
Distributed Computing (1990) 4:45 57

@ Springer-Verlag 1990

Behavioural notions for elementary net systems

M. Nielsen 1, G. Rozenberg 2, and P.S. Thiagarajan 3

Computer Science Department, Aarhus University, Ny Munkegade, DK-8000 Aarhus, Denmark
2 Department of Mathematics, University of Leiden, NL-2300 RA Leiden, The Netherlands
3 School of Mathematics, SPIC Science Foundation, Madras 600017, India

Received May 31, 1989/in revised version December 22, 1989

M. Nielsen received a Master of
Science degree in mathematics and
computer science in 1973, and a
Ph.D. degree in computer science
in 1976 both from Aarhus Univer-
sity, Denmark. He has held aca-
demic positions at Department of
Computer Science, Aarhus Univer-
sity, Denmark since 1976, and was
visiting researcher at Computer
Science Department, University of
Edinburgh, U.K., 1977-79, and
Computer Laboratory, Cambridge
University, U.K., 1986. His re-
search interest is in the theory of
distributed computing.

Grzegorz Rozenberg received a
master of engineering degree from
the Department of Electronics (sec-
tion computers) of the Technical
University of Warsaw in 1964 and
a Ph.D. in mathematics from the
Institute of Mathematics of the Pol-
ish Academy of Science in 1968. He
has held academic positions at the
Institute of Mathematics of the Pol-
ish Academy of Science, the De-
partment of Mathematics of
Utrecht University, the Depart-
ment of Computer Science at
SUNY at Buffalo, and the Depart-
ment of Mathematics of the Uni-

versity of Antwerp. He is currently Professor at the Department
of Computer Science of Leiden University and Adjoint Professor
at the Department of Computer Science of the University of Colo-
rado at Boulder. His research interests include formal languages
and automata theory, theory of graph transformations, and theory
of concurrent systems. He is currently President of the European
Association for Theoretical Computer Science (EATCS).

Abstract. W e s tudy the re la t ionships be tween a n u m b e r

of behav iou ra l no t ions tha t have ar isen in the theory

of d i s t r ibu ted comput ing . In o rde r to sha rpen the under -

s t and ing of these re la t ionsh ips we app ly the chosen be-

hav ioura l no t ions to a bas ic ne t - theore t ic m o d e l of dis-

P.S. Th i aga ra j an received the
Bachelor of Technology degree
from the fndian Institute of Tech-
nology, Madras, India in 1970. He
was awarded the Ph.D. degree by
Rice University, Houston Texas,
U.S.A., in 1973. He has been a Re-
search Associate at the Massachu-
setts Institute of Technology, Cam-
bridge, a Staff Scientist at the Ge-
sellschaft fiir Mathematik und Da-
tenverarbeitung, St. Augustin, a
Lektor at Arhus University, ~rhus
and an Associate Professor at the
Institute of Mathematical Sciences,
Madras. He is currently a Professor

at the School of Mathematics, SPIC Science Foundation, Madras.
His research interest is in the theory of distributed computing

t r ibu ted systems cal led e l emen ta ry net systems. The be-

hav iou ra l no t ions tha t are cons idered here are t race lan-

guages, non-sequen t i a l processes, unfoldings and event

s tructures. The re la t ionsh ips be tween these no t ions are

b r o u g h t out in the process of es tab l i sh ing tha t for each

e l emen ta ry net system, the t race l anguage r ep resen ta t ion

of its b e h a v i o u r agrees in a s t rong way with the event

s t ruc ture r ep resen ta t ion of its behav iour .

Key words: N e t theory Trace l a n g u a g e s - N o n - s e q u e n -

t ial processes Event s t ructures

0 Introduction

Our a im here is to re la te a n u m b e r of b e h a v i o u r a l no-

t ions tha t have evolved m o r e or less i ndependen t ly of

each o ther wi th in the theory of d i s t r ibu ted comput ing .

The insights concern ing the re la t ionsh ips be tween these

no t ions are best b r o u g h t out in a concre te setting. Hence

46

we shall carry out our study by applying the selected

behavioural notions to characterize the behaviour of ele-

mentary net systems.

Elementary net systems are a fundamental system

model of net theory. This theory was initiated by [12]

and it has evolved into a full-fledged theory of distributed

systems and processes [-5, 6]. The elementary net system

model incorporates, at a primitive level, the basic fea-

tures of distributed systems. An elementary net system

consists of an underlying net which represents the struc-
ture of the system under study together with an initial
state. In this setting, a net is composed out of a set

of local atomic states called conditions, a set of local

atomic transitions called events and a fixed neighbour-

hood relation between the conditions and the events.

A state consists of a set of conditions that hold concur-

rently. The dynamics of the system is captured through

a simple transition rule which specifies how the system

can go from one state to another state through the occur-

rence of an event. Various tools have been proposed

to represent the behaviour of an elementary net system.

The most primitive among these is the notion of fir-
ing sequences. Here the system is viewed as generating

a set of strings over the events of the system. As a result,

all information concerning choice and concurrency is

"lost". At the other end of the spectrum, we have a

labelled event structure denoting the behaviour of a sys-

tem. In this representation we have a single poset of

labelled event occurrences where information concerning

the causal ordering, choice and concurrency associated

with the system is clearly represented.

In between these two extremes we also have the no-

tions of non-sequential processes and traces. A non se-

quential process is a labelled partially ordered set of

event occurrences and condition holdings that represents

a single run of the system. Here the distinction between

causal ordering and concurrency is re-established (in

contrast to the firing sequence approach); information

concerning choice is, however, "lost". In the trace ap-

proach, a single run of the system is represented as a

set of equivalent firing sequences. Here again informa-

tion concerning concurrency is "recovered" through the

use of a natural equivalence relation generated by the

structure of the system. One then applies the tools of

trace theory in a straightforward manner. As in the case

of non-sequential processes, information concerning

choice is lost.

Our aim here is to construct a framework in which

the behavioural notions we have mentioned above can

be seen to be smoothly related to each other. Indeed

yet another behavioural representation called the unfold-
ing will also fit into our framework. As a byproduct

we can show that trace theory with its independent ex-

istence "conf i rms" that the labelled event structure asso-

ciated with an elementary net system is the "correc t"

o n e .

The uninitiated reader is referred to [-1, 9, 11, 14,

18] for background material. We shall survey related

literature in the concluding section. Some of the results

established in this paper were reported (without proofs)

in the survey paper [19].

1 Elementary net systems

Elementary net systems, as the name suggests, are meant

to be the simplest system model of net theory. They

may be viewed as transition systems obeying a particular

principle of change. This view of elementary net systems

is explained in more detail in [18]. Here, for the sake

of brevity, we shall make a direct presentation.

Definition 1.1. A net is a triple N = (S, T, F) where S and

T a r e sets and F~_(S x T)w (Tx S) such that

(i) S ~ T = 0

(ii) domain (F) ~ range (F) = S ~ T where

domain (F)= {xJ3 y.(x, y)~F} and

range(F)={yl3x.(x, y)~F}. []

Thus a net may be viewed as a directed bipartite

graph with no isolated elements. Note that we admit

the empty net N O = (0, 0, 0).

S is the set of S-elements, T is the set of T-elements
and F is the flow relation of the net N=(S , T, F). In

diagrams the S-elements will be drawn as circles, the

T-elements as boxes and the elements of the flow relation

as directed arcs. Figure 1 is an example of a net.

Ifi this paper, the S-elements will be used to denote

the (local) atomic states called conditions and the T-ele-

ments will be used to denote (local) atomic changes-of-

states called events. The flow relation will model a fixed
neighbourhood relation between the conditions and

events of a system. Following usual practice, we shall

represent such nets of conditions and events by triples

of the form N = (B, E, F).

Let N = (B , E, F) be a net. Then X N = B w E is the

set of elements of N. Let XEXN. Then

" x = {YI(Y, x)~F} (the set ofpre-elements of x).

x ~ = {yp(x, y)~F} (the set of post-elements of x).

This "do t " notation is extended to subsets of XN in the

obvious way. For e~E we shall call ~ the set of pre-

conditions of e and we shall call e ~ the set of post-condi-
tions of e.

Definition 1.2. An elementary net system is a quadrupole

JV'= (B, E, F, ci,) where

(i) Nx=(B, E, F) is a net called the underlying net of

(ii) ci, - B is the initial case of ~ . []

bl b 2

b e4

1

bL (5

Fig. 1

47

bl b 2

I
/ e l [~ e 3 ~ E 2 e 4

I I e5

Fig. 2

In diagrams the initial case will be shown by "mark -

ing" the members of ci,. Figure 2 is an example of an

elementary net system. Through the rest of the paper

we shall refer to this net system as ~2 .

In this paper, we will only deal with elementary net

systems. Hence we will refer to them as net systems.

The dynamics of a net system are simple. A state (usually

called a case) of the system consists of a set of conditions

holding concurrently. An event can occur at a case iff

all its pre-conditions and none of its post-conditions hold

at the case. When an event occurs each of its pre-condi-

tions ceases to hold and each of its post-conditions be-

gins to hold. This simple and restrictive notion of states

and changes-of-states leads to a surprisingly rich and

sophisticated class of objects. Moreover, the essential fea-

tures of distributed systems can be isolated and studied

using net systems. First however we must formalize the

dynamics of net systems.

Let N = (B ,E ,F) be a net. Then , N _ ~ 2 B x E x 2 B

is the (elementary) transition relation generated by N
and is given by

' N = {(k, e, k ') l k - k ' = ' e A k ' - k = e ' }

Definition 1.3. Let JV'= (B, E, F, ci,) be a net system.

(i) Cw, the state space of W (also denoted as [ci,))

is the least subset of 2 B containing c~, such that if c~Cw
and (e, e, c')~----~N~ then c' ~Cw.
(ii) TS x = (C ~, E, by) is the transition system associat-
ed with JV" where 'w is ~N~ restricted to Cw x E

x C~. []

For the system Y2 shown in Fig. 2, {{hi, b2}, {hi, b5},

{b4, bE}, {b4, bs}, {b3, b2}, {b3, bs}, 0} is its state space.

We recall that a transition system is a triple

TS=(S ,A , ~) where S is a set of states, A is a set

of actions and ~ _~ S x A x S is the (labelled) transition

relation. According to the above definition there is a

natural way of explaining the dynamics of a net system

with the help of a transition system. We are now in

a position to bring out the particular and restricted no-

tion of change adopted in net theory.

Let JV" =(B, E, F, ci,) be a net system, c~Cx and e~E.
Then e is said to be enabled at c - denoted c[e) - iff

there exists c 'eCy such that (c, e, c')E ~d. We shall

often write c ~ ~ c' and sometimes we shall write c [e) c'

in place of(c, e, e')~ , ~.

Proposition 1.1. Let Y = (B, E, F, cl.) be a net system e~E
and c, c', cl, etc. members of C w. Then the following state-
ments hold.

(i) Cl e) e 2 A C 3 e) e 4

c 1 - - c 2 = c 3 - e 4 A-e_?z .~_e 1._- ~ c 4 - - e 3

(ii) c[e) .~ "e~_cAe" nc=O

(iii) c e~e' Ae e,c"=*'C'=C". []

(i) says that an event causes the same change- 'ha the

system state whenever it occurs; its p r e - c o n d i t i o n s _ ~

to hold and its post-conditions begin to hold.

(ii) says that an event is, enabled at a c a s e / f and only

if the fixed change associated with its occurrence is-possi-

ble at the case. Thus no. "side-condit ions" are4-1~volved

in the enabling of an event.

(iii) says that the transition systems associated with net

systems are deterministic. Hence in order to connect n p

with other approaches to the theory of distributed sys-

tems such as CCS or CSP one must go over to labelled
net systems. When one does so, it is possible to give

an operational semantics for CCS-like processes in ~r~as

of (labelled) net systems.

Basic concepts concerning the behaviour of distrib-

uted systems such as causality, choice, concurrency, and

confusion ("glitch") can now be cleanly defined - and

separated from each other - with the help of net systems.

The interested reader is referred to [18] for details.

We are ready to begin our study of the behaviour

of elementary net systems. For the sake of convenience

we fix an elementary net system JV=(B, E, F, ci,) and

work with it throughout what follows. We shall assume

that Jg" is contact-free. In other words, we shall assume,

V c~C~r. V e~E. [e" ~_c~ ~

As is well-known (see for instance [14]), this does not

at least for the study of behavioural issues - involve

any loss of generality.

We can now introduce the first and the most primi-

tive of our behavioural tools. The set of firing sequences
of JV - denoted F S x is the least subset of E* (recall

that JV = (B, E, F, ci,)) given by

(i) A e F S ~ and ci, EA)ci,.

(ii) Suppose peFSx., ci,~p)c and c e ~C' then peeFS,r

and ci, ~p e) c.

Thus E) is the natural "extension" of ,x. to {c~,}

x E * x C~. As may be guessed, A denotes the null se-

quence. We shall write FS instead of FSj/. for conve-

nience. For the system f 2 , some of its firing sequences

are e I e 2 e 4 , e 4 e I e 2 and e 3 e 4 e 5.

Firing sequences "hide" important aspects of the

behaviour of a net system. To bring out this deficiancy

more clearly, it will be convenient to define the notions

of concurrency and conflict.

Let el@e2 and el, e2~E. Let cECal. We say that

el and e2 can occur concurrently at c denoted

c [{ e l , e 2 }) - iff c[el) and c[e2) and

(~ weT) n (~ u e~) = 0.

48

Thus et and e 2 can occur concurrently at c iff they

can occur individually and their neighbourhoods are dis-

joint. For the system ~2 , at the initial case e~ and e4

can occur concurrently. Consequently, the firing se-

quences e~ eze 4 and e 4 e i e 2 and ea e4e 2 all represent the

same (non-sequential) stretch of behaviour of Jg;.

The "dua l " of the notion of concurrency is conflict.

Then we say that el and e 2 are in conflict at c iff c[ea>
and c [e2> but not c[{el, e2}>. Thus at c either el may

occur or e2 may occur but not both. The choice as to

whether el or e 2 will occur is assumed to be resolved

by the "envi ronment" of the system. In JK2, at the initial

case el and e 3 are in conflict. Hence the firing sequences

e~ e2 e4 and e3 e4 e5 represent two conflicting (alternative)

stretches of behaviour of J#2.

It is in this sense firing sequences hide information

concerning concurrency and conflict-resolution. We will

now see how the theory of trace languages can be applied

to extract information concerning concurrency from the

firing sequences.

2 The trace semantics

The theory of trace languages was introduced in [9]

to model the non-sequential behaviour of distributed

programs. The basic idea is to postulate a symmetric

and irreflexive independence relation over the letters of

an alphabet. The elements of the alphabet set represent

the actions that can be executed by a program. Two

actions that are in the independence relation are sup-

posed to occur concurrently whenever they occur "adja-

cent" to each other. This relation then naturally induces

an equivalence relation over the language which is a

sequential description of the behaviour of the program.

For details we refer the reader to [1]. Here we shall

straight away apply the notions of this formalism to net

systems.

Let I denote the independence relation associated

with JV" (which is actually generated by Nx = (B, E, F),

the underlying net of Y) ,

I = {(el, e2)[el, e2 EE A ('e l w e~) c~ ('e 2 ~ e~) = 0}.

Since I_~ E x E is irreflexive and symmetric, we have a

natural way of partitioning E* using the least congruence

relation generated by I via equations of the form e~ e2

= e z e l , where (el, ez)EI. To be specific, define ~ _ E *

x E* as,

def

p~c p' <=> 3 Pi, P2 ~E* 3(el, e2)~I.

p=p~eae2p2 and p'=plezeap2.

Then ~ = (~) * is the equivalence relation we want and

for p~E*,

def

[p] = {p'Ip'~E* and p' ~p} .

Let p~FS. Then it is well-known that [p]~_FS. (One

says that FS is consistent with I).

{ele2e 3 } { ele 2e z., ele l,e 2, e Le le 2 } {e3e/.e5, ez, e3e 5 }

(e le 2} {e le z., e4el} / (e3ez., eL.e a}

{e I} {ez} {e 3}

Fig. 3

def

Now F S / ~ = {[p] [p~FS} is the prefix-closed trace

language we associate with ~ . Throughout what follows

we denote FS /~ as T. Thus T (= F S / ~) is a "f iner"

representation of the behaviour of ~Ar as compared to

FS.
Once again it is well-known that each element of

T can be (up to isomorphism) uniquely represented as

a finite labelled poset of event occurrences where the

labels take values in E. It turns out that information

concerning choice can be recovered from T by imposing

an ordering relation over T.

c Tx T is given by:

def

t l ----- t2 <=> Vp~tl 3 p ' E t 2 . p ~Prefix(p').

Here Prefix(7) denotes the set of prefixes of the string 7.

It is easy to check that (T, _=) is a poset. Figure 3

shows an initial port ion of the poset of traces associated

with the net system ~22.

To "see" information concerning choice we define

a "compat ibi l i ty" relation over T as follows.

Let tl, t2 E T. Then

def

t~Ttz<=>3t~T, ti~_t and t z~ t

def

tl](t2 r not(t i T t2).

If t~](t2 then t1 and t2 represent two runs of Y in which

the individual choices that have been made to realize

ta are not all compatible with the choices that have been

made to realize t 2. In the example shown in Fig. 3,

{el e2e3}~'{e3}. It is easy to see that the choice of the

first occurrence of el in the firing sequence e~eze3 is

opposed to the choice of e3 in the firing sequence e3.

3 The finite processes of ~A/"

We now wish to find an alternative representation of

(T, ~). This representation will be in terms of the finite

processes of ~ . A l~rocess of JV" will be a labelled net
of the form N = (B , E, F, (~) where (/~,/~, if) is arestr ic ted

kind o f a n e t c a l l e d a c a u s a l n e t a n d O : B w E , B ~ E

(recall that J g ' = (B, E, F, ci,)) is the labelling function re-

49

quired to satisfy certain constraints. For a definition of

a process along these lines, see [14].

Here we shall define processes with the help of firing

sequences. This will enable us to build up the finite pro-

cesses of W inductively. Moreover, our method of con-

struction will enable us to obtain the unfolding of a net

system in a smooth fashion. As we will see, this method

of constructing processes will be very helpful for proving

the desired results. For a similar development of the pro-

cess notion see [3].
For each firing sequence p, we will define a process

No=(Bo, Eo, Fo, qgo). In doing so it will be convenient

to keep track of the conditions that hold in JV after

the run represented by the firing sequence p. This set

of conditions will be encoded as c o .

Definition 3.1. Let pEFS . Then No=(Bo, Eo, Fo, q~o) is

given by:

(i) p = A : Then

N A = (~b, q~, q~, ~b)and

C A = {(b, qS)l beci ,}
recall that dV = (B, E, F, c~,)

(ii) p 4: A. Let p = p' e and assume that ~/~,

= (Bo,, Ep,, Fo,, ~oo,) and c o, are defined. Then

N o = (Bo, Eo, Fo, %)wi th

E o = E o, w {(e, X)}
where X = {(b, D) lb e ~ e and (b, D) e co, },

B o = Bp, u X u Ywhere

Y - {(b, {(e, X)})]bee ' } ,

F o = F o, u (X x {(e, X)}) w ({(e, X)} x Y), and

~o o is defined by: V (z , Z) e B o u E o. (po((z, Z))

Finally, c o = (c o, - X) u Y []

It will turn out that N o as defined above is a labelled

net. For p = e l e 2 e 4 e s in the system Jg'2 we show N o

in Fig. 4. For convenience we have displayed (Po by writ-

ing the value of qoo(x) inside the graphical representation

of x for each x E B p u E o. We will follow this convention

through the rest of the paper.

In order to establish a relationship between the traces

of JV and its processes it is necessary to define an order-

ing relation over the processes of ~ .

lr

4 84)

Fig. 4

Definition 3.2

(i) The set of finite processes of JV is denoted as P~r

and is given by: PN={NolpeFS} where N o is as given

by Def. 3.1.

(ii) _c' _c PN x Px is defined as:

No = (Bo, Eo, Fo, (Po)c 'N o, = (Bo, ' Ep,, Fo,, coo') iff

B o_cB o, and E o_cEp, and Fo_cFo," []

We shall write P instead of Px.
Clearly _c' is a partial ordering relation, From now

on we let p and p' range over F S and e range over

E. We shall assume that for p e F S , Np =(Bp, Eo, Fp, (pp).
The set of elements c o as specified in Def. 3.1 will

play a crucial role in what follows. Notice that, in gener-

al, co--Bp4=O.
It will be convenient to extend q~o to B e w E p w c p

as follows. By abuse of notation, this extension is also

denoted as qo o.

V(b, D)ec o . (po((b, D))= b.

Since ~,0 o is a simple projection operation, from now

on we will not display it explicitly. Our major aim in

this section is to show the following:

(T, _~) and (P, _~') are isomorphic posets. In fact, f :

T ~P given by f ([p]) = N o is an isomorphism.

Along the way we shall also show that our notion of

a process "agrees" with the existing notion of a process

(when restricted to the finite ones). We need a number

of preliminary results.

In stating and proving these results, we will make

heavy use of Def. 3.1. All the undefined terms that may

crop up are to be understood with the help of Def. 3.1.

Lemma 3.3. q)o(cp)EC•. Moreover c i , [p) %(co) (in Y) .

Proo f

k=O.

k>O.

By induction on k = [p 1.

Clearly p = A and (PA (CA)= C/, by definition.

Let p = p ' e . Let c o, co,, X and Ybe as in Def. 3.1.

Set (Po" (co,) = c' and qop (co) = c.
By the induction hypothesis, ci ,~p')c ' . We know

that e is enabled at c' because p'e is a firing se-

quence. Hence we must show that c = (c ' - ~ e ~

F rom Def. 3.i, it follows that c o = (c p , - - X) w Y..
Consider b~c. Then there exists (b, D)ecp. Sup-

pose that (b, D) e Y Then bee ~ by the definition

of Y. Suppose that (b, D)ecp , - -X . Then b6~ by

the definition of X. Since (b, D)e co,, we have b e c'
by the induction hypothesis. Hence b e c ' - ~ We

have shown that c c_ (c' - ~ e) w e ~

Hence consider b ~ (c ' - ~ e) w e ~
If bee" then clearly (b, {(e, X)})e Y so that b~c.
If b e c ' - ~ then there exists (b, D)~cp, by the in-

duction hypothesis. Moreover (b, D) 6 X because

br176 Hence (b, D) e c p , - X and as a result bec.

T h u s (c ' - ~ we ~ []

Lemma 3.4. Np is a (labelled) net.

50

Proof Follows easily from Def. 3,1 by induction on

Ipl. []

The next result which is a technical one will turn out

to be very useful.

Lemma 3.5

(i) V(b, D)eBoc~co.(b, D) ' = 0 in N o.

(ii) V(y, Y)eSow E o .'(y, Y)-- Y in N o.

(iii) c o - B o = CA -- B o.
(iv) [p] =lEo]. In fact, :~e(p)=l~o~l(e)] for every eeE.

Proof We will simultaneously prove all the parts of the

lemma by induction on k-- [p I. Consequently the induc-
tion hypothesis will have four parts.

k = 0. Trivial.

k>0 . Let p = p ' e and co,, X and Y be as in Def. 3.1.

We will first prove that (e, X)~ Eo,.
Suppose (e, X)eEp,. Then by part (ii) of the in-

duction hypothesis, "(e, X) = X in No,. Hence for
each (b,D)eX, (e,X)e(b,D)" in Np,. Hence

(b, D) ' + 0 for each (b, D)eX. Now " e # 0 in X
because JV is contact-free. Hence X 4:0 by Lem-

ma 3.3 (applied to p').
So consider (b,D)eX. Then (b,D)ecp,. If
(b, D)ee o , - B o, then clearly (b, D) ~ is undefined

in No,. If (b, D)eB o, then (b, D) ' = 0 in N o, by
part (i) of the induction hypothesis. In either

case we have a contradiction. Hence (e, X)r
This shows that E o - E o, = {(e, X)}. Part (iv) of
the lemma now follows from part (iv) of the in-

duction hypothesis.

Next notice that B o = Bp, w X w Y and c o = (c o,
- X) w Y . . By the induction hypothesis, c o,

- B o, = CA--Bo,. It is now easy to show that e o
- B o = CA- Bp which establishes part (iii) of the
lemma.

To prove the first part of the lemma consider

(b, D)e B o c~ c p. Recall that cp=(co,- X) w Y.

Case 1. (b, D)e Y Then D = {(e, X)}.

Suppose that (b, D) ~ 4:0 in N o. Then there exists

an (eo, Xo)eE o such that ((b, D), (e0, Xo))eF o.
Recalling the definition of F o in terms of Fo,,
X, Y and e we can first rule out the possibility

((b, D), (eo, Xo))~Fo,. This is so because if this

were the case then (eo, Xo)eEo,. Two applica-
tions of part (ii) of the induction hypothesis yield

(b, D)e~ Xo) and (e, X)e~ D) in No,. But
this would lead to the known contradiction

(e, X)eEo,. Hence ((b, D), (eo, Xo))(:-Fo,.
From the definition of F o we can now conclude

that (eo, Xo)=(e, X). This implies that (b, D)ecp,.
If (b, D)~Bp, then we would once again, by part

(ii) of the induction hypothesis, have the contra-
diction (e, X)eEo,. Hence (b, D)~Bo,. But then,
by part (iii) of the induction hypothesis we now
have (b, D)ecA--Bp. We yet again have a contra-
diction because D= {(e, X)} 4:0 and every

member of cA is of the form (b', 0).

Case 2. (b, D) e c p , - X and (b, D)q~ Y
We know that (b, D)eBp. Since Bp = Bp, w X w Y
we can deduce that (b, D)eBp,. Now (b, D) ~ =0

in Np, by the induction hypothesis. Since

(b, D)r we now have (b, O)~ in N o as well
by the definition of Fp.
We have now established the first part of the
lemma.

It is now easy to establish the second part of
the lemma by appealing to Def. 3.1. []

We now wish to show that N o is a causal net. Recall
that a causal net is a net N'=(B', E',F') such that

V beB' . I'b I, I b'l < 1 and (F')* is a partial ordering rela-
tion (over B' w E').

Lemma 3.6. N o is a causal net.

Proof By induction on k = I P I.

k = 0. Trivial.

k>O. Let p = p ' e and assume as before that co,, X
and Y are as in Def. 3.1.

Consider (b, D) e B o = Bp, ~ X w Y
If (b, D)eY then (b, D) ' = 0 in Np by part (i) of
the previous lemma. If (b, D)eX then clearly

(b,D)~ {(e, X)} in N o by Def. 3.1 because
(b, D)" = 0 or is undefined in Np, by part (i) of
the previous lemma.

Suppose (b, D) e Bp, - X. Then I(b, D) ~ [_< 1 in Np,
by the induction hypothesis. Moreover
~ X) = X in Np by part (ii) of the previous lem-

ma. Hence I(b, D) ' I< 1 for each (b, D)eBp.
Now suppose that (b, D)eY. Recall that Bp

= Bp, w X w Y. Then D = {(e, X)} and by part (ii)
of the previous lemma, ~ D) = {(e, X)}.
Next suppose that (b, D)~X. If (b, D)(~Bp,, then

(b, D)eco,--Bo,. This implies that D = 0 by part
(iii) of the previous lemma and ~ D)= 0 in Np

by part (ii) of the previous lemma.
If (b, D)eXc~Bp, then ~ D)=D by part (ii) of
the previous lemma and [D] _< 1 by the induction

hypothesis. If(b, D)eBo,- -X then]'(b, D)[_< 1 in

N o , by the induction hypothesis.
We now wish to argue that Bp, c~ Y=0. So con-
sider (b, D)e Y. Then D = {(e, X)}. We know from
the proof of the previous lemma that (e, X)r
But (b, D)eBp, would imply by part (ii) of the

previous lemma that (e,X) eEp,. Hence

(b, D)(~B o, and thus Bp, c~ Y-0. Hence I~ D) I_<
1 in Np also.
To show that (Fo)* is a partial ordering relation

define depth: B o w Ep > No as follows:

V (x, X) e B o u E o.

[0, if (X, X) ~: CA,

depth((x, X)) =] 1 + max {depth ((y, Y)) I (Y, Y) e X},

t otherwise.

It is easy to verify by induction on [p [that depth
is a well-defined map.

Suppose (x,X) Fo(y, Y). Then clearly depth
((y, Y))> depth((x, X)). From this it follows easily

that (Fo)* is anti-symmetric. Clearly (Fo)* is ref-

lexive and transitive. []

We shall show in two steps that our process definition

agrees with the traditional one. In doing so we shall

denote (Fo)* by -<o" An anti-chain of a p.o. is a set of

mutually unordered elements.

Lemma 3.7. Let ~ _ B o be an anti-chain in N o (under the
p.o. relation <-o)" Then there exists p"6FS such that
Np,, ~ ' S o and d ~_ C p,,.

Proof By induction on k = I P 1.

k = 0. Clearly ~ = 0 ~ CA.

k > 0 . Let p = p ' e and co,, X, Y be as usual as given

in Def. 3.1.

Recall that B o = B o, ~ X ~ Y. If d _~ Y then ~ _~ c o

because c o = (co , - X)w Y. We are then done by

setting p" = p.

If ~_~ B o, then we are done thanks to the induc-

tion hypothesis. Next note that V(v, V)eX and

V(v', V')~Y, (v, V)<o(e, X)<o(v ' , V'). Hence we

cannot have both d c~ X :# 0 and 0 c~ Y+ 0.

Case I.

Case 2.

Then ~_~ B o, ~ X. Let ~ -- ~ c~ Bo,. Clearly ~1 is

an anti-chain in No,. By the induction hypothe-

sis, there exists p"eFS such that No,,___'N o, and

~1 ~_cp,,.
Let ~ 2 = d - ~ . Then ~2~_X--Bo,. But X~_%,.
Hence ~2~_%,--Bo,. By part (iii) of Lemma 3.5

we then have ~2-~ ca--Bo,. Since No,,_~'N o, we

know that Bo,,~B o, and this implies dz~_ca
-Bo, , . Once again by part (iii) of Lemma 3.5,

5z-~ co , , - Bo,,. Thus ~2-~ co,, and this establishes

_~ co,,. Clearly N o, _~' N o and hence No,, _ ' N o.

~ n Y+0.
Let ~a = ~--Y. We will first show that ~1 w X is

also an anti-chain in N o. To see this, first note

that "(e, X) = X in N o by part (ii) of Lemma 3.5.

By the previous lemma, N o is a causal net. More-

over g o = F*. Hence X is an anti-chain in N o.

da is an anti-chain in N o because ~ is an anti-

chain in N o. Suppose that (bl, D1)e~l, and

(bz, Dz)eX such that (bl, D1)<o(bz, D2) or

(b2, D2)<p(bl , D1).
Since ~c~Y#0, there exists (b3, D3)Ed~Y. If

(ba, D1)<o(b2, 92) then (bl, DO<o(b3, D3) also

because as observed earlier, (b2, D2)<o(e,X)
<o(b3, D3). This is a contradiction because

is supposed to be an anti-chain.

If (b2, D2)<(bl , D1) then there exists (b3, D3)~ Y
such that (b3, D3)Gp(bl, D1). This is because

(b2, 92) ~ = {(e, X)} and (e, X) ~ = Y in N o. More-

over N o is a causal net and <o = F*. The case

(b3, D3)=(bD D1) is ruled out because

(bl, D1)~dl = d - Y. The case (b3, D3)<(ba, D1) is

51

ruled out because (b3, D3)~ Y~_c o and hence by

part (i) of Lemma 3.5, (b3, D3) ~ = 0 in N o.

Thus indeed ~1 w X is an anti-chain in No. We

now have the situation considered in the pre-

vious case. Hence there exists p"~FS such that

No,, ~_' No and ~1 w X ~_c
Let ci, fp"}c" and ci, fp'}c'. We know that e

is enabled at c'. We shall show that e is enabled

at c" also. By Lemma3.3 , (po,(%,)=c'. Hence

~%, (X) = ~ by the definition of X. Since X _ co,,

we now have ~ ~%,,(co,,). In other words, ~

c". But then Y is contact-free. Hence e ~ ~ c" = 0.

Thus p"e is also a firing sequence. It is now

easy to check, using Def. 3.1, that No,,e~_'No. It

is also easy to check that ~ w Y~--%"e" Since

_~ ~a u Y,, we are done. []

We are now prepared to compare our process definition

with the " t radi t ional" definition. Notice that we have

already shown that N o is a causal net for each p~FS.

Theorem 3.8. (i) V(e, X)~Ep. ~o o(~ X))= ~ ~Oo((e, X)) and
(pp ((e, X) ~ = (g%((e, X))) ~

(ii) I f ~ _ B o is an anti-chain in Np then there exists
cE[ci,) in Y such that q%(d)~_c.
(iii) V(b, DO, (b, Da)~Bo. (b, D1)<o(b, D2)v(b, D2)

go(b, D1).

Proof (i) Follows easily by induction on I pl using Lem-

ma 3.5.

(ii) Follows easily from the previous lemma and Lem-

ma 3.3.

(iii) Suppose that (b,D O, (b, D2)EBp such that

{(b, D1), (b, D2)} is an anti-chain. By virtue of the pre-

vious lemma, it involves no loss of generality to assume

that (b, D1), (b, Dz)GC p. We now proceed by induction

on k- - Ip l .

k = 0 . This is impossible because in this case we would

have Bp = 0.

k > 0 . Let p=p 'e and co, and X and Ybe as in Def. 3.1.

Then co=(cp,-X)w Y. If (b, DO, (b, Dz)EY then

clearly 91 = 0 2 ={(e, X)}. If (b, Ol), (b, O2)~ %,
- - X then DI=D2 by the induction hypothesis.

So suppose that (b, DO~ %, - -X and (b, Dz)~ Y. Let

~%,(%,)=c'. Then by Lemma 3.3, e is enabled at

c' in ~ . But (b, D2)~ Y implies that bee ~ by the

definition of Y. And (b, D1)~co,--X implies that

bec' also. This is a contradiction because e is sup-

posed to be enabled at c'. []

We can now turn our attention to proving the main

result of this section. Once again, we will first establish

a number of intermediate results. These results will come

in handy also in the next section.

Lemma 3.9. I f p ~ p' then Np = No,.

Proof First suppose that 7~FS and (el, e2)~I such that

7el e2, 7e2elcFS. We claim that N~ =N~ To see

52

this, let ETe,--E~={(ei, X,)} and (el, X l) ' = Y t in g~e ,

and E, - - g T e 1 = { (e2 , X 2) } and (e2, X2)" = Y2 in N~
Since (el, e2)eI it follows from Def. 3.1 and part (i) of

Theorem 3.8 that (X1 u Y1) c~(X2 u I12) =0. It is now easy

to verify using yet again Def. 3.1 - that N~,~=N~

and also c~ = C 7 We can use this now to prove

our result.
So now suppose that p ~ p ' . Then there exist

p~ p . e F S such that p=p~, p ,=p ' and for l<<_i<n,

pi~Pi+l . Proceeding by induction on n, the result is
clearly true if n = l . Hence assume that n > l . Then

Pl ~P2 and this implies the existence of 7, 7 'eE* and

(el, e2)eI such that p 1 = ~ t e l e 2 7 ' and p z = ~ e 2 e l 7 '. By
the argument presented above, % = % and

c~ =C~e~e,. Hence No, =Np~. The required result now

follows by the induction hypothesis. []

Lemma 3.10. No~_'No,~=~Eo~_Eo,.

Proof

Trivial.

Assume that Eo~_Eo,. By part (ii) of Lemma 3.5, it

suffices to show that Bo~_Bp,. So consider (b, D)~B o.
Since N o is a net, "(b, D)u (b, D)" t 0 in N o. Suppose

that (e', X')e~ D). Then N o being a causal net, we

have "(b, D)= {(e', X')}. Clearly (e', X ') e E o. From

Def. 3.1 it fo l lows that b e(e')" (in ~) and

D = {(e', X')}. Once again from Def. 3.1 and the fact

that Eo~_Ep,, it follows that (b, D)eBo,.

If (e', X')e(b, D) ~ in No, then be'(e') (in ~) and

(b, D)e X'. Once again from Def. 3.1 and the fact that

Eo~_Eo,, it follows that (b, D)eBo,. []

Lemma 3.11. Let (e, X) e E o. Then (e, X) is a maximal

event in N o (under <0) iff there exists p' e~FS such that

p ~ p' e and {(e, X)} = E w e - Eo,.

Proof

Suppose that p ~ p ' e and (e, X)eEp,~-Ep, . Clearly

from Def. 3.1, it follows that (e, X) is a maximal event

in No, ~. But by Lemma 3.9, p ~ p ' e implies that N o
= No, ~. Hence (e, X) is a maximal event in N o also.

=~ Since (e ,X)eEo, p can be expressed as p = p l e p 2

such that Eo,e--Eo,={(e, X)}. We now proceed by

induction on k = I P21.

k=0 . Set p ' = p l .

k>0 . Let p=pxee 'p '2 . In other words p2=e'p'2 for

some e 'eE and p'aeE*. From the fact that

(e, X) is a maximal event in N o, it is easy to

deduce that (e, e')eI. Hence P ~ P l e'ep'2. The
required result now follows from the induction

hypothesis and Lemma 3.9. []

We are at last ready to prove the main result of this

section.

Theorem 3.12. (T, _=) and (R ~-') are isomorphic posers.

In fact, f : T > P given by

V p e F S . f ([p])= N o

is an isomorphism.

Proof First note that if p, p ' e F S such that p..~p' then

No = Np, by Lemma 3.9. Hence f is well-defined.

f is obviously surjective. To verify that it is injective,

assume that p, p ' e F S such that Np=Np,. We must show

that p ~ p ' . By part (iv) of Lemma 3.5, it is clear that

[p] = [p'[. We now proceed by induction on k = [p [.

k = 0. Clearly p = p' = A.

k>0 . L e t p = p l e l andp'=p' ie ' l .

Case I. e 1 =e~.

Let el = #1 = e. Furthermore, let Ep --Em = {(e, X)}

and E,, -- E,~ ={(e, X')}.By Lemma3.11 it follows

that both (e, X) and (e, X') are maximal events

in N, = No,. Since Np is a causal net and "(e, X)

= X and "(e, X ')= X', we can conclude that X c~

X ' = 0 in case X:~X' . But if X:#X ' and thus

X c~ X' = 0 then we would have a contradiction

to part (iii) of Theorem 3.8. This is because, for

each be~ we will have some (b, D) e X and some

(b, D')e X'.

Moreover by virtue of the fact that (e, X) and

(e, X') are maximal events, we can conclude that

X u X ' is an anti-chain in N o. Thus we must

have X = X' so that (e, X) = (e, X').

This implies that E p - E o , = Ep,-Ep~. Hence by

Lemma 3.10, Np,=No; and this in turn implies

that Pa~P'I by induction hypothesis. Clearly

P t e ~ p'~ e so that p ~ p'.

Case 2. e I ~ e'a.

Let E o - E m = {(el, X1)} and E p , - Ep~
= {(e'l, X'0}. By Lemma 3.11, (e'x, X]) is a maxi-

mal event in No,. Since No = No,, it is a maximal
event in Np as well. Hence once again by Lem-

ma3.11, there exists p"e ' l eFS such that p

p" e'l and No,, el = No,. Since p' = P'l e'l we have
arrived at the situation considered in Case 1.

This establishes that f is a bijection.

Now suppose that p, p ' e F S such that [p]m_[p'].

Then there exists p"e[p'] such that p is a prefix of p".

Clearly, by Def. 3.1, Np~_'Np,,. But then No,,=N p, by

Lemma 3.9. Hence Np~_'Np,.
Next assume that p, p ' e F S are such that No~_'Np,.

By part (iv) of Lemma 3.5, I pl < I p'l. The proof is by

induction on k = I p'l.

k = 0. Clearly p = p' = A.

k>0 . Let p ' = p l e . Let Ep,e--Eo,={(e,X)}. Suppose
that (e,X)(~Ep. Then Ep~_E m. By Lemma3.10,

this implies that Np __ 'No,. F rom the induction hy-

pothesis, we can conclude that [p]_= [Pl]- F rom

this we can further conclude that [p]__[p le]
= [p ,] .

53

So assume that, (e, X)~ER. (e, X) is a maximal
event in N~, by Lemma 3.11. Since N~,~'No,, it fol-

lows that (e, X) is a maximal event in N o as well.
Once again by Lemma 3.1, we can find p"eeFS
such that p~p"e and Eo,,~-Eo,,={(e, X)}. Since
p~p"e we must have No=N~,, ~. Since Eo~_E ~,
we can now conclude that Eo,,c_Ep~ (recall that

P'=Pl e and that Eo,-E m --{(e, X)}). This implies
that No,,~'N m and by the induction hypothesis
we then have [p"] ~_ [p~]. Finally this lets us to
conclude that [p"e]~_[ple] and since p,,~p"e
and p '=p~ e, we are done. []

4 The labelled event structure of ~

Our method of constructing the finite processes of tar

leads to a simple definition of the unfolding of

Definition 4.1. The unfolding of ~g" - denoted as UF~
is the quadruple UFw=(B, E,, F, ~), where (keeping in

mind that N~=(B,, Eo, E,) for each p~FS as specified
in Def. 3.1.)

(i) /~ = U Bp,
p~FS

(ii) s ~J Eo,
o~FS

(iii) i f - ~ Fo, and
peFS

(iv) V((x, X)eBwE.O(x, X))=x. []

As an example, part of the unfolding of ~#~ is shown
in Fig. 5.

N = (/~,/~, F) is called the underlying net of UF~. It

is easy to check that N is indeed a net. 0:/~ ~/~ ~ B w E
so that UF~ is a labelled net. Our first task is to show

t

~r

/ Fig. 5

)
r

),

that N is an occurrence net in the sense of [11]. Before

doing so it will be convenient to adopt some notations
concerning posets.

Let PO =(X, _<) be a poset and Y~_X.
Then ~Y={xeXl~y~Y.y<x} . ~Y={x~X[3yeY.x

<y}. In case Y={y} is a singleton we shall write "[y(~y)
instead of T {y} (+ {y})- For Y_ X we say that Y is compat-
ible (bounded) and this is denoted by Y]" - in case

there exists x e X such that y<_x for every yeY. If Y

= {Ya, Y2} then we shall write Yl Ty2 instead of {y~, Y2} T.
y~J[y2 will denote the negation of Y~TY2. Y is said to
be pair-wise compatible in case y~ ~ Y2 for every y~, y2~ Y.

Recall that an occurrence net is a net N'=(B' , E', F')

such that:

(i) Vb'cB'.l'b'l<_l,
(ii) (F')* is a partial ordering relation, and

(iii) V el, ezeE'. [el =~ e2 a ~ n ' e2 + 0 =>~ el c~ 3" e2 =0] .

Here Tel and Te 2 are assumed to be defined w.r.t, the
partial ordering relation _<'= (F')*.

Through the rest of this section we shall assume that
N = (/~,/~, F) is the underlying net of the unfolding of
~/" as specified in Def. 3.1. We set J?=/3w/~ and _

=(F)*. For each peFS we shall assume Na=(Bo, Eo, F~)
as specified in Def. 3.1. We set Xp=BowE p and _<p

=(Fo)*. We shall show in two steps that b) is an occur-
rence net.

Lemma 4.2. Let (x, X), (y, Y)eX.

(i) (x, X) if(y, Y) iff (x, X)e Y,
(ii) (x, X)<_(y, Y) iffV peFS

 9 [(y , Y) e x o ~ (x, x) ~ x p A (x, x) <_ o (y, r)] .

Proof By the definition of F we know that (x, X) F0' , Y)
iff there exists peFS such that (x, X) Fp(y, Y). By part

(ii) of Lemma 3.5 we then have that (x, X)Fp(y, Y) iff
(x, X)e g

To prove the second part note that (x, X)_<(y, Y) iff

there exist (xl, X0, (xz, X2) , (x,, X,)eX(n>>_ 1) such
that (x, X)=(x 1, X0, (x,, X,)=(y, Y) and for l<_i<n,
(xl, X~) ff(xi+ 1, Xi+ ~). We now do induction on n.

n = l .

n > l .

There is nothing to prove.

By the first part of the lemma, (x~, X1) le(x2, X2)

iff (xl, X1)~X2. But (xl, X1)~X2 iff Vp~FS,
(xz, X2)eXp implies that (Xl, X1) Fp(x2, X2)
which in turn implies that (x t, X1)EXp as well.
This follows once again from part (ii) of Lem-

ma 3.5. The required result now follows from the
induction hypothesis. []

Theorem 4.3. ~--(/~,/~, if) is an occurrence net.

Proof Let (b, D)eB. Suppose that (e~, XO P(b, D) and
(e2, X2)if(b, D). Then by the first part of the previous
lemma, (ej, X1), (ez, X2)eD. By the definition of /3 we
know that, for some p~FS, (b, D)EBp. By part (ii) of

Lemma 3.5, ~ D)=D in Np. But then I D I < 1 because

No is a causal net. Hence (el, X 0 = (e z , Xz).
Clearly _< is reflexive and transitive. So assume that

54

(x,X), (y, Y) ~ g such that (x,X)<_(y, Y) and (y, Y)~
(x, x).

Let p~FS be such that (y, Y)~Xp. Then by part (ii)

of Lemma 3.2, (x, X)EXp and (x, X)<p(y, Y). Since

(x, X)~Xp, (y, Y)<(x, X) would imply once again by the
second part of the previous lemma that (y, Y)<p (x, X).
Hence (x, X)= (y, Y), because Np is a causal net, and so
<p is anti-symmetric.

Now suppose that (b, D)~B and (e~, Xa), (e2, X2)~E
are such that (e~, X04=(e2, X2) and (b, D) P(e~, Xt)

and (b,D) ff(e2, X2). We must prove that T(e~,X0

T(e2, X2) =0. Suppose (y, Y)~T(e~, XI) c~ ~'(e2, X2). Let
p6FS such that (y, Y)~X~.

Then by part (ii) of the previous lemma, we have

(b, D), (e~, X~), (e2, X2)~X~. By part (i) of the previous
lemma and part (ii) of Lemma 3.5 we would then have

(b, D) F~(ea, X 0 and (b, D) F~(e2, X2). This is a contradic-
tion because Np is a causal net. []

i

i

Fig. 6

We can now give the event structure semantics of

~ . First we note that the definition of an occurrence
net allows one to specify a conflict relation between the
elements of an occurrence net in a natural way. Instead

of giving the general definition, we shall straightaway
speci~ the conflict relation for the occurrence net
N = (B,/~, if).

The conflict relation associated with N, denoted by
~=, is the least subset of 2~ x 3~ given by:

Definition 4.4. The labelled event structure of Y - denot-

ed ES~r is the quadruple ES~c=(E, <_, # , (p) where
(recall that U F~=(B, E, F, (~))

(i) < is _< (= (F)*) restricted to/~ x/~,

(ii) # is ~: (the conflict relation associated with N) re-
stricted to/~ x E, and

(iii) (p is ~b restricted to/~. []

(/~, _<, #) is called the underlying event structure of ESpy..
By abuse of notation we shall denote this triple also
as ESx.

Recall that an event structure is a triple ES=(E', <',
') where

(i) E' is a set of events,

(ii) < ' _ E ' x E' is a partial ordering relation called the
causality relation of ES,

(iii) # ' ~_ E' x E' is an irreflexive and symmetric relation
called the conflict relation of ES, and

(iv) # ' is required to be "inherited" via < ' in the sense
that

V el, e2, e3eE'[el # ' e2 <_' e3 ~ el #'e3].

From the fact that N is an occurrence net it is easy

to deduce that ES~ is indeed a (labelled) event structure.
An initial portion ofES X is shown in Fig. 6. The sguiggly

lines represent the "minimal" elements of the conflict
relation. The remaining elements of the conflict relation

are precisely those that can be deduced using the axiom
that conflict is inherited via the causality relation.

The states of an event structure are called configura-
tions. A configuration represents a state of affairs that

has been reached after the occurrence of a set of events.
For an event to occur, all the events that lie in its

"past" (as specified by the causality relation of the rela-
tion) must have occurred. No two events which are in

conflict can both have occurred in a state of affairs repre-

sented by a configuration. These considerations underly
the definition of configurations.

Definition 4.5. Let ES = (E', < ' , # ') be an event struc-
ture.

(i) Let d~_E'. Then d is a configuration of ES iff d--~.d
(left-closed) and # ' c~ (d • d) = 0 (conflict-free),

(ii) CEs is the set of configurations of ES, and
(iii) ,~Est'gi" is the set of finite configurations (i.e. each

member of C ~ " is a finite set) of ES. []

Let dl~_d 2 with dl, d2~CEs. Then the state d I is
"earlier" than d2. In other words set inclusion is the
natural causality relation over configurations.

For ES~r we let C~r denote the set of finite configura-
tions of ESd, the event structure associated with ~ We
can at last establish the main result of this paper; the

trace semantics of JV as represented by (T, _~) and the
event structure semantics of Jff as represented by ESx
= (/~, < , 4b) "agree" with each other.

Theorem 4.6. (P, ~'), and (Cx, -~) are isomorphic posers.
In fact g: P ~ C~s given by:

V p ~ FS. g (Np = (Bp, Ep, Fp)) = Ep

is an isomorphism.

Proof We shall first show that g is well-defined. Let
peFS. Then we must show that Ep is left-closed and
conflict-free in ES~v.=(F,, <_, #). Suppose that (e, X)eEp
and (e', X')E/~ such that (e', X')<(e, X). Then (e', X')_<

55

(e, X) in N. By part (ii) of Lemma 4.2, we then have

(e', X')eE o as well. Hence E o is left-closed.
Suppose that (e~,XO, (e~ ,Xz)cE o such that

(el, X1):~(e2, X2). Then (el, X1):~(e2, X2) in N. By defi-
nition of ~ it follows that there exist (e'l, X'i), (e~, X~)s/~
and (b, D)~/3 such that the following conditions are sat-
isfied:

(i) (el, X',)2~(ea, Xa) ' ' ^ ' _ and (e2, X2)~ (e2, X2) ,

(ii) (e'b X' 0 ~ (e'2, X'2), and
(iii) (b, D) F(e'~, X'~) and (b, D) ^ ' F(e2, X'2).

Since (el, X0, (e2, Xz)~E o, it follows once again from
part (ii) of Lemma3.2 that (b,O) Fo(e'~,X'~) and

(b, D)Fo(e'2, X'z). This is a contradiction because N o is
a causal net. Thus g is well-defined.

g is clearly 1-1. We must argue that g is onto. So
consider de Cw. The proof is by induction on k = I d[.

k=0. Then g(Nz)=0.

k>0 . Let (e, X) be a maximal element in d under <.

Let d '= d-{(e , X)}. By the induction hypothesis,
there exists p'~FS such that g(No,)=d'. In other-

words, Eo, = d'.

Claim. X ~_c o, (recall Def. 3.1).

Proof of claim. Let (b, D)~X. If D = 0 then (b, O)~CA.
Hence if(b, O)r then there exists (e', X')eE o, such that
(b, 0)eX'. This follows from Def. 3.1. But this would im-

ply, b2(part (i) of Lemma 4.2, that (b, 0)ff(e', X') and

(b, O) F(e, X). Clearly (e, X)+(e', X') because d'=E o,
= d - { (e , X)}. Hence (e', X')@(e, X) which in turn im-
plies that (e', X')#e (e, X). This is a contradiction because
d, by hypothesis, is conflict-free.

If D + 0 then [D [= 1, because]V is an occurrence net.

Let D = {(e', X')}, then (e', X') if(b, D) F(e, X). Since d is
left-closed, this implies that (e', X')~Eo,. This in turn im-

plies that (b, D)EBo,. Clearly {(b, D)} is an anti-chain in

No,. Hence by Lemma 3.7, there exists p"~FS such that

No,,~_'N o, and (b, D)eco,,. From Theorem 3.12, we know
that [p"] _ [p']. Hence without loss of generality we can
assume, using Theorem 3.12 once again, that p" is a pre-

fix of p'. If we start from No,, and follow the construction

of N o, then according to Def. 3.1, (b, D)r o, just in case
there exists (e", X")~Eo.-Eo,, such that (b, D)eX". As
before, this would imply that (e", X")# (e, X) which con-
tradicts the fact that d is conflict-free.

Thus (b,D)~c o, and consequently X~_co,. Let
ci,~p') c' in ~ . Then from part (i) of Theorem 3.12, Lem-
ma 3.3, and the definitions of the various labelling func-
tions it follows that "e_~ c'. Since Jff is contact-free this
implies that e is enabled at c'. In other words, p'e is

a firing sequence of ~ . It is now routine to verify that

Eo, e=d.
Let p, p'eFS. Then according to Lemma3.10,

N o ~_'N o, iff E o___ Eo,. This completes the proof. []

Corollary 4.7. (T, _~) and (C ~. ~_) are isomorphic posets.

Proof Follows at once from Theorem 3.12 and Theo-
rem 4.6. []

We have related (T, _=) to (C~, _) rather than to (/~, <,
~) for technical convenience. It turns out that (/~, <, :~')

and (Cy, _) are in some sense "equivalent" representa-
tions, one can smoothly go back and forth between these
two structures.

To bring this out we need to introduce some addi-
tional notions concerning posets. Let PO=(X, <) be a
poset. Then for Y~_X, IIY will denote the 1.u.b. of Y in

PO if it exists, p e X is called a prime element iff for every
Y~_X, s.t. lAY exists p < l l y implies that p<_y for some

y e Y Let PR denote the set of prime elements of PO.
Then PO is prime algebraic iff Vx~X, x=lA{plp~PR
and p <x}. Next we need the notions of coherence and
finite coherence. PO=(X, <_) is said to be coherent iff

every pair-wise compatible subset Y~_X has a 1.u.b. in

PO. PO is said to be finitely coherent iff every finite
pair-wise compatible subset Y~_X has a 1.u.b. in PO.
Finally, PO=(X, <) is said to be finitary iff V x s X . ~.x
is a finite set. The event structures ES=(E', <', #e') is
finitary iff (E', < ') is finitary. Clearly, ESx is a finitary

event structure, and (Cx, -) is a finitary poset.

Theorem4.8. Let ES=(E', <_, ~') be a finitary event
structure. Let ,~esr~gi" denote the set of finite configurations
of ES. Then POEs--t,~EstC'Yi", ~_) satisfies the following prop-
erties:

(i) POts is finitary,
(ii) POts is prime algebraic with {~e[e~E'} as its set

of prime elements, and
(iii) POts is finitely coherent.

Proof The proof can be easily extracted from [-11]. []

Now let PO=(X, <) be a poset that satisfies the

three properties stated in Theorem 4.8. Let PR denote
the set of prime elements of PO. Then ESpo
=(PR, <', 4e') is given by:

(i) _<' is _< restricted to PR x PR, and

(ii) Vpl, p z c P R . p l ~'P2 iffPlXP2 in PO.

Then it is easy to prove that ESpo is a finitary event

structure. What is more surprising and pleasant is the
following.

Theorem 4.9. Let PO =(X, <) be a finitary, prime alge-
braic and finitely coherent poser. Let ESpo=(PR , <_', ~ ')
be defined as above. Then PO and tr~Yi" ~_) are ~ ' ~ E S P o ,

isomorphic posers. In fact h: X >~(P R) given by:

V x e X . h(x) = {p~PRIp < x}

is an isomorphism. []

Finally, suppose we are given a finitary event struc-
ture

Es =(E', _<', ~:')

with associated poset of finite configurations

__ f i n C). P O t s - (CEs,

We may associate an event structure ES"=(E", <_",
~") with POEs as outlined above. This is because, by

56

Theorem 4.8, PO~s enjoys the required properties. It is
once again routine to prove that ES and ES" are

isomorphic event structures in the obvious sense.

Thus we are justified in claiming that ES/< and

(C~, _~) are "equivalent" representations.

5 Discussion

In this paper we have formalized a number of notions

of the behaviour of elementary net systems. In particular,

starting with the simple notion of firing sequences we

have derived the three notions of behaviour called traces,

processes and event structures. We have proved strong

formal relationships in terms of isomorphisms between

the associated structures (of traces, processes and finite

configurations of the event structures).

In between we have managed to include the notion

of unfoldings as a stepping stone to the definition of

the event structure behaviour. As a mater of fact we

could have defined the event structure behaviour of an

elementary net system directly in terms of its processes:

The events being the union of the events of the processes;

one event being causally dependent on another iff it is

so in every process in which they both occur; two events

being in conflict iff they do not both appear in any pro-

cess. However we decided to include the unfolding here

to illustrate how well it fits into our framework. Once

the notion of processes is worked out as we have done

here the unfolding "falls out" through the simple device

of "gluing" together the processes.

It is clear that our results are related to and depend

upon the well-known results relating occurrence nets,

event structures and prime algebraic domains [11]. It

is also known that in a fairly general setting traces and

event structures can be related to each other [2, 7, 15,

16]. However the questions addressed in this paper are

of a different nature. Here we have considered the rela-

tionship between the independent applications of these

models to characterize the behaviour of a given class

of systems; in our case, elementary net systems which

are the basic system model of net theory.

The reader familiar with the various behavioural

models (processes, traces, event structures) will have no

trouble in understanding our main results. However he/

she might be taken aback by the technical complexity

involved in proving these results. Of course it is entirely

possible that a much neater derivation of the results has

been missed by us. It might also be the case that some

marginal advantage might have been gained by permit-

ting isolated elements in our nets. However, we feel that

the difficulties encountered in proving our results have

to do with the fact that - as already pointed out the

various behavioural notions have to be related to each

other in the context of studying the behaviour of fixed
and restricted classes of systems. For example, in the

literature on non-sequential processes [4] one will find

that Lemma 3.6 and Theorem 3.8 together constitute def-
inition of the notion of a process for elementary net sys-

tems. Here we have had to prove them to be conse-

quences of our more basic definitions. Indeed deriving

these two results constitutes the bulk of the technical

labour involved.

The informed reader might also be puzzled by the

fact that our results are formulated in terms of finite

objects only. In particular, the event structures are repre-

sented in terms of the poset of finite configurations

whereas the standard definition includes all configura-

tions. Given the fact that our event structures are neces-

sarily finitary it turns out that the representation in terms

of finite configurations is adequate for our purposes as

detailed in Theorems 4.8 and 4.9. More, we are forced

to consider only finite configurations and finite processes

since it is not clear how the theory of trace languages

extends to infinitary strings. Fortunately this commit-

ment to dealing with only finite objects involves no per-

manent loss of information, concerning infinite behav-

iours. For instance the prime algebraic domain of all
configurations of a finitary event structure can be easily

obtained upto isomorphism by the standard ideal com-

pletion of our chosen poser of finite configurations. This

remark applies as well to the poset of finite processes.

For instance, to obtain a generalization of Corollary 4.7

we would only have to consider the ideal completion

of the poset of traces. As yet another example, the notion

of a computation advocated in [10, 13, 17] to eliminate

certain fairness notions is simply defined as a maximal

ideal of(T, _) and hence (CEs, -~).

We take these observations as an indication that in

many of the applications, it is sufficient for our behav-

ioural notions to cater for finite objects (finite firing se-

quences, finite traces, finite processes, finite configura-

tions) only.

We now wish to point out that our work can be

viewed in a broader context. We have established two

ways of associating a prime algebraic coherent poset

with an elementary net system; one via the processes

and one via the traces. In other words we have two

maps - say f and g - from the class of elementary net

systems to the class of prime algebraic coherent posets.

Our main result is that for each ~,, f (Jff) and g (Y)

are isomorphic to each other.

It is well known that elementary net systems (viewed

as safe Petri nets) and prime algebraic coherent posets

can be equipped with "behaviour preserving" morph-

isms to yield the categories & ~ and ~ O respectively

(see [20]). It turns out that the maps f and g we have
been considering can be smoothly lifted to become a

pair of functors from gJg" to ~ (9 . In this case our

main result generalizes to the existence of a natural

isomorphism between these two functors in the sense

of [8].

Going further down this road the informed reader

may have noticed that our notion of unfolding is different

from the one presented in [20]. The difference arises

mainly because we do not allow isolated elements in

the underlying nets of elementary net systems. As a con-

sequence, the nice categorical characterization of the un-

folding in [20] does not work in our case. However with

a slightly different notion of morphisms between elemen-

tary net systems we can construct a new category gJV'

of elementary net systems. Now we obtain a similar char-

57

acter izat ion of the unfolding, namely the existence of

a special morph i sm from UF~ (clearly, the unfolding

of Jg" is also an object in gJg") to ~A# in E Y ' which

is co-free over ~ . It so happens that this new no t ion

of net morph i sms between elementary net systems (and

in fact, between safe Petri nets) possesses some pleasing

properties. For instance, the empty elementary net sys-

tem is bo th an init ial and final object in gJV' . This might

have some positive impact on categorical studies in net

theory.

Acknowledgements. This work has been part of joint work of
ESPRIT Basic Research Actions CEDISYS and DAEMON from
which support is acknowledged. The third author acknowledges
support from the Dutch National Concurrency Project REX spon-
sored by NFI. The authors also wish to thank two anonymous

referees for valuable comments.

References

1. Aalbersberg I J, Rozenberg G (1986) Theory of traces. Technical
report no. 86-16, Institute of Applied Mathematics and Com-
puter Science, University of Leiden, Leiden, The Netherlands

2. Bednarczyk M (1988) Categories of asynchronous systems.
Ph.D. thesis, Computer Science Department, University of Sus-
sex, Brighton, G.B.

3. Best E, Devillers R (1987) Sequential and concurrent behaviour
in Petri net theory. TCS 55:87 136

4. Best E, Fernandez C (1988) Non-sequential processes: a Petri
net view. EATCS Monographs on Theoretical Computer Sci-
ence 13. Springer, Berlin Heidelberg New York

5. Brauer W, Reisig W, Rozenberg G (1987) Advances in Petri
nets 1986 part I. Lect Notes Comput Sci 254

6. Brauer W, Reisig W, Rozenberg G (1987) Advances in Petri

nets 1986 part II. Lect Notes Comput Sci 255
7. Kiehn A (1988) On the interrelation between synchronized and

non-synchronized behaviour of Petri nets. J Inf Process Cybern

2:3-18
8. Mac Lane S (1971) Categories for the working mathematician.

Springer, Berlin Heidelberg New York
9. Mazurkiewicz A (1978) Concurrent program schemes and their

interpretation. DAIMI report PB-78. Computer Science De-
partment, Aarhus University, Aarhus, Denmark

10. Mazurkiewicz A (1989) Basic notions of trace theory. Lect
Notes Comput Sci 354:285-363

11. Nielsen M, Plotkin G, Winskel G (1981) Petri nets, event struc-
tures and domains, Part I. TCS 13:85-108

12. Petri CA (1962) Kommunikation mit Automaten. Institut ffir
Instrumentelle Mathematik, Schriften des IIM Nr 2

13. Reisig W (1984) Partial order semantics versus interleaving se-
mantics for CSP-like languages and its impact on fairness. Lect
Notes Comput Sci 172:403~413

14. Rozenberg G (1987) Behaviour of elementary net systems. Lect
Notes Comput Sci 254:60-94

15. Rozoy B, Thiagarajan PS (1987) Event structures and trace
monoids. Technical report 87-47, Laboratoire d'Informatique
Th6orique et Programmation University of Paris VII Paris,

France
16. Shields MN (1989) Behavioural presentations. Lect Notes Com-

put Sci 354:673-689
17. Stark EW (1987) Concurrent transition systems and semantics

of process networks. 14th ACM Conference on Principles of
Programming Languages 199 210

18. Thiagarajan PS (1987) Elementary net systems. Lect Notes

Comput Sci 254:26 59
19. Thiagarajan PS (1988) Some behavioural aspects of net theory.

Lect Notes Comput Sci 317:630-653
20. Winskel G (1987) Event structures. Lect Notes Comput Sci

255 : 325-392

