
Behavioural Categoricity of Abstract Data Type
Specifications

Pierre Lescanne
Centre de Recherche en Informatique de Nancy, Campus Scientifique: BP 239, F54 506 Vandoeuvre-les-Nancy Cedex, France

In this note we want to present the concept of behavioural categoricity of an abstract data type specification.
Intuitively, a specification is behaviourally categoric if it captures the external views the user can have on the data
type. More specifically, using this specification, it is possible to prove that two objects are equal if and only if they
behave the same, or informally speaking, if and only if they implement the same black box. Providing a general
algorithm for proving the behavioural categoricity of any specification is impossible because that algorithm could also
decide whether a finite presentation of a group presents the trivial group or not, which Rabin proved to be undecidable.
We show by an example of a specification of circular lists that the proof of the categoricity must be done carefully.

In this note we want to present the concept of behavioural
categoricity of an abstract type specification. Intuitively,
a specification is behaviourally categoric if it captures all
the external views the user can have on the data type.
More specifically, using this specification, it is possible
to prove that two objects are equal if and only if they
behave the same, or informally speaking, if and only if
they implement the same black box. Providing a general
algorithm for proving behavioural categoricity of any
specification is impossible, because that algorithm could
also decide whether a finite presentation of a group
presents the trivial group or not, which Rabin proved to
be undecidable. We show by an example of a specification
of circular lists, that the proof of the categoricity must be
done carefully.

SYNTACTIC EQUALITY AND
BEHAVIOURAL EQUALITY

We assume the reader has knowledge of the algebraic
specification of abstract data types.1 •2 Let us present and
clarify some terminology. First, the environment is a set
of type operations and equations that are called primitive
or external. For simplicity, we suppose they are infinitely
many equations, i.e. a congruence written =e here,
defining a primitive heterogeneous algebra. In general,
an algebraic specification is divided into two parts. The
first part describes the functionality or signature of the
operations, these operations are observers that yield a
result of an external type, or internal operations that yield
a result of the type of interest. Objects are described by
composition of internal operations. The representation
is not unique, but up to a congruence generated by the
axioms. A compound observer is a term whose outermost
operation is a simple observer (sometimes a compound
observer is called an observer if there is no ambiguity;
otherwise we use the name simple observer, to make a
clear distinction). A basis is a minimal generator subset
among the internal operations, that means it is sufficient
to generate all the objects of the abstract data type; its
elements are called constructors. All other elements are
called extensions. Terms that contain only constructors
are often called normal forms.

The second part of the specification contains the
axioms. They are equations that specify the abstract data
type by describing the relations between the constructors,
and by defining the extensions and the observers. Two
ground terms are said to be equivalent (for the axioms) if
it is possible to transform one to the other by successive
replacements of equal by equal.

Since variables can be of external or internal type, let
us call an internal-variable-free-extension a term built from
only internal operations and external variables. If in
addition it has an observer as outermost operation it is
called an internal-variable-free-compound-observer. The
main problem about specification is to know whether it
actually defines the extensions and the observers in terms
of constructors. A specification is well-defined:

1. If every internal-variable-free-extension can be
proved equivalent to a unique term (uniqueness is
modulo the relation between constructors) which
contains only constructors and external variables.
This property is sometimes called the normal form
lemma.

2. If every internal-variable-free-compound observer can
be proved equivalent to a unique external variable
term. The existence of such an external variable term
is sometime called sufficient completeness. The unique-
ness is sometime called relative consistency because it
means that every primitive terms are equal in the
specification if and only if they are also in the primitive
one.

For the sake of simplicity, we will assume in this paper
that all the operations are total, but we guess that the
concepts defined here should be easily generalized to the
case of partial operations.

Now we describe the two main approaches to the
semantics of the abstract data types. Both refer to an
abstract model which is an initial or final algebra according
to the semantics we use. The classes of the congruences
which are compatible with a well defined specification,
and which are extensions of the primitive congruence,
constitute a 'lattice' for the inclusion with a minimum (or
initial) element and a maximum (or final) element.

The initial algebra semantics3 is proof theory-oriented;
it considers that two objects are equivalent if and only if

CCC-0010-4620/83/0026-0289 $02.00
© Wiley Heyden Ltd, 1983 THE COMPUTER JOURNAL, VOL. 26. NO. 4,1983 2 8 9

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/289/377392 by guest on 21 August 2022

P. LESCANNE

it can be proved that they are. In this case, we suggest
calling the 'initial algebra semantic equivalence' syntact-
ical equivalence (written =s), that is, equivalence
deduced by reasoning on terms from the axioms. This
approach can be seen as syntactic, since, first = s is
syntactically defined, and secondly the abstract model,
called the initial algebra, is the quotient of the term
algebra under the equivalence relation =s. Thus, this
semantics is strongly related to the algebraic specification.
Notice that relative consistency asserts that axioms do
not introduce relations among 'external objects', which
means that = e and = s coincide on external terms.

The final algebra semantics is user-oriented.4'5 It
considers that two objects are different if there exist some
observers (simple or compound) that yield different
values when applied to each of the two objects. In other
words, two objects are equal in the abstract model if, for
an outside user, they behave the same. This approach is
more semantic, since it considers objects only from the
behavioural point of view. The behavioural equivalence6

(written =b), is the equivalence between two objects
which have the same behaviour under any observer.
Notice that syntactic equivalence implies behavioural
equivalence. The abstract model is a final algebra. It is
the quotient under behavioural equivalence of any
algebras, one of which can be the initial algebra. All
these final algebras are isomorphic and we say 'the' final
algebra. This semantics depends on the specification of
the observers.7

BEHAVIOURAL CATEGORICITY

A specification is behaviourally categoric if the syntactic
equivalence coincides with the behavioural equivalence;
thus the specification is powerful enough to capture
syntactically the whole behaviour of the objects. The
archetype of a non-behaviourally categoric specifica-
tion of a type is Set (Fig. 1). The two sets
INSERT(INSERT(EMPTY(), a), b) and IN-
SERT(INSERT(EMPTY(), b), a) are behaviourally

Type Set [Item, Bool] where Item has EQ: (Item, Item) -> Bool

Operations
EMPTY: O^Set
INSERT: (Set, Item) -> Set
HAS: (Set, Item) -• Bool

Axioms
HAS(INSERT(e, a), 6) = = IF EQ(a, b) THEN TRUE

ELSE HAS(e, 6)
HAS(EMPTY (), a) = = FALSE.

Figure 1 . Specification of set.

Thus, we try to prove behavioural categoricity to show
that we have not accidentally left out some of the
equations necessary for specifying the type by the initial
algebra method. However, we may state the following
theorem.

Theorem 1

There exists no general algorithm, on input of any
abstract data type specification, that decides whether
this specification is behaviourally categoric or not.

Proof. If such an algorithm exists it can decide the
behavioural categoricity of a very special family of
abstract data types: the finitely presented groups. These
are abstract data types with the three classical operations
of group theory, namely *, ~ \ and E, plus a finite set of
constants which we call generators. The axioms are the
axioms of groups plus a finite number of equations
between terms, which we call the relations (Fig. 2). The

Type Group

Operations
Group * Group -* Group
(Group)'' —» Group
E, A | , . . . , An: () -> Group

Axioms

E * x = = x
X-'*X= = E
IV, = = W,'Vl vi

Figure 2. Group with n generators A , , . . . , An and m relations.

group that is said to be presented by these generators and
these relations is the initial algebra. Because there are
neither extensions nor observers, notice that first, the
specification is trivially well-defined, and secondly, all
the terms are behaviourally equivalent. Thus, the final
algebra is the trivial group with carrier (E). Rabin [Ref.
8, Theorem 2.2] showed that the problem of proving that
a finitely presented group is trivial is undecidable. Q

THE CIRCULAR LIST EXAMPLE

In this section we describe a data type which occurs
frequently in computer systems, the circular lists (Fig. 3,
see Ref. 9 for their use).

equivalent but not syntactically equivalent. Notice that
Set could be made behaviourally categoric by adding the
axioms

INSERT(INSERT(EMPTY (), a), b) = = INSERT
(INSERT(EMPTY (), b), a) and

INSERT(INSERT (s, a), a) = = INSERT(INSERT
is, a).

Theorem 2

If Item contains at least two elements, i.e. if the external
congruence =e is not identically true, then the abstract
data type Circular_List [Item] is behaviourally categoric.

Before proving this theorem, notice two facts. First,
although the property on the number of elements of Item

2 9 0 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/289/377392 by guest on 21 August 2022

BEHAVIOURAL CATEGORICITY OF ABSTRACT DATA TYPE SPECIFICATIONS

Type Circular-List [Item]
Operations

INIT: (Item) -> Circular-List
INSERT: (Item, Circular-List) -> Circular-List
ROT: (Circular-List) — Circular-List
WINDOW: (CircularJList) -» Item

Axioms
ROT(INIT(a)) = = INIT(a)
ROT(INSERT(a, INIT(fc))) = = INSERTS, INIT(a))
ROT(INSERT(a, INSERT(6, c/))) = = INSERT(6.

ROT(INSERT(a, cl)))
WINDOW(INIT(a)) = = a
WINDOW(INSERT(o, cl)) = = a.

Figure 3. Specification of CircularJJst.

is a little odd, it will become clearer why we need it when
we use these elements to discriminate among values of
Circular JList. Secondly, the proof of the categoricity is
not straightforward, as we will show.

Let us now remark that the axioms defining
Circular-List can be transformed to a confluent and
Noetherian rewriting system where = = is changed to
= >. Therefore, this rewriting system can be used to
decide the syntactic equivalence of terms:10 two terms
are syntactically equivalent if their normal forms are
equal (more formally, we have = s equivalent to = >*.
< = *). To prove Theorem 2, we have to prove that two
different normal forms can be discriminated by com-
pound observers. Let us adopt the following notations.

INSERT(an_,,. . . , INSERT(a,, INIT(a0)). . .)
= <«„_,,. . .ao> = a

INSERT(6m_,,. . ., INSERT^,, INIT(40)) • • •)
= (bm-x,.. . ,b0} = b

Let us sketch the proof. Because there are no axioms,
the initial algebra for INIT and INSERT is just Item+

(non-empty sequences of items) with INIT(a) = s <a>
and INSERTS, <Jbm.u ..., *>„» = s <a, bm-u . . . , bo>
(essentially Lemma 1). Then the initial algebra for the
type with ROT and WINDOW has the same carrier
because ROT«a n _! , . . . , a o » = 5 <,an-i, • • • , a0, fln-i>
and WINDOW«a1, . . . , ad» = s a, (Lemmas 2, 4, 5).
That means INIT and INSERT form a basis. Then if

a = s <*„_„ . . ., aoy ~ = s <*„_„ . . ., boy = s b
either there exists ay with a, ~ = e bj in which case

WINDOW(ROTJ"'(a)) ~ =5 WINDOW(ROT-'(b)),

or a is a prefix of b (or vice versa), say b = a. d. c.
In that case, choose/~ = e d and,

d = s WINDOW(ROTn+' (INSERTS, b))) ~ = s

WINDOW(ROTn+ '(INSERT^, a))) = s b

Lemma 1. Well-Definedness Lemma

1. The normal forms are INSERT(an_,,..., INIT(a0))-
More precisely, they are either INIT(a) or INSERT(a,
/) where t is a normal form.

2. WINDOW(r) is equal to a variable, where t is an
internal-variable-free term.

Proof. By induction on the complexity of terms: here
complexity is given by the following function c:

c(INSERT(a, t)) = c(t) + 1
c(INIT(a))=l.

Lemma 2

ROT«an_i,. . . , a o » = >* <6n-i> • • • >^o) where bt = e

Proof. By induction on n.

Lemma 3

If 0 < k < n. R ^ f l . . , , . . . , ao»* <*>„-!, ... ,bo>
where bt = a{-k, if n > i > = k and 6; = an-k+i, if A: > i >
= 0.

Proof. We prove the result by induction on k. If k = 0, it
is straightforward. Suppose the result is true for k, then
compute the value for k = 1. By induction:

ROTk +'«*„-!, . . . , a o » = >* ROT(c_,,. . . , c o »

where c, =ea,_fc, ifn >j> = k and c- =ean_fc, if A: > y >
= 0. By Lemma 2

. = > * < * , _ ! , • • • , * 0 >

where6; =ec,_1, ifn > j > =0andfto = e an-x. That is

bj =ea;_t+1, ifn > / — 1 > = Arandn > / > 0
bt =

ean_(t+;_,, if A: > i— 1 > = Oandn > i > 0

Joining the two last assertions and simplifying the
conditions, we get

&,= eai_(/ t+i), i f n - 1 > / > £ + 1
,-=e «„-(+!)+,•, if A: + 1 > i > = 0 .

or

Lemma 4

' i = "imodn

= >

Proof. Straightforward from Lemma 3.

Lemma 5

If 0 < k < n, WINDOW(ROT«an_,, . . . , a o » = >*

Proof. From Lemma 3.
WINDOW(ROT*«an_1,. . . , ao») = >*

W I N D O W S _, , . . . ,Z.o» = 0
where 6n_, =ean_,_t .

The following lemma proves Theorem 2 on normal
forms having the same length.

THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983 2 9 1

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/289/377392 by guest on 21 August 2022

P. LESCANNE

Lemma 6

<an_!, . . . ,ao> =s<*n-i , • • • ,boy if andonly if <an_!,

Proof. The 'if part is trivial. Let us prove the 'only if
part:

<an_l5. . . , a o >= b <6 n _ 1 , . . . A >

implies

VA: 6 [1 . . . n]) WINDOW(ROT'£«an-1,.. ., flo») = e

WINDOW(ROT*«An_ „ . . . , bo»)

By Lemma 5, this is equivalent to

Because all at are equal to bt, both circular lists are
syntactically equal, this is equivalent to <aB_i, . . . , ao>
= e <6 n _ 1 , . . .) 6 0 >. D

The compound observers WINDOW(ROT*(-)) are
not sufficient to discriminate between <a, b) and <a, b, a,
b} or to discriminate the powers (w*) of a given circular
list w. Likewise, they are not sufficient to discriminate
among the circular lists of one element set of items.

Proof of Theorem 2. Given Lemma 6, it remains to prove
the theorem for the case n~ =m. Suppose m> n and
a = <«„_!, . . . , aoy and b = <J>m-u ..., boy, are two
different normal forms, then we will show they are not
behaviourally equivalent. By Lemma 5

WINDOW(ROTn+ '(INSERTCc, b))))
= s WINDOW(ROTn+l«c, If-1,..., boy)))

and by Lemma 4

WINDOW(ROTn+1 (INSERT(c, a)))) =sc.

If c ~ =e 6m_n_ i (that is always possible because Item has
two elements) then

WINDOW(ROT"+J (INSERTS, a))))
~ = s WINDOW(ROTn+ KlNSERTCc, b))).

Therefore a and b are not behaviourally equivalent. D
In fact, this abstract data type, with exactly these

operations is also difficult to capture using final data type
specifications as explained by Kamin.7

Acknowledgements
I would like to thank Christine Choppy, Marie-Claude Gaudel, John
Guttag, Sam Kamin, Srivas Mandayam, Jean-Luc Remy and Jeannette
Wing who helped me to clarify my ideas on abstract data types.

REFERENCES

4.

6.

H. A. Klaeren, Bibliography on abstract software specification.
Bulletin of the European Association for Theoretical Computer
Science 12, 76-87 (1980).
R. T. Yeh, Current Trends in Programming Methodology, Vol.
4. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A., 60-79
(1978).
J. A. Goguen, J. W. Thatcher and E. G. Wagner, An initial
algebra approach to the specification, correctness and imple-
mentation of abstract data types, in Ref. 2.
M. Wand, Final algebra semantics and data types extensions.
JCSS 19, 27-44 (1979).
V. Giarratana, F. Gimona and U. Montanari, Observability
concepts in abstract data type specifications in 5th Mathemat-
ical Foundations of Computer Science, 1976, edited by A.
Mazurkiewicz, Lecture Notes in Computer Sciences 45, pp.
576-587, Springer Verlag (1976).
D. Kapur, Towards a theory for abstract data types, Ph.D. Thesis.

Massachusetts Institute of Technology, MIT/LCS/TR-237,
May (1980).

7. S. Kamin, Final data types and their specifications. Trans.
Programming Languages and Systems^, 97-121 (1983).

8. M. 0. Rabin, Recursive unsolvability in group theoretic prob-
lems. Ann. of Math. 67, 172-194 (1958).

9. D. E. Knuth, The Art of Computer Programming, Vol. 1:
Fundamental Algorithms, Addison Wesley, Reading, Mass.
(1968).

10. G. Huet, Confluent reduction: abstract properties and applica-
tions to term rewriting systems. J. of A.C.M. 27, 797-821
(1980).

11. J. V. Guttag and J. J. Horning, The algebraic specification of
abstract data types. Ada Informatica 10, 27-52 (1978).

Received December 1981

292 THE COMPUTER JOURNAL, VOL. 26, NO. 4,1983

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/26/4/289/377392 by guest on 21 August 2022

