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Today, despite decades of developments in medicine and the growing interest in precision healthcare, 
vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early 
indication and detection of diseases, however, can provide patients and carers with the chance of early 
intervention, better disease management, and efficient allocation of healthcare resources. The latest 
developments in machine learning (including deep learning) provides a great opportunity to address 
this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for 
electronic health records (EHR), capable of simultaneously predicting the likelihood of 301 conditions 
in one’s future visits. When trained and evaluated on the data from nearly 1.6 million individuals, 
BEHRT shows a striking improvement of 8.0–13.2% (in terms of average precision scores for different 
tasks), over the existing state-of-the-art deep EHR models. In addition to its scalability and superior 
accuracy, BEHRT enables personalised interpretation of its predictions; its flexible architecture enables 
it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and 
more) to further improve the accuracy of its predictions; its (pre-)training results in disease and patient 
representations can be useful for future studies (i.e., transfer learning).

�e �eld of precision healthcare aims to improve the provision of care through precise and personalised pre-
diction, prevention, and intervention. In recent years, advances in deep learning (DL) - a sub�eld of machine 
learning (ML) - has led to great progress towards personalised predictions in cardiovascular medicine, radiology, 
neurology, dermatology, ophthalmology, and pathology. For instance, Ardila et al.1 introduced a DL model that 
can predict the risk of lung cancer from a patient’s tomography images with 94.4% accuracy; Poplin et al.2 showed 
that DL can predict a range of cardiovascular risk factors from just a retinal fundus photograph, and more exam-
ples can be found in other works3,4. A key contributing factor to this success, in addition to the developments in 
DL algorithms, was the massive in�ux of large multimodal biomedical data, including but not limited to, elec-
tronic health records (EHR)5.

�e adoption of EHR systems has greatly increased in recent years; hospitals that have adopted EHR systems 
now exceeds 84% and 94% in the US and UK, respectively6,7. As a result, EHR systems of a national (and/or a 
large) medical organisation now are likely to capture data from millions of individuals over many years. Each 
individual’s EHR can link data from many sources (e.g., primary and hospital care) and hence contain “concepts” 
such as diagnoses, interventions, lab tests, clinical narratives, and more. Each instance of a concept can mean a 
single or multiple data points. Just a single hospitalisation, for instance, can generate thousands of data points for 
an individual, whereas a diagnosis can be a single data point (i.e., a disease code). �is makes large-scale EHR a 
uniquely rich source of insight and an unrivalled data for training data-hungry ML models.

In traditional research on EHR data (including the ones using ML), individuals are represented by models as 
a vector of attributes, or “features”8. �is approach relies on experts’ ability to de�ne the appropriate features and 
design the model’s structure (i.e., answering questions such as “what are the key features for this prediction?” or, 
“which features should have interactions with one another?”). Recent developments in deep learning, however, 
provided us with models that can learn useful representations (e.g., of individuals or concepts) from raw or 
minimally-processed data, with minimal need for expert guidance9. �is happens through a sequence of layers, 
each employing a large number of simple linear and nonlinear transformations to map their corresponding inputs 
to a representation; this progress across layers results in a �nal representation in which the data points form dis-
tinguishable patterns.
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Such properties of DL models and their success in a wide range of applications led to their growing popularity 
in EHR research. One of the earliest works in applying deep learning to EHR, Liang et al.10 showed that deep 
neural networks can outperform support vector machines (SVM) and decision trees paired with manual feature 
engineering, over a number of prediction tasks on a number of di�erent datasets. Tran et al.11 proposed the use 
of restricted Boltzmann machines (RBM) for learning a distributed representation of EHR, which was shown to 
outperform the manual feature extraction, when predicting the risk of suicide from individuals’ EHR. In a similar 
approach, Miotto et al.12 employed a stack of denoising autoencoders (SDA) instead of RBM, and showed that 
it outperforms many popular feature extraction and feature transformation approaches (e.g., PCA, ICA13 and 
Gaussian mixture models) for providing classi�ers with useful patient representations to predict the onset of a 
number of diseases from EHR.

�ese early works on the application of DL to EHR did not take into account the subtleties of EHR data 
(e.g., the irregularity of the inter-visit intervals, and the temporal order or events). In an attempt to address this, 
Nguyen et al.14 introduced a convolutional neural network (CNN) model called Deepr (Deep record) for predict-
ing the probability of readmission; they treated one’s medical history as a sequence of concepts (e.g., diagnosis 
and medication) and inserted a special word between each pair of consecutive visits to denote the time di�erence 
between them. In another similar attempt, Choi et al.15 introduced a shallow recurrent neural network (RNN) 
model to predict the diagnoses and medications that are likely to occur in the subsequent visit. Both these works 
employed some embedding techniques to map non-numeric medical concepts to an algebraic space in which the 
sequence models can operate.

One of the improvements that was next introduced to the DL models of EHR aimed to enable them to capture 
the long-term dependencies among events (e.g., key diagnoses such as diabetes can stay a risk factor over a per-
son’s life, even decades a�er their �rst occurrence; certain surgeries may prohibit certain future interventions). 
Pham et al.16 introduced a Long Short-Term Memory (LSTM) architecture with attention mechanism, called 
DeepCare, which outperformed standard ML techniques, plain LSTM, and plain RNN in tasks such as prediction 
of the onset of diabetes. In a similar development, Choi et al.17 proposed a model based on reverse-time attention 
mechanism to consolidate past in�uential visits using an end-to-end RNN model named RETAIN for the pre-
diction of heart failure. RETAIN outperformed most of the models at the time of its publication and provided a 
decent baseline for the EHR learning research.

Given the success of deep sequence models and attention mechanisms in the past DL research for EHR, we 
aim to build on some of the latest developments in deep learning and natural language processing (NLP)– more 
speci�cally, Transformer architecture18 – while taking into account various EHR-speci�c challenges, and provide 
improved accuracy for the prediction of future diagnoses. We named our model BEHRT (i.e., BERT for EHR), 
due to architectural similarities that it has with (and our original inspirations that came from) BERT18, one of the 
most powerful Transformer-based architectures in NLP.

Methods
Data. In this study, we used Clinical Practice Research Datalink (CPRD)19: it contains longitudinal primary 
care data from a network of 674 GP (general practitioner) practices in the UK, which is linked to secondary care 
(i.e., hospital episode statistics or HES) and other health and administrative databases (e.g., O�ce for National 
Statistics’ Death Registration). Around 1 in 10 GP practices (and nearly 7% of the population) in the UK contrib-
ute data to CPRD; it covers 35 million patients, among whom nearly 10 million are currently registered patients19. 
CPRD is broadly representative of the population by age, sex, and ethnicity. It has been extensively validated and 
is considered as the most comprehensive longitudinal primary care database20, with several large-scale epidemi-
ological reports19,21,22 adding to its credibility.

HES, on the other hand, contains data on hospitalisations, outpatient visits, accident and emergency for all 
admissions to National Health Service (NHS) hospitals in England23. Approximately 75% of the CPRD GP prac-
tices in England (58% of all UK CPRD GP practices) participate in patient-level record linkage with HES, which 
is performed by the Health and Social Care Information Centre24. In this study, we only considered the data from 
GP practices that consented to (and hence have) record linkage with HES. �e importance of primary care at the 
centre of the national health system in the UK, the additional linkages, and all the aforementioned properties, 
make CPRD one of the most suitable EHR datasets in the world for data-driven clinical/medical discovery and 
machine learning.

Pre-processing of CPRD. We start with 8 million patients; in our �rst �ltering, we only included patients 
that are eligible for linkage to HES and meet CPRD’s quality standards (i.e., using the �ags and time windows that 
CPRD provides to indicate the quality of one’s EHR). Furthermore, to only keep the patients that have enough 
history to be useful for prediction, we only kept individuals who have at least 5 visits in their EHR. At the end of 
this process, we are le� with = .P 1 6 million patients to train and evaluate BEHRT on. More details on our inclu-
sion/exclusion steps, and the number of patients a�er each one of them, can be seen in Fig. 1.

In CPRD, diseases are classi�ed using Read code25 and 10th revision of the International Statistical Classi�cation 
of Diseases and Related Health Problems (ICD-10)26, for primary and hospital care, respectively. In ICD-10, one can 
de�ne diseases at the desired level of granularity that is appropriate for the analysis of interest, by simply choosing 
the level of hierarchy one wants to operate at; for instance, operating at ICD-10 chapter level will lead to 22 health 
categories, while operation at ICD-10 sub-chapter level will lead to over 1,900. A�er that, we mapped both ICD-10 
codes (at level 4) and Read codes to Caliber codes27, which is an expert checked mapping dictionary from University 
College London. Eventually, this resulted in a total of =G 301 codes for diagnoses. We denote the list of all these 
diseases as =

=
D d{ }i i

G
1, where di denotes the ith disease code.

In our �nal data, for each patient ∈ …p P{1, 2, , } the medical history consists of a sequence of visits to GP 
and hospitals; each visit can contain concepts such as diagnoses, medications, measurements and more. In this 
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study, however, we are only considering the diagnoses; we denote each patient’s EHR as V v v v v{ , , , , }p p p p p
n1 2 3 p

= … , 
where np denotes the number of visits in patient p’s EHR, and v p

j  contains the diagnoses in the jth visit, which can 
be viewed as a list of mp

j diagnoses (i.e., = …d dv { , , }p
j

m1 p
j ). In order to prepare the data for BEHRT, we order the 

visits (hence diseases) temporally, and introduce a term to denote the start of medical history (i.e., CLS), and the 
space between visits (i.e., SEP), which results in a new sequence, = …V CLS SEP SEP SEPv v v{ , , , , , , , }p p p p

n1 2 p , that 
from now on will be how we see/denote each patient’s EHR as. �is process is illustrated in Fig. 2.

BEHRT: A Transformer-based Model for EHR. In this study, we aim to use a given patient’s past EHR to 
predict his/her future diagnoses (if any), as a multi-label classi�cation problem (i.e., simultaneously predicting 
a probability for each and every disease); this will result in a single predictive model that scales across a range of 
diseases (as opposed to needing to train one predictive model per disease). Modelling EHR sequences requires 
dealing with four key challenges16: (C.1) complex and nonlinear interactions among past, present and future 
concepts; (C.2) long-term dependencies among concepts (e.g., diseases occurring early in the history of a patient 
e�ecting events far later in future); (C.3) di�culties of representing multiple heterogeneous concepts of variable 
sizes and forms to the model; and (C.4) the irregular intervals between consecutive visits.

Figure 1. Linkage and �ltering of CPRD data. �is �ow lists all the key steps of our data cleaning and linkage 
procedure. At each step, the number of patients that are included is shown. As you can see, we started with 
nearly 8 million patients and our �nal data (used for training and evaluation of our models) consists of 1.6 
million patients, each meeting our inclusion criteria.

Figure 2. Preparation of CPRD data for BEHRT. An example patient’s EHR sequence can be seen in the �gure, 
which consists of 8 visits. In each visit, the record can consist of concepts such as diagnoses, medications and 
measurements; all these values are arti�cial and for illustration purposes. For this study, we are only interested 
in age and diagnoses. �erefore, as shown in at the bottom of the �gure, we have taken only the diagnosis 
and age subset of the record to form the necessary sequences. �is resulting sequence is how we represent 
every patient’s EHR in our modelling process. Note that the visits shown in purple boxes are not going to be 
represented to the model, due to them lacking diagnoses.
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Similarities between sequences in EHR and natural language lead to successful transferability of techniques. 
For instance, techniques such as BoW12, Skip-gram15, RNN17, and attention16,28 (a la their NLP usage) are used for 
learning complex EHR representations. Also, Velupillai et al.29 also suggested to use NLP modelling for knowl-
edge extraction, mental health treatment and large-scale clinical research from unstructured EHR. In addition, 
Huang et al.30 also proposed a NLP model (ClinicalBERT) to predict the 30-day hospital re-admission. In this 
study, we get our inspiration from the great success of Transformers31, and more speci�cally, a Transformer-based 
architecture known as BERT18. We refer readers to the original papers18,31 for an exhaustive background descrip-
tion for both Transformer and BERT.

By depicting diagnoses as words, each visit as a sentence, and a patient’s entire medical history as a document, 
we facilitate the use of multi-head self-attention, positional encoding, and masked language model (MLM), for 
EHR – under a new architecture we call BEHRT. Figure 3b illustrates BEHRT’s architecture, which is designed 
to pre-train deep bidirectional representations of medical concepts by jointly conditioning on both le� and right 
contexts in all layers. �e pre-trained representations can be simply employed for a wide range of downstream 
tasks, e.g., prediction of the next diseases, and disease phenomapping. Such bidirectional contextual awareness of 
BEHRT’s representations is a big advantage when dealing with EHR data, where due to variabilities in individuals’ 
health as well as practice of care, or simply due to random events, the order at which certain diseases happen can 
be reversed, or the time interval between two diagnoses can be shorter or longer than actually recorded.

BEHRT has many structural advantages over many of the previous methods for modelling EHR data. Firstly, 
we use feed-forward neural networks to model the temporal evolution of EHR data through utilising various 
forms of sequential concepts in the data (e.g., age, order of visits), instead of using traditional state-of-the-art 
RNN and CNN that were explored in the past14,17. Recurrent neural networks are known to be notoriously hard 
to train due to their exploding and vanishing gradient problems32; these issues hamper these networks’ ability to 
learn (particularly, when dealing with long sequential data). On the other hand, convolutional neural networks 
only capture limited amount of information with convolutional kernels in the lower layers, and need to expand 
their receptive �eld through increasing the number of layers in a hierarchical architecture. BEHRT’s feed-forward 
structure alleviates the exploding and vanishing gradient problems and captures information by simultaneously 
considering the full sequence -- a more e�cient training through learning the data in parallel rather than in 
sequence (unlike the RNN).

�e embedding layer in BEHRT, as shown in Fig. 3, learns the evolution of one’s EHR through a combination 
of four embeddings: disease, “position”, age, and “visit segment” (or “segment”, for short). �is combination ena-
bles BEHRT to de�ne a representation that can capture one’s EHR in as much detail as possible. Disease codes are 
of course important in informing the model about the past diagnoses in one’s EHR. �at is, there are many com-
mon disease trajectories and morbidity patterns33 that knowing one’s past diseases can improve the accuracy of 
the prediction for their future diagnoses. Positional encodings determine the relative position of concepts in EHR 
sequence, and enable the network to capture the positional interactions among diseases. In this paper, we used 

Figure 3. BEHRT architecture. Using the arti�cial data shown in Fig. 2, section (a) shows how BEHRT sees 
one’s EHR. In addition to diagnosis and age, BEHRT also employs an encoding for an event’s positions (shown 
as POSITION) and an encoding for visit (shown as SEGMENT with A and B), which alternates between visits. 
�e summation of all these embeddings results in a �nal embedding shown at the bottom of (a), which will be 
the latent contextual representation of one’s EHR at a given visit’s diagnosis. Section (b) on the other hand shows 
BEHRT’s Transformer-based architecture. It is �rst pre-trained by the MLM task, to learn the network 
parameters (including the disease embeddings) that can predict the masked disease tokens. When training the 
model in downstream tasks (i.e., T1 to T3 - detailed explanation can be found in section: Disease Prediction), 
the model �netunes the weights pre-trained in the MLM task and learns the weights for the classi�cation layer 
(i.e., mapping T1 to the pooling layer and �nally to the subsequent diseases classi�er).
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a pre-determined encoding (as proposed by Vaswani et al.31), to avoid weak learning of positional embedding 
caused by imbalanced distribution of medical sequence length in EHR. Given the feed-forward architecture of 
our network, positional encodings plays a key role in �lling the gap resulting from the lack of a recurrent structure 
that was historically the most common/successful approach for learning from sequences.

Age and visit segment are two embeddings that are unique to BEHRT to further empower it in dealing with 
the challenges we mentioned earlier. Age is known to be a key risk factor for most diseases (i.e., as we age, the 
risk of many diseases increase). By embedding age and linking it to each visit/diagnosis, not only do we provide 
the model with a sense of time (i.e., the time between events), but also we inform it of age as a universal epidemi-
ological notion of when things happened (that is comparable across patients). Visit segment can be either A or 
B, which are two symbols to represent two trainable vectors in the segment embeddings; it changes alternatively 
between visits and it is used for providing BEHRT with extra information to indicate the separation between visits 
(i.e., visit segments for two adjacent visits of a patient will always be di�erent).

Note that, there is no prescribed order for the multiple diagnoses within a visit. �at is, for a given visit, the 
position, age, and segment embedding will be identical; this makes BEHRT order-invariant for intra-visit con-
cepts (i.e., invariant to the ordering of diagnoses within a visit). �us, attention mechanism purely investigates 
intra-visit relationships among diseases.

�rough a unique combination of the four aforementioned embeddings, we provide the model with disease 
sequences, a precise sense of timing of events, and data about the delivery of care. In other words, the model 
has the ability to learn from the medical history and its corresponding age and visit patterns. All these, when 
combined, can paint a picture of one’s health that traditionally we might have sought to capture through many 
features manually extracted from EHR. Of course, we do not advocate for not using the full richness of the EHR 
and indeed see that as a follow up to this work. However, we aim to show how the complexity of our architecture 
when paired with this subset of EHR can still provide an accurate characterisation of one’s future health trajectory. 
BEHRT’s �exible architecture enables the use of additional concepts, e.g., by simply adding additional embed-
dings to the existing four.

Pre-training BEHRT using masked language model (MLM). In EHR data, just like language, it is intu-
itively reasonable to believe that a deep bidirectional model is more powerful than either a le�-to-right model or 
the shallow concatenation of a le�-to-right and a right-to-le� model. �erefore, we pre-trained BEHRT using the 
same approach as the original BERT paper18, using MLM. We initialized disease, age, and segment embeddings 
randomly, and the positional encoding, as discussed previously, stems from a pre-determined encoding of posi-
tion.When training the network and speci�cally, the embeddings for the MLM task, we le� 86.5% of the disease 
words unchanged; 12% of the words were replaced with [mask]; and the remaining 1.5% of words, were replaced 
with randomly-chosen disease words.

Under this setting, BEHRT does not know which of the disease words are masked, so it stores a contextual 
representation of all of the disease words. Additionally, the small prevalence of change (i.e., only for 13.5% of all 
disease words) will not hamper the model’s ability to understand the EHR data. Lastly, the replacement of the 
disease words acts as injected noise into the model; it will distract the model from learning the true le� and right 
context, and instead forces the model to �ght through the noise and continue learning the overall disease trajec-
tories. �e pre-training MLM task was evaluated using precision score34, which calculates the ratio of true posi-
tive over the number of predicted positive samples (precision calculated at a threshold of 0.5). �e average is 
calculated over all labels and over all patients. We see in Fig. 3b that the MLM classi�er maps the tokens …T TN1  
to the masked words.

Disease Prediction. In order to provide a comprehensive evaluation of BEHRT, we assess its learning in 
three predictive tasks: prediction of diseases in the next visit (T1), prediction of diseases in the next 6 months 
(T2), and prediction of diseases in the next 12 months (T3). In order to train our model and assess its predictions’ 
accuracy across these tasks, we �rst randomly allocated the patients into two groups: train and test (containing 
80% and 20% of the patients, respectively). To de�ne the training examples (i.e., input-output pairs) for T1, we 
randomly choose an index j ( < <j n3 p) for each patient and form = …x v v{ , , }p p p

j1  and =
+

y w
p j 1, as input and 

output, respectively, where 
+

wj 1 is a multi-hot vector of length G, with 1’s, indexed for diseases that exist in +v p
j 1. 

Note that each patient contributes only one input-output pair to the training and evaluation process.
For both T2 and T3, the formation of input and label are slightly modi�ed. First, patients that do not have 6 or 

12 months (for T2 and T3, respectively) worth of EHR (with or without a visit) a�er vp
4  will not be included in the 

analyses. Second, j is chosen randomly from (3, n*), where n* denotes the highest index a�er which there is 6 or 
12 months (for T2 and T3, respectively) worth of EHR (with or without a visit). Lastly, =y w

p m6  and =y w
p m12  

are multi-hot vectors of length G, with 1 for concepts/diseases that exist in the next 6 and 12 months, respectively. 
As a result of this �nal �ltering of patients, we had 699 K, 391 K, and 342 K patients for T1, T2, and T3, respec-
tively. A more comprehensive statistics for the population is shown in Supplementary Table S1. To clarify the task 
design, the BEHRT model is considered as “forced by design” to predict subsequent diseases in the patients’ med-
ical history, and only patients who have at least one diagnosis in the coming visit/6 months/12 months are 
included.

We feed these input medical histories into BEHRT for feature extraction. Next, as shown in Fig. 3b, the net-
work pools the information into a representation of the patient and passes it along to a single feed-forward classi-
�er layer for output, subsequent visit prediction. Using this procedure, we train and test it three separate times for 
each of the three aforementioned tasks (T1–T3). We denote the model’s prediction for patient p in the aforemen-
tioned tasks as ⁎y

p
, where the ith entry is the model’s prediction of that person having di. �e evaluation metrics 

we used to compare y’s and y*’s, are area under the receiver operating characteristic curve (AUROC)35 and 
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average precision score (APS)36; the latter is a weighted mean of precision and recall achieved at di�erent thresh-
olds. We calculated the APS and AUROC for each patient �rst, and then averaged the resulting APS and AUROC 
scores across all patients35,36.

To further investigate BEHRT’s predictive performance, we carried out three experiments: (1) We investigated 
if BEHRT can implicitly learn gender and utilise this latent understanding in subsequent visit prediction; (2) we 
carried out an ablation study by selectively deactivating age, segment, and/or position embeddings and seeing 
their e�ects on APS and AUROC; and (3) we assessed the model’s performance on the prediction of new instances 
of diseases (i.e., predicting the labels/diagnoses, which had not appeared in one’s EHR history, at the time of pre-
diction). �e number of diseases considered is the same as that in T1, T2, and T3.

Resources and Implementation. In this project, we have Python for coding our models and analyses 
pipelines. We relied on NVIDIA Titan Xp Graphical Processing Units (GPU) for pre-training, training, and test-
ing. BertAdam18 is used as optimiser for both MLM and disease prediction tasks.

Results
Disease Embedding. We used Bayesian Optimisation37 to �nd the optimal hyperparameters for the MLM 
pre-training. �e main hyperparameters here are the number of layers, the number of attention heads, hidden 
size, and “intermediate size” – see the original BERT paper for the details. �is process resulted in an optimal 
architecture with 6 layers, 12 attention heads, intermediate layer size of 512, and hidden size of 288; For reprodu-
ceability purposes, we trained the MLM task for 100 epochs and the model’s performance was 0.6597 in precision 
score. Further details can be found in Supplementary Table S2.

Given the importance of the disease embedding – resulting from training the MLM – and the e�ect that it can 
have on the overall prediction results, we �rst show the performance of our pre-training process, which mapped 
each one of the G diseases to a 288-dimensional vector. Note that, for evaluating an embedding technique – even 
in NLP where the literature has a longer history and hence is more mature – there is not a single gold standard 
metric38. In this study, we devised three approaches: visual investigation (i.e., in comparison with medical knowl-
edge), medical validation by clinical professional, and evaluation in a prediction task. For the former, we used 
t-SNE39 to reduce the dimensionality of the disease vectors to 2 – results are shown in Fig. 4. Based on the result-
ing patterns, we can see that diseases that are known to co-occur and/or belong to the same clinical groups, are 
grouped together. Note that, while most neighborhoods make sense and are aligned with medical knowledge, 
there are diseases clusters that (due to extreme dimensionality reduction, for instance) might seem 
counter-intuitive.

A reassuring pattern that can be seen in Fig. 4, for instance, is the natural strati�cation of gender-speci�c 
diseases. For instance, diseases that are unique to women (e.g., endometriosis, dysmenorrhea, menorrhagia, …) 
are quite distant from those that are unique to men (e.g., erectile dysfunction, primary malignancy of prostate, 
…). Such patterns seem to suggest that our disease embedding built an understanding of the context in which 
diagnoses happen, and hence infer factors such as gender that it is not explicitly fed.

Furthermore, the colour in Fig. 4 represent the original Caliber disease chapters (see the legends in the main 
subplot). As can be seen, natural clusters are formed that in most cases consist of disease of the same chapter (i.e., 
the same colour). Some of these clusters, however, are correlated but not identical to these chapters; for instance, 
many eye and adnexa diseases are amongst nervous system diseases and many nervous system disease are also 
among many musculoskeletal diseases. Overall, this map can be seen as diseases’ correspondence to each other 
based on 1.6 million people’s EHR.

Lastly, for each disease that occurred in at least 1% of the population (i.e., 87 diseases), we found the ten closest 
diseases (using cosine similarity of their embeddings). Comparing these top-10 neighbourhoods against those 
provided by a clinical researcher, we found a 0.757 overlap (i.e., nearly 76% of our 87 top-10 neighbourhoods were 
seen as clinically valid by a clinical expert). A full table of results for the 87 diseases is o�ered in Supplementary 
Table S3. �e clinical researcher notes that while many of the most similar associations had clear overlap in symp-
tomatology, some were graded to be poor disease associations. �us, the researcher concludes that BEHRT has 
a strong ability to understand the latent characteristics of the disease, without them being explicitly given to it.

Attention and Interpretability. Another interesting property of BEHRT is its self-attention mechanism; 
this gives it the ability to �nd the relationships among events which goes beyond temporal/sequence adjacency. 
�is self-attention mechanism is able to unearth deeper and more complex relationships between a diagnosis in 
one visit and other diagnoses. We analyse the attention-based patterns for patients using the approach introduced 
by Vig40. �ese results for two example patients are shown in Fig. 5. Note that, since BEHRT is bidrectional, the 
self-attention mechanism captures non-directional relationships among diseases (i.e., their correspondence with 
each other, rather than one causing the other).

For patient A in Fig. 5, for example, the self-attention mechanism has shown strong connections between 
rheumatoid arthritis and enthesopathies and synovial disorders (far in the future of the patient). �is is a great 
example of where attention can go beyond recent events and �nd long-range dependencies among diseases. Note 
that, as described earlier and illustrated in Fig. 3, the sequence we model is a combination of four embedding 
(disease, age, segment, and position) that go through layers of transformations to form a latent space abstraction. 
While in Fig. 5 we labelled the cells with disease names, a more precise labelling will be diseases in their context 
(e.g., at a given age and visit).

Disease Prediction. BEHRT a�er the MLM pre-training, can be considered a universal EHR feature extrac-
tor that only with a small additional training can be employed for a range of downstream tasks. In this work, the 
downstream task of choice is the multi-disease prediction problem that we described earlier. �e results from the 
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evaluation of the model’s performance is shown in Table 1. �is table demonstrates BEHRT’s superior predictive 
power compared to two of the most successful approaches in the literature (i.e., Deepr12 and RETAIN17). To 
demonstrate a fair comparison of models, we carefully analyse model architecture for Deepr and RETAIN. We 
note Deepr models time between visits using special “words” and utilises demographic information (gender) for 
prediction. Regarding RETAIN, in addition to including gender to bolster predictive power, we implement an 
architecture endorsed by the author41 that would augment the original architecture’s performance: we encode 
time for the visits, as well as bidirectionality for the RNN framework. We used Bayesian Optimisation to �nd 
the optimal hyperparameters for RETAIN and Deepr before the evaluation. More details on the hyperparameter 
search and optimisation can be found in Supplementary Tables S4 and S5. �e three supervised subsequent pre-
diction task models were trained for 15–20 epochs.

Besides comparing the APS, which provides an average view across all patients and all thresholds, we also 
assessed the model’s performance for predicting for each disease. To do so for a given disease di, we only consid-
ered the ith entry in y

p
 and ⁎y

p
 vectors and calculated AUROC and APS scores, as well as their respective occur-

rence ratios (percent of patients that have a given disease in their EHR) for comparison. �e results for T2 (or, 
next 6-months prediction task) is shown in Fig. 6. For visual convenience and in our analysis, we did not include 
rare diseases with prevalence of less than 1% in our data.

�e result shows that BEHRT is able to make predictions with relatively high precision and recall for dis-
eases such as epilepsy (0.016), primary malignancy prostate (0.011), polymyalgia rheumatica (0.013), hypo 
or hyperthyroidism (0.047), and depression (0.0768). A numerical summary of this analysis can be found in 
Supplementary Table S6. Furthermore, a comparison of the general APS/AUROC trends across the three models 
can be found in Supplementary Fig. S1.

To investigate the model’s performance further, we carried out an analysis to assess the model’s ability to learn 
gender-related concepts, without being given gender as an input variable; this “gender analysis” was done on 
the results of the T2 task. Looking at the gender-speci�c diseases (e.g., endometriosis, female genital prolapse, 

Figure 4. Visual investigation of the disease embedding. In this image we see a graph of disease embeddings 
projected in two dimensions where distance represents closeness of contextual association. �e colors represent 
the Caliber chapter. Most associations are accepted by medical experts and maintain the gender-based divisions 
in illnesses, among other things. We zoom in and pro�le four clusters in this plot – shown in sub�gures (A–D).
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and menorrhagia and polymenorrhoea that are unique to women, and hyperplasia of prostate, male infertil-
ity and erectile dysfunction that are unique to men), Supplementary Table S7 shows that, except for a few pre-
dictions, BEHRT has correctly avoided matching male diseases to female patients and vice versa. One of the 
seemingly gender errors in our results, is “male infertility”, which has been assigned to female patients; a�er 
further investigations, we discovered that “male infertility” is recorded for both male (365) and female (1,734) 
patients; we also saw records of “female infertility” for both male (192) and female (2,306) patients. �is was 
due to gender-agnostic Read codes (K26y300, K26y400, K5B1100, K5By000, and others) mapped to both “male 
infertility” and “female infertility” in the Caliber system. Disregarding “male infertility” and “female infertility”, 
we see BEHRT naturally identi�es gender in feature extraction and can make robust gender-speci�c conclusions 
for subsequent disease prediction.

As mentioned earlier, BEHRT can accommodate variety of input concepts that exist in EHR. �erefore, selec-
tion of the appropriate concepts can be an important aspect of designing the BEHRT architecture. �erefore, we 
carried out an ablation study, where we selectively deactivated parts of the input space and assessed the mod-
el’s performance for each resulting scenario; see Supplementary Table S8. While the results are not changing 

Figure 5. �e analysis of BEHRT’s self-attention. �is �gure shows the EHR history of patients (A and B), 
each presented as two identical columns (shown chronologically, going downwards) for the convenience of 
association analysis. �e le� side of the column represents the disease of interest and the right column indicates 
the corresponding associations to the highlighted disease on the le�. �e intensity of the blue on the right 
column represents the strength of the attention score – the stronger the intensity, the stronger the association 
and hence the stronger the attention score. �e attention scores are speci�cally retrieved from the attention 
component of the last layer of BEHRT network.

Model Name Next Visit (APS|AUROC) Next 6 M (APS|AUROC) Next 12 M (APS|AUROC)

BEHRT 0.462|0.954 0.525|0.958 0.506|0.955

Deepr 0.360|0.942 0.393|0.943 0.393|0.943

RETAIN 0.382|0.921 0.417|0.927 0.413|0.928

Table 1. Model performances in the prediction tasks.
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signi�cantly in terms of AUROC, we see a much bigger range in APS. Overall, the results illustrate that posi-
tion and age are important features in modelling the EHR sequences; they both improved the baseline (i.e., 
disease-only) model’s performance signi�cantly. In contrast, adding segment to the baseline model resulted in a 
very small (almost negligible) improvement.

Lastly, for a subset of diseases in the label that are occurring for the �rst time (�rst incidence), we calculate 
predictive performance of the three models in Table 2. BEHRT shows superior predictive performance in all 
three tasks with respect to RETAIN and Deepr. �e ranking of the three models in terms of performance (both 
AUROC/APS) is identical to the ranking shown in Table 1.

Discussion
In this paper, we introduced a novel deep neural network model for EHR called BEHRT; an interpretable per-
sonalised risk model, which scales across a range of diseases and incorporates a wide range of EHR modalities/
concepts in its modular architecture. BEHRT can be pre-trained on a large dataset and then with small �ne 
tuning will result in a striking performance in a wide range of downstream tasks. We demonstrated this property 
of the model by training and testing it on CPRD - one of the largest linked primary care EHR systems – for pre-
dicting the next mostly likely diseases in one’s future visits. Based on our results, BEHRT outperformed the best 
deep EHR models in the literature by more than ~8% (absolute improvement) in predicting for a range of more 
than 300 diseases.

BEHRT o�ers a �exible architecture that is capable of capturing more modalities of EHR data than we have 
already demonstrated in this paper. We demonstrated this �exibility of BEHRT’s modular architecture by design-
ing a model that employed 4 key concepts from the EHR: diseases, age, segment, and position. �rough this mix, 
the model will not only have the ability to learn about the past diseases and their relationships with future diagno-
ses (i.e., learning disease trajectories), but also gain insights about the underlying generating process of EHR; we 
can refer to this as the practice of care. In other words, the model will learn distributed/complex representations 
that are capable of capturing concepts such as “this patient had diseases A and B at a young age, and suddenly, the 
frequency of visits increased, and a new diagnosis C appeared; all these, plus the patient’s age, will increase the 
chance of disease D happening next”. In future works, one can add more to these four concepts and bring medi-
cation, tests, and interventions to the model with minimum architectural changes – by only adding new rows to 
the architecture depicted in Fig. 3a.

Figure 6. Disease-wise precision analysis. Each circle in these graphs represents a disease, and its colour and 
size denote the Caliber chapter and prevalence, respectively. Also, in these plots, we show APS and AUROC 
on the x- and y-axis, respectively. �erefore, the further right and higher a disease, the better BEHRT’s job at 
predicting its occurrence in the next 6 months. Subplot (A) illustrated the full results, and subplots (B and C) 
illustrate the best and worst sections of the plot, in terms of BEHRT’s performance.

Model Name Next Visit (APS|AUROC) Next 6 M (APS|AUROC) Next 12 M (APS|AUROC)

BEHRT 0.216|0.904 0.228|0.907 0.226|0.905

Deepr 0.095|0.800 0.104|0.814 0.098|0.805

RETAIN 0.108|0.836 0.115|0.845 0.109|0.836

Table 2. Model performances in the prediction tasks - First Incidence of Diseases.
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Our primary objective in this study was to provide the �eld with an accurate model for the prediction of next/
future diseases. While doing this, BEHRT provides multiple byproducts that each can be useful on their own and/
or as a key component of future works. For instance, the disease embeddings resulting from BEHRT can provide 
great insights into how various diseases are related to each other; it goes beyond simple disease co-occurrence 
and rather learns the closeness of diseases based on their trajectories in a big population of patients. Furthermore, 
such pre-trained disease embeddings can be used by future researchers as a reliable disease vectors, ready for 
numeric/algebraic operations. �is is very similar to �elds such as NLP, where sharing word vectors for other 
researchers is a common practice. Additionally, we have shown that the disease correspondences that result from 
BEHRT’s attention mechanism can be useful for illustrating the disease trajectories for multi-morbid patients; 
not only it shows how diseases co-occur, but also it shows the in�uence of certain diseases in one’s past on their 
future risk of other diseases. �ese correspondences are not strictly temporal but rather contextual. �rough our 
analyses of the supervised prediction tasks performance (T1, T2, and T3), we �rst see that BEHRT has the ability 
to make robust, gender-speci�c predictions without inclusion of gender. We also note that the ablation study has 
showed us important embeddings for inclusion; while position was important for this task, we note that perhaps 
in diagnosing age-related diseases (e.g. Alzheimer’s disease, arthritis, etc), the age embedding might be more vital 
for predictive power. �irdly, we conclude that even for incident disease prediction, BEHRT performs better than 
RETAIN and Deepr. As a future work, we aim to provide these attention-visualisation tools to medical researchers 
to help them better understand the contextual meaning of a diagnosis in the midst of other diagnoses of patients. 
�rough this tool, medical researchers can even cra� medical history timelines based on certain diseases or pat-
terns and in a way, query our BEHRT model and visualiser to perhaps uncover novel disease contexts.

Despite exploring some of the properties of BEHRT, there are a range of future works that one can base on 
BEHRT’s architecture and properties. For instance, BEHRT’s ability to summarise a patient’s health journey into a 
simple vector enables its use in a wide range of machine learning and exploratory analysis frameworks. �at is, in 
most such analyses, one requires to measure the similarities between two medical concepts and/or two patients; 
this has been shown to be achievable, regardless of the variabilities that are inherent in EHR data, going from one 
patient to the other. Another direction of future research, can be the use of BEHRT for other downstream tasks 
such as single-disease prediction tasks, or non-diagnosis tasks such as prediction of hospital readmission and/or 
mortality – all these are extremely important clinical events. In such analyses, BEHRT’s interpretability can also 
be a useful feature to understand various pathways that will lead to a disease/event or result from a disease/event. 
To improve BEHRT’s accuracy, also, one can rely on some of the well-known frameworks such as ensembles of 
BEHRTs that have been shown to be e�ective for other learners.

Data availability
�e data that support the �ndings of this study are available from Clinical Practice Research Datalink (CPRD). 
�e link: https://www.cprd.com/Data explains more in depth about the nature and accessibility of the data. 
Furthermore, regarding accessibility, https://www.cprd.com/primary-care explains: “Access to data from CPRD 
is subject to a full licence agreement containing detailed terms and conditions of use. Patient level datasets can be 
extracted for researchers against speci�c study speci�cations, following protocol approval from the Independent 
Scienti�c Advisory Committee (ISAC).” �us, restrictions apply to the availability of these data, which were used 
under license for the current study, and so are not publicly available.
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