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ABSTRACT 

We address a service facility problem with captive 
interacting customers and service providers. This 
problem is modelled as a deterministic queuing system. 
Customers must routinely decide which facility to join 
for service, whereas service providers must decide how 
much to adjust the service capacity of their facilities. 
Both service providers and customers base their 
decisions on their perceptions about the system. 
Customers use their previous experience and that of 
their neighbours to update their perceptions about the 
average sojourn time, while service providers form their 
perceptions based on the queue length. We use cellular 
automata (CA) to model the interaction between 
customers and service providers. We perform a 
simulation to assess the way the customers’ and service 
providers’ decisions evolve and affect the system 
behaviour. Our results show that the more conservative 
the service providers, the larger the market share they 
achieve and the lower probability that their facility 
closes down.  
 
INTRODUCTION 

Most queuing problems are modelled assuming static 
conditions, and exogenous arrival and service rates. 
They are analysed in steady-state, despite the fact that 
they are dynamic and that agents' decisions depend on 
the state of the system. The analysis of queuing 
problems could be aimed either at optimising 
performance measures to improve the operating 
characteristics of the system without accounting for 
customer behaviour or at understanding the agents' 
behaviour through the analysis of their decisions. 
 
Over the last decades, some researchers have attempted 
to move away from these predominant assumptions of 
traditional queuing theory towards a more dynamic 
context in which agents' decisions are increasingly 
considered. The present paper goes in this direction. We 
will focus on studying the behavioural aspects of 
queuing problems by using deterministic simulation. 

A very broad range of studies has addressed the 
behaviour of customers and service providers in 
queuing problems. Nevertheless, this literature is 
scattered and not well-organised. The literature related 
to customer behaviour has been broadly discussed by 
Delgado (2012). The research on customer behaviour in 
queuing systems has been mainly tackled by marketing 
researchers, who study the relationships among waiting 
times, customer satisfaction and service quality in 
service facilities (Davis and Heineke 1998; Hui and Tse 
1996; Taylor 1994). These studies attempt to understand 
the influence of waiting time on customer satisfaction, 
customer loyalty and service quality (Bielen and 
Demoulin 2007; Law, et al. 2004). Their aim is to 
endow service providers with information about 
customers’ attitudes to enable them to redesign their 
service facility accordingly. For a review of the 
literature, see in Bielen and Demoulin (2007) and 
Gallay (2010). 
 
As service providers (throughout the remaining of the 
paper we will use the term “managers” instead of 
service providers) value their customers because they 
increase the value of the firm, customers value their 
time (Delgado et al. 2011a). “Time is money”, such as 
the adage says. Whatever the service customers require, 
waiting for service represents a waste of time for them 
which affects their utility. This impact is even stronger 
when customers repeatedly patronise a facility for 
service. When customers perceive that their utility is 
being affected, they look for another manager who 
maximises their utility. Some examples of this kind of 
systems include car owners who annually or biannually 
(depending on the country) must choose a garage for the 
emission, students or workers who daily has to choose 
an hour and/or a restaurant for lunch, a person who goes 
monthly to the bank to pay her bills, and a person who 
goes weekly to the supermarket, and so forth. In all 
these examples, customers take into account their 
previous experience to decide which facility to use for 
service. This experience enables them to choose the 
time and/or place that they consider less crowded. There 
are also situations in which customers are not 
necessarily humans. For instance, customers could be a 
stack of files waiting at an office to be dealt with, jobs 
at a factory waiting to be performed or dispatched, and 
vehicles waiting at a garage to be repaired, among 
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others. Still, note that behind each of these objects is a 
human being waiting (e.g. the final customer of the 
garage is the car owner). 
 
The complexity of the relationship between managers 
and customers increases in real life when many service 
facilities compete to render a same service. In this case, 
the managers’ actions will affect their future decisions, 
those of the customers as well as those of the rival 
managers. 
 
Concerning the managers’ decisions, the literature have 
focused on analysing policies of optimal pricing and 
capacity decisions to control problems associated with 
congestion in service facility systems. P. Naor (1969) is 
the seminal paper on this subject. He formalised the 
insight originally formulated by W. A. Leeman (1964) 
and then discussed by T. L. Saaty (1965) and W. A. 
Leeman (1965). These authors suggest using pricing to 
help reduce queues in many service systems. Naor’s 
model was subsequently generalised by Yechiali (1971), 
Edelson (1971), Edelson and Hilderbrand (1975), 
Stidham Jr. (1985, 1992), Mendelson and Whang 
(1990), Dewan and Mendelson (1990), among others. 
More recently, Sinha, et al. (2010) applied an optimal 
pricing scheme of surplus capacity to control the joint 
problem of existing and potential customers who are 
differentiated according to a pre-specified service 
quality level. 
 
Although some managers’ strategies effectively 
consider either the demand or the supply perspective 
when adjusting their service capacity, optimal strategies 
should incorporate the perspective of the two conflicting 
parts of the system (Pullman and Thompson 2002). Our 
research is motivated by the logic behind this assertion 
and the complexity of the interaction between the 
decisions of customers and managers in service facility 
systems. Consequently, our modelling approach 
considers a service facility system where competing 
facilities render a service which customers require 
routinely. Each facility has its own queue and manager. 
Queues are assumed to be invisible to the customers. 
We assume that customer interact with their neighbours 
and share information about their most recent 
experience.  They use their experience and that of their 
best performing neighbour to update their expectations 
of their previously chosen queue and the one used by 
their quickest neighbour.  Then, based on their 
expectations, customers choose a facility for the next 
time. Managers take their decision to adjust service 
capacity on the basis of their desired service capacity 
which they determine based on their perception of the 
queue length at their facility and a market reference 
sojourn time. This market reference is a benchmark 
whereby managers compete with each other to attract 
more customers to their facilities. In other words how 
managers perform compared to this benchmark is a 
competitiveness index of the facilities. 
 

In order to study this complex problem we propose an 
idealised queuing model with reactive and adaptive 
customers and managers in which the decisions of both 
types of agents are interdependent. This model is built 
using a cellular automata-based framework. The 
interaction between customers is portrayed in a one-
dimensional cell lattice. The main structure of the 
cellular automata (CA) model is similar to that of the 
model proposed by Delgado et al. (2011a and 2011b). 
However, the factors which determine the average 
sojourn time customer experience at the facilities are 
different. While in those papers this experience 
depended only on customers’ decisions because the 
service capacity remained constant (i.e. exogenous 
service rates), now this experience is also influenced by 
the managers’ decisions (i.e. endogenous service 
capacity). 
 
Our results show that the more conservative a manager 
is, the larger his market share. Additionally, his facility 
is less likely to close down. Similarly, the facilities of 
reactive managers are less likely to remain in operation 
in the long term. 
 
This paper is organised as follows. The next section 
describes the one-dimensional CA model we use to 
study the agents’ behaviour in a multichannel service 
facility system. We deal in turn with the managers’ and 
the customers’ decision rules. Then, we describe the 
managers’ and customers’ profile depending on the 
model parameters. The next section presents the 
simulation results. We perform an experiment in which 
we analyse the influence which the different managers’ 
parameters have on the performance of the facilities. 
Finally, we present the conclusion and contributions of 
the paper. 
 
MODEL DESCRIPTION 

Consider the queuing system and the CA model 
explained in Delgado et al. (2011a and 2011b). This 
model represents a fixed population of N reactive and 
adaptive customers arriving periodically at a service 
facility system. Each period, they must choose one 
between m facilities for service. Delgado et al. (2011a 
and 2011b) consider endogenous arrival rates (λjt) and 
exogenous service rates (µ). We deviate from these 
papers by assuming both arrival and service rates as 
endogenously determined. We endow managers with 
the ability to adjust the facilities’ service capacity. In 
this sense, we model a system in which customers are 
free to choose a facility for service and the managers 
adjust their capacity depending on the customers’ 
behaviour. The managers’ actions can either encourage 
or discourage customers to use a certain facility 
(Delgado 2012). Consequently, the average sojourn time 
(i.e. customer’s experience) depends on both the 
customers’ and managers’ decisions. In other words, the 
ability of a facility (state) to be more attractive for 
customers (cells) than the others depends on the 
behaviour of all agents in the system. For the remaining 



 

 

of the paper we will use the term “agents” when 
referring to both the managers and the customers.  
 
Customers’ Decisions 

We model the service facility’s customers as a social 
network of colleagues, friends, or neighbours who 
interact in a one-dimensional K-neighbourhood (K is the 
number of neighbours each customer interacts with on 
each side). When customers patronise a facility for 
service, they experience an average sojourn time (Wjt) 
which depends on the arrival rate (λjt) and the service 
rate (µjt) of that facility. This average sojourn time 
represents a congestion measure of the facilities and is 
given by Equation (1). This equation is proposed and 
explained by Delgado et al. (2011b) and considers that 
arriving customers can temporarily surpass the service 
rate in a transient period, but it also satisfies the 
behavioural characteristics of steady-state.  
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Customers use their most recent experience to form 
expectations of the average sojourn time for their most 
recently chosen facility. Customers also share their 
experiences with their neighbours and use this 
information to update their expectations regarding the 
average sojourn time for the previously facility chosen 
by their quickest neighbour. Then, we endow customers 
with computational memory which enables them to 
update their expectations for their previously patronised 
facility and that chosen by their best performing 
neighbour.  
 
We follow Delgado et al. (2011a) and assume that 
customers can apply different weights to update their 
memory depending on the source of information. In this 
sense, we denote by α the weight that customers give to 
their own information and by β the weight for the 
information provided by their best performing 
neighbour. We apply adaptive expectations (Nerlove 
1958) to model the updating process of the customer’s 
memory (Mijt+1). The adaptive expectations concept, 
also known as exponential smoothing (Theil and Wage, 
1964), is based on the weighted average of two sources 
of evidence: the latest evidence (the most recent 
observation, Wijt), and the value computed one period 
before (Mijt). (Theil and Wage 1964). Then Mijt+1 is 
given by: 
 

Mijt+1 = θ * M ijt + (1 – θ)* Wijt
 

  (2) 
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where θ denotes the coefficient of expectations and 
takes two different values depending on the source of 
information, as explained above. The logic behind this 

coefficient is explained in Delgado et al. (2011a) and 
Wijt is computed using Equation (1). We label 
“conservative” those customers who give more weight 
to their memory than to the new information, i.e. α and 
β greater than 0.5. In contrast, when they give more 
weight to new information, we call them “reactive”.  
 
Once customers update their memories, they will decide 
to patronise the facility with the lowest expectation of 
sojourn time. Longer (shorter) queues bring about 
higher (lower) sojourn times and increase (decrease) 
customers’ perceptions. When customers’ perception 
about a certain facility exceeds the expectations they 
have regarding some other, they decide to switch 
facility. Otherwise they remain at the same facility 
 
Managers’ Decisions 

We endow managers with similar abilities as the 
customers. In this sense, we assume that managers have 
a memory and react to customer behaviour by adjusting 
the service capacity of their facility. Although 
customers cannot observe the queues before choosing a 
facility, managers have information about the number of 
customers arriving at their facilities. They thus use this 
information to form their perceptions about the future 
arrival rate, �̂�jt. The managers’ memory also enables 
them to update their perceptions each period using an 
adaptive expectation model, as follows: 
 

�̂�𝑗𝑡+1 = 𝛿 ∗ �̂�𝑗𝑡 + (1 − 𝛿) ∗ 𝜆𝑗𝑡   (3) 
 
where hats indicate the expected queue length, and δ  
the coefficient of expectations (Nerlove, 1958). δ can be 
interpreted as the speed at which managers adjust their 
perceptions. This parameter follows the same logic as 
explained above for the customers’ parameters (α and 
β).  
 
Managers use their estimate about the future demand 
(i.e. arrival rate) to determine the service capacity 
required to meet their customers’ expectations of 
sojourn time. Managers do not have accurate 
information regarding these expectations, but they know 
a reference average sojourn time, τMR, which is 
considered by the market to be acceptable to the 
customers. This market reference can be interpreted as a 
benchmark the managers use to evaluate the 
competitiveness of their firms. This benchmark is 
assumed to be exogenous and fixed. Given �̂�jt and τMR, 
managers can determine their desired service capacity, 
�̇�jt, by using Equation 1. Rewriting this equation in 
terms of these three variables we have: 
 

jtjt

jt
MR

ˆ

µµ

λ
τ



1
2 +=    (4) 

 
Note that this is a second order equation for which there 
are two possible solutions. Nevertheless, due to the 



 

 

nature of the problem it is impossible to have negative 
arrival and service rates. Hence, we only consider the 
positive solution of Equation 4. This solution is given 
by: 
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We assume �̇�jt to be the service capacity which 
managers consider as sufficient to satisfy the customers’ 
needs regarding expected sojourn times. Then, the aim 
of managers is to adapt their available service capacity 
(µjt) to their desired service capacity. They must 
therefore decide when and how much capacity to add or 
remove. Nonetheless, once the adjustment decision has 
been made, its implementation process does not 
materialise immediately. In fact, when managers decide 
how much capacity they wish either to add or remove, 
there is usually a lag between the moment they take 
their decision and it is implemented. Examples of this 
kind of delays include the delivery delay entailed when 
purchasing new machines; the time required to build 
new infrastructure; the period for training new 
employees; and the legal notice period to lay off staff.  
 
When managers decide how much capacity to add (xt), 
these orders accumulate as capacity on order (µjt+) until 
they are available for delivery. Once the delivery time 
(d+) expires the ordered capacity is available for service.  
That is, order xt is fulfilled in period t + d+. Assuming 
that there is no capacity on order at the beginning of the 
simulation, i.e. µjt+ = 0 for t ≤ 1 and xt = 0 for t < 1, the 
cumulative orders are given by: 
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Similarly, when the capacity adjustment implies 
removing capacity, the capacity managers decide to 
withdraw (yt) is designated as capacity to be retired 
(µjt−).  This capacity remains available for customers 
until the dismantling time (d−) expires, i.e. yt is 
removed from the service capacity in period t + 𝑑−. 
Assuming that there are no previous retirement 
decisions at the start of the simulation, i.e. yt = 0 for t < 
1 and hence µjt− = 0 for t ≤ 1 , the capacity retirements 
accumulate as follows for t >1: 
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The capacity decisions that have not yet been 
implemented ( ±

jtµ ) are given by: 
 

)( jtjtjt
−+± −= µµµ     (8) 

 
We propose a heuristic which enables managers to 
know how much capacity either to add (xt) or remove 
(yt) and when to do so. The required capacity adjustment 
depends on the gap managers observe between their 
desired capacity (�̇�jt) and the service capacity, which 
they perceive to have currently. When this gap is 
positive, new capacity orders will be placed, whereas 
new capacity retirements will be carried out when the 
gap is negative.  
 
The current available service capacity (µjt) and the 
managers’ previous decisions, which are still in the 
process of implementation (µjt

±), make up the capacity 
that managers are expecting to have in service if no 
further changes are decided. Nevertheless, managers do 
not necessarily keep in mind all their previous 
decisions, which have not been yet implemented.  
Denoting by ψ the proportion of the not yet 
implemented capacity adjustment, which managers 
remember, we obtain that the service capacity they 
perceive to have at time t, is given by: 
 

±+= jtjtjt * µψµµ    (9) 
 

where ψ is nonnegative and less than or equal to 1. We 
call ψ the “coherence factor” of managers. If managers 
are rational when making capacity decisions they should 
take into account their previous decisions, which are 
still in process of execution. In this case, ψ = 1. 
Otherwise, if they only account for part of these past 
decisions, ψ < 1. 
 
By computing the difference between the service 
capacity, which managers consider they currently have, 
and their desired capacity, we obtain the required 
capacity adjustment (Δµjt): 
 

jtjtjt µµµ −=∆     (10) 
 
Managers may make this adjustment as fast or as slow 
as they wish. That is, we assume that managers can be 
prudent when taking their decisions. The second 
element of the heuristic tackles this issue. Let ζ be the 
speed at which managers decide to adjust capacity, i.e. 
how fast they decide to either add or remove capacity. 
Then, when the desired capacity exceeds the current 
capacity, which managers perceive to have, they decide 
to add capacity and the ordered capacity (xjt) will be: 
 

∀>−=     if    )(*x jtjtjtjtjt µµµµζ    0 ≤ ζ ≤ 1    (11)
  

while if this decision implies to withdraw capacity, the 
capacity to be retired is: 
 

∀<−=      if    )(*y jtjtjtjtjt µµµµζ    0 ≤ ζ ≤ 1   (12) 



 

 

ζ is small when managers take their decisions slowly, 
i.e. they are prudent decision makers. On the contrary, a 
high ζ implies that managers take actions quickly, i.e. 
they are aggressive decision makers. 
 
To summarise the managers’ dynamics: The more 
customers patronise a facility, the higher its manager’s 
perception of the arrival rate is. High (low) manager’s 
expectations increase (decrease) his desired service 
capacity. The higher (lower) the desired service capacity 
the more capacity the managers order (remove). With a 
delay, the capacity orders will increase the service 
capacity, while the capacity retirements will decrease it. 
This will affect the number of customer arriving at that 
facility. 
 
CUSTOMERS’ AND MANAGERS’ PROFILE 

Both customers and managers can be characterised 
according to their attitude towards new information 
when updating their perceptions (α, β, and δ). Managers 
are additionally described according to their coherence 
when taking decisions (ψ) and the speed at which they 
implement these decisions (ζ). Considering their attitude 
towards new information, customers and managers can 
be defined as conservative, hesitant or reactive. We say 
they are conservative or reluctant regarding new 
information when they have more confidence in their 
memory than in recent experiences (i.e. α or β high for 
customers and δ high for managers). When the contrary 
occurs, we call customers reactive (i.e. α or β low for 
customers and δ low for managers). When a roughly 
equal weight is given to memory and to the new 
information, we call hesitant customers (i.e. α or β 
intermediate). 
 

SIMULATION RESULTS AND DISCUSSION 

Due to the number of parameters the model has, we 
limit our simulation analysis to evaluating the dynamics 
of a system which is configured with 3 facilities and 120 
customers (i.e. a one dimensional lattice of 120 cells, 
where each cell can take exactly one of three states). 
Each facility is initially provided with a service capacity 
of 5 customers per time unit, a manager and its own 
queue. Agents are endowed with an initial memory (i.e. 
expected average sojourn times for customers and 
expected arrival rates for managers). This initial 
memory is randomly allocated to the agents using a 
uniform distribution, whose maximum and minimum 
values are respectively 10% above and below the 
sojourn time of the Nash equilibrium. Given that all 
facilities have the same service capacity at the 
beginning, the Nash equilibrium occurs when customers 
are split equally among the three facilities, i.e. 40 
customers patronising each. This distribution yields an 
average sojourn time of 1.8 time units.  
 
We assume the implementation and dismantling delays 
involved in the managers’ decisions to be fixed and 
equal to 4 and 2 periods, respectively. That is, once 

managers decide to increase capacity, this order will be 
delivered 4 periods later. Similarly, when they decide to 
reduce capacity, the capacity to be retired will still be 
available for service during the next 2 periods.  
 
We develop and simulate the model using the numerical 
computing environment MATLAB and use STATA to 
test statistical hypotheses related to the performance of 
the facilities. 
 
In this paper we focus on analysing the impact of the 
managers’ profile on the system behaviour. To do this, 
we simulate 1,000 iterations (i.e. 1,000 different random 
seeds) of the model for a number of different 
combinations of the managers’ parameters (δ1, δ2, δ3, 
ψ, ζ) for the case where α = 0.3 and β = 0.7. In order to 
validate if 1,000 iterations are enough to draw 
conclusions about the different scenarios the system 
exhibits in steady state, we have run 10,000 iterations of 
the model and extended the simulated time to 10,000 
time periods for several parameter combinations. The 
steady-state period was computed for the last 100 time 
period. We found that there were no significant 
differences in the number of facilities closing compared 
to 1,000 iterations over 500 periods. We therefore 
assume that 1,000 simulations of the model over 500 
time periods are appropriate for our analysis. The results 
are discussed in terms of the possible scenarios 
(regarding the number of facilities remaining open at the 
end of the simulation period) which we can obtain when 
simulating the model. Table 1 contains the eight 
possible scenarios according to the number of facilities 
considered in the model. 

 
Table 1: Possible scenarios generated by simulating the 

model. 
 

Numerical 
Code Scenario 

0 All facilities close 

1 Facility 1 is the only one open 

2 Facility 2 is the only one open 

3 Facility 3 is the only one open 

12 Facilities 1 and 2 remain open, while 
facility 3 closes 

13 Facilities 1 and 3 remain open, while 
facility 3 closes 

23 Facilities 2 and 3 remain open, while 
facility 3 closes 

123 All facilities remain open 
 
Figure 1 shows the relative frequency of each scenario 
described in Table 1 for the nine possible combinations 
of parameters (ψ, ζ) using the three values {0.2, 0.5, 
0.8}. The coefficients of expectations of managers and 
customers are: {δ1 = 0.2, δ2 = 0.5, δ3 = 0.8, α = 0.3 and 
β = 0.7}. The nine combinations of parameters (ψ, ζ) are 



 

 

on the horizontal axis. The first three combinations (i.e. 
I, II, and III) illustrate the cases where the managers are 
slow decision makers (ζ = 0.2) and have different 
degrees of rationality when accounting for their not-yet 
implemented decisions (ψ). The next three combinations 
(i.e. IV, V, VI) represent those cases where managers 
are moderate decision makers and the last three (i.e. VII, 
VIII, IX) those where managers are fast decision 
makers.  
 
Figure 1 indicates that the scenario where the three 
facilities remaining open (see the line labelled as 
“Facilities 123”) is the most likely when managers take 
their decisions slowly (see cases I, II and III). This 
probability decreases as the decision making process is 
faster and it is close to zero when managers are faster 
decision makers (ζ = 0.8) and almost rational when 
accounting for their not-yet implemented decisions (ψ = 
0.8) (case IX). When one facility closes, this is mostly 
facility 1 (see line “Facilities 23”), whose manager is 
the most reactive (δ1 = 0.2). This scenario is the most 
likely in all the cases in which managers are moderate 
decision makers (cases IV, V and VI) and in those cases 
where they are fast decision makers and either slightly 
irrational or almost rational when considering their not-
yet implemented decisions (cases VIII and IX).  

 

 
Figure 1:  Percentage of runs which yield each possible 

scenario depending on the consistency factor (ψ) and the 
speed factor (ζ). 

 
The faster the decision making process, the lower the 
probability of the most conservative manager (i.e. 
manager 3, δ3 = 0.8) being the only one who closes his 
facility (Facilities 12). The probability of the hesitant 
manager (i.e. manager 2, δ2 = 0.5) being the only one to 
close his facility (Facilities 13) is higher when the 
decision making process is slow (cases I, II and III) and 
lower when such a process is fast (cases VII, VIII and 
IX). When the most conservative manager (i.e. manager 
3) decides quickly he is more likely to achieve a 
monopoly position (See line labelled as Facility 3 in 
cases VII, VIII and IX). In the case where managers are 

almost rational and take decisions fast, the probability 
of the most conservative manager closing his facility is 
negligible (less than 0.1%) (case IX). Finally, it is worth 
mentioning that the scenario in which the three facilities 
shut down is very unlikely (less than 0.2%) for this case. 
 
Concerning the market share of the facilities in each 
scenario, we hypothesise that the most conservative 
managers’ facilities capture a larger market share than 
the others. We use the Mann-Whitney-Wilcoxon test 
(MWW) (Newbold 1988), a non-parametric statistical 
test also called the Mann-Whitney U-test, to assess the 
null hypothesis that the median of the average arrival 
rates of two facilities during steady-state are the same. 
The alternative hypothesis assumes that the median of 
the average number of customers arriving at the most 
conservative manager’s facility in steady-state is greater 
than that at the other facility. We have applied a non-
parametric test because we do not know the distribution 
of the data and for some scenarios we have very little 
data. Parametric tests are not appropriate in these cases. 
Instead, the MWW-test is appropriate because the 
distributions have enough symmetry to assume that the 
median and the average are similar. 
 
Table 2 provides the test-statistics of the MWW-test to 
assess the difference between the medians of the 
distributions of average arrival rates at each facility in 
steady-state for the scenarios where at least two 
facilities remain open, as monopolistic situations are 
irrelevant in this context. This table contains the median 
of the number of customers arriving at each facility for 
the same nine cases of Figure 1.  
 

Table 2: The values of the median for the number of 
customers arriving at each facility during steady-state 
for 1,000 simulations of the model as a function of ψ 

and ζ  
 

 
 
The letters (i.e. “a”, “b”, “c”, and “d”) next to the 
median value of the second facility of each scenario 
indicate the results of the MWW-test for the null 

F1 F2 F1 F3 F2 F3 F1 F2 F3
I 48 72 a 48 72 a 60 60 30 40 50 a a a
II 49 71 a 46 74 a 57 63 a 26 40 52 a a a
III 51 69 a 44 76 a 54 66 a 27 39 53 a a a
IV 35 86 a 39 81 a 50 70 a 27 45 48 a a a
V 37 83 a 27 93 a 47 73 a 25 39 56 a a a
VI 38 82 a 34 86 a 38 82 a 20 43 52 a a a
VII 66 54 a 60 60 66 54 c 43 30 20 b
VIII - - 6 114 a 50 70 a 49 33 40 a
IX 15 106 d 6 114 a 36 85 a 14 61 45 d d d

3 FACILITIES OPEN

F1-
F2

F1-
F3

F2-
F3

Facilities 
123Case

Facilities 
13

Facilities 
12

Facilities 
23

2 FACILITIES OPEN



 

 

hypothesis that the median arrival rate is the same for 
the assessed facilities. The letters “a” and “b” indicate 
that this hypothesis is rejected at a significance level of 
0.01 and 0.1, respectively, against the alternative 
hypothesis that the median arrival rate of the most 
conservative manager’s facility is significantly greater 
than that of the other facility. The letter “c” indicates 
that the null-hypothesis is rejected at a significance level 
of 0.01, against the alternative hypothesis that the 
median arrival rate of the most conservative manager’s 
facility is significantly lower than that of the other 
facility. The letter “d” indicates that the null hypothesis 
cannot be tested because of lack of data. For instance, 
the letter “a” in case I when facility 1 (δ1 = 0.2) and 3 
(δ3 = 0.8) remain open (medium green scenario) 
indicates that according to the MWW-test the median 
number of customers using facility 3 (i.e. with the most 
conservative manager) is significantly greater than that 
using facility 1 at a significance level of 0.01. In the 
scenario where the three facilities remain open, this test 
is assessed by pairs of facilities and the significance of 
the test is indicated in the last three columns for each 
pair of facilities. For instance, in case I, the MWW-test 
indicates that at a significance level of 0.01, the median 
of facility 3 (δ3 = 0.8) is significantly greater than that 
of facility 2 (δ2 = 0.5) and facility 1 (δ1 = 0.2) and that 
the median of facility 2 (δ2 = 0.5) is significantly 
greater than that of facility 1 (δ1 = 0.2). 
 
In most cases, the p-values computed by MWW-test 
suggest rejecting the null hypotheses at the 1% level of 
significance. This enables us to conclude that the 
facility of the most conservative manager (i.e. manager 
3, δ3 = 0.8) usually attracts more customers than the 
other facilities. Most of the exceptions are due to lack of 
data. For instance, the yellow scenario (i.e. the three 
facilities remain open) in case IX (ψ = 0.8 and ζ = 0.8), 
which is unlikely (0.1% of iterations barely visible in 
Figure 1). 
 
In case VII, where managers are moderately irrational 
(ψ = 0.2) and fast decision makers (ζ = 0.8), the scenario 
in which the most reactive manager (i.e. manager 1, δ1 
= 0.2), shuts down his facility (i.e. light green scenario) 
contrasts with the expected behaviour. That is, the less 
conservative manager of the two still active managers, 
who is manager 2 (i.e. δ2 = 0.5), usually captures the 
largest market share.  
 
We repeated the experiment with the same 
combinations of the managers’ coefficient of 
expectations for another combination of the customers’ 
parameters. We have tested all the extreme and 
intermediate cases regarding the customers’ attitudes 
toward the new information. Again, the main insights, 
about that the most conservative managers’ facility 
captures a larger market share than the others, remain 
valid. One significant observation is that the scenario in 
which the three facilities are still open at time 500 is 
much more frequent when customers are either hesitant 

or very conservative regarding new information, no 
matter its provenance. Conversely, the scenario where 
the conservative managers achieve a monopoly position 
is more likely when customers are more reactive with 
respect to their own information and more conservative 
regarding that of their neighbours. 
 

CONCLUSIONS 

In this paper we have extended the CA model proposed 
by Delgado et al. (2011a) by incorporating the service 
rate as an endogenous variable. We have endowed the 
managers with the ability to adjust the service capacity 
of their facility. Managers are provided with a memory 
which enables them to update their expectations 
regarding the number of customers arriving at their 
facilities each period. Other attributes, which 
characterise the managers’ profile, are the extent to 
which they account for their previous decisions when 
deciding by how much to adjust capacity and the speed 
at which they take decisions. The former indicates the 
level of irrationality of managers when the decision 
making involves delays (i.e. coherence factor). 
  
We have performed some experiments to analyse the 
sensitivity of the model to the managers’ profiles. We 
conclude that the facility of the most conservative 
manager usually achieves the highest market share. 
Additionally this facility is the most likely to remain 
open until the end of the simulation period (i.e. it is less 
likely that this facility shuts down).   
 
This work can be extended by analysing the sensitivity 
of the model to the customers’ parameters and the 
delays involved in the implementation of the managers’ 
decisions. Further work in this field includes adding 
uncertainty parameters to the customers and managers’ 
decision rules (as was done in the previous paper for the 
customers) and assessing the influence of other service 
factors in the customers and managers’ decisions, such 
as price and quality. 
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