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Abstract. W e  s tudy the re la t ionships  be tween  a n u m b e r  

of behav iou ra l  no t ions  tha t  have ar isen  in the theory  

of d i s t r ibu ted  comput ing .  In  o rde r  to sha rpen  the under -  

s t and ing  of these re la t ionsh ips  we app ly  the chosen  be- 

hav ioura l  no t ions  to a bas ic  ne t - theore t ic  m o d e l  of dis- 
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t r ibu ted  systems cal led e l emen ta ry  net  systems. The  be- 

hav iou ra l  no t ions  tha t  are cons idered  here are  t race  lan-  

guages,  non-sequen t i a l  processes,  unfoldings  and event  

s tructures.  The  re la t ionsh ips  be tween  these no t ions  are  

b r o u g h t  out  in the process  of  es tab l i sh ing  tha t  for each 

e l emen ta ry  net  system, the t race l anguage  r ep resen ta t ion  

of  its b e h a v i o u r  agrees  in a s t rong  way  with  the event  

s t ruc ture  r ep resen ta t ion  of its behav iour .  

Key words: N e t  theory  Trace  l a n g u a g e s -  N o n - s e q u e n -  

t ial  processes  Event  s t ructures  

0 Introduction 

Our  a im here is to  re la te  a n u m b e r  of  b e h a v i o u r a l  no-  

t ions tha t  have evolved m o r e  or  less i ndependen t ly  of  

each o ther  wi th in  the theory  of  d i s t r ibu ted  comput ing .  

The  insights  concern ing  the re la t ionsh ips  be tween  these 

no t ions  are  best  b r o u g h t  out  in a concre te  setting. Hence  
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we shall carry out our study by applying the selected 

behavioural notions to characterize the behaviour of ele- 

mentary net systems. 

Elementary net systems are a fundamental  system 

model of net theory. This theory was initiated by [12] 

and it has evolved into a full-fledged theory of distributed 

systems and processes [-5, 6]. The elementary net system 

model incorporates, at a primitive level, the basic fea- 

tures of distributed systems. An elementary net system 

consists of an underlying net which represents the struc- 
ture of the system under study together with an initial 
state. In this setting, a net is composed out of a set 

of local atomic states called conditions, a set of local 

atomic transitions called events and a fixed neighbour- 

hood relation between the conditions and the events. 

A state consists of a set of conditions that hold concur- 

rently. The dynamics of the system is captured through 

a simple transition rule which specifies how the system 

can go from one state to another  state through the occur- 

rence of an event. Various tools have been proposed 

to represent the behaviour of an elementary net system. 

The most  primitive among these is the notion of fir- 
ing sequences. Here the system is viewed as generating 

a set of strings over the events of the system. As a result, 

all information concerning choice and concurrency is 

"lost".  At the other end of the spectrum, we have a 

labelled event structure denoting the behaviour of a sys- 

tem. In this representation we have a single poset of 

labelled event occurrences where information concerning 

the causal ordering, choice and concurrency associated 

with the system is clearly represented. 

In between these two extremes we also have the no- 

tions of non-sequential processes and traces. A non se- 

quential process is a labelled partially ordered set of 

event occurrences and condition holdings that represents 

a single run of the system. Here the distinction between 

causal ordering and concurrency is re-established (in 

contrast  to the firing sequence approach);  information 

concerning choice is, however, "lost".  In the trace ap- 

proach, a single run of the system is represented as a 

set of equivalent firing sequences. Here again informa- 

tion concerning concurrency is "recovered"  through the 

use of a natural  equivalence relation generated by the 

structure of the system. One then applies the tools of 

trace theory in a straightforward manner. As in the case 

of non-sequential processes, information concerning 

choice is lost. 

Our aim here is to construct a framework in which 

the behavioural notions we have mentioned above can 

be seen to be smoothly related to each other. Indeed 

yet another  behavioural representation called the unfold- 
ing will also fit into our framework. As a byproduct  

we can show that trace theory with its independent ex- 

istence "conf i rms" that the labelled event structure asso- 

ciated with an elementary net system is the "correc t"  

o n e .  

The uninitiated reader is referred to [-1, 9, 11, 14, 

18] for background material. We shall survey related 

literature in the concluding section. Some of the results 

established in this paper  were reported (without proofs) 

in the survey paper  [19]. 

1 Elementary net systems 

Elementary net systems, as the name suggests, are meant  

to be the simplest system model of net theory. They 

may be viewed as transition systems obeying a particular 

principle of change. This view of elementary net systems 

is explained in more detail in [18]. Here, for the sake 

of brevity, we shall make  a direct presentation. 

Definition 1.1. A net is a triple N = (S, T, F) where S and 

T a r e  sets and F~_(S x T)w (Tx S) such that 

(i) S ~  T = 0  

(ii) domain (F) ~ range (F) = S ~ T where 

domain (F)=  {xJ3 y.(x, y)~F} and 

range(F)={yl3x.(x, y)~F}. [] 

Thus a net may be viewed as a directed bipartite 

graph with no isolated elements. Note  that we admit 

the empty net N O = (0, 0, 0). 

S is the set of S-elements, T is the set of T-elements 
and F is the flow relation of the net N=(S ,  T, F). In 

diagrams the S-elements will be drawn as circles, the 

T-elements as boxes and the elements of the flow relation 

as directed arcs. Figure 1 is an example of a net. 

Ifi this paper, the S-elements will be used to denote 

the (local) atomic states called conditions and the T-ele- 

ments will be used to denote (local) atomic changes-of- 

states called events. The flow relation will model a fixed 
neighbourhood relation between the conditions and 

events of a system. Following usual practice, we shall 

represent such nets of conditions and events by triples 

of the form N = (B, E, F). 

Let N = ( B ,  E, F) be a net. Then X N = B w E  is the 

set of elements of N. Let XEXN. Then 

" x =  {YI(Y, x)~F} (the set ofpre-elements of x). 

x ~ = {yp(x, y)~F} (the set of post-elements of x). 

This "do t "  notation is extended to subsets of XN in the 

obvious way. For  e~E we shall call ~ the set of pre- 

conditions of e and we shall call e ~ the set of post-condi- 
tions of e. 

Definition 1.2. An elementary net system is a quadrupole 

JV'= (B, E, F, ci,) where 

(i) Nx=(B, E, F) is a net called the underlying net of 

(ii) ci, - B is the initial case of ~ .  []  

bl b 2 

b e4 

1 

bL ( 5 

Fig. 1 
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bl b 2 

I 
/ e l [ ~  e 3 ~  E 2 e 4  

I I  e5 

Fig. 2 

In diagrams the initial case will be shown by "mark -  

ing" the members of ci,. Figure 2 is an example of an 

elementary net system. Through the rest of the paper  

we shall refer to this net system as ~2 .  

In this paper, we will only deal with elementary net 

systems. Hence we will refer to them as net systems. 

The dynamics of a net system are simple. A state (usually 

called a case) of the system consists of a set of conditions 

holding concurrently. An event can occur at a case iff 

all its pre-conditions and none of its post-conditions hold 

at the case. When an event occurs each of its pre-condi- 

tions ceases to hold and each of its post-conditions be- 

gins to hold. This simple and restrictive notion of states 

and changes-of-states leads to a surprisingly rich and 

sophisticated class of objects. Moreover,  the essential fea- 

tures of distributed systems can be isolated and studied 

using net systems. First however we must formalize the 

dynamics of net systems. 

Let N = (B ,E ,F )  be a net. Then , N _ ~ 2 B x E x 2  B 

is the (elementary) transition relation generated by N 
and is given by 

' N =  {(k, e, k ' ) l k - k ' = ' e A k ' - k = e ' }  

Definition 1.3. Let JV'= (B, E, F, ci,) be a net system. 

(i) Cw, the state space of W (also denoted as [ci,)) 

is the least subset of 2 B containing c~, such that if c~Cw 
and (e, e, c')~----~N~ then c' ~Cw. 
(ii) TS x = ( C ~, E, by) is the transition system associat- 
ed with JV" where 'w is ~N~ restricted to Cw x E 

x C~. [] 

For  the system Y2 shown in Fig. 2, {{hi, b2}, {hi, b5}, 

{b4, bE}, {b4, bs}, {b3, b2}, {b3, bs}, 0} is its state space. 

We recall that a transition system is a triple 

TS=(S ,A ,  ~) where S is a set of states, A is a set 

of actions and ~ _~ S x A x S is the (labelled) transition 

relation. According to the above definition there is a 

natural  way of explaining the dynamics of a net system 

with the help of a transition system. We are now in 

a position to bring out the particular and restricted no- 

tion of change adopted in net theory. 

Let JV" =(B, E, F, ci,) be a net system, c~Cx and e~E. 
Then e is said to be enabled at c - denoted c[e) - iff 

there exists c 'eCy such that (c, e, c')E ~d. We shall 

often write c ~ ~ c' and sometimes we shall write c [e)  c' 

in place of(c, e, e')~ , ~. 

Proposition 1.1. Let Y = (B, E, F, cl.) be a net system e~E 
and c, c', cl, etc. members of C w. Then the following state- 
ments hold. 

(i) Cl e ) e 2  A C 3 e ) e 4  

c 1 - -  c 2 = c 3 -  e 4 A-e_?z .~_e 1._- ~ c 4 - -  e 3 

(ii) c[e ) .~  "e~_cAe" nc=O 

(iii) c e~e' Ae e,c"=*'C'=C". [] 

(i) says that an event causes the same change- 'ha the 

system state whenever it occurs; its p r e - c o n d i t i o n s _ ~  

to hold and its post-conditions begin to hold. 

(ii) says that  an event is, enabled at a c a s e / f  and only 

if the fixed change associated with its occurrence is-possi- 

ble at the case. Thus no. "side-condit ions" are4-1~volved 

in the enabling of an event. 

(iii) says that  the transition systems associated with net 

systems are deterministic. Hence in order to connect n p  

with other approaches to the theory of distributed sys- 

tems such as CCS or CSP one must go over to labelled 
net systems. When one does so, it is possible to give 

an operational semantics for CCS-like processes in ~r~as 

of (labelled) net systems. 

Basic concepts concerning the behaviour of distrib- 

uted systems such as causality, choice, concurrency, and 

confusion ("glitch") can now be cleanly defined - and 

separated from each other - with the help of net systems. 

The interested reader is referred to [18] for details. 

We are ready to begin our study of the behaviour 

of elementary net systems. For  the sake of convenience 

we fix an elementary net system JV=(B, E, F, ci,) and 

work with it throughout  what follows. We shall assume 

that Jg" is contact-free. In other words, we shall assume, 

V c~C~r. V e~E. [e" ~_c~ ~ 

As is well-known (see for instance [14]), this does not 

at least for the study of behavioural issues - involve 

any loss of generality. 

We can now introduce the first and the most  primi- 

tive of our behavioural tools. The set of firing sequences 
of JV - denoted F S x  is the least subset of E* (recall 

that JV = (B, E, F, ci,)) given by 

(i) A e F S ~  and ci, EA)ci,. 

(ii) Suppose peFSx.,  ci,~p)c and c e ~C' then peeFS,r  

and ci, ~p e)  c. 

Thus E ) is the natural  "extension" of ,x. to {c~,} 

x E * x  C~. As may be guessed, A denotes the null se- 

quence. We shall write FS instead of FSj/. for conve- 

nience. For  the system f 2 ,  some of its firing sequences 

are e I e 2 e 4 ,  e 4 e I e 2 and e 3 e 4 e 5. 

Firing sequences "hide"  important  aspects of the 

behaviour of a net system. To bring out this deficiancy 

more clearly, it will be convenient to define the notions 

of concurrency and conflict. 

Let el@e2 and el,  e2~E. Let cECal. We say that 

el and e2 can occur concurrently at c denoted 

c [ { e l ,  e 2 }  ) - iff c[el) and c[e2) and 

(~ weT) n (~ u e~) = 0. 
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Thus et and e 2 can occur concurrently at c iff they 

can occur individually and their neighbourhoods are dis- 

joint. For  the system ~2 ,  at the initial case e~ and e4 

can occur concurrently. Consequently, the firing se- 

quences e~ eze 4 and e 4 e  i e 2 and ea e4e 2 all represent the 

same (non-sequential) stretch of behaviour of Jg;. 

The "dua l "  of the notion of concurrency is conflict. 

Then we say that el and e 2 are in conflict at c iff c[ea> 
and c [e2>  but not c[{el, e2}>. Thus at c either el may 

occur or e2 may occur but not both. The choice as to 

whether el or e 2 will occur is assumed to be resolved 

by the "envi ronment"  of the system. In JK2, at the initial 

case el and e 3 are in conflict. Hence the firing sequences 

e~ e2 e4 and e3 e4 e5 represent two conflicting (alternative) 

stretches of behaviour of J#2. 

It  is in this sense firing sequences hide information 

concerning concurrency and conflict-resolution. We will 

now see how the theory of trace languages can be applied 

to extract information concerning concurrency from the 

firing sequences. 

2 The trace semantics 

The theory of trace languages was introduced in [9] 

to model the non-sequential behaviour of distributed 

programs. The basic idea is to postulate a symmetric 

and irreflexive independence relation over the letters of 

an alphabet. The elements of the alphabet set represent 

the actions that can be executed by a program. Two 

actions that are in the independence relation are sup- 

posed to occur concurrently whenever they occur "adja-  

cent" to each other. This relation then naturally induces 

an equivalence relation over the language which is a 

sequential description of the behaviour of the program. 

For  details we refer the reader to [1]. Here we shall 

straight away apply the notions of this formalism to net 

systems. 

Let I denote the independence relation associated 

with JV" (which is actually generated by Nx = (B, E, F), 

the underlying net of Y ) ,  

I = {(el, e2)[el, e2 EE A ( 'e l  w e~) c~ ( 'e 2 ~ e~) = 0}. 

Since I_~ E x E is irreflexive and symmetric, we have a 

natural way of partitioning E* using the least congruence 

relation generated by I via equations of the form e~ e2 

= e z e l ,  where (el, ez)EI. To be specific, define ~ _ E *  

x E* as, 

def  

p~c p' <=> 3 Pi, P2 ~E* 3(el, e2)~I. 

p=p~eae2p2 and p'=plezeap2. 

Then ~ = ( ~ ) *  is the equivalence relation we want and 

for p~E*, 

def 

[p] = {p'Ip'~E* and p'  ~p} .  

Let p~FS. Then it is well-known that [p]~_FS. (One 

says that FS is consistent with I). 

{ele2e 3 } { ele 2e z., ele l,e 2, e Le le 2 } {e3e/.e5, ez, e3e 5 } 

(e le 2} {e le z., e4el} / (e3ez., eL.e a} 

{e I} {ez} {e 3} 

Fig. 3 

def  

Now F S / ~  = {[p] [p~FS} is the prefix-closed trace 

language we associate with ~ .  Throughout  what follows 

we denote FS /~  as T. Thus T ( = F S / ~ )  is a "f iner" 

representation of the behaviour of ~Ar as compared to 

FS. 
Once again it is well-known that each element of 

T can be (up to isomorphism) uniquely represented as 

a finite labelled poset of event occurrences where the 

labels take values in E. It turns out that information 

concerning choice can be recovered from T by imposing 

an ordering relation over T. 

c Tx T is given by: 

def  

t l  ----- t2 <=> Vp~tl 3 p ' E t  2 . p ~Prefix(p'). 

Here Prefix(7 ) denotes the set of prefixes of the string 7. 

It is easy to check that (T, _=) is a poset. Figure 3 

shows an initial port ion of the poset of traces associated 

with the net system ~22. 

To "see"  information concerning choice we define 

a "compat ibi l i ty"  relation over T as follows. 

Let tl, t2 E T. Then 

def 

t~Ttz<=>3t~T, ti~_t and t z~ t  

def 

tl](t2 r not( t i  T t2). 

If t~](t2 then t1 and t2 represent two runs of Y in which 

the individual choices that have been made to realize 

ta are not all compatible with the choices that have been 

made to realize t 2. In the example shown in Fig. 3, 

{el e2e3}~'{e3}. It is easy to see that the choice of the 

first occurrence of el in the firing sequence e~eze3 is 

opposed to the choice of e3 in the firing sequence e3. 

3 The finite processes of  ~A/" 

We now wish to find an alternative representation of 

(T, ~). This representation will be in terms of the finite 

processes of ~ .  A l~rocess of JV" will be a labelled net 
of the form N = ( B ,  E, F, (~) where (/~,/~, if) is arestr ic ted 

kind o f a n e t c a l l e d a c a u s a l n e t a n d O : B w E  , B ~ E  

(recall that J g ' =  (B, E, F, ci,)) is the labelling function re- 
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quired to satisfy certain constraints. For  a definition of 

a process along these lines, see [14]. 

Here we shall define processes with the help of firing 

sequences. This will enable us to build up the finite pro- 

cesses of W inductively. Moreover,  our  method of con- 

struction will enable us to obtain the unfolding of a net 

system in a smooth fashion. As we will see, this method 

of constructing processes will be very helpful for proving 

the desired results. For  a similar development of the pro- 

cess notion see [3]. 
For  each firing sequence p, we will define a process 

No=(Bo, Eo, Fo, qgo). In doing so it will be convenient 

to keep track of the conditions that hold in JV after 

the run represented by the firing sequence p. This set 

of conditions will be encoded as c o . 

Definition 3.1. Let pEFS .  Then No=(Bo, Eo, Fo, q~o) is 

given by: 

(i) p = A : Then 

N A = (~b, q~, q~, ~b)and 

C A = {(b, qS)l beci ,}  
recall that dV = (B, E, F, c~,) 

(ii) p 4: A. Let p = p'  e and assume that ~/~, 

= (Bo,, Ep,, Fo,, ~oo,) and c o, are defined. Then 

N o = (Bo, Eo, Fo, %)wi th  

E o = E o, w {(e, X)} 
where X = {(b, D) lb e ~ e and (b, D) e co, }, 

B o = Bp, u X u Ywhere 

Y -  {(b, {(e, X)})]bee ' } ,  

F o = F o, u (X x {(e, X)}) w ({(e, X)} x Y), and 

~o o is defined by: V ( z , Z ) e B o u E  o. (po((z, Z)) 

Finally, c o = (c o, - X) u Y []  

It will turn out that N o as defined above is a labelled 

net. For  p = e l e 2 e 4 e s  in the system Jg'2 we show N o 

in Fig. 4. For  convenience we have displayed (Po by writ- 

ing the value of qoo(x) inside the graphical representation 

of x for each x E B p u  E o. We will follow this convention 

through the rest of the paper. 

In order to establish a relationship between the traces 

of JV and its processes it is necessary to define an order- 

ing relation over the processes of ~ .  

lr 

4  84 ) 

Fig. 4 

Definition 3.2 

(i) The set of finite processes of JV is denoted as P~r 

and is given by: PN={NolpeFS} where N o is as given 

by Def. 3.1. 

(ii) _c' _c PN x Px is defined as: 

No = (Bo, Eo, Fo, (Po)c 'N o, = (Bo, ' Ep,, Fo,, coo') iff 

B o_cB o, and E o_cEp, and Fo_cFo," []  

We shall write P instead of Px. 
Clearly _c' is a partial ordering relation, From now 

on we let p and p'  range over F S  and e range over 

E. We shall assume that for p e F S ,  Np =(Bp, Eo, Fp, (pp). 
The set of elements c o as specified in Def. 3.1 will 

play a crucial role in what follows. Notice that, in gener- 

al, co--Bp4=O. 
It will be convenient to extend q~o to B e w E p w c p  

as follows. By abuse of notation, this extension is also 

denoted as qo o. 

V(b, D)ec  o . (po((b, D))= b. 

Since ~,0 o is a simple projection operation, from now 

on we will not display it explicitly. Our major  aim in 

this section is to show the following: 

(T, _~) and (P, _~') are isomorphic posets. In fact, f :  

T ~P given by f ( [ p ] ) =  N o is an isomorphism. 

Along the way we shall also show that our notion of 

a process "agrees"  with the existing notion of a process 

(when restricted to the finite ones). We need a number  

of preliminary results. 

In stating and proving these results, we will make 

heavy use of Def. 3.1. All the undefined terms that may 

crop up are to be understood with the help of Def. 3.1. 

Lemma  3.3. q)o(cp)EC•. Moreover c i , [p )  %(co)  (in Y ) .  

Proo f  

k=O. 

k>O. 

By induction on k = [p 1. 

Clearly p = A and (PA (CA)= C/, by definition. 

Let p = p ' e .  Let c o, co,, X and Ybe  as in Def. 3.1. 

Set (Po" (co,) = c' and qop (co) = c. 
By the induction hypothesis, ci ,~p')c ' .  We know 

that e is enabled at c' because p'e  is a firing se- 

quence. Hence we must  show that c = ( c ' - ~  e ~ 

F rom Def. 3.i, it follows that c o = ( c p , - - X ) w  Y.. 
Consider b~c. Then there exists (b, D)ecp. Sup- 

pose that (b, D ) e Y  Then bee  ~ by the definition 

of Y. Suppose that (b, D)ecp , - -X .  Then b6~ by 

the definition of X. Since (b, D)e co,, we have b e c' 
by the induction hypothesis. Hence b e c ' - ~  We 

have shown that c c_ (c' - ~ e) w e ~ 

Hence consider b ~ ( c ' -  ~ e) w e ~ 
If bee"  then clearly (b, {(e, X)})e Y so that b~c. 
If b e c ' - ~  then there exists (b, D)~cp, by the in- 

duction hypothesis. Moreover  (b, D ) 6 X  because 

br176 Hence (b, D ) e c p , - X  and as a result bec.  

T h u s ( c ' - ~  we ~  [] 

Lemma  3.4. Np is a (labelled) net. 
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Proof Follows easily from Def. 3,1 by induction on 

Ipl. [] 

The next result which is a technical one will turn out 

to be very useful. 

Lemma 3.5 

(i) V(b, D)eBoc~co.(b, D ) ' = 0  in N o. 

(ii) V(y, Y)eSow E o .'(y, Y)-- Y in N o. 

(iii) c o - B o = CA -- B o. 
(iv) [p] =lEo]. In fact, :~e(p)=l~o~l(e)] for every eeE. 

Proof We will simultaneously prove all the parts of the 

lemma by induction on k-- [p I. Consequently the induc- 
tion hypothesis will have four parts. 

k = 0. Trivial. 

k>0 .  Let p = p ' e  and co,, X and Y be as in Def. 3.1. 

We will first prove that (e, X)~ Eo,. 
Suppose (e, X)eEp,. Then by part (ii) of the in- 

duction hypothesis, "(e, X ) = X  in No,. Hence for 
each (b,D)eX,  (e,X)e(b,D)" in Np,. Hence 

(b, D ) ' + 0  for each (b, D)eX.  Now " e # 0  in X 
because JV is contact-free. Hence X 4:0 by Lem- 

ma 3.3 (applied to p'). 
So consider (b,D)eX. Then (b,D)ecp,. If 
(b, D)ee o , -  B o, then clearly (b, D) ~ is undefined 

in No,. If (b, D)eB o, then (b, D ) ' = 0  in N o, by 
part (i) of the induction hypothesis. In either 

case we have a contradiction. Hence (e, X)r 
This shows that E o - E  o, = {(e, X)}. Part (iv) of 
the lemma now follows from part (iv) of the in- 

duction hypothesis. 

Next notice that B o = Bp, w X w Y and c o = (c o, 
- X ) w Y . .  By the induction hypothesis, c o, 

- B  o, = CA--Bo,. It is now easy to show that e o 
- B  o = CA- Bp which establishes part (iii) of the 
lemma. 

To prove the first part of the lemma consider 

(b, D)e B o c~ c p. Recall that cp=(co,- X) w Y. 

Case 1. (b, D)e Y Then D = {(e, X)}. 

Suppose that (b, D) ~ 4:0 in N o. Then there exists 

an (eo, Xo)eE o such that ((b, D), (e0, Xo))eF o. 
Recalling the definition of F o in terms of Fo,, 
X, Y and e we can first rule out the possibility 

((b, D), (eo, Xo))~Fo,. This is so because if this 

were the case then (eo, Xo)eEo,. Two applica- 
tions of part (ii) of the induction hypothesis yield 

(b, D)e~ Xo) and (e, X)e~ D) in No,. But 
this would lead to the known contradiction 

(e, X)eEo,. Hence ((b, D), (eo, Xo))(:-Fo,. 
From the definition of F o we can now conclude 

that (eo, Xo)=(e, X). This implies that (b, D)ecp,. 
If (b, D)~Bp, then we would once again, by part 

(ii) of the induction hypothesis, have the contra- 
diction (e, X)eEo,. Hence (b, D)~Bo,. But then, 
by part (iii) of the induction hypothesis we now 
have (b, D)ecA--Bp. We yet again have a contra- 
diction because D= {(e, X)} 4:0 and every 

member of cA is of the form (b', 0). 

Case 2. (b, D ) e c p , - X  and (b, D)q~ Y 
We know that (b, D)eBp. Since Bp = Bp, w X w Y 
we can deduce that (b, D)eBp,. Now (b, D) ~ =0  

in Np, by the induction hypothesis. Since 

(b, D)r  we now have (b, O)~ in N o as well 
by the definition of Fp. 
We have now established the first part of the 
lemma. 

It is now easy to establish the second part of 
the lemma by appealing to Def. 3.1. [] 

We now wish to show that N o is a causal net. Recall 
that a causal net is a net N'=(B',  E',F') such that 

V beB' .  I'b I, I b'l < 1 and (F')* is a partial ordering rela- 
tion (over B' w E'). 

Lemma 3.6. N o is a causal net. 

Proof By induction on k = I P I. 

k = 0. Trivial. 

k>O. Let p = p ' e  and assume as before that co,, X 
and Y are as in Def. 3.1. 

Consider (b, D) e B o = Bp, ~ X w Y 
If (b, D)eY  then (b, D ) ' = 0  in Np by part (i) of 
the previous lemma. If (b, D)eX  then clearly 

(b,D)~ {(e, X)} in N o by Def. 3.1 because 
(b, D)" = 0  or is undefined in Np, by part (i) of 
the previous lemma. 

Suppose (b, D) e Bp, - X. Then I(b, D) ~ [ _< 1 in Np, 
by the induction hypothesis. Moreover 
~ X) = X in Np by part (ii) of the previous lem- 

ma. Hence I(b, D) ' I<  1 for each (b, D)eBp. 
Now suppose that (b, D)eY. Recall that Bp 

= Bp, w X w Y. Then D = {(e, X)} and by part (ii) 
of the previous lemma, ~ D) = {(e, X)}. 
Next suppose that (b, D)~X. If (b, D)(~Bp,, then 

(b, D)eco,--Bo,. This implies that D = 0  by part 
(iii) of the previous lemma and ~ D)= 0 in Np 

by part (ii) of the previous lemma. 
If (b, D)eXc~Bp, then ~ D)=D by part (ii) of 
the previous lemma and [D ] _< 1 by the induction 

hypothesis. If(b, D)eBo,- -X then ]'(b, D)[_< 1 in 

N o , by the induction hypothesis. 
We now wish to argue that Bp, c~ Y=0. So con- 
sider (b, D)e Y. Then D = {(e, X)}. We know from 
the proof of the previous lemma that (e, X)r 
But (b, D)eBp, would imply by part (ii) of the 

previous lemma that (e,X) eEp,. Hence 

(b, D)(~B o, and thus Bp, c~ Y-0. Hence I~ D) I_< 
1 in Np also. 
To show that (Fo)* is a partial ordering relation 

define depth: B o w Ep > No as follows: 

V (x, X) e B o u E o. 

[ 0, if (X, X) ~: CA, 

depth((x, X)) = ] 1 + max {depth ((y, Y)) I (Y, Y) e X}, 

t otherwise. 

It is easy to verify by induction on [p [ that depth 
is a well-defined map. 



Suppose (x,X) Fo(y, Y). Then clearly depth 
((y, Y))> depth((x, X)). From this it follows easily 

that (Fo)* is anti-symmetric. Clearly (Fo)* is ref- 

lexive and transitive. [] 

We shall show in two steps that our process definition 

agrees with the traditional one. In doing so we shall 

denote (Fo)* by -<o" An anti-chain of a p.o. is a set of 

mutually unordered elements. 

Lemma 3.7. Let ~ _ B  o be an anti-chain in N o (under the 
p.o. relation <-o)" Then there exists p"6FS such that 
Np,, ~ ' S o and d ~_ C p,,. 

Proof By induction on k = I P 1. 

k = 0. Clearly ~ = 0 ~ CA. 

k > 0 .  Let p = p ' e  and co,, X, Y be as usual as given 

in Def. 3.1. 

Recall that B o = B o, ~ X ~ Y. If d _~ Y then ~ _~ c o 

because c o = (co , -  X)w Y. We are then done by 

setting p" = p. 

If ~_~ B o, then we are done thanks to the induc- 

tion hypothesis. Next note that V(v, V)eX and 

V(v', V')~Y, (v, V)<o(e, X)<o(v ' ,  V'). Hence we 

cannot have both d c~ X :# 0 and 0 c~ Y+ 0. 

Case I. 

Case 2. 

Then ~_~ B o, ~ X. Let ~ -- ~ c~ Bo,. Clearly ~1 is 

an anti-chain in No,. By the induction hypothe- 

sis, there exists p"eFS such that No,,___'N o, and 

~1 ~_cp,,. 
Let ~ 2 = d - ~ .  Then ~2~_X--Bo,. But X~_%,. 
Hence ~2~_%,--Bo,. By part  (iii) of Lemma 3.5 

we then have ~2-~ ca--Bo,. Since No,,_~'N o, we 

know that Bo,,~B o, and this implies dz~_ca 
-Bo, , .  Once again by part  (iii) of Lemma 3.5, 

5z-~ co , , -  Bo,,. Thus ~2-~ co,, and this establishes 

_~ co,,. Clearly N o, _~' N o and hence No,, _ '  N o. 

~ n  Y+0. 
Let ~a = ~--Y. We will first show that ~1 w X is 

also an anti-chain in N o. To see this, first note 

that "(e, X ) = X  in N o by part  (ii) of Lemma 3.5. 

By the previous lemma, N o is a causal net. More- 

over g o  = F*. Hence X is an anti-chain in N o. 

da is an anti-chain in N o because ~ is an anti- 

chain in N o. Suppose that (bl, D1)e~l,  and 

(bz, Dz)eX such that (bl, D1)<o(bz, D2) or 

(b2, D2)<p(bl ,  D1). 
Since ~c~Y#0, there exists (b3, D3)Ed~Y. If 

(ba, D1)<o(b2, 92) then (bl, DO<o(b3, D3) also 

because as observed earlier, (b2, D2)<o(e,X) 
<o(b3, D3). This is a contradiction because 

is supposed to be an anti-chain. 

If (b2, D2)<(bl ,  D1) then there exists (b3, D3)~ Y 
such that (b3, D3)Gp(bl, D1). This is because 

(b2, 92) ~ = {(e, X)} and (e, X) ~ = Y in N o. More- 

over N o is a causal net and <o  = F*. The case 

(b3, D3)=(bD D1) is ruled out because 

(bl, D1)~dl = d -  Y. The case (b3, D3)<(ba, D1) is 
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ruled out because (b3, D3)~ Y~_c o and hence by 

part  (i) of Lemma 3.5, (b3, D3) ~ = 0 in N o. 

Thus indeed ~1 w X is an anti-chain in No. We 

now have the situation considered in the pre- 

vious case. Hence there exists p"~FS such that 

No,, ~_' No and ~1 w X ~_c .... 
Let ci, fp"}c" and ci, fp'}c'. We know that e 

is enabled at c'. We shall show that e is enabled 

at c" also. By Lemma3.3 ,  (po,(%,)=c'. Hence 

~%, (X) = ~ by the definition of X. Since X _ co,, 

we now have ~ ~%,,(co,,). In other words, ~ 

c". But then Y is contact-free. Hence e ~ ~ c" = 0. 

Thus p"e is also a firing sequence. It  is now 

easy to check, using Def. 3.1, that No,,e~_'No. It  

is also easy to check that ~ w  Y~--%"e" Since 

_~ ~a u Y,, we are done. [] 

We are now prepared to compare  our process definition 

with the " t radi t ional"  definition. Notice that we have 

already shown that N o is a causal net for each p~FS. 

Theorem 3.8. (i) V(e, X)~Ep. ~o o(~ X))= ~ ~Oo((e, X)) and 
(pp ((e, X) ~ = (g%((e, X))) ~ 

(ii) I f  ~ _ B  o is an anti-chain in Np then there exists 
cE[ci,) in Y such that q%(d)~_c. 
(iii) V(b, DO, (b, Da)~Bo. (b, D1)<o(b, D2)v(b,  D2) 

go(b,  D1). 

Proof (i) Follows easily by induction on I pl using Lem- 

ma 3.5. 

(ii) Follows easily from the previous lemma and Lem- 

ma 3.3. 

(iii) Suppose that (b,D O, (b, D2)EBp such that  

{(b, D1), (b, D2)} is an anti-chain. By virtue of the pre- 

vious lemma, it involves no loss of generality to assume 

that (b, D1), (b, Dz)GC p. We now proceed by induction 

on k- - Ip l .  

k = 0 .  This is impossible because in this case we would 

have Bp = 0. 

k > 0 .  Let p=p 'e  and co, and X and Ybe as in Def. 3.1. 

Then co=(cp,-X)w Y. If (b, DO, (b, Dz)EY then 

clearly 91 = 0 2  ={(e, X)}. If (b, Ol), (b, O2)~ %, 
- - X  then DI=D2 by the induction hypothesis. 

So suppose that (b, DO~ %, - -X  and (b, Dz)~ Y. Let 

~%,(%,)=c'. Then by Lemma 3.3, e is enabled at 

c' in ~ .  But (b, D2)~ Y implies that bee ~ by the 

definition of Y. And (b, D1)~co,--X implies that 

bec' also. This is a contradiction because e is sup- 

posed to be enabled at c'. []  

We can now turn our attention to proving the main 

result of this section. Once again, we will first establish 

a number  of intermediate results. These results will come 

in handy also in the next section. 

Lemma 3.9. I f  p ~ p' then Np = No,. 

Proof First suppose that 7~FS and (el, e2)~I such that 

7el e2, 7e2elcFS.  We claim that N~ . . . .  =N~ . . . .  . To see 
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this, let ETe,--E~={(ei, X,)} and (el, X l ) ' =  Y t in g~e , 

and E, . . . .  - -  g T e  1 = { (e2 ,  X 2 )  } and (e2, X2)" = Y2 in N~ . . . .  . 
Since (el, e2)eI it follows from Def. 3.1 and part (i) of 

Theorem 3.8 that (X1 u Y1) c~(X2 u I12) =0.  It is now easy 

to verify using yet again Def. 3.1 - that N~,~=N~ ... .  

and also c~ . . . .  = C 7  . . . .  . We can use this now to prove 

our result. 
So now suppose that p ~ p ' .  Then there exist 

p~ . . . . .  p . e F S  such that p=p~,  p ,=p '  and for l<<_i<n, 

pi~Pi+l . Proceeding by induction on n, the result is 
clearly true if n = l .  Hence assume that n > l .  Then 

Pl ~P2 and this implies the existence of 7, 7 'eE* and 

(el, e2)eI  such that p 1 = ~ t e l e 2 7  ' and p z = ~ e 2 e l 7  '. By 
the argument presented above, % . . . .  = %  . . . .  and 

c~ . . . .  =C~e~e,. Hence No, =Np~. The required result now 

follows by the induction hypothesis. []  

Lemma 3.10. No~_'No,~=~Eo~_Eo,. 

Proof 

Trivial. 

Assume that Eo~_Eo,. By part (ii) of Lemma 3.5, it 

suffices to show that Bo~_Bp,. So consider (b, D)~B o. 
Since N o is a net, "(b, D)u  (b, D)" t 0  in N o. Suppose 

that (e', X')e~ D). Then N o being a causal net, we 

have "(b, D)= {(e', X')}. Clearly (e', X ' ) e E  o. From 

Def. 3.1 it fo l lows that b e(e')" (in ~ )  and 

D =  {(e', X')}. Once again from Def. 3.1 and the fact 

that Eo~_Ep,, it follows that (b, D)eBo,. 

If (e', X')e(b, D) ~ in No, then be'(e') (in ~ )  and 

(b, D)e X'. Once again from Def. 3.1 and the fact that 

Eo~_Eo,, it follows that (b, D)eBo,. [] 

Lemma 3.11. Let (e, X ) e E  o. Then (e, X) is a maximal 

event in N o (under <0) iff there exists p' e~FS such that 

p ~ p' e and {(e, X)} = E w e  - Eo,. 

Proof 

Suppose that p ~ p ' e  and (e, X)eEp,~-Ep, .  Clearly 

from Def. 3.1, it follows that (e, X) is a maximal event 

in No, ~. But by Lemma 3.9, p ~ p ' e  implies that N o 
= No, ~. Hence (e, X) is a maximal event in N o also. 

=~ Since (e ,X)eEo,  p can be expressed as p = p l e p 2  

such that Eo,e--Eo,={(e, X)}. We now proceed by 

induction on k = I P21. 

k=0 .  Set p ' = p l .  

k>0 .  Let p=pxee 'p '2 .  In other words p2=e'p'2 for 

some e 'eE and p'aeE*. From the fact that 

(e, X) is a maximal event in N o, it is easy to 

deduce that (e, e')eI. Hence P ~ P l  e'ep'2. The 
required result now follows from the induction 

hypothesis and Lemma 3.9. [] 

We are at last ready to prove the main result of this 

section. 

Theorem 3.12. (T, _=) and (R ~-') are isomorphic posers. 

In fact, f :  T > P given by 

V p e F S .  f ([p])= N o 

is an isomorphism. 

Proof First note that if p, p ' e F S  such that p..~p' then 

No = Np, by Lemma 3.9. Hence f is well-defined. 

f is obviously surjective. To verify that it is injective, 

assume that p, p ' e F S  such that Np=Np,. We must show 

that p ~ p ' .  By part (iv) of Lemma 3.5, it is clear that 

[p ] = [p'[. We now proceed by induction on k = [p [. 

k = 0. Clearly p = p' = A. 

k>0 .  L e t p = p l e l  andp'=p' ie ' l .  

Case I. e 1 =e~.  

Let el = #1 = e. Furthermore, let Ep --Em = {(e, X)} 

and E,, -- E,~ ={(e, X')}.By Lemma3.11 it follows 

that both (e, X) and (e, X') are maximal events 

in N, = No,. Since Np is a causal net and "(e, X) 

= X and "(e, X ' )=  X', we can conclude that X c~ 

X ' = 0  in case X:~X' .  But if X:#X '  and thus 

X c~ X'  = 0  then we would have a contradiction 

to part (iii) of Theorem 3.8. This is because, for 

each be~ we will have some (b, D ) e X  and some 

(b, D')e X'. 

Moreover by virtue of the fact that (e, X) and 

(e, X') are maximal events, we can conclude that 

X u X '  is an anti-chain in N o. Thus we must 

have X = X' so that (e, X ) =  (e, X'). 

This implies that E p - E o ,  = Ep,-Ep~. Hence by 

Lemma 3.10, Np,=No; and this in turn implies 

that Pa~P'I by induction hypothesis. Clearly 

P t e ~ p'~ e so that p ~ p'. 

Case 2. e I ~ e'a. 

Let E o -  E m = {(el, X1)} and E p , -  Ep~ 
= {(e'l, X'0}. By Lemma 3.11, (e'x, X]) is a maxi- 

mal event in No,. Since No = No,, it is a maximal 
event in Np as well. Hence once again by Lem- 

ma3.11, there exists p"e ' l eFS  such that p 

p" e'l and No,, el = No,. Since p' = P'l e'l we have 
arrived at the situation considered in Case 1. 

This establishes that f is a bijection. 

Now suppose that p, p ' e F S  such that [p]m_[p']. 

Then there exists p"e[p'] such that p is a prefix of p". 

Clearly, by Def. 3.1, Np~_'Np,,. But then No,,=N p, by 

Lemma 3.9. Hence Np~_'Np,. 
Next assume that p, p ' e F S  are such that No~_'Np,. 

By part (iv) of Lemma 3.5, I pl < I p'l. The proof is by 

induction on k = I p'l. 

k = 0. Clearly p = p' = A. 

k>0 .  Let p ' = p l e .  Let Ep,e--Eo,={(e,X)}.  Suppose 
that (e,X)(~Ep. Then Ep~_E m. By Lemma3.10, 

this implies that Np __ 'No,. F rom the induction hy- 

pothesis, we can conclude that [p]_= [Pl]- F rom 

this we can further conclude that [p ]__[p le ]  
= [ p , ] .  
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So assume that, (e, X)~ER. (e, X) is a maximal 
event in N~, by Lemma 3.11. Since N~,~'No,, it fol- 

lows that (e, X) is a maximal event in N o as well. 
Once again by Lemma 3.1, we can find p"eeFS 
such that p~p"e  and Eo,,~-Eo,,={(e, X)}. Since 
p~p"e  we must have No=N~,, ~. Since Eo~_E ~, 
we can now conclude that Eo,,c_Ep~ (recall that 

P'=Pl e and that Eo,-E m --{(e, X)}). This implies 
that No,,~'N m and by the induction hypothesis 
we then have [p"] ~_ [p~]. Finally this lets us to 
conclude that [p"e]~_[ple] and since p,,~p"e 
and p '=p~ e, we are done. [] 

4 The labelled event structure of  ~ 

Our method of constructing the finite processes of tar 

leads to a simple definition of the unfolding of 

Definition 4.1. The unfolding of ~g" - denoted as UF~ 
is the quadruple UFw=(B, E,, F, ~), where (keeping in 

mind that N~=(B,, Eo, E,) for each p~FS as specified 
in Def. 3.1.) 

(i) /~ = U Bp, 
p~FS 

(ii) s  ~J Eo, 
o~FS 

(iii) i f -  ~ Fo, and 
peFS 

(iv) V((x, X)eBwE.O(x,  X))=x.  [] 

As an example, part of the unfolding of ~#~ is shown 
in Fig. 5. 

N =  (/~,/~, F) is called the underlying net of UF~. It 

is easy to check that N is indeed a net. 0:/~ ~/~ ~ B w E 
so that UF~ is a labelled net. Our first task is to show 

t 

~r 

/ Fig. 5 

) 
r 

), 

that N is an occurrence net in the sense of [11]. Before 

doing so it will be convenient to adopt some notations 
concerning posets. 

Let PO =(X, _<) be a poset and Y~_X. 
Then ~Y={xeXl~y~Y.y<x} .  ~Y={x~X[3yeY.x  

<y}. In case Y={y} is a singleton we shall write "[y(~y) 
instead of T {y} (+ {y})- For Y_ X we say that Y is compat- 
ible (bounded) and this is denoted by Y]" - in case 

there exists x e X  such that y<_x for every yeY. If Y 

= {Ya, Y2} then we shall write Yl Ty2 instead of {y~, Y2} T. 
y~J[y2 will denote the negation of Y~TY2. Y is said to 
be pair-wise compatible in case y~ ~ Y2 for every y~, y2~ Y. 

Recall that an occurrence net is a net N'=(B' ,  E', F') 

such that: 

(i) Vb'cB'.l'b'l<_l, 
(ii) (F')* is a partial ordering relation, and 

(iii) V el, ezeE'. [el =~ e2 a ~ n ' e2  + 0  =>~ el c~ 3" e2 =0] .  

Here Tel and Te 2 are assumed to be defined w.r.t, the 
partial ordering relation _<'= (F')*. 

Through the rest of this section we shall assume that 
N =  (/~,/~, F) is the underlying net of the unfolding of 
~/" as specified in Def. 3.1. We set J?=/3w/~ and _ 

=(F)*. For  each peFS we shall assume Na=(Bo, Eo, F~) 
as specified in Def. 3.1. We set Xp=BowE p and _<p 

=(Fo)*. We shall show in two steps that b) is an occur- 
rence net. 

Lemma 4.2. Let (x, X), (y, Y)eX. 

(i) (x, X) if(y, Y) iff (x, X)e Y, 
(ii) (x, X)<_(y, Y) iffV peFS 

 9 [ (y ,  Y) e x o ~ (x, x )  ~ x p  A (x, x )  <_ o (y, r ) ] .  

Proof By the definition of F we know that (x, X) F0' ,  Y) 
iff there exists peFS such that (x, X) Fp(y, Y). By part 

(ii) of Lemma 3.5 we then have that (x, X)Fp(y, Y) iff 
(x, X)e g 

To prove the second part note that (x, X)_<(y, Y) iff 

there exist (xl, X0,  (xz, X2) .... , (x,, X,)eX(n>>_ 1) such 
that (x, X)=(x  1, X0,  (x,, X,)=(y,  Y) and for l<_i<n, 
(xl, X~) ff(xi+ 1, Xi+ ~). We now do induction on n. 

n = l .  

n > l .  

There is nothing to prove. 

By the first part of the lemma, (x~, X1) le(x2, X2) 

iff (xl, X1)~X2. But (xl, X1)~X2 iff Vp~FS, 
(xz, X2)eXp implies that (Xl, X1) Fp(x2, X2) 
which in turn implies that (x t, X1)EXp as well. 
This follows once again from part (ii) of Lem- 

ma 3.5. The required result now follows from the 
induction hypothesis. [] 

Theorem 4.3. ~--(/~,/~, if) is an occurrence net. 

Proof Let (b, D)eB. Suppose that (e~, XO P(b, D) and 
(e2, X2)if(b, D). Then by the first part of the previous 
lemma, (ej, X1), (ez, X2)eD. By the definition of /3  we 
know that, for some p~FS, (b, D)EBp. By part (ii) of 

Lemma 3.5, ~ D)=D in Np. But then I D I < 1 because 

No is a causal net. Hence (el, X 0 = ( e z ,  Xz). 
Clearly _< is reflexive and transitive. So assume that 
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(x,X), (y, Y ) ~ g  such that (x,X)<_(y, Y) and (y, Y)~ 
(x, x). 

Let p~FS be such that (y, Y)~Xp. Then by part (ii) 

of Lemma 3.2, (x, X)EXp and (x, X)<p(y, Y). Since 

(x, X)~Xp, (y, Y)<(x, X) would imply once again by the 
second part of the previous lemma that (y, Y)<p (x, X). 
Hence (x, X)=  (y, Y), because Np is a causal net, and so 
<p is anti-symmetric. 

Now suppose that (b, D)~B and (e~, Xa), (e2, X2)~E 
are such that (e~, X04=(e2, X2) and (b, D) P(e~, Xt) 

and (b,D) ff(e2, X2). We must prove that T(e~,X0 

T(e2, X2) =0. Suppose (y, Y)~T(e~, XI) c~ ~'(e2, X2). Let 
p6FS  such that (y, Y)~X~. 

Then by part (ii) of the previous lemma, we have 

(b, D), (e~, X~), (e2, X2)~X~. By part (i) of the previous 
lemma and part (ii) of Lemma 3.5 we would then have 

(b, D) F~(ea, X 0  and (b, D) F~(e2, X2). This is a contradic- 
tion because Np is a causal net. [] 

i 

i 

Fig. 6 

We can now give the event structure semantics of 

~ .  First we note that the definition of an occurrence 
net allows one to specify a conflict relation between the 
elements of an occurrence net in a natural way. Instead 

of giving the general definition, we shall straightaway 
speci~ the conflict relation for the occurrence net 
N = (B,/~, if). 

The conflict relation associated with N, denoted by 
~=, is the least subset of 2~ x 3~ given by: 

Definition 4.4. The labelled event structure of Y - denot- 

ed ES~r is the quadruple ES~c=(E, <_, # ,  (p) where 
(recall that U F~=(B, E, F, (~)) 

(i) < is _< (= (F)*) restricted to/~ x/~, 

(ii) # is ~: (the conflict relation associated with N) re- 
stricted to/~ x E, and 

(iii) (p is ~b restricted to/~. [] 

(/~, _<, # )  is called the underlying event structure of ESpy.. 
By abuse of notation we shall denote this triple also 
as ESx. 

Recall that an event structure is a triple ES=(E', <', 
') where 

(i) E' is a set of events, 

(ii) < ' _ E ' x  E' is a partial ordering relation called the 
causality relation of ES, 

(iii) # '  ~_ E' x E' is an irreflexive and symmetric relation 
called the conflict relation of ES, and 

(iv) # '  is required to be "inherited" via < '  in the sense 
that 

V el, e2, e3eE'[el # ' e2 <_' e3 ~ el #'e3].  

From the fact that N is an occurrence net it is easy 

to deduce that ES~ is indeed a (labelled) event structure. 
An initial portion ofES X is shown in Fig. 6. The sguiggly 

lines represent the "minimal"  elements of the conflict 
relation. The remaining elements of the conflict relation 

are precisely those that can be deduced using the axiom 
that conflict is inherited via the causality relation. 

The states of an event structure are called configura- 
tions. A configuration represents a state of affairs that 

has been reached after the occurrence of a set of events. 
For an event to occur, all the events that lie in its 

"past"  (as specified by the causality relation of the rela- 
tion) must have occurred. No two events which are in 

conflict can both have occurred in a state of affairs repre- 

sented by a configuration. These considerations underly 
the definition of configurations. 

Definition 4.5. Let ES = (E', < ' ,  # ' )  be an event struc- 
ture. 

(i) Let d~_E'. Then d is a configuration of ES iff d--~.d 
(left-closed) and # '  c~ (d • d) = 0 (conflict-free), 

(ii) CEs is the set of configurations of ES, and 
(iii) ,~Est'gi" is the set of finite configurations (i.e. each 

member of C ~  " is a finite set) of ES. [] 

Let dl~_d 2 with dl, d2~CEs. Then the state d I is 
"earlier" than d2. In other words set inclusion is the 
natural causality relation over configurations. 

For ES~r we let C~r denote the set of finite configura- 
tions of ESd, the event structure associated with ~ We 
can at last establish the main result of this paper; the 

trace semantics of JV as represented by (T, _~) and the 
event structure semantics of Jff as represented by ESx  
= (/~, < ,  4b) "agree" with each other. 

Theorem 4.6. (P, ~'),  and (Cx, -~) are isomorphic posers. 
In fact g: P ~ C~s given by: 

V p ~ FS. g (Np = (Bp, Ep, Fp)) = Ep 

is an isomorphism. 

Proof We shall first show that g is well-defined. Let 
peFS. Then we must show that Ep is left-closed and 
conflict-free in ES~v.=(F,, <_, #). Suppose that (e, X)eEp 
and (e', X')E/~ such that (e', X')<(e, X). Then (e', X')_< 
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(e, X) in N. By part (ii) of Lemma 4.2, we then have 

(e', X')eE o as well. Hence E o is left-closed. 
Suppose that (e~,XO, (e~ ,Xz )cE  o such that 

(el, X1):~(e2, X2). Then (el, X1):~(e2, X2) in N. By defi- 
nition of ~ it follows that there exist (e'l, X'i), (e~, X~)s/~ 
and (b, D)~/3 such that the following conditions are sat- 
isfied: 

(i) (el, X',)2~(ea, Xa) ' ' ^ ' _ and (e2, X2)~ (e2, X2) , 

(ii) (e'b X' 0 ~ (e'2, X'2), and 
(iii) (b, D) F(e'~, X'~) and (b, D) ^ ' F(e2, X'2). 

Since (el, X0,  (e2, Xz)~E  o, it follows once again from 
part (ii) of Lemma3.2 that (b,O) Fo(e'~,X'~) and 

(b, D)Fo(e'2, X'z). This is a contradiction because N o is 
a causal net. Thus g is well-defined. 

g is clearly 1-1. We must argue that g is onto. So 
consider de Cw. The proof is by induction on k = I d[. 

k=0.  Then g(Nz)=0. 

k>0 .  Let (e, X) be a maximal element in d under <.  

Let d '=  d-{(e ,  X)}. By the induction hypothesis, 
there exists p'~FS such that g(No,)=d'. In other- 

words, Eo, = d'. 

Claim. X ~_c o, (recall Def. 3.1). 

Proof of claim. Let (b, D)~X. If D = 0  then (b, O)~CA. 
Hence if(b, O)r then there exists (e', X')eE o, such that 
(b, 0)eX'. This follows from Def. 3.1. But this would im- 

ply, b2( part (i) of Lemma 4.2, that (b, 0)ff(e', X') and 

(b, O) F(e, X). Clearly (e, X)+(e', X') because d'=E o, 
= d - { ( e ,  X)}. Hence (e', X')@(e, X) which in turn im- 
plies that (e', X')#e (e, X). This is a contradiction because 
d, by hypothesis, is conflict-free. 

If D + 0 then [D [ = 1, because ]V is an occurrence net. 

Let D = {(e', X')}, then (e', X') if(b, D) F(e, X). Since d is 
left-closed, this implies that (e', X')~Eo,. This in turn im- 

plies that (b, D)EBo,. Clearly {(b, D)} is an anti-chain in 

No,. Hence by Lemma 3.7, there exists p"~FS such that 

No,,~_'N o, and (b, D)eco,,. From Theorem 3.12, we know 
that [p"] _ [p']. Hence without loss of generality we can 
assume, using Theorem 3.12 once again, that p" is a pre- 

fix of p'. If we start from No,, and follow the construction 

of N o, then according to Def. 3.1, (b, D)r o, just in case 
there exists (e", X")~Eo.-Eo,, such that (b, D)eX". As 
before, this would imply that (e", X" )#  (e, X) which con- 
tradicts the fact that d is conflict-free. 

Thus (b,D)~c o, and consequently X~_co,. Let 
ci,~p') c' in ~ .  Then from part (i) of Theorem 3.12, Lem- 
ma 3.3, and the definitions of the various labelling func- 
tions it follows that "e_~ c'. Since Jff is contact-free this 
implies that e is enabled at c'. In other words, p'e is 

a firing sequence of ~ .  It is now routine to verify that 

Eo, e=d. 
Let p, p'eFS. Then according to Lemma3.10, 

N o ~_'N o, iff E o___ Eo,. This completes the proof. [] 

Corollary 4.7. (T, _~) and ( C ~. ~_) are isomorphic posets. 

Proof Follows at once from Theorem 3.12 and Theo- 
rem 4.6. [] 

We have related (T, _=) to (C~, _ )  rather than to (/~, <,  
~ )  for technical convenience. It turns out that (/~, <,  :~') 

and (Cy, _ )  are in some sense "equivalent" representa- 
tions, one can smoothly go back and forth between these 
two structures. 

To bring this out we need to introduce some addi- 
tional notions concerning posets. Let PO=(X,  <) be a 
poset. Then for Y~_X, IIY will denote the 1.u.b. of Y in 

PO if it exists, p e X  is called a prime element iff for every 
Y~_X, s.t. lAY exists p < l l y  implies that p<_y for some 

y e Y  Let PR denote the set of prime elements of PO. 
Then PO is prime algebraic iff Vx~X,  x=lA{plp~PR 
and p <x}. Next we need the notions of coherence and 
finite coherence. PO=(X,  <_) is said to be coherent iff 

every pair-wise compatible subset Y~_X has a 1.u.b. in 

PO. PO is said to be finitely coherent iff every finite 
pair-wise compatible subset Y~_X has a 1.u.b. in PO. 
Finally, PO=(X,  <) is said to be finitary iff V x s X .  ~.x 
is a finite set. The event structures ES=(E', <', #e') is 
finitary iff (E', < ')  is finitary. Clearly, ESx  is a finitary 

event structure, and (Cx, - )  is a finitary poset. 

Theorem4.8. Let ES=(E', <_, ~') be a finitary event 
structure. Let ,~esr~gi" denote the set of finite configurations 
of ES. Then POEs--t,~EstC'Yi", ~_) satisfies the following prop- 
erties: 

(i) POts is finitary, 
(ii) POts is prime algebraic with {~e[e~E'} as its set 

of prime elements, and 
(iii) POts is finitely coherent. 

Proof The proof can be easily extracted from [-11]. [] 

Now let PO=(X,  <) be a poset that satisfies the 

three properties stated in Theorem 4.8. Let PR denote 
the set of prime elements of PO. Then ESpo 
=(PR, <', 4e') is given by: 

(i) _<' is _< restricted to PR x PR, and 

(ii) Vpl, p z c P R . p l  ~'P2 iffPlXP2 in PO. 

Then it is easy to prove that ESpo is a finitary event 

structure. What is more surprising and pleasant is the 
following. 

Theorem 4.9. Let PO =(X, <)  be a finitary, prime alge- 
braic and finitely coherent poser. Let ESpo=(PR , <_', ~ ') 
be defined as above. Then PO and tr~Yi" ~_) are ~ ' ~ E S P o ,  

isomorphic posers. In fact h: X >~(P R) given by: 

V x e X .  h(x) = {p~PRIp < x} 

is an isomorphism. [] 

Finally, suppose we are given a finitary event struc- 
ture 

Es =(E', _<', ~:') 

with associated poset of finite configurations 

__ f i n  C ). P O t s -  (CEs, 

We may associate an event structure ES"=(E", <_", 
~")  with POEs as outlined above. This is because, by 
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Theorem 4.8, PO~s enjoys the required properties. It is 
once again routine to prove that ES and ES" are 

isomorphic event structures in the obvious sense. 

Thus we are justified in claiming that ES/< and 

(C~, _~) are "equivalent" representations. 

5 Discussion 

In this paper we have formalized a number of notions 

of the behaviour of elementary net systems. In particular, 

starting with the simple notion of firing sequences we 

have derived the three notions of behaviour called traces, 

processes and event structures. We have proved strong 

formal relationships in terms of isomorphisms between 

the associated structures (of traces, processes and finite 

configurations of the event structures). 

In between we have managed to include the notion 

of unfoldings as a stepping stone to the definition of 

the event structure behaviour. As a mater of fact we 

could have defined the event structure behaviour of an 

elementary net system directly in terms of its processes: 

The events being the union of the events of the processes; 

one event being causally dependent on another iff it is 

so in every process in which they both occur; two events 

being in conflict iff they do not both appear in any pro- 

cess. However we decided to include the unfolding here 

to illustrate how well it fits into our framework. Once 

the notion of processes is worked out as we have done 

here the unfolding "falls out"  through the simple device 

of "gluing" together the processes. 

It is clear that our results are related to and depend 

upon the well-known results relating occurrence nets, 

event structures and prime algebraic domains [11]. It 

is also known that in a fairly general setting traces and 

event structures can be related to each other [2, 7, 15, 

16]. However the questions addressed in this paper are 

of a different nature. Here we have considered the rela- 

tionship between the independent applications of these 

models to characterize the behaviour of a given class 

of systems; in our case, elementary net systems which 

are the basic system model of net theory. 

The reader familiar with the various behavioural 

models (processes, traces, event structures) will have no 

trouble in understanding our main results. However he/ 

she might be taken aback by the technical complexity 

involved in proving these results. Of course it is entirely 

possible that a much neater derivation of the results has 

been missed by us. It might also be the case that some 

marginal advantage might have been gained by permit- 

ting isolated elements in our nets. However, we feel that 

the difficulties encountered in proving our results have 

to do with the fact that - as already pointed out the 

various behavioural notions have to be related to each 

other in the context of studying the behaviour of fixed 
and restricted classes of systems. For  example, in the 

literature on non-sequential processes [4] one will find 

that Lemma 3.6 and Theorem 3.8 together constitute def- 
inition of the notion of a process for elementary net sys- 

tems. Here we have had to prove them to be conse- 

quences of our more basic definitions. Indeed deriving 

these two results constitutes the bulk of the technical 

labour involved. 

The informed reader might also be puzzled by the 

fact that our results are formulated in terms of finite 

objects only. In particular, the event structures are repre- 

sented in terms of the poset of finite configurations 

whereas the standard definition includes all configura- 

tions. Given the fact that our event structures are neces- 

sarily finitary it turns out that the representation in terms 

of finite configurations is adequate for our purposes as 

detailed in Theorems 4.8 and 4.9. More, we are forced 

to consider only finite configurations and finite processes 

since it is not clear how the theory of trace languages 

extends to infinitary strings. Fortunately this commit- 

ment to dealing with only finite objects involves no per- 

manent loss of information, concerning infinite behav- 

iours. For  instance the prime algebraic domain of all 
configurations of a finitary event structure can be easily 

obtained upto isomorphism by the standard ideal com- 

pletion of our chosen poser of finite configurations. This 

remark applies as well to the poset of finite processes. 

For  instance, to obtain a generalization of Corollary 4.7 

we would only have to consider the ideal completion 

of the poset of traces. As yet another example, the notion 

of a computation advocated in [10, 13, 17] to eliminate 

certain fairness notions is simply defined as a maximal 

ideal of(T, _ )  and hence (CEs, -~). 

We take these observations as an indication that in 

many of the applications, it is sufficient for our behav- 

ioural notions to cater for finite objects (finite firing se- 

quences, finite traces, finite processes, finite configura- 

tions) only. 

We now wish to point out that our work can be 

viewed in a broader context. We have established two 

ways of associating a prime algebraic coherent poset 

with an elementary net system; one via the processes 

and one via the traces. In other words we have two 

maps - say f and g - from the class of elementary net 

systems to the class of prime algebraic coherent posets. 

Our main result is that for each ~,, f (Jff)  and g ( Y )  

are isomorphic to each other. 

It is well known that elementary net systems (viewed 

as safe Petri nets) and prime algebraic coherent posets 

can be equipped with "behaviour  preserving" morph- 

isms to yield the categories & ~  and ~ O  respectively 

(see [20]). It turns out that the maps f and g we have 
been considering can be smoothly lifted to become a 

pair of functors from gJg" to ~ ( 9 .  In this case our 

main result generalizes to the existence of a natural 

isomorphism between these two functors in the sense 

of [8]. 

Going further down this road the informed reader 

may have noticed that our notion of unfolding is different 

from the one presented in [20]. The difference arises 

mainly because we do not allow isolated elements in 

the underlying nets of elementary net systems. As a con- 

sequence, the nice categorical characterization of the un- 

folding in [20] does not work in our case. However with 

a slightly different notion of morphisms between elemen- 

tary net systems we can construct a new category gJV' 

of elementary net systems. Now we obtain a similar char- 
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acter izat ion of the unfolding,  namely  the existence of 

a special morph i sm from UF~ (clearly, the unfolding 

of Jg" is also an  object in gJg") to ~A# in E Y '  which 

is co-free over ~ .  It  so happens  that  this new no t ion  

of net morph i sms  between elementary net  systems (and 

in fact, between safe Petri nets) possesses some pleasing 

properties. For  instance,  the empty elementary  net  sys- 

tem is bo th  an init ial  and  final object in gJV' .  This might  

have some positive impact  on categorical studies in net 

theory. 
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