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Abstract

We study the relationships between a number of behavioural notions that
have arisen in the theory of distributed computing. In order to sharpen
the understanding of these relationships we apply the chosen behavioural
notions to a basic net-theoretic model of distributed systems called ele-
mentary net systems. The behavioural notions that are considered here
are trace languages, non-sequential processes, unfoldings and event struc-
tures.

The relationships between these notions are brought out in the process
of establishing that for each elementary net system, the trace language
representation of its behaviour agrees in a strong way with the event
structure representation of its behaviour.

Keywords: Net theory — Trace Languages — Non-Sequential Processes
— Event Structures.

0 Introduction

Our aim here is to relate a number of behavioural notions that have
evolved more or less independently of each other within the theory of dis-
tributed computing. The insights concerning the relationships between
these notions are best brought out in a concrete setting. Hence we shall
carry out our study by applying the selected behavioural notions to char-
acterize the behaviour of elementary net systems.

Elementary net systems are a fundamental system model of net theory.
This theory was initiated by Petri (1962) and it has evolved into a full-
fledged theory of distributed systems and processes Brauer et al. (1987).
The elementary net system model incorporates, at a primitive level, the
basic features of distributed systems. An elementary net system consists
of an underlying net which represents the structure of the system under
study together with an initial state. In this setting, a net is composed
out of a set of local atomic states called conditions, a set of local atomic
transitions called events and a fixed neighbourhood relation between the
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conditions and the events. A state consists of a set of conditions that hold
concurrently. The dynamics of the system is captured through a simple
transition rule which specifies how the system can go from one state to
another state through the occurrence of an event. Various tools have
been proposed to represent the behaviour of an elementary net system.

The most primitive among these is the notion of firing sequences. Here
the system is viewed as generating a set of strings over the events of the
system. As a result, all information concerning choice and concurrency is
“lost”. At the other end of the spectrum, we have a labelled event struc-
ture denoting the behaviour of a system. In this representation we have
a single poset of labelled event occurrences where information concerning
the causal ordering, choice and concurrency associated with the system
is clearly represented.

In between these two extremes we also have the notions of non-sequen-
tial processes and traces. A non sequential process is a labelled partially
ordered set of event occurrences and condition holdings that represents
a single run of the system. Here the distinction between causal ordering
and concurrency is re-established (in contrast to the firing sequence ap-
proach); information concerning choice is, however, “lost”. In the trace
approach, a single run of the system is represented as a set of equivalent
firing sequences. Here again information concerning concurrency is “re-
covered” through the use of a natural equivalence relation generated by
the structure of the system. One then applies the tools of trace theory
in a straightforward manner. As in the case of non-sequential processes,
information concerning choice is lost.

Our aim here is to construct a framework in which the behavioural notions
we have mentioned above can be seen to be smoothly related to each
other. Indeed yet another behavioural representation called the unfolding
will also fit into our framework. As a byproduct we can show that trace
theory with its independent existence “confirms” that the labelled event
structure associated with an elementary net system is the “correct” one.

The uninitiated reader is referred to Aalbersberg and Rozenberg (1986),
Mazurkiewicz (1978), Nielsen et al. (1981), Rozenberg (1987) and Thi-
agarajan (1987) for background material. We shall survey related liter-
ature in the concluding section. Some of the results established in this



paper were reported (without proofs) in the survey paper Thiagarajan
(1988).

1 Elementary Net Systems

Elementary net systems, as the name suggests, are meant to be the sim-
plest system model of net theory. They may be viewed as transition
systems obeying a particular principle of change. This view of elemen-
tary net systems is explained in more detail in Thiagarajan (1988). Here,
for the sake of brevity, we shall make a direct presentation.

Definition 1.1 A net is a triple N = (S,T,F) where S and T are sets
and F C(SxT)U(T x S) are such that

(i) SNT =0
(11) domarn(F)U range(F) = SUT where

domain(F) = {z | Jy.(z,y) € F} and
range(F) = {y | Jz.(z,y) € F}.

Thus a net may be viewed as a directed bipartite graph with no isolated
elements. Note that we admit the empty net Ny = (0,0, 0).

S is the set of S-elements, T is the set of T-elements and F is the flow
relation of the net N = (S,T,F). In diagrams the S-elements will be
drawn as circles, the T-elements as boxes and the elements of the flow
relation as directed arcs. Figure 1 is an example of a net.




bj by

€] €3 ey

b3 b4 (K /}) bs

€ es
Figure 1

In this paper, the S-elements will be used to denote the (local) atomic
states called conditions and the T-elements will be used to denote (local)
atomic changes-of-states called events. The flow relation will model a fized
neighbourhood relation between the conditions and events of a system.
Following usual practice, we shall represent such nets of conditions and

events by triples of the form N = (B, E, F).
Let N = (B, E,F)be anet. Then Xy = BU E is the set of elements of
N. Let z € Xy. Then

v ={y|(y,z) € F} (the set of pre-elements of z)
z* = {y | (z,y) € F} (the set of post-elements of z)

This “dot” notation is extended to subsets of X in the obvious way. For
e € E we shall call %e the set of pre-conditions of e and we shall call e*
the set of post-conditions of e.

Definition 1.2 An elementary net system is a quadruple N' = (B, E, F, ¢;,)
where

(1) Ny = (B, E,F) is a net called the underlying net of N.
(1) cin € B 1s the initial case of V. O
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In diagrams the initial case will be shown by “marking” the members of
Cin- Figure 2 is an example of an elementary net system. Through the
rest of the paper we shall refer to this net system as A.

bj bo
€] 63 64
b3 b4 é) } bs
62 \ 35
Figure 2

In this paper, we will only deal with elementary net systems. Hence we
will refer to them as net systems. The dynamics of a net system are
simple. A state (usually called a case) of the system consists of a set of
conditions holding concurrently. An event can occur at a case iff all its
pre-conditions and none of its post-conditions hold at the case. When
an event occurs each of its pre-conditions ceases to hold and each of
its post-conditions begins to hold. This simple and restrictive notion of
states and changes-of-states leads to a surprisingly rich and sophisticated
class of objects. Moreover, the essential features of distributed systems
can be isolated and studied using net systems. First however we must
formalize the dynamics of net systems.

Let N = (B, E, F)be anet. Then —yC 28 x E x 28 is the (elementary)
transition relation generated by N and is given by

TONT {(k76)k,) | k—FE =*enk —k :e'}
Definition 1.3 Let N = (B, E, F,c;n) be a net system.

(i) Cly, the state space of N (also denoted as [cin>) is the least subset
of 28 containing ci, such that if ¢ € Cy and (c,e,c) €E—p,, then
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c € Cy.

i) TSy = (Cun, E,— ) is the transition system associated with A
bl ? y
where — 18 —p,, restricted to Cy X E x Cly.

O

For the system A5 shown in Figure 2, {{b, b2}, {b1, b5}, {4, b2}, {b4, b5},
{b3, b2}, {bs3,b5},0} is its state space. We recall that a transition system is
a triple T'S = (5, A, —) where S is a set of states, A is a set of actions and
— C S x A x S is the (labelled) transition relation. According to the
above definition there is a natural way of explaining the dynamics of a
net system with the help of a transition system. We are now in a position
to bring out the particular and restricted notion of change adopted in net
theory.

Let N = (B, E,F,c;) be a net system, ¢ € Cy and e € E. Then e is
said to be enabled at ¢ — denoted c[e > — iff there exists ¢ € Cy such
that (c, e, ) €E— . We shall often write ¢ = ¢ and sometimes we shall
write ¢[e> ¢ in place of (¢, e, ) E——p.

Proposition 1.1 Let N' = (B,E,F,c;,) be a net system e € E and
c,c,c1, etc. members of Cy. Then the following statements hold.

(Z) Cli>62/\63—e—>(34$
01—02263—64/\02-—61:04——63
(i) cle><=*eCcheNec=10

N e [
(i) e > dANe=d'=d ="
O

(1) says that an event causes the same change in the system state whenever
it occurs; its pre-conditions cease to hold and its post-conditions begin

to hold.

(ii) says that an event is enabled at a case #f and only if the fixed change
associated with its occurrence is possible at the case. Thus no “side-
conditions” are involved in the enabling of an event.
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(iii) says that the transition systems associated with net systems are
determanistic. Hence in order to connect up with other approaches to
the theory of distributed systems such as CCS or CSP one must go over
to labelled net systems. When one does so, it is possible to give an
operational semantics for CCS-like processes in terms of (labelled) net
systems.

Basic concepts concerning the behaviour of distributed systems such
as causality, choice, concurrency, and confusion (“glitch”) can now be
cleanly defined — and separated from each other — with the help of net
systems. The interested reader is referred to Thiagarajan (1987) for de-
tails.

We are ready to begin our study of the behaviour of elementary net
systems. For the sake of convenience we fix an elementary net system
N = (B, E, F,c;,) and work with it throughout what follows. We shall

assume that A is contact-free. In other words, we shall assume,

Vee Cy Ve € Ele* Ce="eNc=10.

As is well-known (see for instance Rozenberg (1987)), this does not — at
least for the study of behavioural issues — involve any loss of generality.

We can now introduce the first and the most primitive of our behavioural
tools. The set of firing sequences of N'— denoted F'Sys — is the least subset
of B* (recall that N = (B, E, F, ¢;,)) given by

(1) A € FSy and ci[[A > cin

(ii) Suppose p € FSy, cinfp > ¢ and ¢ = ¢ then pe € FSy and
cinllpe > c.

Thus [ > is the natural “extension” of —y to {cin} X E* x Cy. As
may be guessed, A denotes the null sequence. We shall write F'S instead
of 'Sy for convenience. For the system A, some of its firing sequences
are ejeqey, eqe1eg and egeqes.

Firing sequences “hide” important aspects of the behaviour of a net sys-
tem. To bring out this deficiancy more clearly, it will be convenient to
define the notions of concurrency and conflict.
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Let e; # ey and ej,e9 € E. Let ¢ € Cx. We say that e; and ey can
occur concurrently at ¢ — denoted c[{e1,es} > — iff ¢[e; > and c[ez > and
(e Uel) N (%eaUey) = 0.

Thus e; and ey can occur concurrently at ¢ iff they can occur individu-
ally and their neighbourhoods are disjoint. For the system M, at the
initial case e; and e4 can occur concurrently. Consequently, the fir-
ing sequences ejeseq and egejeg and ejegey all represent the same (non-
sequential) stretch of behaviour of M.

The “dual” of the notion of concurrency is conflict. Then we say that e;
and ey are in conflict at ¢ iff c[e; > and c[es > but not ¢[{e1, e2} >. Thus
at ¢ either e; may occur or es may occur but not both. The choice as to
whether e or e will occur is assumed to be resolved by the “environment”
of the system. In Ny, at the initial case e; and eg are in conflict. Hence the
firing sequences ejegeq and egeqes represent two conflicting (alternative)
stretches of behaviour of As.

It is in this sense firing sequences hide information concerning concur-
rency and conflict-resolution. We will now see how the theory of trace
languages can be applied to extract information concerning concurrency
from the firing sequences.

2 The Trace Semantics

The theory of trace languages was introduced in Mazurkiewicz (1978) to
model the non-sequential behaviour of distributed programs. The basic
idea is to postulate a symmetric and irreflexive independence relation over
the letters of an alphabet. The elements of the alphabet set represent the
actions that can be executed by a program. Two actions that are in the
independence relation are supposed to occur concurrently whenever they
occur “adjacent” to each other. This relation then naturally induces an
equivalence relation over the language which is a sequential description
of the behaviour of the program. For details we refer the reader to Aal-
bersberg and Rozenberg (1986). Here we shall straight away apply the
notions of this formalism to net systems.

Let I denote the independence relation associated with A" (which is ac-
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tually generated by Ny = (B, E, F), the underlying net of A/),
I={(e1,e2) | e1,ea € EA(%e1Ue1®) N ("eg Uey) =0}

Since I C E x F is irreflexive and symmetric, we have a natural way of

partitioning E* using the least congruence relation generated by I via

equations of the form ejes = egey, where (eg,e2) € I. To be specific,
define ~C E* x E* as,

pfbpl &) Epl,pQEE*E(el,ez)EI.

p = prereaps and p' = pieserps

Then ~= (~)* is the equivalence relation we want and for p € E¥,
def *
[p] = {p' | p' € E" and p’ ~ p}.

Let p € F'S. Then it is well-known that [p] € F'S. (One says that F'S is
consistent with I).

Now FS/~% {[p] | p € FS} is the prefix-closed trace language we
associate with A. Throughout what follows we denote F'S/~ as T.
Thus T (= FS/ ~) is a “finer” representation of the behaviour of A as

compared to F'S.

Once again it is well-known that each element of T' can be (up to isomor-
phism) uniquely represented as a finite labelled poset of event occurrences
where the labels take values in E. It turns out that information concern-
ing choice can be recovered from T by imposing an ordering relation over

T.

CC T x T is given by:
t Lty &, Vp € t; Ap' € ty. p € Prefix(p').

Here Prefix () denotes the set of prefixes of the string +.

It is easy to check that (T, C) is a poset. Figure 3 shows an initial portion
of the poset of traces associated with the net system M.
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{e1eqe3} {e1ege4, e1¢4€9, €4e1€9} {eseqes, eqezes}

{e1e2} {e1eq,e4e1} {eseq, eses}

N I

{e1} {es} {es}

™~

{A}

Figure 3

To “see” information concerning choice we define a “compatibility” rela-
tion over T' as follows.

Let t1,t9 € T. Then

1ty &5 JteT ¢t Ctandty Ct

t1 V't & not (¢; T t2)

If ¢; 7ty then ¢; and t9 represent two runs of A in which the individual
choices that have been made to realize t; are not all compatible with the
choices that have been made to realize t5. In the example shown in Figure
3, {e1ezes} ¥ {es}. It is easy to see that the choice of the first occurrence
of e1 in the firing sequence ejeges is opposed to the choice of e3 in the
firing sequence es.

3 The Finite Processes of N/

We now wish to find an alternative representation of (7,C). This rep-
resentation will be in terms of the finite processes of A'. A process of
N will be a labelled net of the form N = (B, E, F,3) where (B, E, F) is
a restricted kind of a net called a causal netand 3: BUE — BUE (re-
call that N = (B, E, F,c;,)) is the labelling function required to satisfy
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certain constraints. For a definition of a process along these lines, see

Rozenberg (1989).

Here we shall define processes with the help of firing sequences. This will
enable us to build up the finite processes of A" inductively. Moreover, our
method of construction will enable us to obtain the unfolding of a net
system in a smooth fashion. As we will see, this method of constructing
processes will be very helpful for proving the desired results. For a similar
development of the process notion see Best and Devillers (1987).

For each firing sequence p, we will define a process N, = (B,, E,, F,, ©,).
In doing so it will be convenient to keep track of the conditions that
hold in A after the run represented by the firing sequence p. This set of
conditions will be encoded as c,.

Definition 3.1
Let p e F'S. Then N, = (B,, E,, F,,¢,) is given by:
(i) p=A. Then
Ny =(9,4,¢,8) and
ca = {(b,9) | b € cin}
recall that N' = (B, E, F, ¢in)

(1) p#A. Let p = pe and assume that Ny = (By, Ey, Fy,0p)
and cy are defined. Then
N, = (By, E,, ), ) with
E,=EyU{(e, X)}
where X = {(b,D) | b €®e and (b,D) € ¢y},
B, =By UXUY where Y = {(b,{(e,X)}) | b€ e},
F,=F,U(X x{(e, X)) U({(e, X)} xY), and
w, 18 defined by: ¥(z,Z) € B,UE,. ¢,((2,2)) = z.
Finally, ¢, = (¢y — X)UY.

O

It will turn out that N, as defined above is a labelled net. For p =
ereseseg in the system Ny we show N, in Figure 4. For convenience
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we have displayed ¢, by writing the value of ¢,(z) inside the graphical
representation of x for each « € Bp U E,. We will follow this convention
through the rest of the paper.

Lo
¢

€2

;

Figure 4

In order to establish a relationship between the traces of A" and its pro-
cesses it is necessary to define an ordering relation over the processes of

N

Definition 3.2

(i) The set of finite processes of N is denoted as Py and is given by:
Py ={N, | p € FS} where N, is as given by Definition 3.1.

(i2) €' C Py x Py us defined as:

Ny = (prEmev‘fop) <’ Ny = (Bp'vEp’an’a ‘Pp’) uf
B,C By and E,C E, and F, C F,.
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We shall write P instead of Py .

Clearly C' is a partial ordering relation. From now on we let p and p/
range over 'S and e range over E. We shall assume that for p € F'S,
Ny = (By, E,, Fj, ).

The set of elements ¢, as specified in Definition 3.1 will play a crucial role
in what follows. Notice that, in general, ¢, — B, # 0.

It will be convenient to extend ¢, to B, U E, U ¢, as follows. By abuse of
notation, this extension is also denoted as ¢,.

(b, D) € ¢,. @,((b,D))=b.

Since ¢, is a simple projection operation, from now on we will not display
it explicitly. Our major aim in this section is to show the following;:

(T,C) and (P, C') are isomorphic posets. In fact, f: T — P
given by f([p]) = N, is an isomorphism.

Along the way we shall also show that our notion of a process “agrees”
with the existing notion of a process (when restricted to the finite ones).
We need a number of preliminary results.

In stating and proving these results, we will make heavy use of Definition
3.1. All the undefined terms that may crop up are to be understood with
the help of Definition 3.1.

Lemma 3.3
w,(c,) € Cyr. Moreover cinp > @p(c,) (1n N).

Proof By induction on k = |p|.

e
I
-

Clearly p = A and @a(ea) = ¢, by definition.

w
Y
o

Let p = p'e. Let ¢,,¢y, X and Y be as in Definition 3.1. Set
wy(cy) = ¢ and ¢,(c,) = c.
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By the induction hypothesis, ¢iz[p" > ¢. We know that e is
enabled at ¢’ because p'e is a firing sequence. Hence we must
show that ¢ = (¢ —*e) U e®.

From Definition 3.1, it follows that ¢, = (¢y — X)U Y.

Consider b € ¢. Then there exists (b, D) € c,. Suppose that
(b,D) € Y. Then b € e* by the definition of Y. Suppose that
(b,D) € ¢y — X. Then b ¢° e by the definition of X. Since
(b,D) € ¢y, we have b € ¢ by the induction hypothesis. Hence
b€ d —*e. We have shown that ¢ C (¢ —*¢) U e®.

Hence consider b € (¢ —*e)Ue°.

If b € e® then clearly (b, {(e,X)}) € Y so that b € c.

If b € ¢ —* e then there exists (b,D) € ¢y by the induction
hypothesis. Moreover (b,D) ¢ X because b ¢* e. Hence
(b,D) € ¢y — X and as a result b € ¢. Thus (¢’ —*e)Ue® Cec.

O
Lemma 3.4
N, is a (labelled) net.
Proof Follows easily from Definition 3.1 by induction on |p|.

a

The next result which is a technical one will turn out to be very useful.

Lemma 3.5

(i) ¥(b,D) € B,Nc,.(b,D) =0 in N,.
(i) Y(y,Y) € B,UE,.*(y,Y)=Y in N,
(iii) ¢, — B, = cp — B,.
(iv) || = |By|. In fact, #.(p) = ;' (e)] for every e € E.
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Proof

We will simultaneously prove all the parts of the lemma by

induction on |p|. Consequently the induction hypothesis will have four

parts.

N ES
Vol
o o

Case 1

Trivial.

Let p = p'e and ¢y, X and Y be as in Definition 3.1. We will
first prove that (e, X) & E,.

Suppose (e, X) € E,. Then by part (ii) of the induction hy-
pothesis, *(e,X) = X in N,. Hence for each (b,D) € X,
(e,X) € (b,D)*in N,. Hence (b, D)* # 0 for each (b,D) € X.

Now ®e # 0 in N because N is contact-free. Hence X # () by
Lemma 3.3 (applied to p').

So consider (b, D) € X. Then (b,D) € ¢y. If (b,D) € ¢y — By
then clearly (b, D)* is undefined in N,. If (b,D) € B, then
(b,D)* =0 in N, by part (i) of the induction hypothesis. In
either case we have a contradiction. Hence (e, X) ¢ E,. This
shows that F, — E, = {(e,X)}. Part (iv) of the lemma now
follows from part (iv) of the induction hypothesis.

Next notice that B, = ByUX UY and ¢, = (¢y — X)UY. By
the induction hypothesis, ¢y — By = ¢y — By. It is now easy
to show that ¢, — B, = ¢y — B, which establishes part (iii) of
the lemma.

To prove the first part of the lemma consider (b, D) € B, Nc,.
Recall that ¢, = (¢y — X)UY.

(b,D) €Y. Then D = {(e, X)}.

Suppose that (b, D)* # 0 in N,. Then there exists an (eg, Xo) €
E, such that ((b,D),(ey,Xo)) € F,. Recalling the definition
of F, in terms of Fjy, X, Y and e we can first rule out the
possibility ((b, D), (e9, Xo)) € F,. This is so because if this
were the case then (ep,Xo) € Ey. Two applications of part
(ii) of the induction hypothesis yield (b,D) € %ey,X() and
(e,X) € %b,D) in N,. But this would lead to the known
contradiction (e, X) € E,. Hence ((b, D), (e, X)) & Fpy.

From the definition of F,, we can now conclude that (eg, Xj) =
(e, X). This implies that (b,D) € ¢y. If (b,D) € By then
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we would once again, by part (ii) of the induction hypothesis,
have the contradiction (e, X) € E,. Hence (b,D) ¢ B,. But
then, by part (iii) of the induction hypothesis we now have
(b,D) € ¢y — B,. We yet again have a contradiction because
D = {(e,X)} # 0 and every member of ¢, is of the form (¥, §).

Case 2 (b,D)€cy— X and (b,D)¢Y.
We know that (b,D) € B,. Since B, = By U X UY we can
deduce that (b,D) € B,. Now (b,D)* = 0 in N, by the
induction hypothesis. Since (b, D) & X we now have (b, D)* =
0 in N, as well by the definition of FJ,.

We have now established the first part of the lemma.

It is now easy to establish the second part of the lemma by
appealing to Definition 3.1.

We now wish to show that N, is a causal net. Recall that a causal net
is a net N' = (B, E', F') such that Vb € B'. |°b],[b*] < 1 and (F')* is a
partial ordering relation (over B' U E').

Lemma 3.6
N, is a causal net.

Proof By induction on k = |p|.

Trivial.

[
Vool
o o

Let p = p'e and assume as before that ¢, X and Y are as in
Definition 3.1.

Consider (b,D) € B, =B, UX UY.

If (b,D) € Y then (b,D)* = 0 in N, by part (i) of the previous
lemma. If (b, D) € X then clearly (b,D)* = {(e, X)} in N, by
Definition 3.1. because (b, D)* = 0 or is undefined in N, by
part (1) of the previous lemma.
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Suppose (b,D) € By — X. Then |(b,D)*| < 1 in N, by the
induction hypothesis. Moreover *(e, X) = X in N, by part (ii)
of the previous lemma. Hence |(b,D)*| < 1 for each (b,D) €
B,

Now suppose that (b,D) € Y. Recall that B, = B, UX UY.
Then D = {(e,X)} and by part (ii) of the previous lemma,
*(6, D) = {(e, X)}.

Next suppose that (b,D) € X. If (b,D) & By, then (b,D) €
¢y — By. This implies that D = (§ by part (iii) of the previous
lemma and *(b, D) = @ in N, by part (ii) of the previous lemma.
If (b,D) € XN B, then *°(b, D) = D by part (ii) of the previous
lemma and |D| < 1 by the induction hypothesis. If (b, D) €
By — X then |*(b,D)| <1in Ny by the induction hypothesis.
We now wish to argue that ByNY = 0. So consider (b,D) € Y.
Then D = {(e,X)}. We know from the proof of the previ-
ous lemma that (e,X) ¢ E,. But (b,D) € B, would imply
by part(ii) of the previous lemma that (e,X) € E,. Hence
(b,D) & By and thus By NY = . Hence |*(b,D)] < 11in N,
also.

To show that (F),)* is a partial ordering relation define depth:
B,U E, — Nj as follows:

Y(z,X) € B,UE,.
0, if (:zz,X) € Chp,
depth (2, X)) = | 1+ maz{depth(s, V) | (4,¥) € X},

otherwise

It is easy to verify by induction on |p| that depth is a well-
defined map.

Suppose (z, X)F,(y,Y). Then clearly depth ((y,Y)) > depth
((z,X)). From this it follows easily that (F},)* is anti-symmetric.
Clearly (F},)* is reflexive and transitive.

O

We shall show in two steps that our process definition agrees with the
traditional one. In doing so we shall denote (F,)* by <,. An anti-chain
of a p.o. is a set of mutually unordered elements.
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Lemma 3.7
Let ¢ C B, be an anti-chain in N, (under the p.o. relation <,). Then
there exists p" € F'S such that Ny C' N, and é C cp.

Proof By induction on k = |p|.

Case 1

Case 2

Clearly é = 0 C cy.

Let p = p'e and ¢y, X,Y be as usual as given in Definition 3.1.

Recall that B, = B, UX UY. If ¢ C Y then ¢ C ¢, because
¢, = (¢y — X)UY. We are then done by setting p" = p.

If ¢ C By then we are done thanks to the induction hypothe-
sis. Next note that V(v,V) € X and V(v', V') €Y, (v,V) <,
(e, X) <, (v',V'). Hence we cannot have both ¢N X # 0§ and
eNy # 0.

enN X #£0.

Then é C B, UX. Let é, = éN By. Clearly ¢ is an anti-chain
in Ny. By the induction hypothesis, there exists p" € F'S such
that an C_;/ Np/ and 61 g Cpl'+

Let é = é—¢;. Then ¢ € X — By, But X C ¢y. Hence
é C ¢y — By. By part (iii) of Lemma 3.5 we then have

& C ep — By. Since Ny €' Ny we know that By C B, and
this implies é& C ey — B,». Once again by part (iii) of Lemma,
3.5, é& C ¢pr — Byr. Thus é C ¢y and this establishes ¢ C ¢,
Clearly Ny C' N, and hence Ny C' N,,.

eENY #£0.

Let ¢é; = ¢ — Y. We will first show that ¢ U X is also an
anti-chain in N,. To see this, first note that *(e, X)) = X in
N, by part (i) of Lemma 3.5. By the previous lemma, N, is
a causal net. Moreover <,= F. Hence X is an anti-chain
in N,. ¢ is an anti-chain in NV, because ¢ is an anti-chain in
N,. Suppose that (b1, D1) € é, and (by, Ds) € X such that
(bl,Dl) <p (bz,DQ) or (bg,Dg) <p (bl,Dl).

Since éNY # 0, there exists (b3, D3) € éNY. If (b1,D1) <,
(bg, Dy) then (b1, D1) <, (b3, D3) also because as observed ear-
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lier, (bg, Dy) <, (e,X) <, (b3,D3). This is a contradiction
because ¢ is supposed to be an anti-chain.

If (by, Dy) < (b1, D1) then there exists (b3, D3) € Y such that
(b3, D3) <, (b1,Dy). This is because (by,D9)* = {(e,X)}
and (e,X)* = Y in N,. Moreover N, is a causal net and
<,= F;. The case (bs, D3) = (b1,D;) is ruled out because
(b1,D1) € é1 = é—Y. The case (b3, D3) < (b1, Dy) is ruled out
because (b3, D3) € Y C ¢, and hence by part (i) of Lemma 3.5,
(bg,D3)' = @ in Np.

Thus indeed é U X is an anti-chain in N,. We now have the

situation considered in the previous case. Hence there exists
p' € FS such that Ny €' N, and é U X C ¢,

Let cip[p" > " and cinp/ > . We know that e is enabled at
c. We shall show that e is enabled at ¢’ also. By Lemma 3.3,
wp(cy) = ¢. Hence ¢ (X) =* e by the definition of X. Since
X C ¢y we now have *e C @y (cyr). In other words, % C "
But then A is contact-free. Hence e* N’ = 0. Thus p"e is also
a firing sequence. It is now easy to check, using Definition 3.1,
that Ny €' N,. It is also easy to check that é;UY C cpe.
Since ¢ C ¢; UY, we are done. O

We are now prepared to compare our process definition with the “tradi-
tional” definition. Notice that we have already shown that N, is a causal
net for each p € FS.

Theorem 3.8

(i) (e, X) € E,. ¢,(*(e, X)) ="¢,((e, X)) and ¢p((e, X)*) = (,((¢, X)))"-

(1) If ¢ C B, is an anti-chain in N, then there exists ¢ € [cin > in N
such that ¢,(¢é) C c.

(ZZZ) V(b, Dl),(b, DQ) € Bp. (b, Dl) Sp (b, DQ) V (b, DQ) Sp (b,Dl)
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Proof

(i) Follows easily by induction on |p| using Lemma 3.5.
(ii) Follows easily from the previous lemma and Lemma 3.3.

(iii) Suppose that (b, D1),(b, D3) € B, such that {(b, D1), (b, D9)} is an
anti-chain. By virtue of the previous lemma, it involves no loss of
generality to assume that (b, D1),(b, D) € ¢,. We now proceed by
induction on k = |p|.

o
I
-

This is impossible because in this case we would have B, = 0.

s
V
o

Let p = p'e and ¢y and X and Y be as in Definition 3.1.
Then ¢, = (¢y — X)UY. If (b,D1),(b,Dy) € Y then clearly
D1 = D2 = {(e,X)} If (b, Dl),(b, D2) € Cp/ — X then D1 = D2
by the induction hypothesis. So suppose that (b, D;) € ¢y — X
and (b,Dy) € Y. Let ¢y (cy) = ¢. Then by Lemma 3.3, e is
enabled at ¢ in M. But (b, D) € Y implies that b € e® by the
definition of Y. And (b, D) € ¢,y — X implies that b € ¢’ also.
This is a contradiction because e is supposed to be enabled at

c.

We can now turn our attention to proving the main result of this section.
Once again, we will first establish a number of intermediate results. These
results will come in handy also in the next section .

Lemma 3.9
If p~p then N, = Ny.

Proof First suppose that v € F'S and (e, e2) € I such that vyejey, yege; €
FS. We claim that Nye e, = Nyeye,. To see this, let B, — E, = {(e1, X1)}
and (e1, X1)* =Y1 in Ny, and E,.,., — Nye, = {(e2,X2)} and (eg, X3)* =
Y5 in Nyg,e,. Since (eq, eg) € I it follows from Definition 3.1 and part (i) of
Theorem 3.8 that (X;UY1)N(XoUY5) = 0. It is now easy to verify — using
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yet again Definition 3.1 — that Nyc,e, = Nyepe, and also cyee, = Cyege,. We
can use this now to prove our result.

So now suppose that p ~ p’. Then there exist p1,...,p, € F'S such that
p=p,pn=p and for 1 < i < n, p; ~ piy1. Proceeding by induction
on n, the result is clearly true if n = 1. Hence assume that n > 1. Then
p1 ~ py and this implies the existence of 7,9 € E* and (ej,e9) € I such
that p; = yejesy and py = vyese;y’. By the argument presented above,
Noyerey = Nyege, and Cyeie, = Cyepe,. Hence N, = N,,. The required result
now follows by the induction hypothesis.

O
Lemma 3.10
N, Ny <= E, C E,.
Proof
= Trivial.
&= Assume that E, C E,. By part (ii) of Lemma 3.5, it suffices

to show that B, C B,. So consider (b,D) € B,. Since N, is a
net, *(b, D)U(b,D)* # 0 in N,. Suppose that (e/, X") €* (b, D).
Then N, being a causal net, we have *(b,D) = {(¢, X")}.
Clearly (¢/,X') € E,. From Definition 3.1 it follows that
be () (in N)and D = {(¢/, X')}. Once again from Defini-
tion 3.1 and the fact that E, C E,, it follows that (b, D) € B,.

If (¢,X") € (b,D)* in N,, then b € %¢') (in M) and (b,D) € X'. Once
again from Definition 3.1 and the fact that E, C E,, it follows that
(b,D) € By.

Lemma 3.11
Let (e,X) € E,. Then (e,X) 1s a mazimal event in N, (under <,) iff
there exists p'e € F'S such that p ~ p'e and {(e,X)} = Ey. — E,.
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Proof

< Suppose that p ~ p'e and (e,X) € E,. — E,y. Clearly from
Definition 3.1, it follows that (e, X') is a maximal event in N..
But by Lemma 3.9, p ~ p'e implies that N, = N,.. Hence
(e, X)) is a maximal event in N, also.

= Since (e, X) € E,, p can be expressed as p = piepy such that
E,.— E, = {(e,X)}. We now proceed by induction on k =
|p2].

k=0 Set p/ = p;.

k> 0 Let p = pieepy. In other words ps = €'p), for some ¢’ € E
and py € E*. From the fact that (e, X) is a maximal
event in N,, it is easy to deduce that (e,e') € I. Hence
p ~ pie'epy. The required result now follows from the
induction hypothesis and Lemma 3.9.

We are at last ready to prove the main result of this section.

Theorem 3.12
(T,C) and (P,C') are isomorphic posets. In fact, f: T — P given by

Vp € FS.f([p]) = N,

18 an 1somorphism.

Proof First note that if p, p' € F'S such that p ~ p’ then N, = N, by
Lemma 3.9. Hence f is well-defined.

f is obviously surjective. To verify that it is injective, assume that p, p’ €
FS such that N, = N,. We must show that p ~ p'. By part (iv) of
Lemma 3.5, it is clear that |p| = |p'|. We now proceed by induction on

k= lpl.

k=0 Clearly p = p' = A.
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Case 2

Let p = p1e; and p' = ple].

e = €.

Let e; = ¢} = e. Furthermore, let E, — E, = (e, X) and
Ey — E, = (e,X'). By Lemma 3.11 it follows that both (e, X)
and (e, X') are maximal events in N, = N,. Since N, is a causal
net and °(e, X) = X and *(e,X') = X', we can conclude that
XNX' =0incase X # X'. Butif X # X' and thus X NX' =0
then we would have a contradiction to part (iii) of Theorem 3.8.
This is because, for each b €°® e, we will have some (b,D) € X
and some (b, D') € X'.

Moreover by virtue of the fact that (e, X) and (e, X') are maxi-
mal events, we can conclude that X U X' is an anti-chain in N,.
Thus we must have X = X' so that (e, X) = (e, X').

This implies that E, — E, = E, — E, . Hence by Lemma 3.10,
N, = N, and this in turn implies that p; ~ p} by induction
hypothesis. Clearly pie ~ pie so that p ~ p'.

e1 # ej.

Let B,—E, = {(e1,X1)}and Ey—E, = {(e}, X])}. By Lemma
3.11, (e}, X1) is a maximal event in N,. Since N, = Ny, it is a
maximal event in N, as well. Hence once again by Lemma 3.11,
there exists p'’e] € FS such that p ~ p’e] and Ny, = Ny.
Since p' = ple} we have arrived at the situation considered in
case 1.

This establishes that f is a bijection.

Now suppose that p,p’ € FS such that [p] C [p']. Then there exists
p" € [p'] such that p is a prefix of p”. Clearly, by Definition 3.1, N, C" N,
But then N,» = N, by Lemma 3.9. Hence N, C' N,.

Next assume that p,p € FS are such that N, €' N,. By part (iv) of
Lemma 3.5, |p| < |p'|. The proof is by induction on k = |p/|.

0

=
Il

Clearly p = p' = A.
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Let p' = pre. Let E, . — E, = {(e,X)}. Suppose that (e, X) ¢
E,. Then E, C E,. By Lemma 3.10, this implies that N, C’
N,,. From the induction hypothesis, we can conclude that [p] C
[p1]. From this we can further conclude that [p] C [p1e] = [¢].

So assume that, (e,X) € E,. (e,X) is a maximal event in N,
by Lemma 3.11. Since N, C' N,, it follows that (e, X) is a
maximal event in N, as well. Once again by Lemma 3.11, we
can find p"e € F§ such that p ~ p"e and Ey, — E = {(e, X)}.
Since p ~ p'e we must have N, = Ny.. Since E, C E, we
can now conclude that E,» C E, (recall that p' = pie and that
E, — E, = {(e,X)}). This implies that Ny C' N, and by the
induction hypothesis we then have [p"] C [p1]. Finally this lets
us to conclude that [p”e] C [p1€] and since p ~ p"e and p’ = pre,
we are done.

4 The Labelled Event Structure of NV

Our method of constructing the finite processes of A leads to a simple
definition of the unfolding of N .

Definition 4.1 The unfolding of N~ denoted as UF)y - s the quadruple
UFy = (B,E,F,3), where (keeping in mind that N, = (B,, E,, E,) for
each p € F'S as specified in Definition 3.1.)

(i) B

= UpEFS Bp;

(4) E = Upers E,,
(1) F =U,ers F,, and
(i) Y(z,X) € BUE. ¢(z,X)) = z.
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As an example, part of the unfolding of N; is shown in Figure 5.

?

€] €3 ey

(53 (b9 b3,

€2 €s K
by

e
e] 3

Figure 5

N = (B,E, ﬁ) is called the underlying net of UFy. It is easy to check
that NV is indeed a net. ¢ : BUE — BUE so that UF) is a labelled
net. Our first task is to show that N is an occurrence net in the sense of
Nielsen et al. (1981). Before doing so it will be convenient to adopt some

notations concerning posets.

Let PO = (X, <) be a poset and ¥ C X.

Then 1Y ={ze X |yeYy<e}. | Y={zeX|TyeY z <y}
In case Y = {y} is a singleton we shall write T y (| y) instead of T {y}
(J {y}). For Y C X we say that Y is compatible (bounded) — and this
is denoted by Y T — in case there exists z € X such that y < z for every
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yeY. Y = {y1,ys} then we shall write y; T yy instead of {y,y2} T.
y1 ¥ y2 will denote the negation of y; T yo. Y is said to be pair-wise
compatible in case y; T yy for every yi,y9s € Y.

Recall that an occurrence net is a net N' = (B, E', F') such that

(i) Vo' € B'.|°V| £ 1,
(ii) (F')* is a partial ordering relation, and

(111) V81,62 € E,. [61 ;é €9 /\.81 0'82 ;é @ iT 610 T €9 — 0]

Here T e; and T ey are assumed to be defined w.r.t. the partial ordering
relation <'= (F')*.

Through the rest of this section we shall assume that N = (B, E, F") is
the underlying net of the unfolding of A as specified in Definition 3.1.
We set X = BUE and < = (13’)* For each p € F'S we shall assume
N, = (B,, E,, F,) as specified in Definition 3.1. We set X, = B,U E, and
<,= (F,)*. We shall show in two steps that N is an occurrence net .

Lemma 4.2 Let (z,X),(y,Y) € X.

(i) (2, X)E(y,Y) iff (z,X) € Y,

(i) (z,X)2(y,Y) ff Vp € FS. [(y,Y) € X, =
(2, X) e X, A (2,X) <, (y,Y)].

Proof By the definition of ' we know that (z, X)ﬁ’(y, Y') iff there exists
p € FS such that (z, X)F,(y,Y ). By part (ii) of Lemma 3.5 we then have
that (z, X)F,(y,Y) iff (z,X) €Y.

To prove the second part note that (2, X)<(y,Y) iff there exist
(z1, X1), (22, X9),...,(zn, Xn) € X (n > 1) such that (z,X) = (21, X1),
(zn, Xn) = (y,Y) and for 1 <2 < n, (z;, X;)F(2i+1, Xit1). We now do

induction on n.

n=1 There is nothing to prove.
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n>1 By the first part of the lemma, (:z:l,Xl)ﬁ’(ajg,Xg) iff (z1,X1) €
Xy. But (z1,X1) € Xy iff Vp € FS. (z9,X7) € X, implies that
(21, X1)F,(z9, X) which in turn implies that (z1,X;) € X, as
well. This follows once again from part (ii) of Lemma 3.5. The
required result now follows from the induction hypothesis.

Theorem 4.3
N = (B, E, F) 1s an occurrence net.

Proof Let (b,D) € B. Suppose that (ey, X)F(b,D) and (ey, Xg)ﬁ(b, D).
Then by the first part of the previous lemma, (e1, X1), (e2, Xo) € D. By
the definition of B we know that, for some p € FS, (b, D) € B,. By part
(ii) of Lemma 3.5, *(b,D) = D in N,. But then |D| < 1 because N, is a
causal net. Hence (e1, X1) = (eg, X3).

Clearly < is reflexive and transitive. So assume that (z, X),(y,Y) € X
such that (z, X)<(y,Y) and (y,Y)<(z, X).

Let p € F'S be such that (y,Y) € X,. Then by part (ii) of Lemma 3.2,
(z,X) € X, and (2,X) <, (y,Y). Since (z,X) € X,, (y,Y)<(z, X)
would imply once again by the second part of the previous lemma that
(y,Y) <, (z,X). Hence (z,X) = (y,Y), because N, is a causal net, and

so <, is anti-symmetric.

Now suppose that (b,D) € B and (e1,X1),(e2, X2) € E are such that
(e1,X1) # (e9,X9) and (b,D)ﬁ’(el,Xl) and (b,D)ﬁ’(eg,Xg). We must
prove that T (e1,X1)N T (eg, X2) = 0. Suppose (y,Y) €T (e1, Xi)N T
(e2, X2). Let p € FIS such that (y,Y) € X,.

Then by part (ii) of the previous lemma, we have (b, D), (e1, X1), (e2, Xg) €
X,. By part (i) of the previous lemma and part (ii) of Lemma 3.5 we
would then have (b, D)F,(e;, X1) and (b, D)F,(es, X2). This is a contra-
diction because N, is a causal net. O

We can now give the event structure semantics of A. First we note that
the definition of an occurrence net allows one to specify a conflict relation
between the elements of an occurrence net in a natural way. Instead of
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giving the general definition, we shall straightaway specify the conflict
relation for the occurrence net N = (B, E, F).

The conflict relation associated with N, denoted by #, is the least subset
of X x X given by:
— VLG EB. [6 £ GNEN 4D (in N) = 1746,
- V&,9,2 € X. [8#9<2 = a2 ]
Definition 4.4 The labelled event structure of N — denoted ESy — s
the quadruple ESy = (B, <,#,¢) where (recall that UFy = (B, E,F,$)
(i) <is < (= (F)*) restricted to E x E,

(i) # 1s # (the conflict relation associated with N') restricted to Ex E,
and

(i11) @ is ¢ restricted to E.
a

(E, <, #) is called the underlying event structure of ESy. By abuse of
notation we shall denote this triple also as ESy.

Recall that an event structure is a triple ES = (E', <", #') where

(i) E' is a set of events,

(i1) <'C F'x E'is a partial ordering relation called the causality relation

of ES,

(i) # C E' x E' is an irreflexive and symmetric relation called the
conflict relation of ES, and

(iv) # is required to be “inherited” via <’ in the sense that

Vei,eq,e3 € E’[el#'eg < ey = el#'e3].
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From the fact that N is an occurrence net it is easy to deduce that
ES) is indeed a (labelled) event structure. An initial portion of ESy,is
shown in Figure 6. The sguiggly lines represent the “minimal” elements
of the conflict relation. The remaining elements of the conflict relation
are precisely those that can be deduced using the axiom that conflict is
inherited via the causality relation.

eg Wﬁv\, e3 2B

Y LI\,
€ es Ss,
't

€2 €s

€5

Figure 6

The states of an event structure are called configurations. A configuration
represents a state of affairs that has been reached after the occurrence of
a set of events.

For an event to occur, all the events that lie in its “past” (as specified by
the causality relation of the relation) must have occurred. No two events
which are in conflict can both have occurred in a state of affairs repre-
sented by a configuration. These considerations underly the definition of
configurations.

Definition 4.5
Let ES = (E',<',#') be an event structure.

(i) Let d C E'. Then d is a configuration of ES iff d =] d (left-closed)
and #' N (d x d) = 0 (conflict-free),
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(i1) Cgg is the set of configurations of ES, and

(i) C}%L is the set of finite configurations (i.e. each member of C'};Zg is
a finite set) of ES.

a

Let di C dy with di,dy € Cggs. Then the state d; is “earlier” than
dy. In other words set inclusion is the natural causality relation over
configurations.

For ES)ys, we let Cy denote the set of finite configurations of ESy, the
event structure associated with A'. We can at last establish the main
result of this paper; the trace semantics of A as represented by (7, C) and
the event structure semantics of A as represented by ESy = (E, <,#)
“agree” with each other.

Theorem 4.6
(P, <), and (Cy, Q) are isomorphic posets. In fact g : P — Cgg given
by:

Vpe FS. g(N,=(B,,E,, F,))=E

s an isomorphism.

Proof We shall first show that ¢ is well-defined. Let p € F'S. Then we
must show that E, is left-closed and conflict-free in ESy = (E <, #).
Suppose that (e, X) € E, and (¢, X") € E such that (¢/,X") < (e, X).
Then (¢/, X')<(e,X) in N By part (ii) of Lemma 4.2, we then have
(¢, X") € E, as well. Hence E, is left-closed.

Suppose that (el,Xl) (e9, X3) € E, such that (e1, X1)#(ez, X2). Then
(61,X1)#(82,X2) in N. By deﬁmtmn of £ it follows that there exist
(el, X1),(ey, X3) € E and (b,D) € B such that the following condition
are satisfied:

(i) (6'1,Xi)é(61,X1) and (eIQ’XQé(e??X?)v

(i) (), X]) # (e}, X}), and

(i) (b, DYF(el, X,) and (5, D)F(ehy X3)
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Since (e1, X1), (e2, Xo) € E,, it follows once again from part (ii) of Lemma,
3.2 that (b,D)F,(e},X]) and (b, D)F,(ey, X3). This is a contradiction

because N, is a causal net. Thus ¢ is well-defined.

g is clearly 1-1. We must argue that ¢ is onto. So consider d € Cy. The
proof is by induction on k = |d]|.

k>0 Let (e, X') be a maximal element in d under <.
Let d = d—{(e, X)}. By the induction hypothesis, there exists
p' € FS such that g(N,y) = d'. In otherwords, E, = d'.

k=0  Then g(N))=0.

\4

Claim X C ¢y (recall Definition 3.1).

Proof of claim. Let (b,D) € X. If D = § then (b,0) € cs. Hence if
(b,0) & ¢y, then there exists (¢/, X') € E, such that (b,0) € X'. This fol-
lows from Definition 3.1. But this would imply, by part (i) of Lemma 4.2,
that (b, 0)F(e¢/, X") and (b,0)F (e, X). Clearly (e,X) # (¢/, X') because
d = E;, =d— {(e,X)}. Hence (¢/, X")4+(e, X) which in turn implies
that (e, X')#(e, X). This is a contradiction because d, by hypothesis, is
conflict-free.

If D # § then |D| = 1, because N is an occurrence net. Let D =
{(e/,X")}, then (&', X")F(b, D)F'(e, X). Since d is left-closed, this implies
that (¢/,X') € E,. This in turn implies that (b,D) € B,. Clearly
{(b, D)} is an anti-chain in N,. Hence by Lemma 3.7, there exists p’ €
FS such that N, €' Ny and (b, D) € ¢r. From Theorem 3.12, we know
that [p”] C [p']. Hence without loss of generality we can assume, using
Theorem 3.12 once again, that p” is a prefix of p’. If we start from N, and
follow the construction of N, then according to Definition 3.1, (6, D) & ¢,
just in case there exists (¢",X") € Ey — E,» such that (b,D) € X". As
before, this would imply that (e, X" )#(e, X') which contradicts the fact
that d is conflict-free.

Thus (b, D) € ¢y and consequently X C cy. Let cin[p' > ¢ in M. Then
from part (i) of Theorem 3.12, Lemma 3.3, and the definitions of the
various labelling functions it follows that ‘e C ¢/. Since A is contact-free
this implies that e is enabled at ¢’. In other words, p’e is a firing sequence
of . It is now routine to verify that E,, = d.
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Let p,p’ € F'S. Then according to Lemma 3.10, N, C' N, iff E, C E,.
This completes the proof.

Corollary 4.7 (T,C) and (Cx, C) are isomorphic posets.

Proof Follows at once from Theorem 3.12 and Theorem 4.6.

O

We have related (T,C) to (CN7 C) rather than to (E <, #) for technical
convenience. It turns out that (£, <,#') and (C v, C) are in some sense

“equivalent”representations, one can smoothly go back and forth between
these two structures.

To bring this out we need to introduce some additional notions concerning
posets. Let PO = (X, <) bea poset. Then for Y C X, Y will denote the
lL.u.b. of Y in PO if it exists. p € X is called a prime element iff for every
Y C X, s.t. LY exists p < UY implies that p < y for some y € Y. Let
PR denote the set of prime elements of PO. Then PO is prime algebraic
iff Ve €¢ X, x =U{p | p € PR and p < z}. Next we need the notions
of coherence and finite coherence. PO = (X, C) is said to be coherent
iff every pair-wise compatible subset ¥ C X has a Lu.b. in PO. PO
is said to be finitely coherent iff every finite pair-wise compatible subset
Y C X has a Lu.b. in PO. Finally, PO = (X, <) is said to be finitary
iff Ve € X. | z is a finite set. The event structure ES = (E', <[ #') is
finitary iff (E', <) is finitary. Clearly, ESy is a finitary event structure,
and (Cy, C) is a finitary poset.

Theorem 4.8
Let ES = (E',<,#') be a finitary event structure. Let C denote the
set of finite configurations of E£S. Then POgps = ( Q) satisfies the

following properties:
(i) POggs is finitary,
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(i) POgs is prime algebraic with {| e | e € E'} as its set of prime
elements, and

(111) POpgg s finitely coherent.
Proof The proof can be easily extracted from Nielsen et al. (1981).

O

Now let PO = (X, <) be a poset that satisfies the three properties stated
in Theorem 4.8. Let PR denote the set of prime elements of PO. Then
ESpo = (PR, <',#') is given by:

(i) <'is < restricted to PR x PR, and

(i) Vp1,p2 € PR. p1#t'p2 iff p1 ¥ p2 in PO.

Then it is easy to prove that ESpo is a finitary event structure. What is
more surprising and pleasant is the following.

Theorem 4.9

Let PO = (X, <) be a finitary, prime algebraic and finitely coherent poset.
Let ESpo = (PR, C',#') be defined as above. Then PO and (C'g;’m,g)
are isomorphic posets. In fact h: X — PR given by:

Vee X. h(z)={pe PR |p <z}

18 an wsomorphim.

Finally, suppose we are given a finitary event structure
ES = (B, <\ #)
with associated poset of finite configurations
POps = (C43,<).
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We may associate an event structure ES” = (E", <", #") with POgg
as outlined above. This is because, by Theorem 4.8, POpgg enjoys the
required properties. It is once again routine to prove that ES and ES”
are isomorphic event structures in the obvious sense.

Thus we are justified in claiming that ESy and (C'N, C) are “equivalent”
representations.

5 Discussion

In this paper we have formalized a number of notions of the behaviour
of elementary net systems. In particular, starting with the simple notion
of firing sequences we have derived the three notions of behaviour called
traces, processes and event structures. We have proved strong formal
relationships in terms of isomorphisms between the associated structures
(of traces, processes and finite configurations of the event structures).

In between we have managed to include the notion of unfoldings as a
stepping stone to the definition of the event structure behaviour. As
a mater of fact we could have defined the event structure behaviour of
an elementary net system directly in terms of its processes: The events
being the union of the events of the processes; one event being causally
dependent on another iff it is so in every process in which they both occur;
two events being in conflict iff they do not both appear in any process.
However we decided to include the unfolding here to illustrate how well
it fits into our framework. Once the notion of processes is worked out as
we have done here the unfolding “falls out” through the simple device of
“sluing” together the processes.

It is clear that our results are related to and depend upon the well-known
results relating occurrence nets, event structures and prime algebraic do-
mains Nielsen et al. (1981). It is also known that in a fairly general
setting traces and event structures can be related to each other Bednar-
czyk (1988), Kiehn (1988), Shields (1989) and Rozoy and Thiagarajan
(1987). However the questions addressed in this paper are of a different
nature. Here we have considered the relationship between the indepen-
dent applications of these models to characterize the behaviour of a given
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class of systems; in our case, elementary net systems which are the basic
system model of net theory.

The reader familiar with the various behavioural models (processes, traces,
event structures) will have no trouble in understanding our main results.
However he/she might be taken aback by the technical complexity in-
volved in proving these results. Of course it is entirely possible that a
much neater derivation of the results has been missed by us. It might
also be the case that some marginal advantage might have been gained
by permitting isolated elements in our nets. However, we feel that the
difficulties encountered in proving our results have to do with the fact
that — as already pointed out — the various behavioural notions have to
be related to each other in the context of studying the behaviour of fized
and restricted classes of systems. For example, in the literature on non-
sequential processes Best and Fernandez (1988) one will find that Lemma
3.6 and Theorem 3.8 together constitute definitzon of the notion of a pro-
cess for elementary net systems. Here we have had to prove them to be
consequences of our more basic definitions. Indeed deriving these two
results constitutes the bulk of the technical labour involved.

The informed reader might also be puzzled by the fact that our results
are formulated in terms of finite objects only. In particular, the event
structures are represented in terms of the poset of finite configurations
whereas the standard definition includes all configurations. Given the
fact that our event structures are necessarily finitary it turns out that
the representation in terms of finite configurations is adequate for our
purposes as detailed in Theorems 4.8 and 4.9. More, we are forced to
consider only finite configurations and finite processes since it is not clear
how the theory of trace languages extends to infinitary strings. Fortu-
nately this commitment to dealing with only finite objects involves no
permanent loss of information, concerning infinite behaviours. For in-
stance the prime algebraic domain of all configurations of a finitary event
structure can be easily obtained upto isomorphism by the standard ideal
completion of our chosen poset of finite configurations. This remark ap-
plies as well to the poset of finite processes . For instance, to obtain a
generalization of Corollary 4.7 we would only have to consider the ideal
completion of the poset of traces. As yet another example, the notion
of a computation advocated in Mazurkiewicz (1989), Reisig (1984) and
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Stark (1987) to eliminate certain fairness notions is simply defined as a
maximal ideal of (T',C) and hence (Cgs, ©).

We take these observations as an indication that in many of the applica-
tions, it is sufficient for our behavioural notions to cater for finite objects
(finite firing sequences, finite traces, finite processes, finite configurations)
only.

We now wish to point out that our work can be viewed in a broader
context. We have established two ways of associating a prime algebraic
coherent poset with an elementary net system; one via the processes and
one via the traces. In other words we have two maps — say f and ¢ —
from the class of elementary net systems to the class of prime algebraic
coherent posets. Our main result is that for each N, f(N) and g(N) are

isomorphic to each other.

It is well known that elementary net systems (viewed as safe Petri nets)
and prime algebraic coherent posets can be equipped with “behaviour
preserving” morphisms to yield the categories EAN and PPO respectively
(see Winskel (1987)). It turns out that the maps f and ¢ we have been
considering can be smoothly lifted to become a pair of functors from EN
to PPO. In this case our main result generalizes to the existence of a
natural isomorphism between these two functors in the sense of MacLane

(1971).

Going further down this road the informed reader may have noticed that
our notion of unfolding is different from the one presented in Winskel
(1987). The difference arises mainly because we do not allow isolated
elements in the underlying nets of elementary net systems. As a conse-
quence, the nice categorical characterization of the unfolding in Winskel
(1987) does not work in our case. However with a slightly different notion
of morphisms between elementary net systems we can construct a new
category EN’ of elementary net systems. Now we obtain a similar char-
acterization of the unfolding, namely the existence of a special morphism
from U F) (clearly, the unfolding of A is also an object in EN') to M in
EN' which is co-free over A . It so happens that this new notion of net
morphisms between elementary net systems (and in fact, between safe
Petri nets) possesses some pleasing properties. For instance, the empty
elementary net system is both the initial and final object in EA’. This
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might have some positive impact on categorical studies in net theory.
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