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Abstract

In this paper, the application of soft computing techniques in prediction
of an occupant’s behaviour in an inhabited intelligent environment is ad-
dressed. In this research, daily activities of elderly people who live in their
own homes suffering from dementia are studied. Occupancy sensors are used
to extract the movement patterns of the occupant. The occupancy data is
then converted into temporal sequences of activities which are eventually
used to predict the occupant behaviour. To build the prediction model, dif-
ferent dynamic recurrent neural networks are investigated. Recurrent neural
networks have shown a great ability in finding the temporal relationships of
input patterns. The experimental results show that non-linear autoregres-
sive network with exogenous inputs model correctly extracts the long term
prediction patterns of the occupant and outperformed the Elman network.
The results presented here are validated using data generated from a simu-
lator and real environments.

Keywords: Intelligent Environments, Occupancy Monitoring, Binary
Time series, Health Monitoring, Recurrent Neural Networks, NARX,
Elman Network.

1. Introduction

Dealing with associated aging problems and improving the lifestyle of
elderly or people of special needs in their own homes has become an im-
portant issue in the area of health monitoring. A significant health care
budget saving for both government and individual families can be achieved
by reducing the number of elderly people in hospitals. This can be assisted
by early detection of health problems to alert and protect those people from
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getting into a worse situation [1][2]. Early detection of abnormal behaviour
can provide us with important information in the early stages. For instance,
early detection of change in sleeping patterns or changes in room occupancy
pattern would act as a preventive health monitoring system. To achieve
this, the environment where the individual lives should have the capability
of collecting important information about the occupant behaviour and de-
tect gradual changes in the behaviour [3]. This environment is a space in a
real world which is equipped with a large number of tools and devices such
as sensors, actuators and computing components [4][5].

In the research reported here, the intelligent environment is used to mon-
itor continuously any changes in the behavioural patterns of the occupant;
mainly elderly people suffering from dementia. The advantage of using such
a solution is that patients will be able to live in the comfort of their own
homes and at the same time achieve relatively high degrees of confidence
that they will be helped when required. Figure 1 illustrates a schematic dia-
gram of the monitoring and interaction system architecture in an intelligent
environment. The data collected from the sensor network are communicated
with a base station and eventually stored in a central database. The data
acquired includes the occupancy of different areas, environmental attributes,
and interactions between an occupant and devices. Sensory devices are re-
sponsible for data collection and a variety of sensors are readily available to
perform this task. The following list gives the detail of typical sensors:

• Passive Infra-red Sensors (PIR) or motion detectors are sensitive to the
movements of living objects. PIR motion sensors respond to changes
in heat in the form of infra-red radiation. They are used to identify
the movement and then the movement pattern is interpreted as the
occupancy.

• Door/Window entry point sensors are on/off switches which can detect
the open and closed status of a door/window. Door entry point sensors
are relatively reliable as they clearly represent the movement activities.

• Bed/sofa pressure sensors are used to measure the presence in and
usage of these areas.

The aim of this study is to examine the ability of Recurrent Neural
Networks (RNNs) in terms of modelling and prediction of sensory data to
monitor the Activities of Daily Living (ADL) of an occupant living in an
Inhabited Intelligent Environment (IIE). The daily behaviour patterns of
the occupant are extracted using a wireless sensor network system. This
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Figure 1: An overview of monitoring and interaction system architecture.

information is then used to build a behavioural model of the occupant which
ultimately is used to predict the future values representing the expected
occupancy and other activities. Collected information are in a binary format,
and they are represented as binary time series.

Binary time series extracted from occupancy sensors are usually sparse
and contain many repeated constant values. Figure 2 illustrates an inter-
mittent binary time series generated from an occupancy sensor. A constant
value (usually zero) appears many times in the series. Based on the temporal
relationship of the time series, it is difficult to identify the daily movement

Figure 2: Intermittent binary time series extracted from an occupancy sensor.
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pattern of the occupant. In our earlier work published in [6], we realised
this issue since the actual sensor data were used to identify and predict the
behaviour of an elderly person.

In this paper, the binary intermittent time series representing the oc-
cupancy is first converted into a compressed non-binary time series. This
is achieved by calculating the start-time and stop-time for each movement
from one area into another. After data conversion, the new compressed time
series is used to learn and eventually to predict an occupant behaviour in
an IIE. The series may be modelled and predicted as a supervised training
phase. Supervised learning with an explicit training phase offers a promising
approach to the activity recognition problem.

Non-linear Autoregressive netwoRk with eXogenous inputs (NARX), a
recurrent dynamic network with feedback connections enclosing several lay-
ers of the network, is used to predict the future values of the series repre-
senting future activities of an occupant in an IIE. This model has feedback
connections to the input layer from the output neuron which allow the out-
put to be included in prediction of the ADL for an occupant. The key
advantages of NARX network over other recurrent neural networks are its
generalisation and convergence at learning long term dependencies. By long
term dependencies, we mean the ability of the network to remember infor-
mation that is stored for a long period of time [7].

This paper is organised as follows: Section 2 presents a brief survey of
related works including any limitations. Section 3 present the pre-processing
of the binary time series followed by an explanation of the prediction models
used in this study for occupancy prediction in Section 4. Section 5 presents
the prediction error measurements used to evaluate the models. Experi-
mental results and data collection via two environments (simulated and real
environments) are discussed in Section 6. Final conclusions are drawn in
Section 7.

2. Related Works

A key challenge in intelligent environments research is to find a tech-
nique that can effectively model the human occupant behaviour. In this
area, extensive research has been carried out to tackle the problem of ac-
tivity extraction and prediction. Most of this research has been done using
statistical methods. These methods are used to find the dependence and
correlations between the temporal data generated from sensors and ulti-
mately identify the behaviour of an occupant. Probabilistic models become
good statistical methods to identify human behaviour as they are capable of
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representing random variables, dependencies and temporal variation within
data [8]. Probabilistic models could be temporal such as Hidden Markov
Models (HMM) [9][10] and Bayesian belief networks [11]. HMM consists of
a number of hidden states and observations, and is used to model human
behaviour. However, the main problems of HMM include the lack of hierar-
chy in this kind of modelling and the difficulties experienced in processing
large amounts low-level sensory data. Using HMM in time series predictions
require a large number of time series runs from HMM as the length of time
series is increased [8][10]. Bayesian belief network is a statistical method
which provides a more general framework to model human behaviour. These
methods are used as a tool to process uncertain and incomplete data. The
major problem of Bayesian belief networks is the inflexibility of exact prob-
abilistic inference [8][12][13][14].

Some of the above mentioned problems are addressed using soft comput-
ing techniques. Different combinations of Artificial Neural Networks (ANNs)
are used in learning the occupant’s activities in an IIE. For example; as re-
ported in [12] a One Pass Neural Network is proposed to find the activities
of a user. The authors have introduced a new layer to the design of the net-
work where the outputs of neural network are inputs to this layer. This layer
consists of several cells including: static cell (expert knowledge), dynamic
cell (temporal order) and decision making cell. The layer helps in differen-
tiating between normal and abnormal behaviours based on the frequencies
of ADL.

Multi-Layer Perceptron (MLP) neural networks are used to identify the
movements data collected from a WSN [15][16]. For instance, the authors
in [17] have applied different algorithms to recognize the age categories of
data representing waking pattern and to identify the change in volunteers
behaviour change. These algorithms are: MLP, decision tree, support vector
classifier, Naive Bayes and Bayesnet. MLP gives the highest accuracy in
classifying the categories, although the size of training and testing data
sets is small. In addition, in [18] a feed forward neural network with back
propagation is implemented to control the basic occupant’s living conditions
such as air, heating, lighting, ventilation, and water heating. The authors
in [19] have proposed a special kind of self organising map for clustering
daily human activities. The proposed self adaptive neural network is called
a growing self organising map. Much research has used ANNs in modelling
and prediction of time series data. Most of the reported research has focused
on using feed forward neural networks [20][21]. These networks do not have
any feedback connections in their architectures. Therefore, they do not take
into account the temporal dependencies between the data.
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Recurrent neural networks are widely used to deal with many dynam-
ical and non-linear problems, including time series prediction. RNNs are
computationally more powerful than feed forward networks and valuable
approximation result have been obtained for prediction problems [22][23].
In [24] and [25] a temporal neural-network based embedded agent is used
which can work with real-time data from unobtrusive low-level sensors and
actuators. An algorithm namely Selective Recursive Kernel based Learning
(SRKL) is introduced in [26] and [27]. The SRKL algorithm identifies a
model which has a sparse solution and an on-line identification of non-linear
Multi-Input-Multi-Output with NARX system is investigated in [27]. SRKL
is able to learn the process adaptively with relatively small computation load
and few samples.

There are numerous researches that attempt to represent and classify the
behaviour activities extracted from an IIE. For example, the authors in [28]
have incorporated a sequential pattern identification method to represent the
user’s movements during the day. Using this approach, the activities which
are performed by an individual are represented using a single continuous
vertical trajectory.

Supervised learning techniques such as Support Vector Machine (SVM)
also show promising identification performance. For example, SVM is used
in [29] to predict the occupant behaviour. The process enables predicting
householder’s activities for frequent daily activities in the house such as
grooming, eating, sleeping, having breakfast, etc. The activity is identified
for assessment initially. Then, SVM classifier is trained, using the datasets
collected from sensors where the users perform their activities, by learning
the user’s habit. However, the results are limited to the activities that are
carried out at early morning only. Machine learning techniques are also
employed in [30] to predict an inhabitant behaviour patterns, activities and
common communication inside a home. The extracted data is utilised in
automating decision making and improving an inhabitant’s comfort, safety
and efficiency. The movement of the inhabitant is predicted based on prin-
ciples of information theory. An algorithm is set out on sequence matching
in order to predict an inhabitant communications with the smart home, and
also to identify significant patterns of inhabitant activity.

Application of fuzzy data analysis in intelligent environments have al-
ready been investigated in telecare systems [31][32]. Due to the high degree
of uncertainty, it is shown that a fuzzy system would be able to answer high
level queries such as “is the person eating regularly”. An adaptive fuzzy
control system reported in [33] has made an attempt to propose an adaptive
home to adapt to its inhabitants’ living style. Similar applications using
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embedded agents are reported in [34] and [35].
A system for ADL recognition system is proposed in [36] using fuzzy

logic. Fuzzy set theory is applied to monitor the ADL of an occupant to
offer him/her a safe environment. In [37], a fuzzy predictor model is used
to build the prediction model and then the results are compared with the
traditional time series prediction models such as ARMA, adaptive network-
based fuzzy inference system and transductive neuro-fuzzy inference model
with weighted normalization. In [38], a fuzzy learning and adaptation ap-
proach for agents, called an Adaptive On-line Fuzzy Inference System, is
proposed for ubiquitous computing environments. This approach consists
of five phases including: monitoring the users’ behaviour, capturing the ac-
tual data associated with their activities, computing the fuzzy membership
functions from the input/output data, generating the fuzzy rules from the
data and the agent control the learning and adaptation process. Thus, the
intelligent agent has learnt, predicted and adapted to the needs of the user.
To validate the proposed approach, it is compared with other computational
techniques such MLP neural networks, genetic programming and the adap-
tive neuro fuzzy inference system. The experiments are conducted on only
five days in the intelligent Dormitory (iDorm) real environment.

3. Binary Time Series Preprocessing

Data preprocessing is an essential step in working with any ANNs. As
stated in Section 1, using the binary signal is not an efficient way of rep-
resenting a large volume of intermittent data. This form of signal repre-
sentation could limit the generalisation of any network for data collected
over a long period of time. A binary time series represents the occupancy
activities collected from the door entry sensors and movement sensors. The
series contain a large sequence of 0’s and 1’s value since the sensor value
is either ‘on’ or ‘off’ (see Figure 2). Therefore, it is essential to convert a
binary series into a more suitable format to be fed as inputs to recurrent
neural network models.

We have investigated and tested different forms of data representation
for binary series as discussed in the following sections.

3.1. High to Low Frequency Sampling

High to low frequency conversion is used when data is re-sampled at a
lower rate, e.g. data recorded in seconds converted into hours; daily data
into monthly data. Under these conditions, the actual time series data are
accumulated over time to form a new, less frequent time series, thus helping
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with visualisation and data processing. This method is based on a particular
choice of statistical method namely, sum, mean, standard deviation, or any
other methods which can be used to aggregate the transactions within a
specific time period. This technique does not change the fact that the series
is still in a sparse format.

3.2. Start-time and Stop-time

Start-time and stop-time method is a conversion of the series where the
binary time sequence is represented as a compressed time-sampled sequence
of starting time and stopping time for each activity. This form of data
representation is shown to be more suitable for any modelling and prediction
[11]. This form of representation is formally defined in the remaining part
of this section.

Consider a binary series, s(t), representing the occupancy in a specific
area for t = 1, 2, . . . , N , where s(t) ∈ [0, 1]. This signal has two states of
‘on’ and ‘off’ representing the presence and absence from a specific area.

s(t) = (1, . . . , 1, 0, . . . , 0, 1, 1, . . .) (1)

To have a more efficient form of presentation for the binary series, it is
recommended to convert s(t) to a start-time and stop-time signal, x(t), as
stated below:

x(t) = (ts1 , te1 , ts2 , te2 , . . . , tsi , tei , . . . tsn , ten) (2)

where tsi and tei are the start-time and stop-time of any event which has
resulted in a value of 1 in s(t). The new series x(t) in terms of the start/stop
time has fewer values comparing with the long sequences in s(t). This par-
ticular conversion provides an accurate and more flexible representation of
binary series.

3.3. Start-time and Duration

Start-time and duration method is used when a binary signal is converted
into two separate sequences of real numbers representing the start-time and
duration of each activity respectively. It should be noted that there is a
dependency between these two sequences.

Considering the binary series represented in expression 1, start-time se-
ries, y(t), and duration series, d(t), are represented respectively as:
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y(t) = (ts1 , ts2 , . . . , tsi , . . . tsn) (3)

d(t) = (te1 − ts1 , te2 − ts2 , . . . , ten − tsn) (4)

This form of binary sequence conversion helps with the visualisation of
the binary series extracted from occupancy sensors, since it is rather difficult
to track the movements of the occupancy using large binary series. This form
of representation will make sure that the time dependency and correlation
within each component of the series is not lost.

The start-time and stop-time form of conversion has proved to be effec-
tive for modelling and prediction, while the start-time and duration form
of conversion has proved to be more suitable for binary signal visualisation.
The start-time and stop-time series, x(t) is normalised to a range between
0 and 1 or −1 and 1 before it is applied to any network for modelling and
prediction. The normalised signal x(t) will be used to represent the occu-
pancy behaviour in an area. The next step is to establish a non-linear model
representing this sequence.

4. Prediction Model

In this paper, two types of recurrent neural network models are used to
predict the data extracted from occupancy sensors. A short description of
the models used, NARX and Elman, is presented.

4.1. The NARX Network

Figure 3 shows the typical architecture of NARX network. In this model,
Multi-Layer Perceptron (MLP) is used to approximate the following function
[39].

y(t) = f(x(t− 1), x(t− 2) . . . x(t−Dx) (5)

, y(t− 1), y(t− 2) . . . y(t−Dy))

where x(t) and y(t) are respectively the input and the output of the model
at time step t, while Dx and Dy are the input and the output memory orders
with Dx ≥ 1, Dy ≥ 1 and Dy ≥ Dx. Also, f is a non-linear function of the
input and output of the model. The predicted output y(t) is regressed on
the input value (exogenous) x(t− 1) and the output value y(t− 1) [40][41].
In this case, since one of the inputs of NARX is the output of the network,
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Figure 3: NARX Network with two input delays and three output delays.

this makes NARX network represent the dynamical characteristic of a sys-
tem efficiently [42]. NARX network can be implemented as Time Delay
Neural Network (TDNN) when its output memory order takes a zero value.
Accordingly, there is only a time delay line in the input layer of the MLP
learning algorithm which is used to approximate the following function in
TDNN [43].

y(t) = f(x(t− 1), x(t− 2) . . . x(t−Dx)) (6)

Generally, there are two modes in which NARX network is trained
[42][44]. These modes are:

1. Parallel Mode: in this case, the estimated output of the network is
returned to the input of the MLP. This mode is shown in Figure 4-a
where TDL refers to the tapped delay line. This mode can provide
a good estimation when one adds a regressive factor of the estimated
value. As a result, the main dynamic features of the system are ob-
tained.

y(t+ 1) = f̂ [(y(t), x(t)] (7)

= f̂ [y(t− 1), y(t− 2), . . . y(t−Dy); (8)

x(t− 1), x(t− 2), . . . x(t−Dx)]
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2. Serial-Parallel Mode: in this case, instead of feeding back the estimated
output of the network, the actual output is returned to the input of
the neural network as illustrated in Figure 4-b. This mode has an
important characteristic in that it has strictly feed forward architecture
and a static back propagation learning algorithm can be used.

y(t+ 1) = f̂ [(ŷ(t), x(t)] (9)

= f̂ [ŷ(t− 1), ŷ(t− 2), . . . ŷ(t−Dy); (10)

x(t− 1), x(t− 2), . . . x(t−Dx)]

The embedded memory of NARX network gives a shorter path for gra-
dient information in case the network is unfolded in time to back propagate
the error signal. Having such a characteristic, the gradient descent learning
is better in NARX networks at learning the long term dependencies. In
gradient-based training algorithms, for n time steps in the past, the fraction
of the gradient becomes zero as n increases. Vanishing gradient is a problem
in other neural networks such as back propagation through time [41][40].

NARX network has been applied for modelling many real world appli-
cations, including time series and various artificial non-linear systems mod-
elling [7]. In this paper, NARX network is applied to data collected from
occupancy sensors to extract the behaviour pattern of an occupant. The
Serial-Parallel architecture of NARX network is used for learning the dy-
namic behaviour of an occupant living in an intelligent environment. Then,
the results obtained from NARX network are compared with simple recur-
rent neural network such as Elman network [45]. A brief description of the
Elman recurrent neural network (also known as a partial recurrent network)
is presented below.

4.2. The Elman Network

Figure 5 shows the structure of the network with two inputs and one
output unit. Elman network has three layers: input, hidden and output
layers, with a number of “context units” in the input layer. Initially, the
context units take zero values and then the output values of the hidden
layer units at the previous time steps will be copied into these units. In this
case, the network can perform time function mappings that are beyond the
ability of the standard MLP. This characteristic allows Elman network to be
suitable for time series prediction. Accordingly, the memory of the Elman
network is constructed via a feedback. Using this feedback, temporal and
spatial patterns can be learned, recognised and generated [46][47][48].
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(a) Parallel network

(b) Serial-Parallel network

Figure 4: NARX network architecture.

5. Prediction Performance Measurement

To identify the ability of the prediction model, it is important to choose
an appropriate error measure. In this study, depending on the input to the
model, whether it is binary or non-binary, different error measurements are
used.

For binary series, after training the binary time series data, a similarity
measurement between the two binary series (i.e. actual and predicted data)
is used. Different similarity coefficients have been proposed by researchers
in different fields. A similarity coefficient indicates the degree of similarity
between object pairs. In this investigation, these measures are used to find
the similarity between the predicted and the actual datasets.

Jaccard coefficient [49] is one of the most commonly used similarity mea-
surement coefficients for binary series. We have compared and investigated
this measure in our study. Jaccard index can be used to find the mismatch-
ing bits between two binary vectors representing two different datasets. It
is formally defined as follows:
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Figure 5: Elman network structure.

Sij =
a

a+ b+ c
0 ≤ Sij ≤ 1 (11)

where S is the similarity between two binary set. a is the number of 1’s in
both datasets, b is the number of 0’s in the first set and number of 1’s in
the second set and c is the number of 1’s in the first set and the number of
0’s in the second set.

The above error index will be used only for binary series prediction.
However, when signals are converted into either start-time and stop-time or
start-time and duration, then a continuous error measure is required. We
have used Root Mean Square Error (RMSE) as defined below to measure
the difference.

RMSE =

√

√

√

√

1

M

M
∑

1

(y(n+ 1)− ŷ(n+ 1))2 (12)

where y(n+1) is the actual value of the time series, ŷ(n+1) is the predicted
value, and M is the number of steps that network model has to predict[50].
RMSE is used to compute the differences between the actual observation
values and the predicted values which result from our model.
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Figure 6: Two hours ahead predicted sensor values using NARX network for three days
sample of simulated activities (-Predicted values; - - Actual values).

6. Experimental Results

To evaluate the performance of NARX network in modelling the binary
series representing the occupancy pattern, various experimental works are
conducted. In this section two separate datasets collected from a simulator,
and a real environment are investigated. To evaluate the predictive ability
of NARX network, the prediction results of NARX network is compared
with Elman network.

A short summary of the data collection system is presented in the fol-
lowing section followed by the prediction results and the comparison.

6.1. Data Collection and Environment

The data collection system consists of an array of sensors, which collect
information using Passive Infra-Red (PIR) motion sensors and door entry
point contact switches. The occupancy/movement sensors and door switches
are used to record the behaviour of the occupant. From these observations,
the time that the occupant spent in one room before moving to another
room is calculated.

Two separate datasets, simulated data generated from a simulator and
real data collected from real environments, are investigated in our research.

• Simulated Data: We have already developed a simulator as reported
in [51] to generate the occupancy signals (binary series). To generate a
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simulated data, a number of uncertainty factors related to both mod-
elled occupant as well as modelled environment are taken into accounts
in modelling both the movement and duration. In this study, two dif-
ferent binary datasets are generated as if from occupancy sensors in
the bedroom, corridor, lounge and kitchen with a resolution of one
minute. The first dataset represents an occupancy signal for a very
regular person with no duration uncertainty. The second dataset rep-
resents an occupancy signal for a less regular person with 6% duration
uncertainty.

• Real Data: Binary data are collected from a real environment mon-
itored by a JustChecking system [52]. Wireless sensors are installed
in a house. These sensors are triggered as a person moves around the
house. Data from the sensors are gathered by a controller and trans-
ferred to a web-server for further data analysis. Sensors are placed
in the hallway, kitchen, lounge, the front/back door, etc. In this pa-
per, front door, back door and four motion sensors including lounge,
kitchen, bedroom and bathroom are used to detect movements of the
person inside the house. The observations extracted from the occu-
pancy sensors were recorded with a resolution of one second to monitor
the daily behaviour of the occupant for a duration of over one year.
It should be noted that collected data is based on a single occupant
house. Logged data is time stamped and includes sensor ID and a sen-
sor name (type). A sample of raw data collected from an intelligent
environment is illustrated in Table 1. A software program is used to
read the binary data from the actual occupancy sensors and transform
them into a time series format containing the start/stop time and the
status of the sensor.

6.2. Prediction Results

NARX and Elman networks are used to model and predict both simu-
lated and real data as described earlier. The results are presented in two
separate sections for simulated data and real data. To train these networks,
experiments are conducted using a number of parameters which are neces-
sary for training. These parameters are: number of input tapped delay Dx,
number of feedback output delay Dy, and number of neurons in the hidden
layer N .
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Figure 7: Two hours ahead predicted sensor values using NARX network for three days
sample of simulated activities for an occupant with less regular activities (6% duration
uncertainty) (-Predicted values; - - Actual values).

Table 1: A sample of collected raw data from the environment

Time Stamp Sensor ID Type

21/02/2007 01:15 5 Bedroom
21/02/2007 01:18 5 Bedroom
21/02/2007 01:18 7 Lounge
21/02/2007 01:19 7 Lounge
21/02/2007 01:19 8 Kitchen
21/02/2007 01:19 1 Front Door - open
21/02/2007 01:20 2 Front Door - close
21/02/2007 01:20 8 Kitchen
21/02/2007 01:21 8 Kitchen
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6.2.1. Simulated Data Results

Ten days of binary data are used to evaluate the predictive ability of
NARX network where the sampling interval is one minute. The length of
the data is 14400 samples; we chose the first 10080 points for training the
network and the last 4320 points for testing. Generally, for any ANN the
prediction results depend on the kind of inputs of the network, whether they
have binary or real values. Therefore, in this study, two sets of input data
are tested; these are binary and real time series data. For binary input data,
the input to the NARX network is driven by the actual binary time series
extracted from the sensor data at time t. The output is the future value of
the data, i.e. at the time t+ τ (τ is the number of step ahead prediction).

To show the ability of NARX network in prediction of binary time series
generated from the simulated data, we have conducted two sets of exper-
iments on the simulated data. The first set of simulated data represent
the binary time series for a very regular occupant i.e. the generated simu-
lated signal has no duration uncertainty. The second set of data represent
the binary time series for an occupant with less regular behaviour i.e. the
generated signal has 6% duration uncertainty.

Figure 6 and Figure 7 show the NARX network prediction results for a
sample of three days of the binary time series data with regular and irregular
patterns respectively. For both of these figures, the solid line is the predicted
values and the dotted line is the actual values. In addition, the prediction
is based on two hours step ahead. In Figure 6, the predicted data is very
close to the actual data in terms of durations since these data represent a
very regular occupancy behaviour. For instance, the bedroom occupancy
signal shows the sleeping patterns for an occupant who goes to his/her bed
at a regular time (around 22 : 00) to sleep about 6 − 7 hours and also
takes a nap of about 2 hours after mid day. The results of occupancy
prediction using NARX network for two hours step ahead of the simulated
data with some irregular patterns are shown in Figure 7. From this figure it
can be observed that NARX network can successfully predict the irregular
occupancy patterns where the occupant spent more time in some area than
others in the environment. For example, the bedroom occupancy signal
shows that the occupant spent most of his/her time in the bedroom which
might indicate an early detection of illness or depression. However, the
difference between the predicted and the actual data is barely noticeable.
As stated in Section 5, the errors between the predicted and the actual data
for the binary data is calculated using some binary similarity measurements.

In this work, Jaccard coefficient is applied to calculate the similarities
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Figure 8: Comparing similarity measures between the actual and the predicted binary
sensor values of the results shown in Figure 7.

between the predicted and actual datasets. For the simulated data with
some regular patterns, the similarity between the predicted and the actual
binary datasets for the four motion sensors (bedroom, corridor, lounge and
kitchen) are ranged between 99% and 98%. Similarity measure using the
Jaccard coefficient were almost close to 1, indicating that the differences
between the actual and the predicted output of the NARX network are
negligible. For the simulated data with irregular patterns, Figure 8 shows
the similarities between these two binary datasets. The similarity between
the predicted and the actual binary datasets for the four motion sensors are
ranged between 99% and 89%. We think that Jaccard coefficient is a good
measure of prediction error. It excludes the negative matches considering
only positive matches and mismatched bits between two binary vectors. For
example, in Figure 6, for the most time the corridor motion sensor binary
dataset has a zero value and only on a few occasions does it have a value
equal to one.

Therefore, it is apparent that even using data with some irregular pat-
terns, we would still be able to predict the movement activities of an occu-
pant living in an intelligent environment.

Additionally, we conducted experiments where the inputs to the NARX
network were the sensor data after conversion from binary to start-time and
stop-time method. In this case, the inputs to the NARX network are the
converted data using the start-time and the stop-time at time t, while the
output is the start-time and the stop-time at the time t+ τ . Figure 9 shows
the predicted results of the second set of the simulated data with 6% uncer-
tainty using NARX network to predict one step ahead using differentDx and
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(a) Bedroom motion sensor

(b) Corridor motion sensor

(c) Lounge motion sensor

(d) Kitchen motion sensor

Figure 9: The prediction results for four sensors representing a simulated environment
with 6% uncertainty based on start/duration time.
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Table 2: The prediction results of the lounge sensor for Elman and NARX network using
different number of feedback outputs (D).

No. of Hidden Elman NARX
units Network Network

D=1 3.4753 0.0854
D=3 4.0820 0.0517
D=10 0.2027 0.0418

Dy values for each time series data. In these graphs, start-time/duration
method is used to display the actual and predicted values. Start-time and
duration method of conversion seems to be a practical and easy tool to vi-
sualise large binary data. To measure the accuracy of prediction based on
start-time and stop-time method of conversion, RMSE is used. The RMSE
for both training and testing of all simulated sensor data range from mini-
mum of 5% to maximum of 9%. In Figure 9 the ◦ are the predicted values
using NARX model and the + are the actual sensor values.

6.2.2. Real Data Results

The NARX model is also exploited to test real data in order to monitor
the movement of a person in his/her home. The real data are split into
a sample of 14 days for training (i.e. about 1, 209, 600 points of binary
datasets) and 6 days for testing (i.e. about 518, 400 points of binary time
series). These datasets are trained using NARX network with a different
number of input and output memory orders and hidden units. Considering
the size of the real dataset we were not able to generate a model based on
the actual binary data. Therefore, we only use the start-time and stop-
time converted dataset. RMSE to train NARX network for all real datasets
are ranging from 6 − 9%. The predicted results of the back-door sensor,
the lounge and the kitchen motion sensor are illustrated in Figure 10. In
these experiments, one step ahead (next start/stop time cycle) is predicted.
From Figure 10-a, it is obvious that the back door is usually opened about
7 minutes or a bit more, and it is sometimes left open for more than 20
minutes. In Figure 10 the ◦ are the predicted values using NARX model
and the + are the actual sensor values.

6.3. Comparison with Benchmark Models

To show the validity and significance of the results, our prediction results
are compared against the results from some benchmark models.
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(a) Back door sensor

(b) Lounge motion sensor

(c) Kitchen motion sensor

Figure 10: The prediction results for three sensors representing a real environment.
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Figure 11: The prediction results for the bedroom sensor representing a simulated envi-
ronment with 6% uncertainty based on start/duration time using moving average model.

6.3.1. Comparison with Moving Average

A simple naive approach uses the previous value of a time series to predict
the next value. Three averaging forecasting techniques are available. They
are: moving average, weighted moving average and exponential smoothing.
Moving average approach is used and compared with the predicted results of
the NARX network stated in the previous section. For instance, the RMSE
for the first set of the simulated data (i.e. for a very regular occupant) are
4.4746, 4.4489, 0.2562 and 2.7765 for the bedroom, corridor, lounge and
kitchen sensors data respectively. The RMSE of all simulated sensor data
using NARX network was ranging between 5− 9% for the four sensors data
sets as stated in Section 6.2.1. The prediction is based on the start/stop
time as inputs to the networks to predict the next start/stop time. The
prediction results of NARX network are much better than moving average
approach since it presents the lowest prediction errors.

Further experiments are also conducted on the second set of the simu-
lated data; again the moving average results performed poorly. The pre-
dicted values for bedroom sensor data using moving average is shown in
Figure 11. Comparing this figure with Figure 9-a where NARX network
is used show a much better prediction results. There are clear differences
between the predicted and actual sensor values appear in Figure 11 when
moving average approach is used. Our observation is that the prediction
of human behavioural patterns using naive approaches is hard since these
approaches work well when the data is quite stable over time.

6.3.2. Comparison with Elman Network

The results of the NARX network presented above are compared with
another RNN namely Elman network. Both networks are trained using
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Table 3: Prediction error for the lounge motion sensor based on a sample of ten days
training data with different values for step ahead prediction (step represents the next
start/stop time cycle of the occupant movement activity).

Number of step ahead RMSE

1 step* 0.0765
2 step 0.0697
3 step 0.0977
4 step 0.5783
5 step 0.1134

the MLP algorithm with the same number of hidden units. Once again,
experiments are conducted on the simulated data and the real data. For
example, the prediction results for the simulated lounge sensor data are
summarised in Table 2. The prediction is based on the start/stop time as
inputs to the networks. In this experiment, the number of the hidden units
play an important role in network convergence. Increasing the number of the
hidden units results in decreasing the RMSE of training for both networks.
However, the training time and number of epochs that are required to train
the network increases rapidly in Elman network in contrast to NARX. For
instance, training the lounge sensor data using Elman network requires 1000
epochs for training, while only 50 epochs are required using NARX network.

The NARX network is also compared with the Elman network using
the real data. Based on our experiments, again the convergence of NARX
network is much better than the Elman network to train the real data. For
example, the RMSE for training the back-door and front-door sensor data
using Elman network are 1.75 and 2.15 respectively. However, the RMSE
is only 0.05 and 0.07 to train the back-door and front-door using NARX
network.

6.4. Discussion

This study set out with the aim of assessing the application of a recur-
rent NARX network in identification and prediction the behaviour patterns
of an occupant living in an intelligent environment. In the current study,
the NARX network is applied for both the binary sequences and the con-
verted data into start/stop time sequences. As explained in Section 3, the
start/stop time approach compresses the long binary series. Although the
NARX network gives good results in predicting the binary inputs, the com-
plexity of the structure of NARX network to train the converted data is
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far lower than when training the original, unconverted binary time series.
Fewer hidden neurons and a small number of epochs of training are used to
train the network.

Experimental results also showed that as the number of hidden neurons
are increased the convergence becomes better although the training time is
increased. For instance, consider training the data collected from the kitchen
motion sensor of the real environment where the number of input and output
memory orders are 100. In this case, the RMSE are 0.0319 for 20 hidden
neurons and 0.0263 for 50 hidden neurons. Increasing the number of output
memory order is a major factor leading to much better convergence. From
our experiments on the sensor data using NARX and Elman networks, it
can be concluded that the NARX network performs better than the Elman
network.

The capability of the system to predict the occupancy behaviour was
assessed by investigating the effect of increasing the number of step ahead
τ in network performance convergence. Therefore, different experiments are
carried out on binary series. The results of this study show that, as τ is
increased for a number of steps, the RMSE is also increased. The increasing
amount depends on the type of the sensor, number of hidden neurons and
the number of input/output memory order. Table 3 summarises the NARX
network prediction results for the lounge motion sensor dataset generated
from the simulated data with 6% duration uncertainty for a period of ten
days. In this experiment, two hidden layers with ten neurons in each layer
are used. Also, two input/output memory orders are used. From the results
in Table 3 it can be concluded that the increase in prediction time decreases
the accuracy of the network convergence. More specifically, the RMSE is
increased after just 3 steps ahead prediction. It should be noted that in this
table, step means the next start-time and stop-time cycle of the occupant
movement activity.

The experimental results were successful as the network was able to
recognise the behavioural patterns of an occupant that might be indicators
of developing physical or mental medical conditions. Also, the results of
this study indicates that NARX network gives good results in predicting
the binary time series data collected from an intelligent environment.

7. Conclusions

This paper shows that the occupancy pattern extraction and prediction
in an inhabitant intelligent environment can be efficiently modelled using
recurrent neural networks such as NARX network. This network has been
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used to predict the binary data sequence extracted from occupancy sensors
in the simulated and real environments. The predicted results of NARX
network are tested and compared with other recurrent neural networks such
as Elman network. Due to the feedback from the output layer to the in-
put layer with a proper number of input time delays, NARX network gives
better results than Elman network. In addition, NARX network has shown
its ability in a long-term prediction compared with other neural network
predictive algorithms.

In addition, this paper highlights the need for a flexible and efficient
data representation and visualisation in large binary datasets. The start-
time and stop-time approach is used to convert and represent the binary
datasets. The result of this conversion is a compressed data compared with
the original long series of binary data items, which are then used as inputs
to our prediction techniques. The complexity of the structure of NARX
network to train the data after conversion from binary to start-time and
stop-time is lower than when training the original, unconverted binary time
series. Fewer hidden neurons and a small number of epochs of training are
used to train the network.

Further work in this area needs to explore the use of other techniques
such as the kernel learning methods suggested in [27] to improve the per-
formance of handling large sparse data sets. Additionally, extension to the
length of the predicted pattern is essential to make the developed system
suitable for monitoring the elderly in these circumstances.
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