment was approved by the institutional review board of the 

University of Colorado Boulder. Participants in Study 1 received $12 per hour, and 

participants in Study 2 received $24 per hour for their participation.

In Study 1, one participant decided to stop before the end of the experiment because she 

found the heat too painful, and one participant had to be excluded because of thermode 

failure. Thus, the final dataset for Study 1 was based on twenty-eight participants (mean age 

= 25, range = 18–55 years; 25% female). In Study 2 (mean age = 25, range = 18–54 years; 

50% female), one participant misunderstood the expected-pain rating procedure, and was 

excluded from all analyses involving pain expectations.

Experimental task

In both studies, we used a previously established paradigm consisting of a learning phase 

followed by a test phase (Figure 1A). Before starting the task, we instructed participants that 

they would learn associations between specific shapes and specific heat levels. We also 

instructed them that the heat levels would be displayed on a thermometer during the first part 

of the experiment and applied to their skin during the second part of the experiment. In 

Study 2, the learning and test phases were both performed within the MRI scanner.

Learning phase—Each trial started with the 2-s presentation of a visual cue (a geometric 

shape). Following the cue, participants indicated which heat level they expected on a 100-

unit vertical VAS with lower and upper anchors of “baseline skin temperature” and 

“extremely hot”, respectively, which was displayed alongside a picture of a blank 

thermometer. A few seconds later, the thermometer picture reappeared for 3 s, this time 

indicating a specific symbolic heat level. Some cues (low-pain cues) were always followed 

by low heat levels (32–53% of the thermometer scale) and other cues (high-pain cues) were 

always followed by high heat levels (73–93% of the thermometer scale). The learning phase 

of Study 1 included three low-and three high-pain cues, and participants completed 20 trials 

for each cue, in pseudorandom order stratified across time, with the constraint that each 

block of six trials contained one trial in each cell of the six cue conditions. The learning 

phase of Study 2 included two low and two high-pain cues, and participants completed 30 
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trials for each cue, in pseudorandom order stratified across time, with the constraint that 

each block of four trials contained one trial in each cell of the four cue conditions.

Test phase—Each test trial started with the 2-s presentation of one of the cues from the 

preceding learning phase, or a novel cue (see below). After this, participants indicated how 

much pain they expected on that trial, on a horizontal 100-unit VAS with anchors of “no 

pain” and “worst-imaginable pain”. A few seconds later, a noxious heat stimulus was 

applied to participants’ left inner forearm (Study 1) or lower leg (Study 2), using a 27-mm 

diameter CHEPS thermode (ramp rate = 40°C/s; 1 s at peak temperature; peak temperature = 

47°C or 48°C in Study 1, and 48°C or 49°C in Study 2). Between stimuli, the thermode 

maintained a baseline temperature of 32°C. Unbeknownst to the participants, all cues were 

followed by each of two temperatures on 50% of the trials each, i.e. heat intensity was 

unrelated to the preceding cue (Figure 1A). Several seconds after heat offset, the VAS re-

appeared on the screen and participants rated how much pain they had experienced on that 

trial. Then, after a variable inter-trial interval, during which an empty screen was displayed, 

the next trial started. Trial procedures were identical in the two studies, expect for the inter-

stimulus intervals, which were somewhat longer in Study 2 (Figure 1B).

We introduced two novel cues in the test phase of Study 1: the words LOW and HIGH, 

which were instructed to precede low- and high-intensity heat, respectively. In the test phase 

of Study 2, we introduced three additional cues: The letters L and H, which were instructed 

to precede low and high heat levels, respectively, and a novel geometric shape (‘neutral’ 

cue). As previously reported27, the LOW/L vs. HIGH/H cues affected pain responses in a 

similar way as the geometric shapes that had been paired with low vs. high heat 

representations during the learning phase. Therefore, we refer to all these cues as low- vs. 

high-pain cues, and report results based on data pooled across these cue types.

Participants completed 10 test trials for each cue, i.e. a total of 80 and 70 trials in Study 1 

and 2, respectively, in pseudorandom order stratified across time: In Study 1 each block of 

eight trials contained one trial in each cell of the eight cue conditions, and in Study 2 each 

block of seven trials contained one trial in each cell of the seven cue conditions. In Study 1, 

the test phase was divided in 5 runs of 16 trials, between which we moved the thermode to a 

new site on the forearm. In Study 2, the test phase was divided in 5 runs of 14 trials, between 

which we moved the thermode to a new site on the lower leg. Before starting each new run, 

we once applied the highest of the two temperatures to the to-be-stimulated skin site, to 

reduce the impact of site-specific habituation effects107.

Regression analyses

We conducted multi-level regression analyses on the single-trial behavioural data and, in 

Study 2, NPS responses (see fMRI analysis) during the test phase, using the Multilevel 

Mediation toolbox (http://wagerlab.colorado.edu/tools)25,108,109. We tested the significance 

of all effects using a bootstrap procedure (10,000 bootstrap samples). All tests were 2-tailed.

We tested the effect of cue type (high- vs. low-pain cue) on pain ratings and NPS responses, 

in two separate regression models. We also modeled the effects of heat intensity 

(temperature) and the temperature × cue type interaction. To test whether the effect of cue 
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type extinguished over time, we also modeled the linear and quadratic effects of time (i.e., 

trial number) and their interactions with cue type. In addition, we modeled the linear and 

quadratic effects of site-specific repetition to account for pain-adaptation effects due to 

repeated stimulation107.

To examine evidence for reciprocal effects of expectations and pain responses on one 

another, we conducted two additional sets of regression analyses. First, we tested the effect 

of expected-pain rating on subsequent pain ratings and NPS responses, in two separate 

regression models. Second, we tested the effects of pain and NPS responses on subsequent 

expectations, also in two separate regression models. In all four analyses, we also modeled 

the effects of cue type (low, high, and neutral cues were coded as −1, 1 and 0, respectively) 

and heat intensity.

Data collection and analysis were not performed blind to the conditions of the experiments. 

However, we do not believe this increased the risk of bias here because all participants 

performed experimental conditions in computer-generated sequences, and comparisons in 

analyses were specified in advance.

Confirmation bias analyses—To examine evidence for a confirmation bias in 

expectation updating, we conducted a regression analysis on estimated trial-specific learning 

rate (and a parallel analysis on raw expectation updates) with regressors coding for cue type, 

prediction-error sign (higher- vs. lower-than-expected pain), their interaction, and 

temperature. A confirmation bias should manifest as an interaction between cue type and 

prediction-error sign on estimated learning rate and absolute expectation-update size. Two 

participants in Study 1 and 12 participants in Study 2 never reported higher-than-expected 

pain following high-pain cues; these participants were excluded from these analyses. In an 

additional analysis, we used a continuous regressor for prediction error magnitude instead of 

prediction-error sign, allowing inclusion of all participants.

We conducted similar confirmation bias analyses on the updating of pain-anticipatory brain 

activity. The dependent variable in these analyses was the change in pain-anticipatory fMRI 

activity across successive trials on which the same cue was presented (see fMRI analysis). 

As aversive and appetitive pain prediction errors (higher- and lower-than-expected pain, 

respectively) may affect subsequent anticipatory activity in different brain circuits, we 

separately tested for cue effects on anticipatory activity updating following these two types 

of prediction errors.

Computational models

Model 1—Model 1 is a process-level model built in the framework of reinforcement 

learning. This model contains mechanisms for perceptual inference (Equation 1.1) and 

learning (Equations 1.2 and 1.4), as well as a confirmation-bias mechanism through which 

initial beliefs bias learning (Equation 1.5). We describe each of these three components of 

the model in turn.
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Perceptual inference.: The model infers the level of perceived pain on trial t, Pt, based on 

the current noxious input, Nt, combined with the current cue-based pain expectation, Ec,t, for 

the current cue c. Specifically, Pt is a weighted linear combination of Nt and Ec,t:

Pt = (1 − γ)Nt + γEc, t . [1.1]

Parameter γ (0 ≤ γ ≤ 1) controls the relative weighting of Nt and Ec,t, such that the impact 

of expectations on pain increases with increasing γ.

Learning.: The model’s learning mechanism governs the updating of cue-based 

expectations in response to new pain outcomes. On each trial, the discrepancy between Pt 

and Ec,t elicits a prediction error, δt:

δt = Pt − Ec, t . [1.2]

This prediction error triggers the updating of the pain expectation for cue c, according to a 

standard reinforcement-learning algorithm (‘delta rule’ learning)32:

Ec, t + 1 = Ec, t + αδt . [1.3]

Note that, given Equation 1.2, the expectation-updating process can also be written as

Ec, t + 1 = αPt + (1 − α)Ec, t, [1.4]

which shows that the new expectation is a weighted average of the most recent pain 

experience and the old expectation. The amount of updating is determined by the learning-

rate parameter α (0 ≤ α ≤ 1): Higher values of a result in stronger updating.

Confirmation bias.: Model 1 implements a confirmation bias in learning by specifying a on 

each trial depending on whether the sign of δt is consistent or inconsistent with the initial 

low or high pain association of the current cue:

αt =
αc if  δt > 0 and c = chigh   or  δt < 0 and c = clow 

αi if  δt > 0 and c = clow   or  δt < 0 and c = chigh  .
[1.5]

Here chigh and clow refer to cues that were initially associated with high and low relative pain 

values, respectively. If αc is higher than αi, the model produces a confirmation bias. Note 

that the neutral cues (present only in Study 2) had not been included in the learning phase, 

and hence were not expected to have a low or high pain association at the start of the test 

phase. Therefore, we excluded the neutral-cue trials from all model fitting procedures.
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Thus, Model 1 has three free parameters: γ, αc and αi. To optimize fits, we initialized the 

cue-based expectations (Ec,1) to the first expected-pain rating for cue c in the test phase, 

separately for each participant. In addition, we modeled the noxious input on each trial (Nt) 

as the participant’s average pain rating for the temperature presented on that trial, such that 

Nt and Pt are represented on the same scale.

Persistent effects of initial beliefs.: In the extended model (Model 1+) that allowed pain 

perception to be affected by the initial beliefs acquired during the learning phase, Equation 

1.1 was replaced by

Pt = (1 − λ − γ)Nt + γEc, t + λMc . [1.6]

where Mc is the initial value associated with cue c, acquired during the learning phase. We 

set Mc to the first expected-pain rating for cue c in the test phase (before the first heat 

stimulus for that cue had been received), separately for each participant. The additional 

parameter λ controls the relative weighting of this initial belief, with 0 ≤ λ ≤ 1 – γ.

Model 2—Model 2 represents pain perception and learning as Bayesian inferences. Below, 

we first describe the generative assumptions of this model (Equations 2.1–2.4), followed by 

its perceptual inference (Equations 2.5–2.8) and learning (Equations 2.9–2.12) components, 

and a mechanism to capture experience-resistant expectations (Equations 2.13–2.16).

Generative model.: As a Bayesian model, Model 2 attributes to the subject a structured 

belief, i.e., a generative model, regarding the dynamics and statistics of the task 

environment. The subject is assumed to engage in optimal Bayesian inference with respect 

to this generative model, based on the noxious input (i.e., heat stimuli). The subject’s 

posterior beliefs then determine his or her responses (i.e., reported expectations and pain 

ratings).

The generative model is assumed to contain two sets of latent variables. The first, πt, 

represents the true level of potential harm on each trial, in other words the objectively 

correct level of pain that the subject should feel. The second, μc,t, represents the mean level 

of potential harm signaled by each cue c at any time, which is the average value for πt if c is 

the cue presented on trial t. The subject’s belief about μc,t at the start of trial t (after the cue 

is presented and before the heat stimulus) determines his or her expected pain intensity, Et. 

The subject’s posterior belief about πt after the heat stimulus has been presented determines 

the pain report, Pt.

The subject is assumed to treat the observed noxious input, Nt, as an imperfect indicator of 

πt, with variance

Nt � πt, σε
2 . [2.1]
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Here � π
t
, σ

ε
2  indicates a Gaussian distribution with mean πt and variance σ

ε
2. This 

relationship defines a likelihood for the observed value of Nt, which can be combined with 

the prior based on to μc derive a posterior for πt using Bayes’ rule (perceptual inference, 

elaborated below).

Model 2 assumes that participants track beliefs about μc for each cue (learning) using a 

Kalman filter, a well-studied model of Bayesian learning that has been used to model 

learning of reward magnitudes in previous studies110,111. The Kalman filter assumes a 

generative model in which πt is sampled from a Gaussian distribution centered on μc,t with a 

fixed standard deviation, σ
Ψ
2 :

πt � μc, t, σψ
2 . [2.2]

The Kalman filter also assumes that μc,t varies over time (hence the additional index t), 

according to a Gaussian random walk with mean step size 0 and standard deviation σ
η
2:

μc, t + 1 � μc, t, ση
2 . [2.3]

Extending the standard Kalman filter, we assume the subject maintains a conjugate iterative 

prior on μc,t conditioned on all previous observations:

μc, t |Nt − 1 � mc, t, sc, t
2 , [2.4]

where Nt-1 = (N1 …,Nt-1) is the sequence of all prior inputs, and mc,t and sc,t are values that 

the subject tracks as part of learning. That is, mc,t and sc,t characterize the subject’s state of 

knowledge regarding μc,t at the beginning of trial t. Both levels of inference in the model are 

based on the iterative prior in Equation 2.4.

Perceptual inference.: The iterative prior on μc,t also yields a prior on πt, before the heat 

stimulus on each trial, obtained by adding the trial-level variance σ
Ψ
2 :

πt |Nt − 1 � mc, t, sc, t
2 + σΨ

2 . [2.5]

The mean of this prior, mc,t, is the participant’s reported expectation, Et, at the beginning of 

a trial (i.e., after the cue has been observed):

Et=mc, t . [2.6]
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Once Nt is observed, it can be combined with the prior in [2.6] to derive a posterior for πt. 

Using Bayes’ rule, this posterior can be shown to be:

πt |Nt �

σε
2
mc, t + σΨ

2 + sc, t
2

Nt

σε
2 + σΨ

2 + sc, t
2

,
σε

2 σΨ
2 + sc, t

2

σε
2 + σΨ

2 + sc, t
2

. [2.7]

The mean of this posterior is the subject’s pain report, Pt, which can also be written as

Pt =
σε

2

σε
2 + σΨ

2 + sc, t
2

mc, t +
σΨ

2 + sc, t
2

σε
2 + σΨ

2 + sc, t
2

Nt . [2.8]

Thus, as in Model 1, reported pain is a weighted average of the expectation and noxious 

input. The weights in this case are determined by the uncertainties in the two sources of 

information (the prior expectation and the observed input), each weighted in proportion to its 

precision (inverse variance).

Learning.: Once the posterior belief for πt is calculated, it is used to calculate the posterior 

distribution for μc,t. As with Equation 2.8, the mean of this posterior can be shown to be a 

precision-weighted average of the prior belief (Eq. 2.5) and the new observation (Nt):

μc, t |Nt �

σε
2 + σΨ

2
mc, t + sc, t

2
Nt

σε
2 + σΨ

2 + sc, t
2

,
σε

2 + σΨ
2

sc, t
2

σε
2 + σΨ

2 + sc, t
2

. [2.9]

The prior on the next trial is then obtained by adding the variance of the random walk:

μc, t + 1 Nt �

σε
2 + σΨ

2
mc, t + sc, t

2
Nt

σε
2 + σΨ

2 + sc, t
2

,
σε

2 + σΨ
2

sc, t
2

σε
2 + σΨ

2 + sc, t
2

+ ση
2 . [2.10]

By definition, the mean and variance of this iterative prior equal mc,t+1 and s
c, t + 1
2 , 

respectively. This recursive relation yields update equations for m,

mc, t + 1 =
σε

2 + σΨ
2

σε
2 + σΨ

2 + sc, t
2

mc, t +
sc, t
2

σε
2 + σΨ

2 + sc, t
2

Nt, [2.11]

and for s,
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SC, t + 1
2 =

σε
2 + σΨ

2
sc, t
2

σε
2 + σΨ

2 + sc, t
2

+ ση
2 . [2.12]

Equation [2.11] shows that the new expectation is a weighted average of the most recent 

noxious input and the old expectation, similar to Model 1.

Biased learning.: To model a persistent influence of initial expectations, we put a bias into 

the random walk, as a spatial (i.e., directional) inhomogeneity. Specifically, we included a 

directed component in the dynamics of the generative model, replacing Equation 2.3 with

μc, t + 1 � (1 − β)μc, t + βMc, ση
2 , [2.13]

where Mc is the initial value associated with cue c during the learning phase. Thus, the 

participant’s generative model assumes μc tends to decay toward or away from Mc, and the 

direction and strength of this effect are determined by parameter β ∈ [−1,1]. Values of β > 0 

yield a decay of toward Mc (persistent beliefs), and values of β < 0 yield a growth of away 

from Mc (the opposite of persistent beliefs).

This change to the random walk between trials has no impact on inference within a trial. 

Thus Equations 2.5–2.9 are unchanged. The only change is to the learning step between 

trials, with the iterative prior in Equation 2.10 replaced by

μc, t + 1 |Nt �

(1 − β) σε
2 + σΨ

2
mc,t + (1 − β)sc, t

2
Nt

σε
2 + σΨ

2 + sc, t
2

+ βMc,
(1 − β)2 σε

2 + σΨ
2

sc, t
2

σε
2 + σΨ

2 + sc, t
2

+ ση
2 .

[2.14]

The corresponding update rules (replacing Equations 2.11–2.12) are then

mc, t + 1 =
(1 − β) σε

2 + σΨ
2

σε
2 + σΨ

2 + sc, t
2

mc, t +
(1 − β)sc, t

2

σε
2 + σΨ

2 + sc, t
2

Nt + βMc [2.15]

and

SC, t + 1
2 =

(1 − β)2 σε
2 + σΨ

2
sC, t
2

σε
2 + σΨ

2 + sC, t
2

+ ση
2 . [2.16]
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Equation 2.15 shows how the update of the expectation for the next trial (mc,t+1) is biased 

toward the initial association value for the current cue (Mc), provided β > 0.

In summary, Model 2 has four free parameters: the directional bias of the random walk in 

cue values (β), the variance of the random walk in cue values σ
η
2 , the variance in potential 

harm on any given trial σ
Ψ
2 , and the noise variance of noxious input σ

ε
2 . For the last three 

parameters, only their ratios matter; hence we fixed σ
ε
2 at a value of 1 and estimated the other 

two. For the reduced models with σ
ε
2 fixed to zero, we fixed σ

Ψ
2  at a value of 1 and estimated 

σ
η
2.

As in Model 1, we initialized the mean cue-based expectations (prior to trial 1; mc,l for each 

value of c) to the participant’s expected-pain rating following the first appearance of each 

cue in the test phase, and we modeled the noxious input on each trial (Nt) as the participant’s 

average pain rating across all trials on which that temperature was presented (to put 

temperature and pain on the same scale).

Finally, we assumed that the initial variance of the subject’s prior for μc,l (i.e., the subject’s 

uncertainty, s
c, 1
2 ) was equal to σ

η
2 for all cues.

Comparison of Models 1 and 2—Despite their substantial differences in framing, the 

reinforcement learning and Bayesian models presented here can be seen as embodying a 

shared set of theoretical principles. The main difference is that the former is cast at an 

algorithmic or mechanistic level, whereas the latter is cast at a computational level, in terms 

of optimal statistical inference. Specifically, adjusting expectations toward new observations 

as in delta-rule learning (Equations 1.3–1.4) can be seen as an algorithmic solution to 

tracking a moving target as in the Kalman filter (Equation 2.9)1,57,112–114. Likewise, 

perception as a weighted combination of sensory input and expectations (Equation 1.1) 

enacts a Bayesian integration of new data and prior beliefs (Equations 2.7 and 2.8), or more 

generally of different sources of information in proportion to their precisions (inverse 

variances)115–118.

To see these connections formally, define a trial-specific weighting parameter in Model 2,

γt =
σε

2

σε
2 + σΨ

2 + sc, t
2

. [3.1]

Then from Equations 2.6 and 2.8, the perceptual inference step in Model 2 yields a mean 

pain report of

Pt = 1 − γt Nt + γtEc, t, [3.2]
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in agreement with the perceptual inference step in Model 1 (Equation 1.1). Thus perceptual 

inference works the same in both models, except that Model 2 determines the weighting 

parameter (γ) rationally and dynamically, based on current levels of uncertainty in the 

current input N
t

σ
ε
2  and in the prior for πt σ

Ψ
2

+ s
c, t
2  as indicators of the level of potential 

harm (i.e., of the true value of πt).

The learning steps of the models can be similarly linked. First consider Model 2 without 

biased without biased learning (β = 0), and define a trial-specific learning rate,

αt =
sc, t
2

σΨ
2 + sc, t

2
. [3.3]

From Equations 2.11 and 2.8, the learning step in Model 2 yields a mean expectation on the 

next trial of

Ec, t + 1 = αtPt + 1 − αt Ec, t, [3.4]

in agreement with the learning update in Model 1 (Equation 1.4). Thus learning works the 

same in both models, except that Model 2 determines the learning rate (α) rationally and 

dynamically, based on current levels of uncertainty in π
t

σ
Ψ
2  and in the prior for μ

c, t
s
c, t
2  as 

indicators of the objective cue-pain association (i.e., of the true value of μc,t).

With bias in the random walk (governed by β), the learning update in Model 2 (Equation 

2.15) becomes

Ec, t + 1 = αt(1 − β)Pt + 1 − αt (1 − β)Ec, t + βMc . [3.5]

Thus the initial belief directly contributes to the learning update, similar to its role in 

perceptual inference in Model 1+. A second interpretation of Model 2’s learning update (also 

equivalent to Equation 2.15) that is closer to the primary Model 1 can be obtained by 

defining an error-dependent learning rate,

αt = (1 − β)αt + β
Mc − Ec, t

Pt − Ec, t

. [3.6]

Using this definition, Equation 2.15 can be rewritten as

Ec, t + 1 = αtPt + 1 − αt Ec, t, [3.7]
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paralleling Equation 1.4. Moreover, similar to αc and αi in Model 1 (see Equation 1.5), a 

positive value of β implies that α
t
 is larger when the prediction error moves the expectation 

toward the initial association (i.e., Pt - Ec,t and Mc - Ec,t have the same sign) and smaller 

otherwise. The main difference is that Model 1 implements biased learning by assuming two 

fixed learning rates for cue-consistent and cue-inconsistent prediction errors, whereas (under 

the interpretation of Eqs. 3.6–3.7) Model 2 implements biased learning by allowing learning 

rate to vary continuously as a function of the relationships among Ec, Mc and Pt.

Model fitting—To estimate the model parameters and assess relative predictive quality of 

each of the models, we implemented the models in Stan119. Stan enables Bayesian inference 

through Markov chain Monte Carlo (MCMC) sampling from the posterior distribution over 

model parameters. Note that the choice to estimate the models using Bayesian methods is 

unrelated to the assumption in Model 2 that subjects learn using Bayesian inference. Both 

Model 1 and Model 2 were fitted hierarchically, such that the model parameters of each 

participant are sampled from a group-level distribution. In this way, the information in the 

individual data is aggregated, while still respecting individual differences120. In the Bayesian 

framework, this means that each individual-level parameter is assigned a group-level prior 

distribution, whose distribution parameters (i.e., hyperparameters) are assigned prior 

distributions (i.e., hyperpriors).

Group-level distributions for αc, αi and γ in Model 1 and parameter β in Model 2 were 

assumed to be beta distributions. The hyperparameters defining each of these beta 

distributions were assigned uniform hyperpriors on the interval [0,10]. Parameters σ
η
2 and σ

Ψ
2

in Model 2 were assumed to have half-Cauchy distributions. In both models, subjects’ 

expectation and pain ratings were assumed to be normally distributed around the model’s 

point predictions. The variances of both of these normal distributions (i.e., error variances) 

were each assumed to have a half-Cauchy group-level distribution. We used uniform 

distributions on the interval [0,10] as hyperpriors for the scale parameters governing the 

half-Cauchy distributions. These priors and hyperpriors were chosen for their uninformative 

nature121.

For both models, the number of burn-in iterations was set at 5,000, the number of posterior 

samples taken was set at 10,000, and 4 MCMC chains were run with overdispersed starting 

values. All chains showed proper convergence, as assessed by visual inspection, and all Rhat 

values were less than 1.1.

For model comparison, we used the bridge sampling algorithm122–124 in R to obtain Bayes 

factors125. The Bayes factor provides a relative metric between two models’ predictive 

performances. A Bayes factor of 1 corresponds to both models performing equally well. A 

Bayes factor of 5, for example, can be interpreted as the data being 5 times as likely under 

the first model compared to the second. Furthermore, the Bayes factor automatically 

incorporates parsimony, so that less complex models are preferred over more complex 

models when they would fit equally well under maximum likelihood.
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FMRI acquisition and preprocessing

Imaging acquisition—In Study 2, we acquired whole-brain fMRI data on a Siemens 3T 

Trio scanner at the Center for Innovation and Creativity in Boulder. Structural images were 

acquired using high-resolution T1 spoiled gradient recall images (SPGR) for anatomical 

localization and warping to a standard space. Functional images were acquired with an echo-

planar imaging sequence (TR = 1300 ms, TE = 25 ms, field of view = 220 mm, 3.4×3.4×3.0 

mm voxels, 26 slices, parallel imaging, SENSE factor 2). Each test-phase run lasted 430 s 

(331 TRs). Visual stimuli were presented via a mirror attached to the head coil, and ratings 

were made using a track ball.

Preprocessing—Prior to preprocessing, global outlier time points (i.e. “spikes” in the 

BOLD signal) were identified by computing both the mean and the standard deviation 

(across voxels) of values for each image for all slices. Mahalanobis distances for the matrix 

of slice-wise mean and standard deviation values (concatenated) × functional volumes (time) 

were computed, and any values with a significant χ2 value (corrected for multiple 

comparisons based on the more stringent of either false discovery rate or Bonferroni 

methods) were considered outliers. On average 4.6% of images were outliers (SD = 1.9). 

The output of this procedure was later used as a covariate of noninterest in the first-level 

models.

Functional images were slice-acquisition-timing and motion corrected using SPM8 

(Wellcome Trust Centre for Neuroimaging, London, UK). Structural T1-weighted images 

were coregistered to the first functional image for each subject using an iterative procedure 

of automated registration using mutual information coregistration in SPM8 and manual 

adjustment of the automated algorithm’s starting point until the automated procedure 

provided satisfactory alignment. Structural images were normalized to MNI space using 

SPM8, interpolated to 2×2×2 mm voxels, and smoothed using a 6mm full-width at half 

maximum Gaussian kernel. We discarded the first 6 volumes of each run, and then 

concatenated the 5 test-phase runs for each participant. A high-pass filter of 180 seconds 

was used.

fMRI analysis

We conducted first-level (individual participants) general linear model (GLM) analyses in 

SPM8, employing the single trial, or “single-epoch”, design and analysis approach49,63,64. 

To estimate single-trial pain responses, we constructed a GLM design matrix with separate 

regressors for the 1.8-s heat-application period in each trial. We also modeled periods of cue 

presentation (2 s), expected-pain rating (VAS onset to response), pain anticipation (expected-

pain rating response to heat onset), and pain rating (VAS onset to response). All task 

variables were modeled as boxcar regressors, convolved with the canonical hemodynamic 

response function. Other regressors of non-interest (nuisance variables) were i) “dummy” 

regressors coding for each run (intercept for each but the last run); ii) linear drift across time 

within each run; iii) the 6 estimated head movement parameters (x, y, z, roll, pitch, and 

yaw), their mean-zeroed squares, their derivatives, and squared derivatives for each run (total 

24 columns per run); iv) indicator vectors for outlier time points identified based on their 

Jepma et al. Page 29

Nat Hum Behav. Author manuscript; available in PMC 2019 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



multivariate distance from the other images in the sample (see above); v) indicator vectors 

for the first two images in each run.

In a second GLM we used separate regressors for each single-trial pain-anticipation period. 

The only difference between this GLM and the one reported above is that the pain-

anticipation periods, instead of the heat-application periods, were modeled on a single-trial 

basis.

One important consideration in single-trial analysis is that trial estimates can be strongly 

affected by acquisition artifacts that occur during that trial (e.g. sudden motion, scanner 

pulse artifacts). For this reason, we calculated trial-by-trial variance inflation factors (VIFs; 

a measure of design-induced uncertainty, in this case due to collinearity with nuisance 

regressors), and trials with VIFs that exceeded 2.5 were excluded from the analyses. The 

average number of excluded trials was 2.3 per participant (SD = 2.2).

NPS analyses—We calculated the strength of expression of the NPS pattern for each 

single-trial heat activation map, by taking the dot product of the vectorized activation image 

β
map

 with the NPS pattern weights w
map

, i.e., β
map

T
w

map
, yielding a continuous scalar 

value. We used the single-trial NPS responses in our regression analyses.

Anticipatory activity updating analysis—To examine evidence for a confirmation bias 

in the updating of pain-anticipatory brain activity, we computed the change in pain-

anticipatory activity across successive presentations of a given cue. Specifically, we created 

‘delta’ (or ‘update’) images by subtracting the single-trial activation map on trial t from the 

single-trial activation map for the next trial on which the same cue c was presented, i.e., 

activation mapc,t+1 - activation mapc,t. We then separately computed each participant’s mean 

update image following aversive prediction errors on low-cue trials, aversive prediction 

errors on high-cue trials, appetitive prediction errors on low-cue trials, and appetitive 

prediction errors on high-cue trials. Finally, we computed the following two contrasts: (i) the 

update of anticipatory activation following aversive prediction errors on high-cue > low-cue 

trials; and (ii) the update of anticipatory activation following appetitive prediction errors on 

low-cue > high-cue trials.

We conducted a second-level (group) analysis on each of these two contrasts using robust 

regression, which minimizes the influence of outliers126, and included a regressor coding for 

individual differences in estimated learning rate (a) between high-cue and low-cue trials 

(either for aversive or appetitive prediction errors, for the corresponding contrast). We 

applied a gray-matter mask, and used false discovery rate (FDR) to correct for multiple 

comparisons in whole-brain voxel-wise analyses.

Activation clusters, reported in the Supplementary Tables, were defined as FDR-corrected 

voxels (q < 0.05) contiguous with voxels at uncorrected p < 0.001 and p < 0.01. In the 

figures in the main manuscript, we show FDR-corrected voxels (q < 0.05) contiguous with 

voxels at uncorrected p < 0.01 and p < 0.05, for display purposes.
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Data Availability

The single-trial behavioural and NPS data, needed to reproduce all behavioural and NPS 

analyses in the paper, are available through the Open Science Framework repository, https://

osf.io/bqkz3/. The fMRI data, needed to reproduce the analyses on anticipatory brain 

activity, is available from the corresponding author upon request.

Code Availability

Our modeling code (all versions of our computational models) is available through the Open 

Science Framework repository, https://osf.io/bqkz3/. The code we used to conduct all other 

analyses (multilevel regression, mediation and fMRI analyses) is available via https://

github.com/canlab.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental design and behavioural results. A. Cue-outcome pairings in the conditioning 

and test phase. Ten neutral-cue trials were included in Study 2 only. B. One test-phase trial 

in Study 2. Study 1 had slightly shorter interstimulus intervals. C. Pain rating as a function 

of stimulus temperature and cue type. Heat was applied to the inner forearm in Study 1 and 

to the, less sensitive, lower leg in Study 2, which explains the overall lower pain ratings in 

Study 2. Error bars indicate within-subject standard errors. Plots for Study 1 and Study 2 are 

based on data from 28 and 34 participants, respectively. D. Average expected (open circles) 

and experienced (filled circles) pain ratings as a function of cue type and trial. The 

difference between red and blue filled circles is the effect of cue type on pain ratings, which 

was robust in both studies, and did not disappear over time. The difference between red and 

blue open circles is the effect of cue type on pain expectations, which remained stronger 

than the effect on pain ratings throughout the test phase. Error bars indicate between-subject 

standard errors. Plots for Study 1 and Study 2 are based on data from 28 and 33 participants, 

respectively (one participant in Study 2 misunderstood the expected-pain rating procedure, 

and was excluded from all analyses and figures involving pain expectations).
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Figure 2. 
Cue effects on heat-evoked brain activity. A. Heat-evoked brain activity on high- vs. low-cue 

trials. Colored regions indicate stronger activity when heat was preceded by a high- than a 

low-pain cue. All colored regions were significant at q<0.05, FDR-corrected. For the 

purpose of display, we pruned the results using two additional, less conservative levels of 

voxel-wise threshold. B. Pain rating as a function of NPS response. We sorted each 

participant’s pain ratings into five bins according to their single-trial NPS response (both 

mean-centered), and plotted the group-average data for each bin. Error bars indicate within-

subject standard errors. C. NPS response as a function of stimulus temperature and cue type. 

D. Across-subject correlation between the effects of cue type on pain rating and on the NPS 

response (r(32) = .46, p = .007, R2 = .21, CI = .15 to .95). E. Average NPS response as a 

function of cue type and trial. Before plotting, the effect of temperature was regressed out 

and single-trial NPS responses were smoothed using locally weighted scatterplot smoothing. 

Vertical lines indicate the first trial of each scan run (heat was applied to a new skin site in 

each run). Note that the ten neutral-cue trials were evenly distributed amidst the low- and 

high-cue trials (one neutral-cue trial was presented during each series of 3 low- and 3 high-

cue trials). Error bars indicate between-subject standard errors. All plots are based on data 

from 34 participants.
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Figure 3. 
Bidirectional effects of expectations and pain on one another. A. Dynamic feedback circuit 

through which expectations can become self-reinforcing. B. Pain rating as a function of 

expected pain and cue type. We sorted each participant’s pain ratings for the low- and high-

cue trials into five bins, according to their trial-specific expected-pain ratings (both mean-

centered), and plotted the group-average data for each bin. As there were fewer neutral-cue 

trials, we used three bins for the neutral-cue condition. Note that we binned the data for 

plotting purposes, but used single-trial measures in our statistical analyses. C. NPS response 

as a function of expected pain and cue type. D. Cue-based pain expectation as a function of 

cue type and the previous pain rating for that cue. E. Cue-based pain expectation as a 

function of cue type and the previous NPS response for that cue. All error bars indicate 

between-subject standard errors. All plots for Study 1 and 2 are based on data from 28 and 

33 participants, respectively.
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Figure 4. 
Confirmation bias in expectation updating. A. Estimated learning rate as a function of 

prediction error sign and cue type in each study. PE = prediction error. The grey dots 

indicate individual participants, and the horizontal black lines are the mean values in each 

condition. The two individual data points at the top of the last condition (learning rates for 

aversive prediction errors on high-cue trials) in Study 2 fall outside the range of the figure; 

estimated learning rates for these points are 11 and 16. For Study 1, the first three conditions 

include data from 28 participants, and the last condition includes data from 26 participants. 

For Study 2, the first three plots include data from 33 participants, and the last plot includes 

data from 21 participants. Fewer participants contributed to the last condition because some 

participants never experienced aversive prediction errors on high-cue trials. B. Expectation 

updating as a function of signed prediction error magnitude and cue type in each study. 

Negative and positive prediction errors indicate lower- and higher-than-expected pain, 

respectively. Negative and positive expectation updates indicate decreases and increases in 

pain expectations, respectively. We sorted each participant’s low- and high-cue trials into 

five bins according to signed prediction error magnitude, and plotted the group-mean signed 

expectation updates for each bin. Lines show linear fits to unbinned single-trial data. Note 

that there was a significant main effect of cue type but no significant interaction between 

Jepma et al. Page 40

Nat Hum Behav. Author manuscript; available in PMC 2019 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prediction error and cue type. Plots for Study 1 and 2 are based on data from 28 and 33 

participants, respectively. Error bars indicate between-subject standard errors. C. Effect of 

cue type on expectation updating in each participant (first-level regression coefficients).
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Figure 5. 
Computational models capturing effects of cue-based expectations on pain and confirmation 

bias on expectation updating. A. Reinforcement learning model (Model 1). Perceptual 

inference within a trial combines expectations with noxious input to determine perceived 

pain. The γ parameter controls the relative impact of these two sources. Learning between 

trials involves updating the expectation for the current cue toward the current perceived pain. 

Experience-resistant expectations are modeled by assuming different learning rates, the αc 

and a parameters, when the direction of prediction error is, respectively, consistent and 

inconsistent with the cue’s initial low or high pain association. B. Bayesian model (Model 

2). Pain perception and expectation are products of Bayesian inference with respect to a 

generative model of the task environment that extends the classic Kalman filter. Note that 

arrows in this diagram indicate statistical dependencies in the subject’s generative model, 

not dynamics of the subject’s state of knowledge as in Figure 5a. Under the generative 

model, the mean threat level signaled by each cue (μc, index c suppressed in figure) drifts 

randomly from trial to trial, with step size determined by the ση parameter. The current 

threat level (or objectively correct pain level, πt) on any trial t deviates randomly from μt, 

with standard deviation equal to the σψ parameter. The noxious input (Nt) is a noisy 

indicator of πt, with standard deviation equal to the σε parameter. Inference within a trial 

(not shown) combines the current belief about with the observed value of Nt to estimate the 

current value of πt; this estimate is the subject’s experienced level of pain (Pt). Inference 
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across trials combines the beliefs about μt and πt to estimate μt+1; this is the subject’s 

reported expectation the next time this cue is presented (Et+1). Experience-resistant 

expectations are modeled by letting cue-pain associations drift in the directions of their 

initial values between trials, to a degree governed by the β parameter. Model 2 is formally 

nearly equivalent to Model 1, except that it assumes γ and α adapt from trial to trial to 

reflect the subject’s current level of uncertainty (Eqs. 3.1, 3.3, 3.6).
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Figure 6. 
Posterior distributions for the group-level means of the models’ parameters. A. Model 1: γ 
controls the impact of expectations vs. nociceptive input on pain (higher values cause a 

stronger weighting of expectations); αc and αi are learning rates for cue-consistent and cue-

inconsistent prediction errors. The rightmost panels are joint density plots of α
c
 and α

i
 (dots 

are samples from the MCMC), showing that α
c
 is reliably greater than α

i
. B. Model 2: β 

controls the drift of expectations toward (if β > 0) or away from (if β < 0) their initial values 

after each update; σ
Ψ
2  is the assumed variance in pain on any given trial; σ

η
2 is the assumed 

variance of the random walk process (random variation in pain across trials). σ
Ψ
2  and σ

η
2 are 

estimated relative to the variance of contributions to noxious input unrelated to pain (σ
ε
2, 

which was fixed at 1 to eliminate redundancy in model parameters).
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Figure 7. 
Confirmation bias in the updating of pain-anticipatory brain activity. A. We computed the 

change in anticipatory activity across successive trials in which the same cue was presented, 

separately for trials with higher- and lower-than-expected pain (aversive and appetitive 

prediction errors, respectively), and tested for effects of cue type. B. Individual differences 

in confirmation bias on estimated learning rate predict participants’ confirmation bias on 

anticipatory activity updating following aversive prediction errors. Yellow/red colors 

indicate positive across-subject correlations between increases in anticipatory activity 

following aversive prediction errors on high- vs. low-cue trials and estimated learning rate 

following aversive prediction errors on high- vs. low-cue trials. Blue colors indicate negative 

correlations. Cluster statistics can be found in Supplementary Table 2. Scatterplots illustrate 

the correlations in sensorimotor cortex and right striatum. The shading of the points is 

proportional to each observation’s weight in robust regression; white dots indicate outliers 
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down-weighted by the algorithm. C. Individual differences in confirmation bias on estimated 

learning rate predict participants’ confirmation bias on anticipatory activity updating 

following appetitive prediction errors. Yellow/red colors indicate positive across-subject 

correlations between increases in anticipatory activity following appetitive prediction errors 

on low- vs. high-cue trials and estimated learning rate following appetitive prediction errors 

on low- vs. high-cue trials. Blue colors indicate negative correlations. All colored regions 

were significant at q < 0.05, FDR-corrected. For display purposes, we show the extent of 

results surrounding FDR-corrected peaks at p < .01 and p < .05 uncorrected. Cluster 

statistics can be found in Supplementary Table 3. Figures 7B and C are based on data from 

21 participants.
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Table 1.

Loge Bayes factors for all model comparisons. We log-transformed the Bayes factors such that a value of 0 

indicates that the data are equally likely to occur under both models. Positive values indicate evidence in favor 

of the model in the row over the model in the column.

Study 1

M1 M1a M1b M1c M2 M2a M2b M2c

M1 0 391 129 529 57 459 197 592

M1a 0 −262 138 −334 68 −194 201

M1b 0 400 −72 330 69 463

M1c 0 −472 −70 −331 63

M2 0 402 141 535

M2a 0 −261 133

M2b 0 395

M2c 0

Study 2

M1 M1a M1b M1c M2 M2a M2b M2c

M1 0 263 86 334 36 291 153 399

M1a 0 −177 71 −227 28 −109 137

M1b 0 248 −50 205 68 313

M1c 0 −298 −43 −180 65

M2 0 255 118 363

M2a 0 −137 108

M2b 0 246

M2c 0

M1 and M2 are Model 1 and 2, respectively, and a, b and c refer to the reduced models that do not include (a) expectancy-based pain modulation, 

(b) a confirmation bias, and (c) either of those components.
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