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INTRODUCTION

Understanding the ecological roles and importance
of marine megafauna is becoming increasingly cru-
cial in light of both historical and ongoing anthro-
pogenic changes to both their populations and those
of their prey and predators (e.g. Lewison et al. 2004,
Estes 2006, Read et al. 2006, Heithaus et al. 2008,

2010, Ferretti et al. 2010, Roman et al. 2014). Among
megafaunal taxa, marine mammals (cetaceans, pin-
nipeds, sirenians, marine otters Lontra felina, sea
otters Enhydra lutris and polar bears Ursus mar-
itimus) are of particular interest for several reasons.
First, they have the potential to consume consider-
able portions of primary production in a system
owing to their large body sizes, potentially high
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abundances and high metabolic rates (Katona &
Whitehead 1988, Bowen 1997, Roman et al. 2014).
Second, with ca. 128 species ranging in size from
14−45 kg sea otters to 150−170 t blue whales Bal-
aenoptera musculus, marine mammals fill a broad
range of ecological niches including herbivores
 (sirenians), benthic invertivores (grey whales Esch -
richtius robustus, walruses Odobenus rosmarus),
batch-feeders on plankton and small schooling fish
(balaenopterid whales) and both intermediate (most
pinnipeds and cetaceans) and truly apex carnivores
(e.g. mammal-eating killer whales Orcinus orca and
polar bears). Third, marine mammals occur in all
oceans from polar to tropical regions, and from
coastal to oceanic waters extending from the surface
to depths exceeding 2500 m for some deep-diving
species such as Cuvier’s beaked whales Ziphius cavi-
rostris (Schorr et al. 2014). Some species even inhabit
freshwater riverine systems and lakes (Leatherwood
et al. 1983). Because of their tolerance for a broad
range of conditions and the high movement capacity
of some species such as humpback whales Mega -
ptera novaeangliae (Dawbin 1966), sperm whales
Physeter macrocephalus (Whitehead 2003) and killer
whales (Durban & Pitman 2012), marine mammals
have the potential to exert their effects on a diversity
of ecosystems, in a variety of contexts and across
broad spatial scales (Roman et al. 2014). Fourth,
marine mammal populations are undergoing both
declines and recoveries in many locations around the
world (Magera et al. 2013), necessitating a functional
understanding of their ecological roles and impor-
tance to predict the consequences of these changes.

To date, most ecological studies of marine mam-
mals have focused on describing their diets and for-
aging behaviour (e.g. Bowen et al. 2002, Sargeant et
al. 2005) and on how their distributions, abundances
and behaviours are affected by both abiotic (physio-
graphic and dynamic oceanographic variables; e.g.
Forney 2000, Mannocci et al. 2014, and see Gregr et
al. 2013 for a review) and biotic factors (e.g. prey
availability or, more often, proxies of prey abundance
and predation risk; Thompson et al. 1991, Heithaus &
Dill 2002, Wirsing et al. 2008). Recently, considerable
attention also has been focused on understanding
how anthropogenic disturbance affects abundance
and behaviour of marine mammals (Bejder et al.
2006, Lusseau & Bejder 2007, Holt et al. 2011, Pirotta
et al. 2015), and the potential for global climate
change to induce distribution shifts (e.g. MacLeod
2009). Although there are notable exceptions, the
ecological roles marine mammals play in communi-
ties, and especially the potential for changes in their

abundance to affect the distribution and abundance
of their prey and the structure and function of wider
ecosystems, require further investigation (but see
Bowen 1997, Estes et al. 1998, Gerber et al. 2009,
Morissette et al. 2010, 2012, Roman et al. 2014).

Species’ ecological roles in communities are typi-
cally defined in terms of feeding relationships despite
the fact that a species’ role also includes a variety of
non-feeding interactions including facilitation and
habitat modification (Paine 1980, Kéfi et al. 2012).
Yet, especially from the standpoint of conservation
and management, a more encompassing view is criti-
cal to predicting how changes in the abundance of
particular species will affect populations of their food
sources, competitors and, ultimately, the structure
and function of ecosystems (Heithaus et al. 2008).
Many marine mammals are upper trophic level con-
sumers. Thus, as a group, they are often referred to in
the literature and popular press as ‘top’ or ‘apex’
predators. Those that are apex predators can affect
prey populations and ecosystems ‘from the top down’
by consuming and/or altering the traits of other spe-
cies (Heithaus et al. 2008, Wirsing et al. 2008). Yet,
most marine mammals are also prey (Stirling 1984,
Estes et al. 1998, Reidman 1990, Heithaus 2001, Heit -
haus & Dill 2002, Weller 2009, Ford et al. 2011). Their
predators include a wide range of species, including
other marine mammals (primarily killer whales, polar
bears and several pinnipeds), sharks (primarily Lam-
nidae spp., Hexanchidae spp. and Carcharhinidae
spp.), crocodiles (Crocodylus spp.), a diversity of ter-
restrial carnivores and a few bird species (Reeves et
al. 1992, Heithaus 2001, Weller 2009). In their role as
mesopredators (or mesoconsumers), marine mammals
could be important in affecting populations or behav-
iours of their predators ‘from the bottom up’ as well as
in transmitting the effects of larger predators to lower
trophic levels (a top-down effect).

Not all roles of marine mammals will involve preda-
tor−prey interactions. For example, cetaceans and
possibly some pinnipeds may facilitate the foraging of
other species, like seabirds but also humans, by mak-
ing previously unavailable prey accessible or pre-
venting the escape of these species to deeper waters
(Evans 1982, Pitman & Ballance 1992, Bräger 1998,
Dill et al. 2003, Anderson & Lovvorn 2008). Also,
marine mammals might facilitate ‘bottom-up’ stimula-
tion of primary production by promoting nutrient cy-
cling and serve as mobile vectors for the transport of
nutrients across microhabitats and ecosystem bound-
aries (Kanwisher & Ridgway 1983, Katona & White-
head 1988, Preen 1995, Smetacek & Nicol 2005, Lav-
ery et al. 2010, Smith et al. 2013, Roman et al. 2014).
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To distinguish a species’ role from its ecological im-
portance, we here refer to a species’ ecological impor-
tance as the consequences of a substantial change in a
species’ abundance that will in turn affect communi-
ties and ecosystems while its role includes its trophic
position and interactions regardless of how critical it is
to the wider functioning of ecosystems (Heithaus et al.
2010). Existing studies of the ecological importance of
marine mammals derive primarily from bioenergetic
models that can be used to estimate food requirements
and potential biomass removal rates of prey (e.g. Fur-
ness 1984, Winship et al. 2002, Smout et al. 2014) and
ecosystem models that predict the broader ecosystem
consequences of marine mammal removals (Libralato
et al. 2006, Gerber et al. 2009). These models can
quantify the magnitude of trophic overlap between
marine mammals and fisheries and, consequently,
have been the basis for management of both marine
mammal populations and anthropogenic harvest. Al-
though these models do include some behavioural dy-
namics, the means by which behaviour — both of
marine mammals and their prey — shapes the ecolog-
ical roles and importance of marine mammals remain
understudied and underappreciated.

Myriad behavioural decisions can affect a species’
role and importance. Patterns of habitat use and
movements, grouping, food selection, and specific
foraging tactics can all shape the spatiotemporal
 pattern and strength of a species’ ecological inter -
actions. Of particular importance to elucidating the
links between marine mammal behaviour and eco-
logical dynamics, therefore, is understanding the
 factors that drive behaviour. Such an appreciation is
especially critical for predicting how changing eco-
logical conditions, both biotic and abiotic, will ulti-
mately affect ecological dynamics through behav-
ioural shifts in marine mammals. While there have
been numerous studies of factors influencing marine
mammal behaviour, often underappreciated is the
possibility that marine mammal behaviour may be
shaped by predation risk (e.g. Norris & Dohl 1980,
Corkeron & Connor 1999, Heithaus 2001, Heithaus &
Dill 2002, Ford & Reeves 2008, and see Wirsing et al.
2008 for a review). Because of the central role preda-
tion risk can play in a wide array of behavioural deci-
sions (see Lima & Dill 1990), we first update our
understanding of risk effects on and by marine mam-
mals. Then, we more broadly review how these, and
other behaviours, of marine mammals may affect
their ecological roles and importance. Our goal is to
provide a framework for future studies on behaviour-
mediated effects of marine mammals on aquatic
ecosystems.

RISK EFFECTS

Interaction webs include bottom-up and top-down
processes, both direct and indirect. Recently, Estes et
al. (2011) argued that strong top-down effects of
large predators are likely the rule rather than the
exception based on the broad-scale community
rearrangements that accompany the loss or reintro-
duction of top predators. There remains, however,
debate about the generality of top-down control and
the degree to which top-down effects are transmitted
by direct predation or non-consumptive pathways
(often referred to as ‘risk effects;’ see Heithaus et al.
2008, Peckarsky et al. 2008, Kauffman et al. 2010,
Winnie 2012, Middleton et al. 2013).

Most animals have a diverse suite of behaviours to
reduce the probability of being killed by a predator
(see Lima & Dill 1990, Brown & Kotler 2004 for
reviews). A number of studies have highlighted that
investment in these anti-predator behaviours can be
substantial, even when predator-inflicted mortality is
rare (Lima & Dill 1990, Creel & Christianson 2008,
Heithaus et al. 2008, Creel 2011). Such behaviours
may include shifts in activity and habitat use,
changes in group size, modification of foraging rates
or prey selection and increased vigilance (Lima & Dill
1990, Heithaus et al. 2007a, Wirsing et al. 2007a,b,
2010). Behavioural reactions to predator presence or
attack range from immediate responses to threats to
changes in habitat and resource use at ecological or
evolutionary time scales (e.g. Lima & Dill 1990,
Brown & Kotler 2004). The specific nature of be -
havioural responses to risk, however, depends on
multiple factors and how they influence probabilities
in the steps of a predator−prey interaction. For exam-
ple, prey escape tactics, physical features of habitat
(e.g. depth, visibility) and predator hunting mode can
singly, or through all possible interactions, affect the
nature and magnitude of ‘risk effects’ (Heithaus et al.
2009, Wirsing et al. 2010).

In general, risk effects can result in lost foraging
or reproductive opportunities and reduced energy
intake and growth rates that could impair reproduc-
tion (e.g. Lima & Dill 1990, Brown & Kotler 2004,
Creel & Christianson 2008). The presence of preda-
tors may induce stress that can negatively impact
reproduction without influencing foraging (Creel
2011, Mukherjee et al. 2014). Because risk effects are
often experienced by large proportions of popula-
tions, relative to direct predation, in some cases, risk
effects of predators may equal or exceed the impacts
of direct predation on prey populations (Werner &
Peacor 2003, Schmitz et al. 2004, Preisser et al. 2005,
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Heithaus et al. 2008, Creel 2011). Importantly, how-
ever, consumptive and non-consumptive effects can-
not be completely separated and often the interaction
of these 2 effects has a larger impact than either
mechanism in isolation (e.g. Werner & Peacor 2003,
Heithaus et al. 2008). For example, effective anti-
predator behaviour may result in lost body condition
due to lower foraging rates that, in turn, induces
compromised individuals to take greater risks that
may result in their falling victim to predators (Sinclair
& Arcese 1995, Heithaus et al. 2008).

Risk effects on marine mammals 
(marine mammals as prey)

Anti-predator behaviour has been documented in
numerous marine mammal taxa (see also Ford & Ellis
1999, Wirsing et al. 2008, Heithaus & Dill 2009).
Although most documented anti-predator behaviour
involves acute responses to predator presence, a
growing number of studies focused on behaviours
that reduce risk over longer temporal scales, such as
habitat shifts or changes in group size. Short-term
responses to risk include flight, changes in grouping,
or in some cases attacking or mobbing of predators
(Heithaus & Dill 2009). For example, beaked whales
exposed to playbacks of killer whale vocalizations
moved directionally away from the sound source
suggesting avoidance (Allen et al. 2014). Bottlenose
dolphins Tursiops cf. aduncus approached by a ca.
3 m long white shark Carcharodon carcharias exhib-
ited a more extreme response, leaping away from the
shark for a prolonged period (Connor & Heithaus
1996). Similarly, in the north-eastern Pacific, immedi-
ate risk from killer whales induces groups of harbour
porpoises Phocoena phocoena and Dall’s porpoises
Phocoenoides dalli to coalesce while making high-
speed directional escape manoeuvres towards shal-
low waters (Jefferson et al. 1991, Ford & Ellis 1999).
During attacks from predators, some large baleen
whales shift habitats. During their northbound
migration from calving to feeding grounds, grey
whales travel close to shallow waters along the
shoreline when attacked by killer whales (Barrett-
Lennard et al. 2011). It appears that the behavioural
responses of mysticetes to direct predatory attacks
generally take the form of either physical defence
(fight) or escape (flight, Ford & Reeves 2008). The for-
mer tactic is adopted by species with robust bodies
and slow swimming speeds (e.g. grey whales, right
whales Eubalaena spp., humpback whales), while
the latter is used by fast-swimming species with

streamlined body shapes (rorqual whales other than
humpback whales). In sperm whales, antipredator
behaviours include rosette formation (or a ‘mar-
guerite’, with heads together and tails out) to deter
killer whales (Pitman et al. 2001, Whitehead 2003).

Over longer time periods, habitat shifts and group
formation appear to be the most common tactics for
reducing risk. For example, group living — especially
in delphinids (Norris & Dohl 1980, Heithaus 2001) but
also for pinnipeds (Nordstrom 2002) hauling-out on
shore where terrestrial predators are common — is
likely a response to predation risk. Among harbour
seals Phoca vitulina, larger haul-out groups are more
likely to detect predators (Da Silva & Terhune 1988).
In delphinids, group sizes generally increase with
distance from shore (which may be a proxy for preda-
tion danger, Gygax 2002) and also tend to be lowest
in species that experience minimal predation risk
(e.g. river dolphins; Gomez-Salazar et al. 2012).
There are, however, many drivers of group size
beyond predation risk, including foraging and social
considerations (Baird & Dill 1996, Connor et al. 1998).
Many odontocetes exhibit fission−fusion dynamics
that allow individuals to move among group sizes
based on their current activities, with resting groups
usually being larger than foraging groups in the
same habitats (e.g. Heithaus & Dill 2002). Risk may
also structure the nature of fission−fusion dynamics
within species. For example, spinner dolphins
Stenella longirostris around the main Hawaiian
Islands apparently exhibit fission−fusion dynamics
because individuals moving between groups have
ready access to nearshore resting habitats that are
relatively safe from sharks. In Midway Atoll (far-
western Hawaii), on the other hand, the prevalence
of open water where shark risk is high putatively
leaves dolphins travelling alone with few options for
resting and, as a result, promotes considerably
higher group stability (Karczmarski et al. 2005).
Interestingly, predation risk can also drive sympatric
marine mammals to form temporary mixed-species
aggregations, or associations of individuals of differ-
ent species involved in similar activities. Associations
between spinner and pantropical spotted dolphins S.
attenuata in the eastern tropical Pacific and the west-
ern Indian Oceans (Perrin et al. 1973, Ballance & Pit-
man 1998) appear to provide protection against
predators, including large sharks and other del-
phinids (Norris & Dohl 1980, Scott & Cattanach 1998,
Kiszka et al. 2011). For example, around the Mozam-
bique Channel island of Mayotte (SW Indian Ocean),
spinner dolphins use deeper waters off the barrier
reef where pantropical spotted dolphins are most
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abundant, and associate with spotted dolphins when
transiting between resting or socializing areas
(Kiszka et al. 2011). Mixed-species groups also form
for other reasons, including foraging and social ben-
efits (Stensland et al. 2003 for a review), and further
work on such dynamics in odontocetes is needed to
determine their relative importance.

At the evolutionary scale, killer whale predation
risk may have been the primary selective factor
favouring the use of communication and echoloca-
tion sounds by a range of small cetacean species,
including phocoenids, delphinids and kogiids, that
killer whales hear poorly or not at all (Morisaka &
Connor 2007). Predation risk also appears to have
helped to shape migratory routes and seasonal move-
ments of some marine mammals, including large
whales. For instance, humpback whales embark on
what are the longest known mammal migrations
from low-latitude breeding to high-latitude feeding
grounds (Dawbin 1966, Whitehead & Moore 1982); in
so doing, they undoubtedly pay substantial energetic
costs (Stone et al. 1990). Corkeron & Connor (1999)
suggested that elevated predation risk from killer
whales at high latitudes may have contributed to the
evolution of whale migrations where they annually
abandon productive foraging grounds to reproduce
at safer latitudes. Risk effects are also likely to drive
daily movements of some marine mammals. In the
tropics, spinner dolphins enter atolls, sheltered bays
and lagoons through reef channels in the morning for
resting and socializing, and leave in the afternoon to
feed offshore overnight (Norris & Dohl 1980, Gannier
& Petiau 2006), primarily on mesopelagic prey such
as myctophids (Perrin et al. 1973, Dolar et al. 2003).
This daily movement pattern is likely to have been
driven by predation risk by large sharks in the
oceanic environment (Norris & Dohl 1980, Heithaus
2001). Similarly, when at risk from killer whales,
dusky dolphins Lagenorhynchus obscurus off Kai -
koura, New Zealand, exhibit diel movements be -
tween relatively safe inshore resting areas and more
dangerous offshore feeding areas (Srinivasan &
Markowitz 2009).

Predation risk may influence diving behaviour of
numerous species, which could, in turn, influence
energetics, prey selection and habitat use (Heithaus
& Frid 2003, Frid et al. 2007a), thereby modifying the
ecological roles of marine mammals diving under the
risk of predation. Although rarely considered for
marine mammals, predation risk-sensitive diving
could be one explanation for discrepancies between
observed diving behaviour and that predicted by
optimal diving models based solely on energetic cur-

rencies (Frid et al. 2007a). While the specific changes
in diving behaviour made in response to predation
risk may vary with factors including the type of
predator and the relationship between diving time
and energy intake rate (Heithaus & Frid 2003),
 several studies suggest that marine mammals do
account for risk when making diving decisions.
Northern elephant seals Mirounga angustirostris
appear to modify their diving behaviour when they
depart from and arrive at haul-out sites under risk
from white sharks, spending a greater amount of
time swimming along the bottom (Le Boeuf &
Crocker 1996). In Prince William Sound, Alaska,
 diving harbour seals underutilise relatively rich fish
resources in deep strata by reducing the number of
dives to, and time spent per dive at, depths used by
Pacific sleeper sharks Somniosus pacificus (Frid et al.
2007a,b). Similarly, juvenile Steller sea lions Eume-
topias jubatus in western Alaska underutilise either
predictable or profitable prey species such as wall-
eye pollock Theragra chalcogramma and Pacific
 herring Clupea palassi depending on the relative
predation risk posed by mammal-eating killer
whales, pacific sleeper sharks and/or larger con-
specifics (Frid et al. 2009). In the context of Steller sea
lion decline in western Alaska, such information is
critical to better predict how these predators can
respond both to natural and anthropogenic drivers
(e.g. prey depletion due to fisheries) of habitat and
resource selection, respectively. Shifts in diving
 patterns in response to predation risk, however, may
be hard to detect without explicitly studying spatio -
temporal patterns in predation risk. For example,
dugongs Dugong dugon in the seagrass ecosystem of
Shark Bay, Western Australia, modify their surfacing
patterns in response to changing predation risk, but
only when engaged in specific, risky, foraging tactics
(Wirsing et al. 2011).

Numerous marine mammals have been docu-
mented making spatial shifts to reduce the risk of
predation. In Shark Bay, both Indo-Pacific bottle -
nose dolphins T. aduncus and dugongs exposed to
the threat of tiger shark Galeocerdo cuvier preda-
tion risk sacrifice food that is abundant over shallow
seagrass banks (fish and seagrass, respectively) and
instead spend a disproportionate amount of time
foraging in the relative safety of deeper waters,
which are less productive (Heithaus & Dill 2002,
Wirsing et al. 2007a,b). For dolphins, habitat use is
also activity-specific. Resting dolphins are found
almost exclusively in safer deeper waters (Heithaus
& Dill 2002). In this system, risk induces habitat
shifts at multiple spatial scales. In both species, indi-
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viduals that continue to forage in shallow habitats
during periods of high risk avoid foraging over the
interior of seagrass meadows (ca. 80% of the total
seagrass area) relative to safer bank edges (Hei-
thaus & Dill 2006, Wirsing et al. 2007a, see Heithaus
et al. 2012 for a review). Around Seal Island (South
Africa), Cape fur seal Arctocephalus pusillus pusil-
lus adults avoid habitats where the risk of great
white shark predation is elevated following sunrise
(De Vos & O’Riain 2010). Behavioural tactics
adopted by adult fur seals seem to account for the
variance in risk from great white sharks, whereas
sharks seem to be influenced by behavioural deci-
sions made by juveniles, which adopt the riskiest
movement tactics (swimming alone or in small
groups around dawn), highlighting the need for
accounting for subgroups within a population when
modelling predator−prey interactions (Laroche et al.
2008). Recent evidence also indicates that refugia
play an important role in shaping interactions
between great white sharks and Cape fur seals,
suggesting that seals adjust their anti-predator
response as a function of landscape features.
Indeed, during periods of high shark abundance,
seals tend to reduce their use of open waters and
increase their presence in more complex habitats,
including kelp forests and shallow reefs (Weisel et
al. 2015).

Terrestrial predators also induce habitat shifts in
marine mammals, especially pinnipeds. For example,
experimental approaches demonstrated that haul-
out behaviour of Pacific harbour seals P. v. richardsi is
shaped by terrestrial predator exposure (potentially
wolves Canis lupus, coyotes Canis latrans or black
bears Ursus americanus), with seals preferring iso-
lated haul-out sites that allow for predator avoidance
(Nordstrom 2002).

In other, non-marine mammal taxa, predation risk
can have large effects on diet selection, specific for-
aging tactics and even the sequences and durations
of different behaviours (Lima & Dill 1990, Brown &
Kotler 2004). These issues have been less studied in
marine mammals, but have already been docu-
mented. For example, dugongs in Shark Bay, West-
ern Australia, modify their time budgets and switch
from primarily excavation foraging to cropping sea-
grass leaves as predation risk from tiger sharks in -
creases (Wirsing et al. 2007c) as well as changing
their behavioural sequences between periods of high
and low risk (Wirsing & Heithaus 2012). Also, the div-
ing behaviour of seals and sea lions in Alaska sug-
gests that they shift their diets in response to preda-
tion risk (Frid et al. 2007a,b, 2009; see above).

Risk effects initiated by marine mammals

As predators, marine mammals can initiate risk
effects by inducing shifts in the movements, be -
haviour and foraging decisions of their prey. In
Antarctica, Adélie penguins Pygoscelis adeliae and
emperor penguins Aptenodytes forsteri avoid forag-
ing at night due to predation risk by leopard seals,
and food-safety trade-offs could explain penguin
movement patterns and the location of penguin for-
aging grounds in the Southern Ocean (Ainley &
 Ballard 2012). Similarly, predation risk from New
Zealand fur seals Arctocephalus forsteri affects the
foraging rates of the magpie morwong Cheilodacty-
lus nigripes, resulting in lower fish grazing intensity
on algae (Connell 2002). In the Canadian Arctic, the
distribution of ringed seal pup Pusa hispida sub-
nivean lairs is strongly influenced by polar bear
 predation risk, which is higher in active ice areas.
During periods of low natality, lairs tend to be mainly
distributed closer to shore, where predation risk is
lower (Pilfold et al. 2014). However, during periods of
high natality, ringed seals are unable to pup in safer
near-shore habitats and are forced to pup farther off-
shore on active ice areas, where there is greater pre-
dation pressure from polar bears (Pilfold et al. 2014).
Mammal-eating killer whales likely induce risk
effects in the diverse array of species that they con-
sume, including a wide range of marine mammal
species (see Jefferson et al. 1991 for a review). These
risk effects may be substantial. Models suggest that
dusky dolphins making habitat shifts in response
to killer whale predation risk could suffer up to a
38% loss of foraging time (Srinivasan et al. 2010). In
Alaska, sea otter populations’ shoreward distribution
shifts during a period of declining populations and in -
creasing predation risk from killer whales (Peckarsky
et al. 2008, see below).

‘Non-predatory’ risk effects

While ‘risk effects’ generally have been defined as
occurring relative to the risk of mortality inflicted by
predators, other forms of risk can drive behavioural
decisions that may impact a species’ ecological role
and importance. For example, the literature on ‘risk-
sensitive foraging’ often refers to how animals man-
age the risk of starvation. Other forms of risk may
involve that associated with harassment by con- or
heterospecifics that may be fatal or result in injury or
reduced foraging. For example, off the British Isles
and the coast of California, harbour porpoises are
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killed, but not eaten, by larger co-occurring common
bottlenose dolphins (Ross & Wilson 1996, Cotter et al.
2012). This phenomenon is spatially variable and
does not occur in all areas where these 2 species live
in sympatry (Ross & Wilson 1996, Patterson et al.
1998). In areas where bottlenose dolphins regularly
kill harbour porpoises, porpoises tend to carry fewer
energy reserves than expected, suggesting that for-
aging-risk trade-offs may also occur for species that
neither compete for prey nor engage in predator−
prey interactions (MacLeod et al. 2007). Modelling
exercises suggest that bottlenose dolphin risk effects
on harbour porpoises increase starvation mortality at
the population level (MacLeod et al. 2014). Within a
diverse delphinid community around the tropical
island of Mayotte (Mozambique Channel, SW Indian
Ocean), spinner dolphins appear to avoid harassment
from Indo-Pacific bottlenose dolphins that inhabit the
inner waters of the large coral lagoon around the
island (Kiszka et al. 2010, 2011). As a result, spinner
dolphins rest and socialize along the forereef, rather
than conducting these activities inside the lagoon
where other spinner dolphin populations, not faced
with high densities of bottlenose dolphins in shel-
tered waters, do (e.g. Norris et al. 1994, Gannier &
Petiau 2006). This could result in increased predation
risk for spinner dolphins that must avoid bottlenose
dolphins. Growing evidence suggests that inter -
specific harassment in social contexts (e.g. Herzing &
Johnson 1997, Wedekin et al. 2004, Cusick & Herzing
2014) may be underestimated for odontocetes.

BEHAVIOURAL DRIVERS OF MARINE MAMMAL
ECOLOGICAL ROLES AND IMPORTANCE

Initiation and transmission of indirect effects of
predation risk

Indirect effects of predation risk occur when
changes in behaviour of one species/population/age
class (transmitter) are made in response to the pres-
ence of another group or species (initiator) that
results in changes in the behaviour, population sizes
or biomass of a third (receiver) group. Such 3-step
indirect effects have been termed behaviourally
mediated indirect interactions, or ‘BMIIs’ (Dill et al.
2003). Risk-related BMIIs involving marine mammals
have been documented in a number of ecosystems.
For example, tiger sharks in Shark Bay appear to
transmit a BMII between dugongs and Indo-Pacific
bottlenose dolphins that is analogous to apparent
competition. When present, tiger sharks prefer shal-

low habitats (Heithaus et al. 2002) where dugong
densities are highest, resulting in dolphins and other
potential tiger shark prey reducing their use of these
productive but dangerous habitats (Heithaus & Dill
2002, Dill et al. 2003, Heithaus et al. 2012). White
sharks transmit BMII between juvenile Cape fur
seals, which attract sharks but do not respond to their
presence, and adult fur seals that depart and return
to an island colony in South Africa in response to
 elevated shark attack risk during daylight hours
(Laroche et al. 2008). The implications of this intra -
specific BMII, however, for population dynamics of
fur seals are unknown. In the North Pacific, changes
in foraging depths of harbour seals and Steller sea
lions may transmit a BMII from sleeper sharks to fish
populations, but further work is needed to under-
stand the links between different seal and sea lion
diving patterns and population sizes of several taxa
of fish prey (Frid et al. 2007a,b, 2009). Similarly,
while further empirical work is needed, fur seal-
induced reductions in fish grazing rates (Connell
2002) could impact the biomass or community com-
position of macroalgae, and leopard seal-driven
changes to penguin foraging (Ainley & Ballard 2012)
could affect the spatiotemporal patterns of penguin
impacts to their prey.

BMIIs are generally concerned with changes in the
behaviour and abundance of a small number of spe-
cies within a community module and can be consid-
ered a class of ‘species cascades’. A larger question,
then, is whether marine mammal behaviour results in
changes in the wider community or ecosystem in a
behaviour-mediated trophic cascade (BMTC). There
remains debate about the prevalence of BMTCs in
natural communities. For example, both the exis-
tence and generality of the classic example of wolves
inducing elk Cervus elaphus to shift their foraging,
resulting in widespread changes to vegetation and
the wider community (Ripple & Beschta 2004) have
recently been challenged (Kauffman et al. 2010, Win-
nie 2012). Studies from the relatively pristine sea-
grass ecosystem in Shark Bay suggest that predation-
sensitive foraging by dugongs and dolphins does
play a role in a BMTC initiated by tiger sharks (Burk-
holder et al. 2013), whereby seagrass sheltered from
turtle — and especially dugong — herbivory by risk
from sharks forms dense meadows that provide habi-
tat for fishes and invertebrates (Heithaus et al. 2012).
Conversely, safer habitats where dugong and turtle
grazing is concentrated are characterized by heavily
grazed seagrass communities with low biomass and
reduced habitat value to other species like fishes and
invertebrates (Burkholder et al. 2013). A BMTC
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involving killer whales and sea otters may operate in
concert with a cascade that operates through con-
sumptive effects of killer whales. While classically
considered to be driven exclusively by increasing
consumption of sea otters by killer whales (Estes et
al. 1998), it now appears that the killer whale−
otter−kelp−wider community cascade in the eastern
North Pacific may be amplified by a BMTC
(Peckarsky et al. 2008) whereby increasing predation
risk induced otters to shift into safer shallower
waters. This change apparently resulted in sea
urchins dispersing away from urchins damaged or
discarded by foraging otters, thereby reducing sea
urchin densities and allowing the formation and
maintenance of dense kelp patches and associated
communities (Watson 1993, Peckarsky et al. 2008).
Given the potential top-down impacts of marine
mammals on their prey (e.g. Bowen 1997, Libralato et
al. 2006, Roman et al. 2014), further work on links
between marine mammal behavioural decisions and
community and ecosystem dynamics is important
for gaining a functional understanding of these many
marine systems.

Behavioural facilitation

Although marine mammals may share prey, and
appear to compete, with other marine taxa, their
presence may actually enhance foraging success and
population sizes of these species. For example,
cetaceans and seabirds forage in close proximity in
many regions but especially in temperate and other
productive waters. In most cases, seabirds appear to
benefit from these associations (Grebmeier & Harri-
son 1992, Bräger 1998, Anderson & Lovvorn 2008).
Although less common, in some circumstances, other
marine mammals and teleosts benefit from cetacean
foraging (see below). Schools of pelagic fish such as
herrings (Clupea spp.) and sardines (Sardinops spp.)
form tight aggregations near the surface in response
to subsurface predators including cetaceans and pin-
nipeds. As a result, they are more accessible to
seabirds in a BMII between marine mammals and
seabirds (e.g. Evans 1982, Dill et al. 2003). Long-
finned pilot whales Globicephala melas, common
minke whales Balaenoptera acutorostrata and other
large balaenopterid whales such as fin whales B.
physalus have been documented driving deep-
dwelling prey species, usually inaccessible to
seabirds (e.g. Procellariformes), to the surface (Evans
1982). Grey whales act similarly, bringing benthic
prey (particularly ampeliscid amphipods Ampelisca

and Byblis) to the surface where they are consumed
by surface-feeding seabirds such as northern fulmars
Fulmarus glacialis, black-legged kittiwakes Rissa tri-
dactyla and red phalaropes Phalaropus fulicara
(Grebmeier & Harrison 1992). Recently, it has been
suggested that rising populations of eastern Pacific
grey whales, and greater whale feeding activity in
benthic habitats, may increase foraging profitability
for bottom-feeding birds such as diving ducks, espe-
cially the surf scoter Melanitta perspicillata, during
spring (Anderson & Lovvorn 2008). In the eastern
tropical Pacific, Parkinson’s petrels Procellaria
parkinsoni appear to associate with rare deep-diving
delphinids (Peponocephala electra and Pseudorca
crassidens) for the purpose of scavenging on large
prey scraps (Pitman & Ballance 1992). The foraging
activity of marine mammals such as cetaceans can
also benefit epipelagic seabirds by drawing them to
the surface in tight aggregations, enabling energetic
cost reduction associated with diving and landing
(Sakamoto et al. 2009). In continental shelf waters of
the NW Atlantic, the abundance of common terns
Sterna hirundo and roseate terns Sterna dougallii is
closely linked to higher tuna and dolphin densities,
suggesting that these subsurface predators facilitate
tern foraging (Goyert et al. 2014). In some regions
such as off KwaZulu-Natal (SE Africa), during the
winter migration of sardines Sardinops sagax (‘sar-
dine run’), cetaceans such as common dolphins Del-
phinus delphis and Bryde’s whales B. edeni may
facilitate epipelagic predators, including Cape fur
seals and several shark species (e.g. Carcharhinus
brachyurus, C. brevipinna and C. obscurus; Dudley
& Cliff 2010, O’Donoghue et al. 2010). In this context,
common dolphins may compact sardine schools that
are easier for other predators to forage on, thereby
enhancing their net energy intake rates. The overall
importance of competitor facilitation initiated by
cetaceans to other consumer populations is poorly
understood, but some seabird species (e.g. Parkin-
son’s petrels) may be highly dependent on cetaceans
for foraging (e.g. Pitman & Ballance 1992).

‘Bottom-up’ effects

Although the most obvious roles of predators in
ecosystems involve predator−prey interactions, they
may also be important in mediating the movement of
nutrients within or between depth strata, habitats or
ecosystems (Kanwisher & Ridgway 1983, Katona &
Whitehead 1988, Polis et al. 1997, Schmitz et al.
2010), thereby facilitating ecosystem production and
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population sizes of lower trophic levels (see Roman et
al. 2014 for a recent review). Marine mammals may
move nutrients from marine to freshwater habitats,
from deep-sea to epipelagic water layers and from
marine to terrestrial environments (Kanwisher &
Ridgway 1983, Katona & Whitehead 1988, Polis et al.
1997, Roman et al. 2014). Several authors have
 identified faeces and carcasses (Kanwisher & Ridg-
way 1983, Smith et al. 2013), as well as regurgitation
(Krajewski & Sazima 2010), as potentially important
sources of marine mammal-derived nutrients. For
example, West Indian and African manatees Tri -
chechus senegalensis use a range of habitats and
may move widely to stay within particular thermal or
salinity ranges, and therefore constitute biological
links between marine and freshwater ecosystems as
they may translocate marine nutrients via excretion
(Aragones et al. 2012). Experimental faecal treat-
ments on diatoms (Fragilariopsis cyclindrus and F.
curta) demonstrate that pygmy blue whales B. m.
brevicauda stimulate the growth and photosynthetic
performance of marine phytoplankton (Smith et al.
2013). Therefore, these cetaceans contribute to en -
hanced primary productivity and nitrogen produc-
tion on their foraging grounds through the release of
faecal plumes. Similarly, in the Gulf of Maine, whales
and seals may be responsible for enriching the
euphotic zone with 2.3 × 104 t N yr−1, which is more
than river inputs in this region (Roman & McCarthy
2010). In the Southern Ocean, sperm whales that
prey on deep-sea mesopelagic prey defecate iron-
rich faeces in the photic zone (50 t yr−1), and stimulate
primary production and carbon export from the
depths (4 × 105 t yr−1, Lavery et al. 2010) that may
stimulate production and, ultimately, enhance fish
populations (Lavery et al. 2014).

Not all nutrient transport by whales is from the
depths to surface waters. Large whale carcasses
falling to the sea floor represent massive pulses of
organic matter that appear to be critical to sustaining
some deep-sea communities and may represent an
important vector for the dispersal of deep-sea
chemosynthetic communities over large areas (Smith
et al. 1989, Smith & Baco 2003). Whale carcasses may
also be important in transporting marine or oceanic
energy and nutrients to nearshore and terrestrial
habitats. For example, California condors Gymno-
gyps californianus appear to have relied on whale
carcasses for considerable portions of their diets his-
torically, and bears make use of stranded marine
mammals (Smith 2006). Mass stranding events could
be responsible for the movements of considerable
amounts of marine-derived nutrients from the open-

sea to inshore and beach areas, especially in regions
where these events regularly occur.

The spatiotemporal distribution and abundance of
whale falls and carcasses in nearshore and coastal
habitats should be closely linked to behavioural
 processes, including migratory decisions of whales
and foraging locations and food selection by killer
whales. Indeed, grey whale carcasses are only par-
tially consumed by killer whales, leaving large food
sources for other species. Similarly, social cohesion
appears to be a factor contributing to mass strandings
(i.e. strandings of 3 or more individuals) by several
odontocetes (e.g. sperm whales, pilot whales and
false killer whales; Cordes 1982).

Pinnipeds may be important vectors for moving
nutrients from marine habitats to beaches and
nearshore waters through their excretion, and the
spatiotemporal pattern of these nutrient inputs will
be modified by haul-out behaviour. Hawaiian monk
seals Monachus schauinslandi, for example, mediate
nutrient transport from coral reefs to sandy beaches
when hauling out (e.g. Goodman-Lowe 1998, Parrish
et al. 2005), and other pinnipeds, polar bears and
marine and sea otters almost certainly link marine
and terrestrial habitats (e.g. Krajewski & Sazima
2010). While still unexplored, pinniped faecal mater-
ial likely fertilizes primary producers in nearshore
waters, especially where they haul out on rocky
 outcrops.

Diurnal movements of marine mammals within and
across habitats could transport substantial biomass
and nutrients. For example, around tropical islands,
spinner dolphins feed overnight in offshore waters on
mesopelagic prey (e.g. squids, myctophid fishes,
prawns) and rest in protected coastal and reef sys-
tems during the day (Norris & Dohl 1980). Through
excretion (including defecation and regurgitation),
they may provide resources for planktivorous reef
fishes and transport nutrients from mesopelagic
 layers to coastal and coral reef systems (Martins Silva
et al. 2007). Unfortunately, the relative ecological im -
portance of marine mammal-derived inputs remains
unexplored in general (but see Roman et al. 2014). 

INDIVIDUAL BEHAVIOURAL VARIATION

Variation in the behaviour of marine mammals has
been widely documented at multiple levels, includ-
ing among populations, among age/sex classes of a
population, among individuals within an age/sex
class and within individuals (e.g. Heithaus & Dill
2009), and all of these sources of variation can modify
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the ecological roles and importance of populations or
subsets of populations. Because most of these pat-
terns of variation have been considered in detail
within the literature, here we focus our discussion on
variation within age/sex classes.

In general, there is growing appreciation that indi-
viduals within animal populations, sizes and sex
classes are often characterized by consistent behav-
ioural differences (‘individual specialization’ Bolnick
et al. 2003, Araùjo et al. 2011). These differences can
lead to individuals from the same age/sex class and
habitat playing different roles in ecosystems (Bolnick
et al. 2003) and even to eventual speciation (e.g.
Baird et al. 1992). Individual specialization is well
known in marine mammals, but, in many cases, the
duration of such specialization is not well known. Sea
otters off the California coast exhibit consistent indi-
vidual differences in prey selection that appear to be
maintained by intra-specific competition (Tinker et
al. 2008). At Sable Island (eastern Canada), 3 main
movement types, differentiated by variation in home
range size, travel speed and move length, have been
observed in adult grey seals Halichoerus grypus
(Austin et al. 2004) that would result in individual
variation in the spatiotemporal pattern of their poten-
tial impacts to ecosystems. Similar inter-individual
differences in habitat use are found in harbour seals
in north-eastern Scotland (Tollit et al. 1998). Indo-
Pacific bottlenose dolphins in Shark Bay show
marked and apparently life-long individual variation
in the use of certain foraging tactics (Sargeant et al.
2007), with some tactics (e.g. ‘sponging’, where dol-
phins carry sponges as a tool to protect their beak
from abrasion when foraging on the seafloor) being
restricted to small subsets of the population and
passed along matrilines (Sargeant et al. 2005). This
culturally transmitted tool use allows some indi -
viduals to access otherwise unavailable resources
(Krützen et al. 2014). Minke whales also have been
found to manifest individual differences in foraging,
with individuals using the same tactic for periods of
up to 5 yr (Hoelzel et al. 1989).

COULD HUMAN IMPACTS AFFECT THE 
ECOLOGICAL ROLES OF MARINE MAMMALS
THROUGH BEHAVIOURAL MODIFICATIONS?

Many anthropogenic factors, including vessel traf-
fic and noise pollution from tourism, commercial
shipping, military testing and windfarming, may
affect the behaviour, habitat use and activity budgets
of marine mammals (e.g. Bejder et al. 2006, Williams

et al. 2006, Bailey et al. 2010). For example, be -
havioural responses to vessel traffic can lead to
increased swimming speed and dive duration
(Nowacek et al. 2001), modification of activity bud-
gets (Constantine et al. 2004, Stockin et al. 2008,
Pirotta et al. 2015) and changes in habitat use and
relative abundance (Bejder et al. 2006). Furthermore,
disturbance by vessels and aircraft can disrupt the
haul-out behaviour of pinnipeds and reduce the time
spent resting (e.g. Salter 1979, Schneider & Payne
1983, Henry & Hammill 2001). The ‘Risk Disturbance
Hypothesis’ suggests that animals should respond to
human disturbance (e.g. boat traffic) in a way that is
comparable to responses to natural predators (Frid &
Dill 2002, Heithaus et al. 2007a). As generally long-
lived species, marine mammals would be expected to
invest heavily in anti-predator behaviour (or anti-dis-
turbance behaviour in this case; e.g. Frid & Dill 2002)
with the potential for behavioural changes to
 translate to population-level consequences through
decreased access to resources and diminished body
condition (e.g. Williams et al. 2006, Thompson et al.
2010). By implication, the myriad ecological roles of
marine mammals are likely to be modified by be -
havioural changes made in response to people. For
example, the BMTC that dugongs mediate between
tiger sharks and seagrass communities (Burkholder
et al. 2013) would be predicted to be replicated if
boats caused dugongs to abandon particular foraging
sites (e.g. Heithaus et al. 2007b).

CONCLUSION

To date, the ecological roles and importance of
marine mammals have been viewed primarily
through the lens of their consumptive interactions
with prey. Here, we broaden our understanding of
marine mammal ecology to include the manifold
ways that behaviour is critical in shaping their effects
in marine ecosystems and beyond. In particular, we
emphasize the growing literature on risk effects,
whereby predators induce costly changes to prey
behaviour that can alter both prey population sizes
and the magnitude and spatiotemporal patterns of
prey impacts on communities. By implication,
changes in the abundance of marine mammals, as
well as the introduction of other perturbations that
can be perceived as predation risk (e.g. noise pollu-
tion, vessel disturbance), may affect behaviours of
marine mammal prey that cascade to the wider
ecosystem. Furthermore, we emphasize that rather
than being true apex predators, most marine mam-
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mals are in fact mesopredators that can experience
risk effects, and we highlight the conditions under
which the cascading risk effects of marine mammals
might be most influential as an exciting new frontier
for research involving these species. We also exam-
ine other behaviour-driven ecological roles of marine
mammals including foraging tactics facilitating the
foraging of other species and nutrient transport that
links the dynamics of spatially distinct food webs.
Although evidence is growing, these other behav-
ioural mechanisms remain underappreciated and
should serve as the basis for further inquiry. Finally,
we highlight intra-specific behavioural variation as
an area that needs more attention. Thus far, most
studies of the ecological roles and importance of
marine mammals have explicitly or implicitly focused
on behavioural averages. Yet, there is growing
recognition that consistent inter-individual variation
in behaviour is not only widespread but also means
that individuals in particular populations may often
interact very differently with their environment.
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