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Abstract 

 

Previous research has indicated the ironies of high levels of vehicle automation 

resulting in reduced driver situation awareness, but has also highlighted potential 

benefits of such future vehicle designs through enhanced safety and reduced driver 

workload. Well designed automation allows drivers� visual attention to be focused 

away from the roadway and toward secondary, in-vehicle tasks. Such tasks may be 

pleasant distractions from the monotony of system monitoring. Hence, this study was 

undertaken to investigate the impact of voluntary secondary task uptake on the 

system supervisory responsibilities of drivers experiencing highly-automated vehicle 

control. Independent factors of Automation Level (manual control, highly-automated) 

and Traffic Density (light, heavy) were manipulated in a repeated-measures 

experimental design. 49 drivers participated using a high-fidelity driving simulator 

that allowed drivers to see, hear and, crucially, feel the impact of their automated 

vehicle handling. Drivers experiencing automation tended to refrain from behaviours 

that required them to temporarily retake manual control, such as overtaking, 

accepting the resulting increase in journey time. Automation improved safety 

margins in car following, however this was restricted to conditions of light 

surrounding traffic. Participants did indeed become more heavily involved with the in-

vehicle entertainment offered than they were in manual driving, affording less visual 

attention to the road ahead. This might suggest that drivers appear happy to forgo 

their supervisory responsibilities in preference of a more entertaining highly-

automated drive. However, they did demonstrate additional attention to the roadway 

in busy traffic, implying that these responsibilities are taken more seriously as the 

supervisory demand of vehicle automation increases. These results may dampen 

some concerns over driver underload with vehicle automation, assuming vehicle 

manufacturers embrace the need for positive system feedback and drivers also fully 

appreciate their supervisory obligations in such future vehicle designs. 
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1. Introduction 

Advanced Driver Assistance Systems (ADAS), which have the potential to 

improve both road transport safety and driver comfort, are becoming a major focus in 

emerging vehicle designs. There is a recent history of European automobile 

manufacturers co-operating on their development of such systems, for example 

through the ADASE II (Advanced Driver Assistance Systems in Europe) project 

supported through the European Union�s Fifth Framework Programme. This 

particular project, involving Peugeot Citroen, Jaguar Land Rover, Fiat and BMW, 

culminated with a roadmap outlining how the current manual driving task might be 

gradually automated by on-board systems. Follow-on projects, such as HAVEit 

(Highly Automated Vehicles for Intelligent Transport) have focussed on improving 

sensor technology and system architecture in order to make highly-automated 

driving on public roads an achievable ambition over the coming years. 

 

Many ADAS supporting semi-automated vehicle control already exist. A 

plethora of manufacturers now offer Adaptive Cruise Control (ACC), which 

automatically manages longitudinal control of the vehicle to achieve driver-selected 

values for speed and following headway. Amongst other executive models, the BMW 

5, 6 and 7 series and the Mercedes Benz S and CL-class all offer full ACC, which is 

able to bring the car to a complete stop without any driver intervention. Similarly, 

lateral support is commonly provided through Lane Departure Warning, typically 

informing the driver of encroachment toward the current lane boundary either by 

auditory or haptic warnings. In more extreme cases, such as the Honda Inspire, the 

vehicle will actually provide a gentle torque to the steering column to maintain itself 

in lane. 

 

As increasing attention is afforded to the development of such systems and 

accordingly highly-automated, self-driving vehicles (e.g. Google�s automated Toyota 

Prius which, it is claimed1, has logged over 140,000 miles around Northern 

California), it is inevitable that average motorists will eventually find themselves no 

longer actively involved in routine vehicle handling, taking on a purely supervisory 

role in ensuring that their vehicle suitably performs the required control actions on 
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their behalf. Considering the driver�s ability to undertake such a role is therefore 

becoming increasingly vital. 

 

1.1 Human factors of semi and highly-automated driving 

The interaction between the human driver and the automated vehicle has been 

a focus of applied research for some time (e.g. Nilsson, 1995). During this period, 

such technologies were expected to provide significant benefits, highlighted in a 

review by Stanton and Marsden (1996) as improved well-being through the reduction 

of driver workload and the enhancement of safety through a reduction in error 

associated with the inherent restriction on individual driving style. Such studies have 

since been refined to include models of driver behaviour in such circumstances 

(Boer and Hoedemaeker, 1998; Goodrich and Boer, 2003). 

 

The work presented here characterises driver behaviour with vehicle 

automation by way of reference to two well-accepted models. The first, Michon�s 

(1985) hierarchical analysis of the driving task, describes driver behaviour at three 

distinct levels: the highest strategic level outlining the process of route choice, the 

middle tactical level concerning the planning of specific driving manoeuvres to best 

achieve the chosen route and the lowest control level depicting the closed-loop 

control of vehicle inputs required to action these manoeuvres. The second, 

Parasuraman, Sheridan and Wickens� (2000) task analysis of automation, proposes 

four information-processing stages: information acquisition, information analysis, 

decision making and action. The highest level of stage 3 automation (decision 

making) defines the control undertaken by the highest level of stage 4 automation 

(action) without requiring, or even allowing, any human involvement. 

 

Although focused toward a representation of situation awareness, in an 

apparent combination of these two task analyses, Ma and Kaber�s (2005) proposed 

driver model suggests successful completion of tactical and control level driving 

tasks is achieved through high quality information processing, regardless of whether 

this information is processed by the vehicle sensors� (in the case of highly-automated 

driving) or by the human operator�s (in the case of manual driving) perception of the 

                                                                                                                                        
1 New York Times, 9th October 2010, �Google Cars Drive Themselves, in Traffic�  
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driving environment. In highly-automated driving, categorised by Parasuraman et 

al.�s (2000) stage 3 and stage 4 automation, information processed by the vehicle 

sensors is used to command the vehicle control inputs. The remaining, and 

unenviable, responsibility of the driver is to continually process information on the 

suitability of these vehicle control inputs by supervisory management of the vehicle 

automation system. The ironies of automation concerning the suitability of a human 

operator to undertake such a role of monotonous monitoring are long established 

(Bainbridge, 1983). 

 

In the driving context of automated driving, such concerns over the 

incompatible information processing demands of the system and the driver have 

often been modelled at the tactical and control levels with consideration to driver 

situation awareness (e.g. Ward, 2000;  Matthews, Bryant, Webb and Harbluk, 2001). 

Endsley (1995) suggests that good situation awareness is achieved by a strong 

appreciation of the driving environment at three distinct levels: perception, 

comprehension and projection. Reduced awareness has been associated with a 

delay in an appropriate braking response when faced with failures in ACC both in a 

driving simulator (Young and Stanton, 2007) and in more naturalistic, test-track 

conditions (Rudin-Brown and Parker, 2004). Similar work has also uncovered 

complacency and delay when drivers are confronted by the malfunction of lane 

keeping systems (Desmond, Hancock and Monette, 1998). 

 

 These observations have been attributed to reduced driver workload, 

commonly associated with semi-automated driving when compared to manual 

driving (Stanton, Young and McCaulder, 1997). Indeed, Bainbridge (1983) points out 

that from a performance perspective, the passive role of monitoring an automated 

system is less satisfactory than the active role of manual control. Hence, basic 

research into workload calls for an optimum level of automation that neither 

overloads nor underloads the individual operator (see Parasuraman and Riley 1997 

for a review). The reduced workload from the automation of driving can result in an 

underload that is equally hazardous to road safety as overload (Hancock and 

Parasuraman 1992, Hancock and Verwey 1997). To combat such issues, vehicle 

manufacturers have been urged to design automated systems that provide up-to-the-

minute communication about their operation (Norman, 1990). Empirical evidence 
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supports such a viewpoint, for example that prominent and understandable feedback 

results in a more expeditious response to ACC failure (Seppelt and Lee, 2007). 

 

1.2 Experimental aims 

 However, rather than designing a system that demands more attention, even 

if well presented, surely one of the main advantages of highly-automated driving is 

the freeing-up of attentional resources, allowing the driver greater capacity to attend 

to secondary tasks whilst driving? In laboratory-based experiments, there is strong 

evidence to suggest that semi-automated driving does allow drivers the capacity to 

perform better in abstract secondary tasks (Stanton et al., 1997; Young and Stanton, 

2004). If such capacity could be focussed on self-selected, driver-paced activities 

and presuming that drivers were still motivated and capable to attend to their role of 

monitoring the highly-automated vehicle, can potential concerns relating to 

underload be alleviated by a more stimulating highly-automated drive? 

   

This question motivated the present study, devised to investigate driver 

behaviour with and without full vehicle automation in varying traffic conditions, 

providing changing demands in terms of information processing and supervisory 

requirements. The existing literature suggests the effect of escalating traffic density 

on increasing driver demand (e.g. Miura, 1986; Verwey, 2000), but does not appear 

to contain studies of automated driving that have employed such an ecologically 

valid method of manipulating such demands. Although undertaken in the controlled 

environment of a driving simulator, the objective was to create as genuine an 

environment as possible for participants to reduce automation underload by 

engaging at will with naturalistic secondary tasks associated with in-vehicle 

entertainment. While levels of driver motivation could be queried, the highly 

immersive nature of the simulator and its large amplitude motion system did provide 

the expected inertial cues of longitudinal and lateral acceleration associated with 

vehicle control inputs made by a highly-automated system. This afforded a more 

realistic representation of vehicle automation in terms of its feel to the driver when 

compared to previously published studies, typically undertaken using fixed-base or 

desktop facilities. 
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 The varying simulated traffic conditions also provided the opportunity to 

assess whether drivers could recognise the associated increased 

processing/supervisory demand in conditions that represented an increased hazard 

from the either the performance limitations of the automated system or its failure. Of 

interest was whether drivers might mitigate their uptake of the secondary tasks in 

such circumstances in order to better oversee safe operation of the vehicle. As a 

result, the specific research hypothesis which could be evaluated was that well-

behaved highly-automated vehicle control, by freeing up the opportunity for 

engagement with secondary tasks unrelated to driving, has the potential to a more 

captivating driving environment without serious implications on traffic safety. This 

hypothesis is based on emerging evidence that concurrent secondary tasks might 

diminish the effects of vigilance decrements associated with driver underload and 

reduced situation awareness (Atchley and Chan, 2011). Furthermore, it assumes 

that automation continues to show beneficial effects on safety margins without driver 

interaction (Carbaugh, Godbole and Sengupta, 1998). 

 

With some notable exceptions (e.g. Desmond et al, 1998; Stanton, Young, 

Walker, Turner and Randle, 2001; Toffetti, Wilschut, Martens, Schieben, Rambaldini, 

Merat and Flemisch, 2009) there is a paucity of published literature that focuses on 

the human factors and safety implications in highly-automated driving. The present 

research attempts to fill this gap, in the process helping to develop the existing 

knowledge base on role of the driver in future motoring. It is hoped its impact may 

help inform the concepts and designs of manufacturers as they move towards highly-

automated vehicle designs. 

 

 

2. Method 

2.1 Apparatus 

The University of Leeds Driving Simulator (UoLDS) was employed to mimic the 

vehicle automation system (Figure 1). The vehicle cab is based around a 2005 

Jaguar S-type, housed within a 4m diameter, spherical projection dome. Eight visual 

channels are rendered at 60 frames/s, predominantly at a resolution of 1920×1200. 

The five forward channels are front-projected providing a horizontal field of view of 
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250°. The three rear channels can be seen through the vehicle�s central view and 

side mirrors, the latter both physically modified to accommodate 960x480 LCD 

panels. The simulator also incorporates an eight degree-of-freedom electrical motion 

system. This consists of 500mm stroke-length hexapod motion platform, carrying the 

2.5t payload of the dome and vehicle cab combination, and allowing movement in all 

six orthogonal degrees-of-freedom of the Cartesian inertial frame. Additionally, the 

platform is mounted on a railed gantry that allows a further 5m of effective travel in 

surge and sway. In this study, driver eye-tracking was recorded by a Seeing 

Machines faceLAB v4.5 eye-tracker, mounted as a stereo camera pair on the top 

dashboard just below the driver�s eyeline (Figure 1). 

 

Figure 1 about here 

 

Virtual traffic in the simulator is handled as a number of intelligent agents, 

individually controlling their longitudinal and lateral accelerations through a series of 

third-order controllers with behavioural parameters to manage speed, headway, time 

to collision, lane choice and heading (Wright, Ward and Cohn, 2002). They exist 

within an area of interest around the position of the driven vehicle using the concept 

of sources and sinks where agents arrive and leave the virtual environment 

respectively (Nagel and Schreckenberg, 1992). This gives the impression to the 

simulator driver of continuous ambient and realistically behaved traffic, but traffic 

which is also adaptable to experimental requirements. 

 

 

2.2 Experimental Design 

A two-factor, repeated-measures design was employed with the independent 

variables defined as Automation Level and Traffic Density. 

 

Automation Level described the degree of automation available to the driver at 

two levels: manual and highly-automated. In the manual driving condition, 

participants were entirely responsible for the manipulation of standard longitudinal 

(accelerator and brake pedals) and lateral (steering wheel) controls. In the highly-

automated condition, equivalent control inputs were made a pair of second-order 

controllers. The longitudinal controller was effectively an ACC with a default target 
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speed of 70 mph, the speed limit of the virtual driving scenario; the target headway 

was fixed at 1.5s and could not be adjusted by the driver. The system was modelled 

in the simulator according to the specification outlined by Ioannou, Xu, Eckert, 

Clemons and Sieja (1993), constrained to a maximum acceleration of 0.1g and 

deceleration of 0.2g. The lateral controller resembled a Lane Keeping System (LKS). 

Its algorithm was based on Sharp, Casanova and Symonds (2000), projecting a 

series of look-ahead points in front of the vehicle before calculating the error from the 

desired trajectory, weighted according to the proximity of the look-ahead points. On 

activation of the LKS, the resulting steer angle command attempted to maintain the 

vehicle in the centre of the current lane occupied. Highly-automated driving was 

activated on request by depressing a built-in button mounted next to the left-hand 

grip of the steering wheel. It was deactivated by either pushing the same button 

(toggle on/off), moving the steering wheel by more than 3° from its current position or 

by depressing the brake pedal. A small LCD panel below the speedometer was 

backlit and displayed �ACC/LKS� when the highly-automated system was active. 

 

The behaviour of the intelligent virtual traffic was manipulated to control Traffic 

Density at two levels: light and heavy. This was achieved by moving the location of 

the sources and sinks in the area of interest around the simulator vehicle and each 

agent�s behavioural parameters. Light and heavy virtual traffic conditions were 

managed by the simulation (adjusting behavioural parameters and the proximity of 

sources and sinks) to correspond to a lane count of 500 and 1500 vehicles per hour 

per lane respectively (Figure 2). The light traffic flowed consistently, whilst the 

density of the heavy traffic resulted in varying speeds of the virtual vehicles as their 

flow was disturbed. Whilst on occasions following headways could become much 

shorter than the desired 1.5s due to the longitudinal controller�s 0.2g maximum 

deceleration limit, fluctuations in the virtual traffic were managed to ensure that the 

controller was always able to handle speed without risk of a collision. 

 

The driving scenario consisted throughout of a standard U.K. three-lane 

motorway, with lane widths, road markings and junction layouts as described in 

Chapter 5 (Road Markings) of the U.K. Department for Transport�s Traffic Signs 

Manual (2003). Data were collected over two 20.4 mile (32.6 km) sections of 

roadway, during which each level of Traffic Density existed. Between each section, a 
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further 6.8 miles (10.9 km) allowed time for traffic conditions to be modified, 

unnoticeable to the participant; data were not recorded during this period.  

 

Figure 2 about here 

 

2.3 Procedure 

Data were collected during a single session, lasting around two hours. On 

arrival at the simulator participants were briefed on the requirements of the study, 

their ethical rights, the risks of simulator operation and safety measures employed to 

mitigate these risks. On completion of informed consent, participants were 

familiarised by the accompanying researcher with the functionality of the simulator 

when driven manually and by the highly-automated system. Each Automation Level 

was completed in a separate driving trial, taking around 45 minutes to complete and 

separated by a short break. Along with Traffic Density, this order was 

counterbalanced such each participant undertook two of four possible permutations 

(manual/light + manual/busy, manual/busy + manual/light, auto/light + auto/busy + 

auto/busy + auto/light).  Use of the highly-automated system was voluntary, but in 

such condition participants were briefed to �hand control over ... or back to the car as 

soon as you are comfortable�. Drivers were told to imagine that they were on a 

leisurely motorway journey without significant time pressure and given a destination 

junction at which to exit the motorway. 

 

In order to investigate the tendency for secondary task uptake, participants 

were allowed to interact freely with a range of in-vehicle entertainment. First, they 

were permitted to choose from a variety of sweets, magazines and hand-held games 

to take into the simulator with them. They were also allowed to choose from a 

collection of films and TV programmes, which could be viewed whenever they 

wished via a DVD player located in the vehicle and displayed on a LCD panel 

mounted in the central console of the dashboard. Finally, participants were also 

permitted to use the in-vehicle radio to select a station of their choice at any time 

during the trials and informed that they were free to engage in any activities if and 

when they felt it was appropriate to do so. Involvement in each activity was logged 

manually by the researcher viewing drivers remotely from the simulator�s control 

room. Logging, equating to the duration for which a task was adopted, was 
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networked to the main simulation so that activities could be matched with eye-

tracking and recorded driving behaviour.  

 

2.4 Participants 

High-mileage drivers (defined as over 6,000 per annum) were recruited from 

the local population from advertisements in the local press or by a volunteers� 

section on the simulator�s website. Of those that had experience of the simulator, 

none had been involved with previous studies involving automation. 49 drivers took 

part with their demographics outlined in Table 1. They were paid for their 

participation. 

 

Table1 about here 

 

 

3. Results 

The effects of experimental manipulations of Automation Level and Traffic 

Density were examined using a repeated-measures ANOVA. The assumptions of 

ANOVA were not violated in any of the data presented. 

 

3.1  Driver behaviour 

The nature of the automation intrinsically influences many of the more typical 

metrics of driver behaviour, such as lane keeping or speed choice. Such variables 

have limited merit since they tend to describe the constrained behaviour of the 

system rather than the more untamed actions of the driver. Hence, driver behaviour 

was assessed predominantly by drivers� lane choice (willingness to minimise journey 

time by overtaking slower traffic) and safety margin in traffic 

(management/supervision of car following). 

 

Figure 3 shows the proportion of time spent in each of the three available 

driving lanes. As expected, in heavy traffic participants showed a highly significaint 

propensity tended to move towards the right lanes in order to overtake slower 

moving traffic (U.K. driving style). However, with high vehicle automation, however, 

there was much less of a predilection to change lane. Instead participants generally 
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appeared content let the system takes its course, showing a lack of desire to 

disengage and retake manual control in order to embark on an overtaking 

manoeuvre:  

‚ Increase in lane 2 occupation from manual (49.5%) to auto (71.5%); 

F(1,48)=24.1, p<.001, Ș2=.34 

‚ Decrease in lane 3 occupation from manual (32.3%) to auto (13.3%); 

F(1,48)=27.3, p<.001, Ș2=.36 

 

Figure 3 about here 

 

There was also a significant interaction of Automation Level and Traffic Density 

for lane 3 occupation; F(1,48)=5.77, p=.020, Ș2=.11. Compared to manual driving, 

when they experienced highly-automated control of their vehicle, drivers spent a 

significantly smaller proportion of their journey overtaking in lane 3 even in heavy 

traffic conditions. 

 

The margin of longitudinal safety was assessed with respect to time-exposed-

time-to-collision (TETTC). Time-to-collision was defined as the time that would 

elapse, if both the simulator car and lead car maintained their current speeds, before 

a collision occurred between them. TETTC20 was defined as the percentage of 

journey time in which time-to-collision was less than 20s, although almost identical 

results were observed for varying threshold values of 2s, 5s and 10s. TETTC has 

been previously used as a determinant of traffic safety with a high value indicating 

increased potential for rear-end collisions (Minderhoud and Bovy, 2001). 

 

There was evidence to suggest that automated driving appeared to improve 

safety margins as TETTC20 decreased from manual (8.26%) to highly-automated 

driving (5.82%); F(1,48)=14.8, p<.001, Ș2=.24. However, those improved margins 

tended to be limited only to light traffic conditions (Figure 4), a significant interaction 

of Automation Level and Traffic Density being observed suggesting that in busy 

traffic the automated system handled longitudinal control not dissimilarly to manual 

drivers; F(1,48)=4.65, p=.031, Ș2=.08. 
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Figure 4 about here 

 

3.2 Driver fatigue 

Saxby, Matthews, Hitchcock, Warm, Funke and Gantzer (2008) observed that 

vehicle automation has the potential to induce driver fatigue. PERLCOS, the 

proportion of time that a driver�s eyes are closed during a fixed moving time window, 

has been validated as a measure of such drowsiness (Wierwille, Ellsworth, Wreggit, 

Fairbanks and Kirn, 1994) and hence was recorded using data gleaned from the 

eye-tracker. There was evidence to suggest that automation tended to reduce driver 

arousal, with PERCLOS2 significantly increasing from 0.018 in manual driving to 

0.038 in the corresponding highly-automated condition; F(1,48)=6.10, p=.018, Ș2=.13. 

There was also a significant interaction (F(1,48)=5.39, p=.027, Ș2=.09) of Automation 

Level and Traffic Density (Figure 5) to suggest that heavy traffic conditions did tend 

to mitigate reduced arousal levels in automated driving compared to when the road 

was quiet. More fatigue was evident than demonstrated in manual driving, which in 

contrast appeared unaffected by Traffic Density. 

 

Figure 5 about here 

 

3.3 Secondary task uptake and eye-movements 

Drivers experiencing high levels of automation did show an inclination to 

become more heavily engaged in secondary activities associated with in-vehicle 

entertainment, be they visually demanding or not. Use of the radio significantly 

increased from 41.1% in manual driving to 54.1% with automation; F(1,48)=8.59, 

p=.018, Ș2=.13. There was also a dramatic rise in drivers playing their chosen DVD 

in automated conditions (32.5%) as opposed to manual control (2.6%); F(1,48)=22.3, 

p<.001, Ș2=.32. 

 

Such partiality to the entertaining tasks may have contributed the significantly 

shorter durations that drivers spent fixated within the road centre area under 

automated vehicle control (Figure 6). To assess this, eye-tracking data were 

processed to obtain Percent Road Centre (PRC), the proportion of gaze data points, 

                                            
2 In the present study, the threshold of closure was 75%, the moving window being 180s. 
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labelled as fixations, that fell within the road centre area, a 6° circular region located 

around the driver�s most frequent fixation location. PRC has previously been 

demonstrated to be a sensitive indicator of visual distraction (Victor, Harbluk and 

Engström, 2005). PRC decreased significantly from 74.5% when driving manually to 

54.0% when automated, associated here with a reduction in visual attention to the 

primary driving task and an increase to those associated with the entertaining 

secondary tasks; F(1,48)=64.9, p<.00001, Ș2=.63. 

 

Figure 6 also shows the observed interaction of Automation Level and Traffic 

Density; F(1,48)=4.41, p=.042, Ș2=.11. When driving manually, participants 

demonstrated the same visual attention to the roadway regardless of the surrounding 

traffic. However, with high- automation, although generally spending longer periods 

fixated away from the road, drivers were motivated to demonstrate additional visual 

attention in heavy traffic. 

 

Figure 6 about here 

 

 

4. Discussion 

The focus of this research was to investigate the likely impact of emerging 

vehicle designs on driver behaviour, specifically the current trend towards the 

development of highly-automated vehicle control. By reducing the visual and 

attentional demands of the driver, such systems have the potential to engineer a 

more pleasurable environment for the motorist. Hence, the investigation reported 

here was designed to evaluate whether the implementation of such well-behaved 

highly-automated vehicle control could facilitate a more stimulating driving 

environment for the motorist.  

 

Evaluations of driver behaviour were limited by the major influence that 

automated vehicle design has on typical metrics such as speed or lane control. 

However, there was a suggestion that high levels of automation contribute towards a 

safer driving environment, demonstrated by the significantly shorter period exposed 

to low time-to-collision when compared to manual driving. Such a finding concurs 
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with previous work, particularly focused on ACC (e.g. Stanton and Young, 1998; 

Young and Stanton, 2004). Whilst these improved margins were limited to conditions 

of light traffic conditions only, the significant interaction of Automation Level and 

Traffic Density observed suggests that, even in heavy traffic, the highly-automated 

system handled longitudinal control no worse than drivers controlling the vehicle 

manually. There was no evidence observed to suggest that automation resulted in 

any increased risk of rear-end accidents nor more hazardous situations encountered 

even in busy traffic.  

 

Whilst mean speed did reduce under automation, this was a result of drivers� 

reluctance to intervene, limiting their propensity to move into faster moving lanes to 

facilitate overtaking and therefore becoming held up by traffic. To overtake in the 

highly-automated condition, participants had to disengage the system, manually 

perform the lane change/overtaking manoeuvre, return to the lane of choice and re-

engage the system. Clearly, this was something that either consciously or sub-

consciously they were not prepared to do, even though this resulted in a longer 

journey time than necessary. This result may have been exaggerated, however, by 

the artificial environment of simulated rather than real driving and the lack of any 

time pressure stressed in the instructions to participants. These instructions also 

encouraged considerable use of the system, which, along with participants� 

inexperience of its functionality (apart from the 15-20 minute familiarisation period) 

may have also increased the likelihood for drivers to simply leave the system 

engaged, even though overtaking opportunities were plentiful. 

 

The consequence of vehicle automation to free up attentional resources was 

most definitely exploited by drivers, who showed strong propensity to become 

involved in secondary activities, especially those related to in-vehicle entertainment, 

when under automated rather than manual control. This effect was observed both for 

the more traditional, non-visually demanding use of the radio, and even more 

strongly for the less familiar (and more visually conflicting) opportunity to watch a 

personally-selected DVD whilst driving. Such inclination to embrace the in-vehicle 

tasks was coupled with significantly longer durations of visual attention away from 

the road. Clearly, participants were willing to compromise their requirements to 

continually monitor the automated system, exhibiting much confidence in its ability, 
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probably amplified by the lack of dangerous scenarios simulated and the well-

behaved nature of the automation. This said, the significant interaction of Automation 

Level and Traffic Density was highly relevant. Manual drivers showed the same 

visual attention to the roadway regardless of the traffic conditions. Automated drivers 

on the other hand spent a significantly longer period fixating away the road, but were 

gripped to demonstrate more visual attention as traffic conditions became heavier. 

This promising finding suggests that drivers are able to divert visual attention back to 

the roadway as supervisory demand increases, circumstances in which the 

performance limitations of the automation or its failure imply a significant collision 

risk. 

 

By willingly undertaking more secondary in tasks in favour of a more 

entertaining automated drive, drivers were also able to mitigate some of the effects 

of automation fatigue. The PERLCOS data suggest that vehicle automation reduced 

arousal, in line with the observations of Saxby et al. (2008). However, the observed 

interaction of Automation Level and Traffic Density does however add weight to the 

proposition that, once again, drivers respond to the increasing demand of busy 

traffic, this time with evidence of increased arousal complementing the increase in 

visual attention in such conditions. 

 

4.1 Study limitations 

One caveat which must be made is that the functionality of the vehicle 

automation presented in this study focussed on a single specific realisation. It is 

difficult, therefore, to extract more general behaviours from those observed with the 

actual system modelled here. However, it should be stressed that that functionality 

was based on well-accepted engineering literature (Ioannou et al., 1993; Sharp et 

al., 2000) describing operation of similar systems. Given confidentiality issues in 

obtaining manufacturers� specific designs, it is difficult to envisage an alternative 

method of simulating such systems.  

  

Many of the results discussed here are impacted by participants� motivation to 

become engaged with the highly-automated driving system, including the need to 

activate and deactivate its operation to maintain progress through the driving 

environment. However, system use might have been influenced by the artificialness 
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of the experimental setting, drivers activating vehicle automation simply because 

they were requested to do so. It is debatable whether in a similar real-life situation, 

similar levels of system usage would have been observed. Furthermore, it is open to 

discussion whether the in-vehicle entertainment tasks, especially those conflicting 

with the visual demands of driving, would have been taken up quite so readily in a 

more perilous and threatening real driving environment. 

 

However, both of these points are tempered by the huge logistical and safety 

issues involved with undertaking a similar real-world study. There appears little 

option to research futuristic vehicle automation systems without the concerted but 

controlled use of driving simulation. 

 

 

5. Conclusions 

This study has attempted to provide an original and robust investigation into a 

topic area relevant to modern trends in vehicle design. Given the caveats above, the 

following observations are presented: 

 

‚ Driver experiencing high vehicle automation are less inclined to change lanes in 

order to overtake slower moving traffic than when driving manually. Even in 

heavy traffic conditions, there is a tendency to let the automation take its course 

and remain in a central driving lane. Drivers seem unconcerned that this lane 

choice results in increased journey time. 

 

‚ In light traffic, high levels of automation improve safety margins associated with 

car following. In heavy traffic these margins are reduced to those observed in 

manual driving. 

 

‚ Drivers demonstrate increasing symptoms of fatigue with vehicle automation. 

However, this is tempered as traffic conditions become more congested and 

place increasing demands on drivers� supervisory management of the automated 

system. 
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‚ With high levels of vehicle automation, drivers show more of a propensity to 

become involved with in-vehicle tasks. Whilst these undeniably have the potential 

to distract from their supervisory role, they are receptive to the changing 

demands imposed by heavy traffic, focussing more visual attention to the 

roadway in such conditions. 
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Captions 

 

Table 1 Participant demographics 

Figure 1 The University of Leeds Driving Simulator 

Figure 2 Screenshots taken during the light (left) and heavy (right) traffic density  

Figure 3 Lane occupation in the three available driving lanes (error bars show 

95% confidence intervals) 

Figure 4 Minimum time to collision (error bars show 95% confidence intervals) 

Figure 5 Proportion of eye closure (error bars show 95% confidence intervals) 

Figure 6 Percent road centre (error bars show 95% confidence intervals) 

 

Table and Figure Captions
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Figure 1
Click here to download high resolution image
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Click here to download high resolution image
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Table 1 Participant demographics 

 age (ƃ/Ƃ) 
years licensed 

(ƃ/Ƃ) 

annual mileage 

(ƃ/Ƃ) 

mean 37.1 / 36.6 17.7 / 17.4 8846 / 9286 

standard deviation 10.2 / 7.4 11.0 / 7.3 2968 / 1496 

 

Table 1


