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Cuadro de texto
This chapter IV of the dissertation: Behavioural adaptations of cavity nesting birds, de Alejandro Cantarero (2015), http://hdl.handle.net/10261/127524, reproduces entirely the manuscript of: Behavioural responses to ectoparasites in pied flycatchers Ficedula hypoleuca: An experimental study. Journal of Avian Biology 44(6): 591-599 (2013).
 
El capítulo IV de la tesis doctoral: Behavioural adaptations of cavity nesting birds, de Alejandro Cantarero (2015), http://hdl.handle.net/10261/127524, reproduce íntegramente la información del artículo: Behavioural responses to ectoparasites in pied flycatchers Ficedula hypoleuca: An experimental study. Journal of Avian Biology 44(6): 591-599 (2013).
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ABSTRACT. Nests of cavity-nesting birds usually harbor some species of 

haematophagous ectoparasites that feed on the incubating adults and nestlings. 

Given the negative impact of ectoparasites on nestlings there will be selection on 

hosts to reduce parasite infestations through behavioural means. We have 

experimentally reduced the abundance of all ectoparasites in nests of pied 

flycatchers Ficedula hypoleuca to explore both whether there are changes in the 

frequency and duration of putative anti-parasite behaviours by tending adults, as 

well as whether such anti-parasite behaviours are able to compensate for the 

deleterious effects that parasites may have on nestlings. Heat treatment of nests 

substantially decreased the density of ectoparasites, and thereby positively 

affected nestling growth. The frequency and intensity of female grooming and nest 

sanitation behaviours during the incubation and nestling periods decreased as a 

consequence of the experimental reduction of ectoparasite infestation. Although 

nestlings begged more intensely in infested nests, the experiment had no 

significant effect on parental provisioning effort. Reduction of parasites resulted in 

larger nestlings shortly before fl edging and increased fledging success. This study 

shows a clear effect of a complete natural nest ectoparasite fauna on parental 

behaviour at the nest and nestling growth in a cavity-nesting bird. Although 

ectoparasites induce anti-parasite behaviours in females, these behaviours are not able to fully remove parasite’s deleterious effects on nestling growth and survival. 
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INTRODUCTION 

Parasites have been proposed as an important ecological and evolutionary force 

affecting avian life histories and behaviour (Atkinson and van Riper 1991, Møller 

1997). Cavity-nesting birds have been traditionally associated with selective 

pressures arising from the thermal environment and the impact of nest predation 

(Hansell 2000). However, the microclimatically stable environment of cavity nests 

and the presence of an abundant food supply may offer excellent breeding 

conditions for ectoparasites, and it is thought that many nest ectoparasitic 

arthropods have evolved specifically in such nesting environments (Waage 1979, 

Marshall 1981). Thus, ectoparasites in the nest may be an additional important 

evolutionary factor modulating adaptations of cavity-nesting birds (Heeb et al. 

1999, Tripet et al. 2002a). 

Ectoparasites cause removal of nutritional and energy resources from hosts 

that could otherwise be used for growth, maintenance, or reproduction (Møller 

1993). They may also induce costly immune and inflammatory responses (Møller 

et al. 2005, Owen et al. 2009). Conversely the immature immune systems of 

altricial nestlings result in stronger direct impacts from ectoparasitism faced by 

nestlings with the need to assign sufficient nutritional resources to growth (Saino 

et al. 1998, Szep and Møller 1999). Given the negative impact of ectoparasites on 

host fitness there will be selection on hosts to avoid parasite infestations through 

behavioural, physiological and immunological responses (Møller and Erritzoe 

1996, Hart 1997, Heeb et al. 1998, Cantarero et al. 2013). All these responses are 

complementary and may be induced in adults, nestlings or both (Hart 1992, 

Keymer and Read 1991, Simon et al. 2005). Nesting adults may avoid nest sites 

with high ectoparasite loads (Moore 2002), due to the association between old 

nest material and higher abundance of certain types of ectoparasites (Mazgajski 

2007, Tomás et al. 2007, López-Arrabé et al. 2012) and bacteria (González-Braojos 

et al. 2012). Adults may also take measures to indirectly minimize the effects of 

nest parasites through incorporation of fresh plant material containing compounds 

that either directly affect the development of parasites (Malan et al. 2002, Clark 

and Mason 1988, Lafuma et al. 2001, Tomás et al. 2012) or stimulate elements of 

the immune system of chicks that help them to cope better with the harmful 
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activities of ectoparasites (Mennerat et al. 2008). Nevertheless, adult cavity-

nesting birds are faced with the presence of nest ectoparasites, and likely have a 

suite of behaviours directed a minimizing the impacts of parasites (Loye and Zuk 

1991, Keymer and Read 1991, Hart 1992, Mazgajski 2009). 

The main behavioural defenses against ectoparasites are grooming and nest 

sanitation (Christe et al. 1996). Grooming behaviour may be operationally defined 

as manipulation of the plumage with the bill (Nelson et al. 1977, Murray 1990). 

One of its functions may be to dislodge ectoparasites hiding or residing among 

feathers (Cotgreave and Clayton 1994, Waite et al. 2012). Thus both adults and 

nestlings may groom themselves in the presence of ectoparasites (O'Connor et al. 

2010). Nest sanitation (Welty 1982) refers to behaviours by parents in altricial 

species tending to remove ectoparasites on nestlings or nest material (Hurtrez-

Boussès et al. 2000), removing from the nest both these as well as eggshells 

(Montevecchi 1974), fecal material (Blair 1941) or dead nestlings (Skutch 1976). 

Parents are expected to allocate time to nest sanitation in order to control the load 

of harmful ectoparasites in the nest materials and on the nestlings. Such anti-

parasite behaviours may be time-consuming (Cotgreave and Clayton 1994) and 

therefore may reduce the time that a parent bird can devote to foraging and 

provisioning offspring.  

Nest ectoparasites are a community of species, and the entire community 

must be considered when examining the influences of these ectoparasites on host 

behaviour and fitness. For example the nests of Pied Flycatchers (Ficedula 

hypoleuca) in Iberian populations usually harbour three species of 

haematophagous ectoparasites, namely mites (Dermanyssus gallinoides), blowflies 

larvae (Protocalliphora azurea) and hen fleas (Ceratophyllys gallinae) (Merino and 

Potti 1995, 1996). Nests may also contain haematophagous flying insects such as 

blackflies and biting midges (Martínez-de la Puente et al. 2009). In mites, adult and 

nymphal stages are haematophagous, while their short generation times allow the 

build-up of very large populations with detrimental effects on host reproductive 

success (Merino and Potti 1995, 1996, Moreno et al. 2009). Mites may be present 

in nest materials even before nestlings hatch and may feed on incubating females 

(Pacejka et al. 1996). They have been shown to be the most virulent ectoparasite of 

Iberian pied flycatcher populations (Merino and Potti 1995, Moreno et al. 2009). 
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Blowfly larvae live in bird nests and feed intermittently on nestling blood (Bennett and Whitworth 1991, Remeš and Krist 2005). Larvae of fleas are not 
haematophagous, but adult fleas need blood to produce eggs (Tripet and Richner 

1997). Therefore, the number of flea larvae in nests indicates the fecundity of adult 

fleas (Eeva et al. 1994). Fleas may be present in nest materials already during 

incubation (Harper et al. 1992).  

To explore behavioural anti-parasite strategies it is necessary to conduct 

field experiments where the levels of infestation are strictly controlled in all 

treatments (Christe et al. 1996, Heeb et al. 1998, Tripet et al. 2002b, Fitze et al. 

2004) or experiments in which nests with a reduced ectoparasite loads are 

compared with natural controls (Allander 1998, Martínez-de la Puente et al. 2010). 

Each approach has its advantages and disadvantages. Controlled levels of 

infestation are useful when dealing with a single parasite and reduce 

environmentally induced variation. On the other hand, natural controls versus 

experimental reductions allow manipulations of complete ectoparasite faunas 

while retaining natural levels of infestation as controls, and are especially useful 

when the effects of whole ectoparasite faunas with their natural interactions are of 

interest. Moreover, natural controls reflect the effects of whole ectoparasite faunas 

on nestlings in the wild.  

Our goal is to examine the impacts of an entire nest ectoparasite community 

on reproductive behaviour of their hosts.  In our study of Pied Flycatchers in 

central Spain, we have reduced the abundance of all ectoparasites by a heat 

treatment of nestboxes. We have assumed that experimental reduction would have 

a negative impact on ectoparasite abundance and a positive impact on nestling 

growth and survival. We have then compared control and experimental host 

behaviour within the nest-box using data from video films (see Hurtrez-Boussès et 

al. 2000 for a similar approach). Video-recordings inside the nest-box were made 

during the incubation and at two stages of the nestling period (nestlings of 3 and 9 

days of age). Our objectives were to explore changes in the frequency and duration 

of parental grooming and nest sanitation behaviours as a consequence of the 

abundance of ectoparasites, and to examine the impacts of these behaviours of 

adult birds. We have hypothesized that:  



Chapter IV 

 

124 

 

(1) Behavioural responses to ectoparasites should be more frequent in 

control nests than in experimental nests. This pattern should occur during 

both the incubation and nestling periods;  

(2) There should be a trade-off between brooding nestlings and nest 

sanitation behaviours at the early nestling stage;  

(3) Nestlings should beg more intensely in control nests due to the 

increased food demand induced by ectoparasites; 

(4) Parents should respond to higher begging levels in control nests by 

increasing provisioning rates only if time consumed by anti-parasite 

behaviours does not compromise that available for foraging.  

 

MATERIAL AND METHODS 

General field methods 

The study was conducted during the spring of 2012 in a montane forest of 

Pyrenean oak, Quercus pyrenaica, at 1200 m.a.s.l. in Valsaín, central Spain (40˚ 54’ N, 4˚ 01’ W) where pied flycatchers breeding in nest-boxes have been studied since 

1991 (see Sanz et al. 2003 for general description). Of 552 nest-boxes, 91 were 

occupied by pied flycatchers and the rest by other species, mainly great tits, 

nuthatches and blue tits (see Lambrechts et al. 2010 for dimensions, structure and 

placement of nest-boxes).  

Egg laying in the Pied Flycatcher population under study typically begins in 

late May, and modal clutch size is six. The female incubates and broods alone and 

receives part of her food from her mate (Moreno et al. 2011). No brooding is 

observed after nestlings attain 7 days of age (Sanz and Moreno 1995). Breeding 

activities are followed routinely every year and laying and hatching dates and 

brood sizes at hatching and fledging are determined.  

On day 3 (hatching day = day 1), we weighed all nestlings in each brood 

together with a digital scale to the nearest 0.1 g to give an average nestling mass 

when divided by brood size.  On day 13 (hatching day = day 1), we ringed nestlings 

and measured their tarsus lengths with a digital callipers to the nearest 0.01 mm 

and their wing lengths with a stopped ruler to the nearest mm. Nestlings were also 
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weighed with a Pesola spring balance to the nearest 0.25 g. Nestlings from one nest 

flew before being measured on day 13. 

Experimental reduction of ectoparasites protocol 

Of the 91 nest boxes occupied by pied flycatchers we selected those whose laying 

date was between dates 45 and 51 (April 1=day 1). We assigned 56 nests randomly 

to two groups, to minimize any possible confounding effects such as variation in 

microclimate among nest-boxes. The first group was left unmanipulated (control 

group, N=37). In the second experimental group (N=19), we reduced the number 

of ectoparasites by a heat-treatment for 30 s at 750 W using a microwave oven. For 

the time that the original nests were treated (around 30 minutes), a fresh 

substitute nest was introduced into the nest-box (these nests had been collected in 

previous seasons after being abandoned prior to laying and kept frozen at -20 ºC 

until use). This treatment ensured that experimental nests did not contain live 

arthropods when placed in the nest-box (Rendell and Verbeek 1996), although 

some arthropods may colonize the nest material after the treatment.  To avoid the 

loss of water during the heat-treatment, the nests were placed into a hermetic 

plastic container. To prevent recurrence of ectoparasite colonization a total of 

three heat-treatments were made in the experimental group: (1) 7 days after 

clutch completion, (2) when nestlings were 2 days old (hatching day=day 1) and 

(3) when nestlings were 8 days old. Furthermore, before returning the nest the 

flame from a butane jet torch lighter (Microtorch GT-3000) was passed across the 

walls of the nest-box to kill ectoparasites that might remain there. Nests in the 

control group were visited on the same days and handled in a similar way to 

experimental ones.  

Ectoparasite abundance estimation 

One or two days after nestlings fledged (17 days after hatching), all nests were 

removed in sealed plastic bags and taken to the laboratory, where they were 

subjected to arthropod removal in Berlese funnels for 48 h until nests were 

thoroughly dried and no arthropods were moving in the nest material. 

Ectoparasite identification was made with the aid of a stereoscopic microscope 

(Olympus SZX7). We assume that all mites are hematophagous given their red 
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color as a consequence of the ingested blood (for arthropods collection and 

abundance estimations see Moreno et al. 2009).  

Video recordings 

Seven days after clutch completion (day 7 of incubation), we recorded nest activity 

inside nest-boxes for about 90 min (91.45±SE 24.63 min, n=58) with a cold white 

light (LED 5 mm) powered by a 3 V battery and a camera (GoPro HD Hero1) 

mounted on the roof inside the nest-box. Video recordings were made one day 

after experimental treatment and nest handling. Nest-boxes were again recorded 

two days after the day of hatching of the young (88.63±13.01 min, n=57) and 8 

days after hatching of the young (85.04±20.01 min, n= 55). In two nests all chicks 

died after day 3 but we have included records taken during incubation and day 3. 

All films were recorded between 08:00-17:00 h, and no differences between 

experimental groups with respect to time of filming were found (incubation 

period: U=297.0, P=0.346; nestling period day 3: U=314.5, P=0.522; nestling period 

day 9: U=272.5, P=0.277). We excluded the time until the first nest visit by parents 

(14.31±11.55 min, n=164). No evidence of stress or unnatural behaviour like 

extremely long absence periods from the nest or trying to peck at the camera 

system were observed after the first visit.  

 Because of technical problems, we failed to record the behaviour at two 

different nests in the control group, one from young nestlings and another from 

older nestlings. 

Behavioural data analysis 

From recordings taken during incubation we estimated the proportion of time 

spent by the female inside the nest-box or “egg attendance” which includes the 

time allocated to incubating and turning the eggs, and the mean duration of 

incubation sessions and recesses. Furthermore, we monitored two specific types of female behaviour: “grooming” and “nest sanitation”. “Grooming” is the combined 
time in which female spends preening or scratching herself (Cotgreave and Clayton 1994) while “nest sanitation” is a period of active search with the head buried, 
sometimes deeply, into the nest material (Cotgreave and Clayton 1994). In our 

study, we define nest sanitation as burying the bill in the nest material or carrying 
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out nest materials. As scratching by females resting on the nest could not be 

observed accurately, grooming refers mostly to preening with the bill. We assume 

that these behaviours in our study population have the functions implied by the 

terms derived from the literature, although our experiment intends precisely to 

confirm these functional interpretations. We obtained the proportion and the 

mean duration of these behaviours over the time that the female was inside the 

box. In addition, we also counted the number of incubation feedings by males.  

From recordings during the early nestling phase we obtained hourly 

provisioning rates by males and females and the amount of time spent by females in “nest attendance”, “brooding”, “grooming” or “nest sanitation”. “Nestlings 
attendance” includes the proportion of time spent by the female inside the nest-box. “Brooding” activity is defined as the proportion of time spent by the female 

inside the nest-box covering young nestlings in relation to the total time spent 

inside the nest-box. “Nest sanitation” and “grooming” were calculated in the same 

way as during the incubation stage. Pied flycatcher females do not exhibit “sleeping” behaviours during the incubation or nestling periods like in other 
species (Tripet et al. 2002b). 

From recordings during the late nestling phase we obtained hourly 

provisioning rates by males and females and nest sanitation behaviour. Nest 

sanitation at this stage only considers removal of nest material from nest-boxes as 

the chicks do not need brooding and female visits to the nest-box are just for 

feeding. We also recorded the posture during begging of nestlings. Nestling 

postures were assigned based on a modification of the scale used by Leonard et al. 

(2003) following a scale of increasing intensity: 0 = head down, no gaping; 1 = head 

down, gaping, sitting on tarsi; 2 = head up, gaping, sitting on tarsi; 3 = same as 2, 

plus neck stretched upward; and 4 = same as 3, but body lifted off tarsi.  On each 

visit of an adult to the nest with food, we scored the maximum postural begging 

intensity of each nestling. We then estimated the average value of the maximum 

begging intensity at each visit for the whole brood.  

Statistical analyses 
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Many response variables were normally distributed or successfully normalized 

through logarithmic transformation (Kolmogorov-Smirnov, P>0.20) and were 

therefore analyzed with GLM models (STATISTICA package) assuming a normal 

error with treatment as explanatory factor. Hatching success (proportion eggs that 

hatched) was not normally distributed even when transformed but its residuals 

were, so it was analyzed with a GLM with treatment as explanatory factor and 

laying date and clutch size as continuous predictors. Clutch size and brood size 

were analyzed with GLM models assuming a Poisson distribution with treatment 

as explanatory factor. Grooming and nest sanitation variables could not be 

normalized and were analyzed with non-parametric tests (Mann–Whitney U test). 

Nest sanitation (nestling day 9) and fledging success (proportion hatched chicks 

that fledged) were analyzed as frequencies (Yes-1/No-0 observation of sanitation 

in the nest and Yes-1/No-0 cases of all chicks hatched becoming fledglings) with 

Chi-squared contingency tables. 

All parametric behavioural variables were analyzed with treatment as 

explanatory factor and hatching date, brood size, date and time of filming as 

continuous predictors. Nonsignificant predictors were sequentially removed until 

only significant effects remained in the final model. Only the effects of treatment 

are presented in all cases, even when non-significant.  

 

RESULTS 

The two treatments did not differ with respect to laying date, hatching date, 

clutch size or brood size (Table 1). In order to assess the efficiency of our 

manipulation, we compared the ectoparasite abundances of the two treatments. 

The experiment was successful because the experimental nests differed from 

controls in the abundances of ectoparasites sampled in the predicted direction 

(Table 1).  
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  Control Experimental Statistic p 

Breeding data     

Laying date 48.162 ± 1.642(37) 47.386 ± 1.012(19) F1 = 3.70 0.060 

Hatching date 66.351 ± 1.230(37) 66.947 ± 1.311(19) F1 = 1.30 0.260 

Clutch size 5.622 ± 0.594(37) 5.84 ± 0.501(19) Wald =0.107 0.743 

Brood size 13 

daysdays 

4.722 ± 1.446(36) 5.263 ± 0.733(19) Wald =0.741 0.389 

Ectoparasites     

Blowflies 6.162±8.748(37) 0.684±1.887(19) U1 = 172.0 <0.005 

Mites 3347.57±4543.55(37

) 

274.053±906.913(19) F1= 17.76 <0.001 

Fleas 24.946±88.329(37) 0.000±0.000(19) U1 = 247.0 <0.01 

 
 

Table 1. Differences in breeding variables and ectoparasite abundances (means ± SE, n in 

parenthesis) and results of GLM analyses and Mann-Whitney U-tests. 

The control (3.36±0.49) and the experimental group (3.76±0.61) differed in 

the mean nestling mass (g) on day 3 (F=6.87, P=0.011). We then tested for the 

effects of treatment on brood-averaged nestling morphometric measurements and 

mass near fledging (tarsus length, wing length and body mass at day 13), 

controlling for hatching date and brood size. Nestlings in experimental nests were 

significantly larger with respect to wing length and tarsus length (Table 2), while 

there were no differences between treatments in body mass (Table 2). Tarsus 

length was negatively related to hatching date (adjusted R2=0.25). The control 

(90.09±14.13) and the experimental (90.30±11.61) groups did not differ in 

hatching success (F=0.003, P>0.90) when controlling for laying date and clutch size 

(both P>0.20), while fledging success was marginally lower (χ2=2.82, P=0.093) in 

control nests (0.89±0.32) than in experimental nests (1.00±0.00).  

 Control Experimental Treatment Hatching Date Brood size 

Nestling day 13      

Tarsus length (mm) 17.42±0.47(34) 17.79±0.38(19) F=6.615* F=9.027** F=0.133 

Body mass (g) 13.98±0.94(34) 14.17±0.92(19) F=0.510 F=0.231 F=0.478 

Wing length (mm) 46.85±2.40(34) 48.57±2.32(19) F=7.126* F=1.050 F=0.072 

 

Table 2. Differences in brood-averaged nestling morphology and mass (means ± SE, number of 

broods in parenthesis) and results of GLM models on nestling condition parameters with treatment 

as explanatory factor and hatching date and brood size as continuous predictors (**P<0.01, * 

P<0.05). 
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Treatment did not significantly affect incubation attendance (% incubation 

time) or the mean of recess and incubation session durations of females (Table 3).  

Female grooming behaviour was less frequent and the mean duration of grooming 

sessions were significantly shorter in the experimental group than in the control 

group (Table 3). Nest sanitation behaviour time was also more intensive in the 

control group (Table 3).  

 Control Experimental Statistic P 

Incubation     

Grooming (%) 0.400±0.586(37) 0.122±0.240(19) U = 182 0.012 

 
Mean grooming (s) 3.00±3.00(37) 2.00±3.00(19) U =185 0.015 

Egg attendance (%) 63.844±11.74(37

) 

60.750±12.645(19

) 

F1= 0.81 0.372 

Mean session (min) 10.516±4.433(37

) 

9.317±6. 167(19) F1 = 0.68 0.412 

 
Mean recess (min) 5.950±2.000(37) 4.217±2.217(19) F1 = 1.55 0.218 

 
Nest sanitation (%) 1.905±1.596(37) 1.041±1.289(19) F1= 5.50 0.029 

Nestling day 3     

Nestling attendance (%) 53.274±14.59(36

) 

48.358±13.106(19

) 

F1= 1.34 0.254 

Brooding (%) 93.045±3.127(36

) 

95.997±3.981(19) F1= 7.60 0.008 

Mean grooming duration 

(s) 

2.00±2.00(36) 1.00±2.00(19) U=172 0.048 

 
Grooming (%) 0.108±0.143(36) 0.047±0.121(19) U = 168 0.039 

Nest sanitation (NS) (%) 5.367±2.562(36) 2.879±3.659(19) F1 = 7.80 0.007 

 
Mean NS duration (s) 5.00±3.00(36) 3.00±2.00(19) U = 121 <0.005 

 
Male provisioning (h-1) 9.298±5.102(36) 11.108±4.566(19) F1 = 1.62 0.209 

 
Female provisioning (h-1) 5.950±3.076(36) 5.791±2.557(19) F1 = 0.03 0.853 

Nestling day 9     

Nest sanitation (yes/no) 0.176±0.387(34) 0.000±0.000(19) χ2=3.78 0.052 

 
Male provisioning (h-1) 11.934±5.685(34

) 

11.290±5.268(19) F1 = 0.16 0.688 

Female provisioning (h-1) 11.384±5.541(34

) 

10.345±5.074(19) F1 = 0.45 0.503 

Begging intensity score 1.149±0.636(34) 0.741±0.376(19) F1 = 6.16 0.016 

 

Table 3. Differences (means + SE, n in parenthesis) in behavioural variables between the two 

treatments and results of GLM analyses (significant p-values in bold), Mann-Whitney U-tests and 

Chi-squared contingency tables (sanitation present or absent). 

In relation to the second hypothesis, the proportion of brooding time on day 

3 was significantly higher in the experimental group than in the control one as 

predicted (Table 3). Grooming variables showed the same pattern between 

treatments as during incubation (Table 3). Nest sanitation time was again higher in 

the control group (Table 3). There was no experimental effect on provisioning 
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rates of males and females (all P>0.2). Control nests where nest sanitation 

behaviours occurred showed higher mite infestations than control nests where 

these behaviours did not occur (Fig. 1). This relationship was not found for blowfly 

larvae or fleas. There were marginally more nest sanitation events in control nests 

than in experimental nests (Table 3). 
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Figure 1. Total mites (±SE) in relation to the presence (Yes) or absence (No) of nest sanitation 

behaviour in the control group (P=0.0045) in the late nestling phase. 

In accordance with our third hypothesis, begging intensity of nestlings was 

higher in control nests (Table 3) and was positively associated with parental 

provisioning rates (Fig. 2).  

Contrary to our fourth hypothesis and despite the association with begging 

intensity male and female provisioning rates on day 9 were not related to 

treatment (Table 3).  
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Figure 2. Association between hourly provisioning rates (male and female) and begging average 

intensity in the late nestling phase (Spearman correlation: r=0.48, P<0.005). 

 

DISCUSSION 

This study shows that the behaviour of pied flycatcher females inside the nest-box 

was clearly affected by ectoparasite abundance. The heat treatment of the nests 

decreased strongly the nest density of blowflies, mites and fleas, and thereby 

positively affected nestling growth. Experimental nests resulted in larger nestlings 

shortly before fledging. The frequency and intensity of female grooming and nest 

sanitation behaviours during the incubation and nestling periods decreased as a 

consequence of the experimental reduction of ectoparasite infestation. The 

experimental treatment did not affect incubation attendance and there were no 

effects on male or female provisioning rates to the chicks at any stage. 

There is mixed evidence concerning the impact of ectoparasites on 

reproductive success in altricial cavity-nesting birds. While some experimental 

studies have found strong deleterious effects on nestling growth and survival 

(Heeb et al. 1998, Richner et al. 1993), others have only found weak effects or none 

at all (Tripet et al. 2002b, O'Brien and Dawson 2008, Bouslama et al. 2002). These 

differences among host species and populations may depend on the absolute levels 

of infestation found in different regions or habitats (Hurtrez-Boussès et al. 1997, 
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Eeva et al. 1994, Fitze et al. 2004). Strong effects are thus mostly found in areas 

where climate is favourable for arthropod survival and dispersal during and 

between avian breeding seasons (Merino and Potti 1996, Dufva and Allander 

1996). Reproductive success in Iberian pied flycatcher populations has been 

previously shown to suffer the impacts of nest-dwelling ectoparasites (Merino and 

Potti 1995, 1996, Merino et al. 1998, Merino and Potti 1998, Moreno et al. 2009).   

In agreement with several previous experimental studies we found marked 

effects of ectoparasites on nestling growth (Heeb et al. 2000, Tomás et al. 2008, 

Brommer et al. 2011). Tarsus and wing length of nestlings were negatively affected 

by ectoparasite abundance although we did not find an effect on body mass. Tarsus 

length of pied flycatcher nestlings has been related to their recruitment probability 

from fledging until breeding (Alatalo and Lundberg 1986), so the effects of 

ectoparasites may affect the future fitness of nestlings. For the observation that we 

found no effect of treatment on nestling body mass, there are two non-mutually 

exclusive alternative interpretations of our results. On the one hand, nestling 

growth improves under favourable conditions for breeding (Sanz 1995). 

Conditions during the year of study (2012) must have been especially favourable 

as nestlings attained their largest masses since the inception of the study (1991), 

which may explain why we found no effect of treatment on body mass. 

Additionally, control nestlings could reduce ectoparasite effects on body mass by 

increasing self preening or standing on top of one another (O'Connor et al. 2010).  

Control nestlings showed as expected an increase in begging intensity, 

which is positively associated with parental provisioning rates, as was found in the 

Great Tit Parus major (Christe et al. 1996). Older nestlings suffering from higher 

ectoparasite loads begged more intensely as a response to their higher nutritional 

needs. Parental provisioning frequency depends on begging intensity as found in 

other studies on begging intensity (Kedar et al. 2000, Kölliker et al. 2000, Wright et 

al. 2002). Like Fitze et al. (2004) we noticed no effect of ectoparasite reduction on 

parental provisioning rates at any nestling age despite the strong correlation 

between begging intensity and provisioning rates. However, we found no effects of 

the experiment on parental provisioning frequency which could explain the lack of 

difference in the body mass of nestlings between treatments and it could have 
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been caused by factors for which we did not control such as prey quality, 

ectoparasite virulence, nestling resistance or environmental constraints (e.g. 

Møller 1994, Lehmann 1993). Roger et al. (1991) also showed no effect in parental 

provisioning frequencies in response to ectoparasites (see also Tripet et al. 

2002b). There is also evidence that parental effort in pied flycatchers is 

energetically tightly constrained thereby precluding responses to variation in 

brood demand (Moreno et al. 1997, Moreno et al. 1999). This lack of parental 

response may explain why their food provisioning was incapable of compensating 

for ectoparasite effects leading to smaller size at fledging in control nests. It is also 

possible that increased dedication to nest sanitation in control nests contributed to 

reduce the capacity of parents to augment their provisioning rates sufficiently to 

be detectable. That fledging success was marginally higher in experimental nests 

supports the existence of ectoparasite effects on nestling survival (Lundberg and 

Alatalo 1992, Moreno et al. 1999) although other fitness costs such as the 

probability of recruitment could be expressed after fledging (Thomas et al. 2007).  

It is assumed that as a consequence of the negative impact of ectoparasites 

on nestlings, hosts have evolved behavioural responses (Cantarero et al. 2013). 

Ectoparasites present during incubation in pied flycatcher nests are mites and 

fleas. Females groom themselves more in control nests which may imply a direct 

response to the attachment of these ectoparasites on their skin and plumage. 

Nevertheless, grooming activity may not occupy sufficient time to constrain 

incubation attendance in females (Hurtrez-Boussès et al. 2000). However, our 

results on grooming behaviour indicate that tending females may suffer some costs 

induced by nest ectoparasites through attachment and possibly blood-sucking 

even before nestlings hatch (see also Tomás et al. 2008). When the nestlings hatch, 

the blowflies lay their eggs on their skin, and emerging larvae then begin feeding 

on nestling blood. The blood-sucking larvae of blowflies feed intermittently on the 

blood of nestling birds (Rognes 1991), although they may try to attach also to 

brooding females (Bennett and Whitworth 1991) given that their belly skin is 

naked at this stage. The combined effect of nest ectoparasites induced a lower 

body mass of chicks in control nests compared with treated nests already two days 

after hatching. This indicates that ectoparasites impair the growth of nestlings 

from hatching, a cost for which parents are apparently not able to compensate. If 
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variation in parasite abundance is obvious to attending parents, we should expect 

that females in the control group compared to those in the treated group should 

allocate more time to anti-parasite behaviours and restrict the time spent on 

brooding chicks, sleeping (Tripet et al. 2002b) or foraging and provisioning 

nestlings (Christe et al. 1996). We found that control females reduced their 

proportion of time spent in the nest-box brooding compared to experimental 

females, but not with respect to total nestling attendance. The fact that females 

from control nests increased anti-parasite behaviours but maintained similar 

brooding attendances and provisioning rates as at experimental nests suggests 

that the time costs of these behaviours are not sufficiently important to reduce 

time available for foraging at this early stage of nestling development.  

The function of nest sanitation behaviour by introducing the bill in the nest 

material has been debated (Haftorn 1994). One possibility is that birds actually 

destroy and even consume ectoparasitic arthropods (Rothschild and Clay 1952).  

This behaviour may also occur in pied flycatchers because we observed females 

swallowing some collected items on video-recordings of control nests. Nest 

sanitation could also be used to chase blowfly larvae or adult fleas away from their 

own body or that of their nestlings, thereby preventing them from biting the 

incubating female or the nestlings. We also observed one female attacking an adult 

blowfly that entered the nest-box while she was brooding which could prevent 

oviposition in the nest. The difference in the time invested in behavioural defences 

indicates that females may be able to choose to increase the amount of time 

allocated to control of nest ectoparasites.  

Changes in the frequency and duration of grooming or nest sanitation may 

be interpreted as responses to ectoparasites. Our results are consistent with 

several previous studies in Great Tits (Richner et al. 1993) and Blue Tits (Christe et 

al. 1996, Tripet et al. 2002b, Hurtrez-Boussès et al. 2000) that showed that females 

spent more time on nest sanitation when the nest was infested with fleas. The 

number and duration of grooming sessions also increased in control nests. This 

suggests that this behaviour may have evolved in response to ectoparasites and 

that females could thereby minimize the fitness costs associated with ectoparasite 

infestations (Richner et al. 1993). 
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This is the first study showing a clear effect of a complete natural 

ectoparasite fauna on parental behaviour and nestling growth in a cavity-nesting 

bird. Our test of effects of ectoparasites is conservative as we were not able to 

completely remove all ectoparasites and as the study was performed under 

especially good conditions for breeding. Ectoparasites induce significant changes 

in female grooming and nest sanitation behaviours which are not able to fully 

remove their natural deleterious effects on nestling growth and survival.  
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