
Machine Learning, 50, 95–125, 2003

c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Being Bayesian About Network Structure.

A Bayesian Approach to Structure Discovery

in Bayesian Networks

NIR FRIEDMAN nir@cs.huji.ac.il

School of Computer Science & Engineering, Hebrew University, Jerusalem 91904, Israel

DAPHNE KOLLER koller@cs.stanford.edu

Computer Science Department, Stanford University, Stanford, CA 94305-9010, USA

Editors: Nando de Freitas, Christophe Andrieu, Arnaud Doucet

Abstract. In many multivariate domains, we are interested in analyzing the dependency structure of the under-

lying distribution, e.g., whether two variables are in direct interaction. We can represent dependency structures

using Bayesian network models. To analyze a given data set, Bayesian model selection attempts to find the most

likely (MAP) model, and uses its structure to answer these questions. However, when the amount of available data

is modest, there might be many models that have non-negligible posterior. Thus, we want compute the Bayesian

posterior of a feature, i.e., the total posterior probability of all models that contain it. In this paper, we propose

a new approach for this task. We first show how to efficiently compute a sum over the exponential number of

networks that are consistent with a fixed order over network variables. This allows us to compute, for a given

order, both the marginal probability of the data and the posterior of a feature. We then use this result as the basis

for an algorithm that approximates the Bayesian posterior of a feature. Our approach uses a Markov Chain Monte

Carlo (MCMC) method, but over orders rather than over network structures. The space of orders is smaller and

more regular than the space of structures, and has much a smoother posterior “landscape”. We present empirical

results on synthetic and real-life datasets that compare our approach to full model averaging (when possible), to

MCMC over network structures, and to a non-Bayesian bootstrap approach.

Keywords: Bayesian networks, structure learning, MCMC, Bayesian model averaging

1. Introduction

Bayesian networks (Pearl, 1988) are a graphical representation of a multivariate joint prob-

ability distribution that exploits the dependency structure of distributions to describe them

in a compact and natural manner. A Bayesian network (BN) is a directed acyclic graph,

in which the nodes correspond to the variables in the domain and the edges correspond

to direct probabilistic dependencies between them. Formally, the structure of the network

represents a set of conditional independence assertions about the distribution: assertions of

the form the variables X and Y are independent given that we have observed the values of the

variables in some set Z. Thus, the network structure allows us to distinguish between the

simple notion of correlation and the more interesting notion of direct dependence; i.e., it

allows us to state that two variables are correlated, but that the correlation is an indirect one,

96 N. FRIEDMAN AND D. KOLLER

mediated by other variables. The use of conditional independence is the key to the ability

of Bayesian networks to provide a general-purpose compact representation for complex

probability distributions.

In the last decade there has been a great deal of research focused on the problem of

learning BNs from data (Buntine, 1996; Heckerman, 1998). An obvious motivation for this

task is to learn a model that we can then use for inference or decision making, as a substitute

for a model constructed by a human expert. In other circumstances, our goal might be to

learn a model of the system not for prediction, but for discovering the domain structure. For

example, we might want to use BN learning to understand the mechanism by which genes

in a cell express themselves in protein, and the causal and dependence relations between

the expression levels of different genes (Friedman et al., 2000; Lander, 1999). If we learn

the “true” BN structure of our distribution, we reveal many important aspects about our

domain. For example, if X and Y are not connected directly by an edge, then any correlation

between them is an indirect one: there is some set of variables Z such that the influence of

X on Y is mediated via Z. More controversially, the presence of a directed path from X to

Y indicates (under certain assumptions (Spirtes, Glymour, & Scheines, 1993; Heckerman,

Meek, & Cooper, 1997)) that X causes Y . The extraction of such structural features is

often our primary goal in the discovery task, as can be seen by the emphasis in data mining

research on discovering association rules. In fact, we can view the task of learning the

structure of the underlying BN as providing a semantically coherent and well-defined goal

for the discovery task.

The most common approach to discovering BN structure is to use learning with model

selection to provide us with a single high-scoring model. We then use that model (or its

Markov equivalence class) as our model for the structure of the domain. Indeed, in small

domains with a substantial amount of data, it has been shown that the highest scoring model

is orders of magnitude more likely than any other (Heckerman, Meek, & Cooper, 1997).

In such cases, the use of model selection is a good approximation. Unfortunately, there are

many domains of interest where this situation does not hold. In our gene expression example,

we might have thousands of genes (each of which is modeled as a random variable) and

only a few hundred experiments (data cases). In cases like this, where the amount of data is

small relative to the size of the model, there are likely to be many models that explain the

data reasonably well. Model selection makes a somewhat arbitrary choice between these

models. However, structural features (e.g., edges) that appear in this single structure does

not necessarily appear in other likely structures; indeed, we have no guarantees that these

structural features are even likely relative to the set of possible structures. Furthermore,

model selection is sensitive to the particular instances that it was given. Had we sampled

another data set of the same size (from the same distribution), model selection would have

learned a very different model. For both of these reasons, we cannot simply accept our

chosen structure as a true representation of the underlying process.

Given that there are many qualitatively different structures that are approximately equally

good, we cannot learn a unique structure from the data. Moreover, in many learning scenarios

there are exponentially many structures that are “reasonably” good given the data. Thus,

enumerating these structures is also impractical. However, there might be certain features of

the distribution that are so strong that we can extract them reliably. As an extreme example,

BEING BAYESIAN ABOUT NETWORK STRUCTURE 97

if two variables are highly correlated (e.g., deterministically related to each other), it is

likely that an edge between them will appear in any high-scoring model. As we discussed

above, extracting these structural features is often the primary goal of BN learning.

Bayesian learning allows us to estimate the strength with which the data indicates the

presence of a certain feature. The Bayesian score of a model is simply its posterior proba-

bility given the data. Thus, we can estimate the extent to which a feature, e.g., the presence

of an edge, is likely given the data by estimating its probability:

P(f | D) =
∑

G

P(G | D) f (G), (1)

where G represents a model, and f (G) is 1 if the feature holds in G and 0 otherwise. If this

probability is close to 1, then almost any high-scoring model contains the feature . On the

other hand, if the probability is low, we know that the feature is absent in the most likely

models.

The number of BN structures is super-exponential in the number of random variables

in the domain; therefore, this summation can be computed in closed form only for very

small domains, or those in which we have additional constraints that restrict the space (as

in Heckerman, Meek, & Cooper, 1997). Alternatively, this summation can be approximated

by considering only a subset of possible structures. Several approximations have been

proposed (Madigan & Raftery, 1994; Madigan & York, 1995). One theoretically well-

founded approach is to use Markov Chain Monte Carlo (MCMC) methods: we define a

Markov chain over structures whose stationary distribution is the posterior P(G | D), we

then generate samples from this chain, and use them to estimate Eq. (1). This approach is

quite popular, and variants have been used by Madigan and York (1995), Madigan et al.

(1996), Giudici and Green (1999) and Giudici, Green, and Tarantola (2000).

In this paper, we propose a new approach for evaluating the Bayesian posterior probability

of certain structural network properties. The key idea in our approach is the use of an ordering

on the network variables to separate the problem into two easier one. An order ≺ is a

total ordering on the variables in our domain, which places a restriction on the structure

of the learned BN: if X ≺ Y , we restrict attention to networks where an edge between X

and Y , if any, must go from X to Y . We can now decouple the problem of evaluating the

probability over all structures into two subproblems: evaluating the probability for a given

order, and summing over the set of possible orders. Our two main technical ideas provide

solutions to these two subproblems.

In Section 3, we provide an efficient closed form equation for summing over all (super-

exponentially many) networks with at most k parents per node (for some constant k) that

are consistent with a fixed order ≺. This equation allows us both to compute the overall

probability of the data for this set of networks, and to compute the posterior probability of

certain structural features over this set. In Section 4, we show how to estimate the probability

of a feature over the set of all orders by using an MCMC algorithm to sample among the

possible orders. The space of orders is much smaller than the space of network structures;

it also appears to be much less peaked, allowing much faster mixing (i.e., convergence to

the stationary distribution of the Markov chain). We present empirical results illustrating

this observation, showing that our approach has substantial advantages over direct MCMC

98 N. FRIEDMAN AND D. KOLLER

over BN structures. The Markov chain over orders mixes much faster and more reliably

than the chain over network structures. Indeed, different runs of MCMC over networks

typically lead to very different estimates in the posterior probabilities of structural features,

illustrating poor convergence to the stationary distribution; by contrast, different runs of

MCMC over orders converge reliably to the same estimates. We also present results showing

that our approach accurately detects dominant features even with sparse data, and that

it outperforms both MCMC over structures and the non-Bayesian bootstrap approach of

Friedman, Goldszmidt, and Wyner (1999).

2. Bayesian learning of Bayesian networks

2.1. The Bayesian learning framework

Consider the problem of analyzing the distribution over some set of random variables

X1, . . . , Xn , each of which takes values in some domain Val (X i). We are given a fully

observed data set D = {x[1], . . . , x[M]}, where each x[m] is a complete assignment to the

variables X1, . . . , Xn in Val (X1, . . . , Xn).

The Bayesian learning paradigm tells us that we must define a prior probability distribu-

tion P(B) over the space of possible Bayesian networks B. This prior is then updated using

Bayesian conditioning to give a posterior distribution P(B | D) over this space.

For Bayesian networks, the description of a model B has two components: the structure

G of the network, and the values of the numerical parameters θG associated with it. The

network structure G is a directed acyclic graph, whose nodes represent the variables in

the domain, and whose edges represent direct probabilistic dependencies between them. The

BN structure encodes a set of conditional independence assumptions: that each node X is

conditionally independent of all of its nondescendants in G given its parents (in G) PaG(X i).

These independence assumptions, in turn, imply many other conditional independence

statements, which can be extracted from the network using a simple graphical criterion

called d-separation (Pearl, 1988). In particular, they imply that a variable X is conditionally

independent of all other network variables given its Markov blanket—the set consisting of

X ’s parents, its children, and the other parents of its children. Intuitively, the Markov blanket

of X is the set of nodes that are, in some sense, directly correlated with X , at least in some

circumstances.1 We use the family of a node X to denote the set consisting of X and its

parents.

The parameterization θG of the network varies. For example, in a discrete Bayesian

network of structure G, the parameters θG typically define a multinomial distribution θX i |u

for each variable X i and each assignment of values u to PaG(X i). If we consider Gaussian

Bayesian networks over continuous domains, then θX i |u contains the coefficients for a linear

combination of u and a variance parameter.

To define the prior P(B), we need to define a discrete probability distribution over graph

structures G, and for each possible graph G, to define a density measure over possible

values of parameters θG .

The prior over structures is usually considered the less important of the two components.

Unlike other parts of the posterior, it does not grow as the number of data cases grows.

BEING BAYESIAN ABOUT NETWORK STRUCTURE 99

Hence, relatively little attention has been paid to the choice of structure prior, and a simple

prior is often chosen largely for pragmatic reasons. The simplest and therefore most common

choice is a uniform prior over structures (Heckerman, 1998). To provide a greater penalty to

dense networks, one can define a prior using a probability β that each edge be present; then

networks with m edges have prior probability proportional to βm(1 − β)(n
2

)−m (Buntine,

1991). An alternative prior, and the one we use in our experiments, considers the number

of options in determining the families of G. Intuitively, if we decide that a node X i has k
parents, then there are (n−1

k) possible parents sets. If we assume that we choose uniformly
from these, we get a prior:

P(G) ∝

n
∏

i=1

(

n − 1

|PaG(X)i |

)−1

. (2)

Note that the negative logarithm of this prior corresponds to the description length of

specifying the parent sets, assuming that the cardinality of these sets are known. Thus, we

implicitly assume that cardinalities of parent sets are uniformly distributed.

A key property of all these priors is that they satisfy:

• Structure modularity. The prior P(G) can be written in the form

P(G) =
∏

i

ρX i
(PaG(X i))

where ρX i
(PaG(X i)) is a distribution over the possible parent-sets of X i .

That is, the prior decomposes into a product, with a term for each variable in our domain. In

other words, the choices of the families for the different variables are independent a priori.

Next we consider the prior over parameters, P(θG | G). Here, the form of the prior

varies depending on the type of parametric families we consider. In discrete networks, the

standard assumption is a Dirichlet prior overθX i |u for each variable X i and each instantiation

u to its parents (Heckerman, 1998). In Gaussian networks, we might use a Wishart prior

(Heckerman & Geiger, 1995). For our purpose, we need only require that the prior satisfies

two basic assumptions, as presented by Heckerman, Geiger, and Chickering (1995):

• Global parameter independence. Let θX i |PaG (X i) be the parameters specifying the be-

havior of the variable X i given the various instantiations to its parents. Then we require

that

P(θG | G) =
∏

i

P
(

θX i |PaG (X i)

∣

∣ G
)

(3)

• Parameter modularity. Let G and G ′ be two graphs in which PaG(X i) = PaG ′ (X i) = U

then

P
(

θX i |U

∣

∣ G
)

= P
(

θX i |U

∣

∣ G ′
)

(4)

100 N. FRIEDMAN AND D. KOLLER

Once we define the prior, we can examine the form of the posterior probability. Using

Bayes rule, we have that

P(G | D) ∝ P(D | G)P(G).

The term P(D | G) is the marginal likelihood of the data given G, and is defined as the

integral of the likelihood function over all possible parameter values for G.

P(D | G) =

∫

P(D | G,θG)P(θG | G) dθG

The term P(D | G,θG) is simply the probability of the data given a specific Bayesian net-

work. When the data is complete, this term is simply a product of conditional probabilities.

Using the above assumptions, one can show (see Heckerman, Geiger, and Chickering

(1995)):

Theorem 2.1. If D is complete and P(G) satisfies parameter independence and parameter

modularity, then

P(D | G) =
∏

i

∫

∏

m

P
(

xi [m] | paG(X i)[m],θX i |PaG (X i)

)

P
(

θX i |PaG (X i)

)

dθX i |PaG (X i).

If the prior also satisfies structure modularity, we can also conclude that the posterior

probability decomposes:

P(G | D) ∝ P(D | G)P(G) =
∏

i

score(X i , PaG(X i) | D) (5)

where

score(X i , U | D) = ρX i
(U)

∫

∏

m

P
(

xi [m] | u[m],θX i |U

)

P
(

θX i |U

)

dθX i |U

For standard priors such as Dirichlet or Wishart, score(X i , PaG(X i)) has a simple closed

form solution that is easily computed from the prior and certain sufficient statistics over

the data. (e.g., in the case of multinomials with a Dirichlet prior, the sufficient statistics are

simply the counts of the different events xi , u in the data.)

We note that the parameter prior can have a substantial impact on the posterior distribution

over structures. For example, in Dirichlet priors, the greater the “strength” of the parameter

prior (the equivalent sample size defined by the hyperparameters), the greater the bias

towards the distribution induced by the hyperparameters, leading structures that resemble

that distribution to have a higher score. Of course, as the amount of data in the training set

grows, the impact of the prior shrinks, but the impact can be quite significant for small data

sets. This issue is fundamental to the Bayesian approach, including the use of the Bayesian

score in standard BN structure search, and is outside the scope of this paper.

BEING BAYESIAN ABOUT NETWORK STRUCTURE 101

2.2. Bayesian model averaging

Recall that our goal is to compute the posterior probability of some feature f (G) over all

possible graphs G. This is equal to:

P(f | D) =
∑

G

f (G)P(G | D)

The problem, of course, is that the number of possible BN structures is super-exponential:

2�(n2), where n is the number of variables.2

We can reduce this number by restricting attention to structures G where there is a bound

k on the number of parents per node. This assumption, which we will make throughout this

paper, is a fairly innocuous one. There are few applications in which very large families are

called for, and there is rarely enough data to support robust parameter estimation for such

families. From a more formal perspective, networks with very large families tend to have

low score. Let Gk be the set of all graphs with indegree bounded by some constant k. Note

that the number of structures in Gk is still super-exponential: 2�(kn log n).3

Thus, exhaustive enumeration over the set of possible BN structures is feasible only

for tiny domains (4–5 nodes). One solution, proposed by several researchers (Madigan &

Raftery, 1994; Madigan & York, 1995; Heckerman, Meek, & Cooper, 1997), is to approx-

imate this exhaustive enumeration by finding a set G of high scoring structures, and then

estimating the relative mass of the structures in G that contains f :

P(f | D) ≈

∑

G∈G P(G | D) f (G)
∑

G∈G P(G | D)
. (6)

This approach leaves open the question of how we construct G. The simplest approach

is to use model selection to pick a single high-scoring structure, and then use that as

our approximation. If the amount of data is large relative to the size of the model, then

the posterior will be sharply peaked around a single model, and this approximation is a

reasonable one. However, as we discussed in the introduction, there are many interesting

domains (e.g., our biological application) where the amount of data is small relative to the

size of the model. In this case, there is usually a large number of high-scoring models, so

using a single model as our set G is a very poor approximation.

A simple approach to finding a larger set is to record all the structures examined during

the search, and return the high scoring ones. However, the set of structures found in this

manner is quite sensitive to the search procedure we use. For example, if we use greedy hill-

climbing, then the set of structures we will collect will all be quite similar. Such a restricted

set of candidates also show up when we consider multiple restarts of greedy hill-climbing

and beam-search. This is a serious problem since we run the risk of getting estimates of

confidence that are based on a biased sample of structures.

Madigan and Raftery (1994) propose an alternative approach called Occam’s window,

which rejects models whose posterior probability is very low, as well as complex models

whose posterior probability is not substantially better than a simpler model (one that contains

a subset of the edges). These two principles allow them to prune the space of models

102 N. FRIEDMAN AND D. KOLLER

considered, often to a number small enough to be exhaustively enumerated. Madigan and

Raftery also provide a search procedure for finding these models.

An alternative approach, proposed by Madigan and York (1995), is based on the use of

Markov chain Monte Carlo (MCMC) simulation. In this case, we define a Markov Chain

over the space of possible structures, whose stationary distribution is the posterior distri-

bution P(G | D). We then generate a set of possible structures by doing a random walk in

this Markov chain. Assuming that we continue this process until the chain converges to the

stationary distribution, we can hope to get a set of structures that is representative of the pos-

terior. Related approaches have also been adopted by other researchers. Giudici and Green

(1999) and Giudici, Green, and Tarantola (2000) propose an MCMC approach over junction

trees—undirected graphical models that are decomposable, i.e., where graph is triangulated.

Green (1995) and Giudici, Green, and Tarantola (2000) also extend the MCMC methodology

to cases where closed-form integration over parameters is infeasible, by defining a reversible

jump Markov Chain that traverses the space of parameters as well as structure. Madigan

et al. (1996) provide an approach for MCMC sampling over the space of Partially Directed

Acyclic Graphs (PDAGs), representing equivalence classes over network structures.

These MCMC solutions are the only approach that can, in principle, approximate true

Bayesian model averaging by sampling from the posterior over network structures. They

have been demonstrated with success on a variety of small domains, typically with 4–14

variables. However, there are several issues that potentially limit its effectiveness for large

domains involving many variables. As we discussed, the space of network structures grows

super-exponentially with the number of variables. Therefore, the domain of the MCMC

traversal is enormous for all but the tiniest domains.4 More importantly, the posterior distri-

bution over structures is often quite peaked, with neighboring structures having very differ-

ent scores. The reason is that even small perturbations to the structure—a removal of a single

edge—can cause a huge reduction in score. Thus, the “posterior landscape” can be quite

jagged, with high “peaks” separated by low “valleys”. In such situations, MCMC is known

to be slow to mix, requiring many samples to reach the posterior distribution. In Section 5 we

provide experimental evidence indicating that these difficulties do, indeed, arise in practice.

3. Closed form for known order

In this section, we temporarily turn our attention to a somewhat easier problem. Rather than

perform model averaging over the space of all structures, we restrict attention to structures

that are consistent with some known total order ≺. In other words, we restrict attention to

structures G where if X i ∈ PaG(X j) then i ≺ j . This assumption was a standard one in the

early work on learning Bayesian networks from data (Cooper & Herskovits, 1992).

3.1. Computing the marginal likelihood

We first consider the problem of computing the probability of the data given the order:

P(D |≺) =
∑

G∈Gk

P(G |≺)P(D | G) (7)

BEING BAYESIAN ABOUT NETWORK STRUCTURE 103

Note that this summation, although restricted to networks with bounded indegree and con-

sistent with ≺, is still exponentially large: the number of such structures is still 2�(kn log n).5

The key insight is that, when we restrict attention to structures consistent with a given

order ≺, the choice of family for one node places no additional constraints on the choice of

family for another. Note that this property does not hold without the restriction on the order;

for example, if we pick X i to be a parent of X j , then X j cannot in turn be a parent of X i .

Therefore, we can choose a structure G consistent with ≺ by choosing, independently,

a family U for each node X i . The parameter modularity assumption in Eq. (4) states that

the choice of parameters for the family of X i is independent of the choice of family for

another family in the network. Hence, summing over possible graphs consistent with ≺ is

equivalent to summing over possible choices of family for each node, each with its parameter

prior. Given our constraint on the size of the family, the possible parent sets for the node

X i is

Ui,≺ = {U : U ≺ X i , |U| ≤ k}.

where U ≺ X i is defined to hold when all nodes in U precede X i in ≺. Let Gk,≺ be the set

of structures in Gk consistent with ≺. Using Eq. (5), we have that

P(D |≺) =
∑

G∈Gk,≺

∏

i

score(X i , PaG(X i) | D)

=
∏

i

∑

U∈Ui,≺

score(X i , U | D). (8)

Intuitively, the equality states that we can sum over all networks consistent with ≺ by

summing over the set of possible families for each node, and then multiplying the results

for the different nodes. This transformation allows us to compute P(D |≺) very efficiently.

The expression on the right-hand side consists of a product with a term for each node X i ,

each of which is a summation over all possible families for X i . Given the bound k over

the number of parents, the number of possible families for a node X i is at most (n
k) ≤ nk .

Hence, the total cost of computing Eq. (8) is at most n · nk = nk+1.

We note that the decomposition of Eq. (8) was first mentioned by Buntine (1991), but

the ramifications for Bayesian model averaging were not pursued. The concept of Bayesian

model averaging using a closed-form summation over an exponentially large set of structures

was proposed (in a different setting) by Pereira and Singer (1999).

The computation of P(D |≺) is useful in and of itself; as we show in the next section,

computing the probability P(D |≺) is a key step in our MCMC algorithm.

3.2. Probabilities of features

For certain types of features f , we can use the technique of the previous section to compute,

in closed form, the probability P(f |≺, D) that f holds in a structure given the order and

the data.

104 N. FRIEDMAN AND D. KOLLER

In general, if f (·) is a feature. We want to compute

P(f |≺, D) =
P(f, D |≺)

P(D |≺)
.

We have just shown how to compute the denominator. The numerator is a sum over all

structures that contain the feature and are consistent with the order:

P(f, D |≺) =
∑

G∈Gk,≺

f (G)P(G |≺)P(D | G) (9)

The computation of this term depends on the specific type of feature f .

The simplest situation is when we want to compute the posterior probability of a particular

choice of parents U. This in effect require us to sum over all graphs where PaG(X i) = U.

In this case, we can apply the same closed form analysis to (9). The only difference is that

we restrict U j,≺ to be the singleton {U}. Since the terms that sum over the parents of Xk for

k �= j are not disturbed by this constraint, they cancel out from the equation.

Proposition 3.1.

P(PaG(X i) = U | D, ≺) =
score(X i , U | D)

∑

U′∈Ui,≺
score(X i , U′ | D)

. (10)

A slightly more complex situation is when we want to compute the posterior probability

of the edge feature X i → X j . Again, we can apply the same closed form analysis to (9).

The only difference is that we restrict U j,≺ to consist only of subsets that contain X i .

Proposition 3.2.

P(X j ∈ PaG(X i) |≺, D) =

∑

{U∈Ui,≺ : X j ∈U} score(X i , U | D)
∑

U∈Ui,≺
score(X i , U | D)

A somewhat more subtle computation is required to compute the posterior of the Markov

feature X i

M

∼ X j , denoting that X i is in the Markov blanket of X j ; this feature holds if G

contains the edge X i → X j , or the edge X j → X i , or there is a variable Xk such that both

edges X i → Xk and X j → Xk are in G.

Assume, without loss of generality, that X i precedes X j in the order. In this case, X i can

be in X j ’s Markov blanket either if there is an edge from X i to X j , or if X i and X j are

both parents of some third node Xl . We have just shown how the first of these probabilities

P(X j ∈ PaG(X i) | D, ≺), can be computed in closed form. We can also easily compute the

probability P(X i , X j ∈ PaG(Xl) | D, ≺) that both X i and X j are parents of Xl : we simply

restrict Ul,≺ to families that contain both X i and X j . The key is to note that as the choice

of families of different nodes are independent, these are all independent events. Hence, X i

and X j are not in the same Markov blanket only if all of these events fail to occur. Thus,

BEING BAYESIAN ABOUT NETWORK STRUCTURE 105

Proposition 3.3.

P(X i

M

∼ X j | D, ≺)

= 1 − (1 − P(X j ∈ PaG(X i) | D, ≺)) ·
∏

Xl≻X j

(1 − P(X i , X j ∈ PaG(Xl) | D, ≺))

Unfortunately, this approach cannot be used to compute the probability of arbitrary

structural features. For example, we cannot compute the probability that there exists some

directed path from X i to X j , as we would have to consider all possible ways in which a

path from X i to X j could manifest itself through our exponentially many structures.

We can overcome this difficulty using a simple sampling approach. Equation (10) provides

us with a closed form expression for the exact posterior probability of the different possible

families of the node X i . We can therefore easily sample entire networks from the posterior

distribution given the order: we simply sample a family for each node, according to the

distribution in Eq. (10). We can then use the sampled networks to evaluate any feature, such

as the existence of a causal path from X i to X j .

4. MCMC methods

In the previous section, we made the simplifying assumption that we were given a prede-

termined order. Although this assumption might be reasonable in certain cases, it is clearly

too restrictive in domains where we have very little prior knowledge (e.g., our biology

domain). We therefore want to consider structures consistent with all n! possible orders

over BN nodes. Here, unfortunately, we have no elegant tricks that allow a closed form

solution. Therefore, we provide a solution which uses our closed form solution of Eq. (8) as

a subroutine in a Markov Chain Monte Carlo algorithm (Metropolis et al., 1953). This hy-

brid algorithm is a form of Rao-Blackwellized Monte Carlo sampling algorithm (Casella &

Robert, 1996). Related approaches, called mixture estimators were proposed and analyzed

by Gelfand and Smith (1990) and by Liu, Wong, and Kong (1994) (see discussion below).

This approach is somewhat related to the work of Larrañaga et al. (1996), which proposes

the use of a genetic algorithm to search for a high-scoring order; there, however, the score

of an order is the score of a single high-scoring structure (as found by the K2 algorithm

of Cooper and Herskovits (1992)), and the overall purpose is model selection rather than

model averaging. Furthermore, genetic algorithms, unlike MCMC, are not guaranteed to

generate samples from the posterior distribution.

4.1. The basic algorithm

We introduce a uniform prior over orders ≺, and define P(G |≺) to be of the same nature

as the priors we used in the previous section. It is important to note that the resulting prior

over structures has a different form than our original prior over structures. For example,

if we define P(G |≺) to be uniform, we have that P(G) is not uniform: graphs that are

consistent with more orders are more likely. For example, a Naive Bayes graph is consistent

106 N. FRIEDMAN AND D. KOLLER

with (n −1)! orders, whereas any chain-structured graph is consistent with only one. As one

consequence, our induced structure distribution is not hypothesis equivalent (Heckerman,

Geiger, & Chickering, 1995), in that different network structures that are in the same

equivalence class often have different priors. For example, the chain X → Y → Z is

associated with a unique order, whereas the equivalent structure X ← Y → Z is associated

with two orders, and is therefore twice as likely a priori. However, as Heckerman et al.

observe, hypothesis equivalence is often too strong an assumption (e.g., in causal settings).

They propose likelihood equivalence as a substitute, a property which clearly holds in our

setting.

In general, while this discrepancy in priors is unfortunate, it is important to see it in

proportion. The standard priors over network structures are often used not because they are

particularly well-motivated, but rather because they are simple and easy to work with. In

fact, the ubiquitous uniform prior over structures is far from uniform over PDAGs (Markov

equivalence classes)—PDAGs consistent with more structures have a higher induced prior

probability. One can argue that, for causal discovery, a uniform prior over PDAGs is more

appropriate; nevertheless, a uniform prior over networks is most often used for practical

reasons. Finally, the prior induced over our networks does have some justification: one can

argue that a structure which is consistent with more orders makes fewer assumptions about

causal order, and is therefore more likely a priori (Wallace, Korb, & Dai, 1996).

We now construct a Markov chain M, with state space O consisting of all n! orders ≺;

our construction will guarantee that M has the stationary distribution P(≺ | D). We can

then simulate this Markov chain, obtaining a sequence of samples ≺1, . . . , ≺T . We can now

approximate the expected value of any function g(≺) as:

E[g | D] ≈
1

T

T
∑

t=1

g(≺t).

Specifically, we can let g(≺) be P(f |≺, D) for some feature (edge) f . We can then compute

g(≺t) = P(f |≺t , D), as described in the previous section.

It remains only to discuss the construction of the Markov chain. We use a standard

Metropolis algorithm (Metropolis et al., 1953). We need to guarantee two things:

• that the chain is reversible, i.e., that P(≺ �→ ≺′) = P(≺′ �→ ≺);

• that the stationary distribution of the chain is the desired posterior distribution P(≺| D).

We accomplish this goal using a standard Metropolis sampling. For each order ≺, we define

a proposal probability q(≺′ | ≺), which defines the probability that the algorithm will

“propose” a move from ≺ to ≺′. The algorithm then accepts this move with probability

min

[

1,
P(≺′ | D)q(≺ | ≺′)

P(≺ | D)q(≺′ | ≺)

]

.

It is well known that the resulting chain is reversible and has the desired stationary distri-

bution (Gilks, Richardson, & Spiegelhalter, 1996).

BEING BAYESIAN ABOUT NETWORK STRUCTURE 107

We consider several specific constructions for the proposal distribution, based on different

neighborhoods in the space of orders. In one very simple construction, we consider only

operators that flip two nodes in the order (leaving all others unchanged):

(i1 . . . i j . . . ik . . . in) �→ (i1 . . . ik . . . i j . . . in).

4.2. Computational issues

Although our closed form solution to the marginal likelihood and to the probabilities of

the different structural features allows us to perform the computation in time polynomial

in n, it can still be quite expensive, especially for large networks and reasonable size k. We

utilize several ideas and approximations to reduce the complexity of these computations.

Our first set of ideas serve to reduce the scope of the summation both for the marginal

likelihood and for the computation of feature probabilities. For each node X i , we restrict

attention to at most C other nodes as candidate parents (for some fixed C). We select these

C nodes in advance, before any MCMC step, as follows: for each potential parent X j , we

compute the score of the single edge X j → X i ; we then select the C nodes X j for which

this score was highest. Note that C is different from k: C is the size of the set of nodes that

could potentially be parents of a node X i , whereas k is an upper bound on the size of the

parent set actually chosen for X i from among the set of C candidate parents.

Second, for each node X i , we precompute the score for some number F of the highest-

scoring families. The parents in these families are selected from among the C candidate

parents for X i . Again, this procedure is executed once, at the very beginning of the process.

The list of highest-scoring families is sorted in decreasing order; let ℓi be the score of the

worst family in X i ’s list. As we consider a particular order, we extract from the list all

families consistent with that order. We know that all families not in the list score no better

than ℓi . Thus, if the best family extracted from the list is some factor γ better than ℓi , we

choose to restrict attention to the families extracted from the list, under the assumption that

other families will have negligible effect relative to these high-scoring families. If the score

of the best family extracted is not that good, we do a full enumeration.

When performing exhaustive enumeration, we prune families that augment low-scoring

families with low-scoring edges. Specifically, assume that for some family U, we have

that score(X i , U | D) is substantially lower than other families enumerated so far. In this

case, families that extend U are likely to be even worse. More precisely, we define the

incremental value of a parent Y for X i to be its added value as a single parent: 	(Y ; X i) =

score(X i , Y) − score(X i). If we now have a family U such that, for all other possible parents

Y , score(X i , U) + 	(Y ; X i) is lower than the best family found so far for X i , we prune all

extensions of U.

In addition to reducing the scope of the summation, we can further reduce the cost of

our MCMC algorithm, by observing that, when we take a single MCMC step in the space,

we can often preserve much of our computation. In particular, let ≺ be an order and let ≺′

be the order obtained by flipping i j and ik . Now, consider the terms in Eq. (8); those terms

corresponding to nodes iℓ in the order ≺ that precede i j or succeed ik do not change, as the

set of potential parent sets Uil ,≺ is the same. Furthermore, the terms for il that are between

108 N. FRIEDMAN AND D. KOLLER

i j and ik also have a lot in common—all parent sets U that contain neither i j nor ik remain

the same. Thus, we only need to subtract

∑

{U∈Ui,≺ : U∋X i j
}

score(X i , U | D)

and add

∑

{U∈Ui,≺′ : U∋X ik
}

score(X i , U | D).

Having collected a set of order samples using our MCMC algorithm, we can use them

to estimate the probability of the various structural features. However, this process can be

quite expensive, especially when we are interested in the probabilities of all �(n2) (edge

or Markov) features. To reduce the computational burden, we perform this computation

using only a small set of sampled orders. To make sure that we got a representative set

of orders, we did not simply use the first orders generated by the MCMC process after a

burn-in phase; rather, after the burn-in phase we continued running the MCMC process,

collecting an order sample at fixed intervals (e.g., every 100 steps). This process results

in samples from the chain that are closer to independent, thereby allowing us to provide a

lower-variance estimate of the probability using a smaller number of samples.6

5. Experimental results

We evaluated our approach in a variety of ways. We first compare it with a full Bayesian

model averaging, in those domains small enough to permit an exhaustive enumeration of

BN structures. Most importantly, we compare it with the more practical and most common

approach to Bayesian model averaging: using MCMC directly over BN structures (Madigan

& York, 1995). In this approach, a Metropolis-Hastings Markov chain is defined whose

states correspond to individual BN structures. Each step in the chain corresponds to a

local transformation on the structure: adding, deleting, or reversing an edge. The proposal

distribution is uniform over these local transformations, and the acceptance probability is

defined using the Bayesian score, in a way that guarantees that the stationary distribution

of the chain is the posterior P(G | D). We call our approach order-MCMC and the MCMC

over BN structure structure-MCMC. Our primary measure for comparing the different

approaches is via the probability that they give to the structural features we discuss above:

edge features and Markov features.

5.1. Evaluating the sampling process

Our first goal is to evaluate the extent to which the sampling process reflects the result of

true Bayesian model averaging. We first compared the estimates made by order-MCMC

to estimates given by the full Bayesian averaging over networks. We experimented on the

Flare dataset (Murphy & Aha, 1995), that has nine discrete variables, most of which take

BEING BAYESIAN ABOUT NETWORK STRUCTURE 109

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
C

M
C

Exact

5 samples
20 samples
50 samples

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
C

M
C

Exact

5 samples
20 samples
50 samples

Markov Edges

Figure 1. Comparison of posterior probabilities for the exact posterior over orders (x-axis) versus order-MCMC

(y-axis) in the Flare dataset with 100 instances. The figures show the probabilities for all Markov features and

edge features.

2 or 3 values. We ran the MCMC sampler with a burn-in period of 1,000 steps and then

proceeded to collect either 5, 20, or 50 order samples at fixed intervals of 100 steps. (We

note that the burn-in time and sampling interval are probably excessive, but they ensure

that we are sampling very close to the stationary probability of the process.) The results are

shown in figure 1. As we can see, the estimates are very robust. In fact, for Markov features

even a sample of 5 orders gives a surprisingly decent estimate. This surprising success is

due to the fact that a single sample of an order contains information about exponentially

many possible structures. For edges we obviously need more samples, as edges that are not

in the direction of the order necessarily have probability 0. With 20 and 50 samples we see

a very close correlation between the MCMC estimate and the exact computation for both

types of features.

5.2. Mixing rate

We then considered larger datasets, where exhaustive enumeration is not an option. For

this purpose we used synthetic data generated from the Alarm BN (Beinlich et al., 1989),

a network with 37 nodes. Here, our computational heuristics are necessary. We used the

following settings: k (max. number of parents in a family) = 3;7 C (max. number of potential

parents) = 20; F (number of families cached) = 4000; and γ (difference in score required

in pruning) = 10. Note that γ = 10 corresponds to a difference of 210 in the posterior

probability of the families. Different families have huge differences in score, so a difference

of 210 in the posterior probability is not uncommon.

Our first goal was the comparison of the mixing rate of the two MCMC samplers. For

structure-MCMC, we used a burn in of 100,000 iterations and then sampled every 25,000

iterations. For order-MCMC, we used a burn in of 10,000 iterations and then sampled

110 N. FRIEDMAN AND D. KOLLER

every 2,500 iterations. In both methods we collected a total of 50 samples per run. We

note that, computationally, structure-MCMC is faster than order-MCMC. In our current

implementation, generating a successor network is about an order of magnitude faster than

generating a successor order. We therefore designed the runs in figure 2 to take roughly the

same amount of computation time.

In both approaches, we experimented with different initializations for the MCMC runs.

In the uninformed initialization, we started the structure-MCMC with an empty network

and the order-MCMC with a random order. In the informed initialization, we started the

structure-MCMC with the greedy network—the BN found by greedy hill climbing search

over network structures (Heckerman, 1998) and the order-MCMC with an order consistent

with that structure.

One phenomenon that was quite clear was that order-MCMC runs mix much faster. That

is, after a small number of iterations, these runs reached a “plateau” where successive

samples had comparable scores. Runs started in different places (including random order

and orders seeded from the results of a greedy-search model selection) rapidly reached the

same plateau. On the other hand, MCMC runs over network structures reached very different

levels of scores, even though they were run for a much larger number of iterations. Figure 2

illustrates this phenomenon for examples of Alarm with 100, 500, and 1000 instances. Note

the substantial difference in the scale of the y-axis between the two sets of graphs.

In the case of 100 instances, both MCMC samplers seemed to mix. Structure-MCMC

mixes after about 20,000–30,000 iterations, while order-MCMC mixes after about 1,000–

2,000 iterations. On the other hand, when we examine 500 samples, order-MCMC converges

to a high-scoring plateau, which we believe is the stationary distribution, within 10,000

iterations. By contrast, different runs of the structure-MCMC stayed in very different regions

of the in the first 500,000 iterations. The situation is even worse in the case of 1,000 instances.

In this case, structure-MCMC started from an empty network does not reach the level of

score achieved by the runs starting from the structure found by greedy hill climbing search.

Moreover, these latter runs seem to fluctuate around the score of the initial seed, never

exploring another region of the space. Note that different runs show differences of 100–500

bits. Thus, the sub-optimal runs sample from networks that are at least 2100 less probable!

5.3. Effects of mixing

This phenomenon has two explanations. Either the seed structure is the global optimum

and the sampler is sampling from the posterior distribution, which is “centered” around the

optimum; or the sampler is stuck in a local “hill” in the space of structures from which

it cannot escape. This latter hypothesis is supported by the fact that runs starting at other

structures (e.g., the empty network) take a very long time to reach similar level of scores,

indicating that there is a very different part of the space on which stationary behavior is

reached. We now provide further support for this second hypothesis.

We first examine the posterior computed for different features in different runs. Figure 3

compares the posterior probability of Markov features assigned by different runs of structure-

MCMC. Let us first consider the runs over 500 instances. Here, although different runs

give a similar probability estimate to most structural features, there are several features

BEING BAYESIAN ABOUT NETWORK STRUCTURE 111

Structure Order

100 Instances

-2500

-2450

-2400

-2350

-2300

-2250

-2200

0 20000 40000 60000 80000 100000 120000

s
c
o

re

iteration

empty

greedy
-2180

-2170

-2160

-2150

-2140

-2130

-2120

0 2000 4000 6000 8000 10000 12000
s
c
o

re

iteration

random

500 Instances

-9400

-9200

-9000

-8800

-8600

-8400

0 100000 200000 300000 400000 500000 600000

s
c
o

re

iteration

empty
greedy

-8450

-8445

-8440

-8435

-8430

-8425

-8420

-8415

-8410

-8405

-8400

0 10000 20000 30000 40000 50000 60000

s
c
o

re

iteration

random
greedy

1000 Instances

-19000

-18500

-18000

-17500

-17000

-16500

-16000

0 100000 200000 300000 400000 500000 600000

s
c
o

re

iteration

empty
greedy

-16260

-16255

-16250

-16245

-16240

-16235

-16230

-16225

-16220

0 10000 20000 30000 40000 50000 60000

s
c
o

re

iteration

random
greedy

Figure 2. Plots of the progression of the MCMC runs. Each graph shows plots of 6 independent runs over Alarm

with either 100, 500, and 1000 instances. The graph plot the score (log2(P(D | G)P(G)) or log2(P(D |≺)P(≺)))

of the “current” candidate (y-axis) for different iterations (x-axis) of the MCMC sampler. In each plot, three of

the runs are initialized with an uniformed network or order, and the others with the greedy network or an ordering

consistent with it.

112 N. FRIEDMAN AND D. KOLLER

100 instances

empty vs. empty greedy vs. greedy

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

500 instances

empty vs. empty greedy vs. greedy

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3. Scatter plots that compare posterior probability of Markov features on the Alarm dataset, as determined

by different runs of structure-MCMC. Each point corresponds to a single Markov feature; its x and y coordinates

denote the posterior estimated by the two compared runs. The position of points is slightly randomly perturbed to

visualize clusters of points in the same position.

on which they differ radically. In particular, there are features that are assigned probability

close to 1 by structures sampled from one run and probability close to 0 by those sampled

from the other. While this behavior is less common in the runs seeded with the greedy

structure, it occurs even there. This phenomenon suggests that each of these runs (even runs

that start at the same place) gets trapped in a different local neighborhood in the structure

space. Somewhat surprisingly, a similar phenomenon appears to occur even in the case of

100 instances, where the runs appeared to mix. In this case, the overall correlation between

BEING BAYESIAN ABOUT NETWORK STRUCTURE 113

the runs is, as we might expect, weaker: with 100 instances, there are many more high-

scoring structures and therefore the variance of the sampling process is higher. However,

we once again observe features which have probability close to 0 in one run and close to 1

in the other. These discrepancies are not as easily explained by the variance of the sampling

process. Therefore, even for 100 instances, it is not clear that structure-MCMC mixes.

By contrast, comparison of the predictions of different runs of order-MCMC are tightly

correlated. To test this, we compared the posterior estimates of Markov features and Path

features. The latter represent relations of the form “there is a directed path from X to Y ” in

the PDAG of the network structure. As discussed in Section 3, we cannot provide a closed

form expression for the posterior of such a feature given an order. However, we can sample

networks from the order, and estimate the feature relative to those. In our experiments,

we sampled 20 networks from each order. Figure 4 compares two runs, one starting from

an order consistent with the greedy structure and the other from a random order. We can

see that the predictions are very similar, both for the small dataset and the larger one. The

predictions for the Path features have somewhat higher variance, which we attribute to the

additional randomness of sampling structures from the ordering. The very high degree of

correlation between the two runs reaffirms our claim that they are indeed sampling from

similar distributions. That is, they are sampling from the exact posterior.

We believe that the difference in mixing rate is due to the smoother posterior landscape

of the space of orders. In the space of networks, even a small perturbation to a network can

lead to a huge difference in score. By contrast, the score of an order is a lot less sensitive to

slight perturbations. For one, the score of each order is an aggregate of the scores of a very

large set of structures; hence, differences in scores of individual networks can often cancel

out. Furthermore, for most orders, we are likely to find a consistent structure which is not

too bad a fit to the data; hence, an order is unlikely to be uniformly horrible.

The disparity in mixing rates is more pronounced for larger datasets. The reason is quite

clear: as the amount of data grows, the posterior landscape becomes “sharper” since the

effect of a single change in the structure is amplified across many samples. As we discussed

above, if our dataset is large enough, model selection is often a good approximation to

model averaging. However, it is important to note that 500 instances for Alarm are not

enough to peak the posterior sharply enough that model selection is a reliable approach to

discovering structure. We can see that by examining the posterior probabilities in figure 4.

We see that the posterior probability for most Markov features is fairly far from 0 or 1.

As Markov features are invariant for all networks in the same Markov equivalence class

(PDAG), this phenomenon indicates that there are several PDAGs that have high score given

the data. By contrast, in the case of 1000 instances, we see that the probability of almost

all features is clustered around 0 or 1, indicating that model selection is likely to return a

fairly representative structure in this case.

A second form of support for the non-mixing conjecture is obtained by considering an

even smaller data set: the Boston-housing data set, from the UCI repository (Murphy & Aha,

1995), is a continuous domain with 14 variables and 506 samples. Here, we considered

linear Gaussian networks, and used a standard Wishart parameter prior. We started the

structure-MCMC on the structure obtained from greedy hill-climbing search. We started

the order-MCMC on an order consistent with that structure. As usual, as shown in figure 6(a),

114 N. FRIEDMAN AND D. KOLLER

Markov features Path features

100 instances

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

500 instances

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

1000 instances

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 4. Scatter plots that compare posterior probability of Markov and Path features on the Alarm domain as

determined by different runs of order-MCMC. Each point corresponds to a single feature; its x and y coordinates

denote the posterior estimated by the greedy seeded run and a random seeded run respectively.

BEING BAYESIAN ABOUT NETWORK STRUCTURE 115

100 instances 500 instances

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 5. Scatter plots that compare posterior probability of Markov features on the Alarm domain as determined

by the two different MCMC samplers. Each point corresponds to a single Markov feature; its x and y coordinates

denote the posterior estimated by the greedy seeded run of order-MCMC and structure-MCMC, respectively.

Structure Order

-30510

-30500

-30490

-30480

-30470

-30460

-30450

0 100000 200000 300000 400000 500000 600000

s
c
o
re

iteration

-30370

-30360

-30350

-30340

-30330

-30320

-30310

-30300

0 10000 20000 30000 40000 50000 60000

s
c
o
re

iteration

(a) (b)

Figure 6. Plots of the progression of the MCMC runs on the Boston-housing data set. Each graph shows plots

of 4 independent runs. All the runs are seeded with the network found by searching over network structures.

structure-MCMC does not converge. However, as shown in figure 6(b), the runs of order-

MCMC are also somewhat more erratic, indicating a more jagged posterior landscape even

over orders. In a way, this is not surprising, given the large number of instances and small

domain. In figure 7, we see that, as above, different runs of structure-MCMC lead to very

different answers, whereas different runs of order-MCMC are very consistent.

More interesting is the examination of the feature probabilities themselves. Figure 8(a)

shows a comparison between the feature probabilities of structure-MCMC and those of the

structure returned by greedy search, used as the starting point for the chain. We can see

116 N. FRIEDMAN AND D. KOLLER

Structure-MCMC Order-MCMC

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 7. Scatter plots that compare posterior probability of Markov on the Boston-housing data set, as

determined by different runs of structure-MCMC and order-MCMC.

Structure-MCMC Order-MCMC

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure 8. Scatter plots that compare posterior probability of Markov features on the Boston-housing data set, as

determined by different runs of structure-MCMC and order-MCMC, to the probabilities according to the initial

seed of the MCMC runs. The x-axis denotes whether the feature appears in the seed network: 1 if it appear and 0 if

does not. The y-axis denote the estimate of the posterior probability of the feature based on the MCMC sampling.

that most of the structures traversed by the MCMC search are very similar to the greedy

seed. By contrast, figure 8(b) shows that order-MCMC traverses a different region of the

space, leading to very different estimates. It turns out that the structure found by the greedy

search is suboptimal, but that structure-MCMC remains stuck in a local maximum around

that point. By contrast, the better mixing properties of order-MCMC allow is to break out of

BEING BAYESIAN ABOUT NETWORK STRUCTURE 117

this local maximum, and to reach a substantially higher-scoring region. Thus, even in cases

where there is a dominant global maximum, order-MCMC can be a more robust approach

than greedy hill-climbing, structure-MCMC, or their combination.

5.4. Comparison of estimates

We now compare the estimates of the two approaches on the Alarm data set. We deliberately

chose to use the smaller data sets for two reasons: to allow structure-MCMC a better chance

to mix, and to highlight the differences resulting from the different priors used in the two

approaches. The results are shown in figure 5. We see that, in general, the estimates of the

two methods are not too far apart, although the posterior estimate of the structure-MCMC

is usually larger.

We attribute these discrepancies in the posterior to the different structure prior we employ

in the order-MCMC sampler. To test this conjecture, in a way that decouples it from the

effects of sampling, we chose to compare the exact posterior computed by summing over

all orders to the posterior computed by summing over all equivalence classes of Bayesian

networks (PDAGs) (i.e., we counted only a single representative network for each equiv-

alence class). Of course, in order to do the exact Bayesian computation we need to do an

exhaustive enumeration of hypotheses. For orders, this enumeration is possible for as many

as 10 variables, but for structures, we are limited to domains with 5–6 variables. We took

two data sets—Vote and Flare—from the UCI repository (Murphy & Aha, 1995) and se-

lected five variables from each (all of which are discrete). We generated datasets of sizes 50

and 200, and computed the full Bayesian averaging posterior for these datasets using both

methods. Figure 9 compares the results for both datasets. We see that the two approaches

are well correlated, but that the prior does have some effect.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
D

A
G

s

Order

50 inst.
200 inst.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
D

A
G

s

Order

50 inst.
200 inst.

Flare Vote

Figure 9. Comparison of posterior probabilities for different Markov features between full Bayesian averaging

using: orders (x-axis) versus PDAGs (y-axis) for two UCI datasets (5 variables each).

118 N. FRIEDMAN AND D. KOLLER

To gain a better understanding of the general effect of a structure prior, we examined the

sensitivity of Bayesian model averaging to changes in the prior. Recall that our experiments

use the MDL prior shown in Eq. (2), whether for P(G) (in structure-MCMC) or for P(G | ≺)

(in order-MCMC). We ran the same experiment, raising this prior to some power—0, 1
2
, or

2. Note that a power of 0 corresponds to a uniform prior, over structures in the structure-

MCMC case and over structures within an order in the order-MCMC case. By contrast,

a power of 2 corresponds to an even more extreme penalty for large families. Figure 10

shows the comparison of the modified priors to the “standard” case. As we can expect, a

stronger structure prior results in lower posterior for features while a uniform structure prior

is more prone to adding edges and thus most features have higher posterior. Thus, we see

that the results of a structure discovery algorithm are always sensitive to the structure prior,

and that even two very reasonable (and common) priors can lead to very different results.

This effect is at least as large as the effect of using our order-based structure prior. Given

that the choice of prior in BN learning is often somewhat arbitrary, there is no reason to

assume that our order-based prior is less reasonable than any other.

5.5. Structure reconstruction

This phenomenon raises an obvious question: given that the approaches give different

results, which is better at reconstructing features of the generating model. To test this, we

label Markov features in the Alarm domain as positive if they appear in the generating

network and negative if they do not. We then use our posterior to try and distinguish “true”

features from “false” ones: we pick a threshold t , and predict that the feature f is “true” if

P(f) > t . Clearly, as we vary the the value of t , we will get different sets of features. At

each threshold value we can have two types of errors: false positives—positive features that

are misclassified as negative, and false negatives—negative features that are classified as

positive. Different values of t achieve different tradeoffs between these two type of errors.

Thus, for each method we can plot the tradeoff curve between the two types of errors. Note

that, in most applications of structure discovery, we care more about false positives than

about false negatives. For example, in our biological application, false negatives are only to

be expected—it is unrealistic to expect that we would detect all causal connections based on

our limited data. However, false positives correspond to hypothesizing important biological

connections spuriously. Thus, our main concern is with the left-hand-side of the tradeoff

curve, the part where we have a small number of false positives. Within that region, we

want to achieve the smallest possible number of false negatives.

We computed such tradeoff curves for Alarm data set with 100, 500, and 1000 instances

for two types of features: Markov features and Path features. Figure 11 displays ROC curves

comparing order-MCMC, structure-MCMC, and the non-parametric Bootstrap approach of

Friedman, Goldszmidt, and Wyner (1999), a non-Bayesian simulation approach to estimate

“confidence” in features. The curves represent the average performance over ten repetitions

of the experiment—we sampled ten data sets from the Alarm data set, and for each each

threshold t we report the average number of errors of both types.

As we can see, in all cases order-MCMC does as well or better than the other approaches,

with marked gains in three cases. In particular, for t larger than 0.4, order-MCMC makes

BEING BAYESIAN ABOUT NETWORK STRUCTURE 119

0 0.5 2

Order vs. Standard Order

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Structure vs. Standard Structure

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Order vs. Structure

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 10. Comparison of the posterior of Markov features when we change the structure prior strength for

Alarm with 100 instances. The top row compares the modified prior (y-axis) in order-MCMC against the standard

prior (x-axis). The middle row makes an analogous comparison for structure-MCMC. The bottom compares the

modified prior with order (x-axis) against the modified prior with structures (y-axis). Each column corresponds

to a different weighting of the prior, as denoted at the top of the column.

120 N. FRIEDMAN AND D. KOLLER

Markov features Path features

100 Instances

0

20

40

60

80

100

120

140

0 50 100 150 200

F
a

ls
e

 N
e

g
a

ti
ve

s

False Positives

Bootstrap

Order

Structure

0

50

100

150

200

0 50 100 150 200 250
F

a
ls

e
 N

e
g
a
ti
ve

s
False Positives

Bootstrap

Order

Structure

500 Instances

0

5

10

15

20

25

0 5 10 15 20 25 30

F
a
ls

e
 N

e
g
a
ti
ve

s

False Positives

Bootstrap

Order

Structure

0

20

40

60

80

100

120

140

0 50 100 150 200

F
a
ls

e
 N

e
g
a
ti
ve

s

False Positives

Bootstrap

Order

Structure

1000 Instances

0

5

10

15

20

25

0 5 10 15 20 25 30

F
a
ls

e
 N

e
g
a
ti
ve

s

False Positives

Bootstrap

Order

Structure

0

20

40

60

80

100

120

140

0 50 100 150 200

F
a
ls

e
 N

e
g
a
ti
ve

s

False Positives

Bootstrap

Order

Structure

Figure 11. Classification tradeoff curves for different methods on datasets of varying sizes sampled from the

Alarm network. The x-axis and the y-axis denote false positive and false negative errors, respectively. The curve

is achieved by different threshold values in the range [0, 1]. Each graph contains three curves, each collected over

50 samples: order-MCMC, with order samples collected every 200 iterations; structure-MCMC, with structure

samples collected every 1000 iterations; and 50 network structures generated by the non-parametric bootstrap

sampling method.

BEING BAYESIAN ABOUT NETWORK STRUCTURE 121

no false positive errors for Markov features on the 1000-instance data set. We believe that

features it misses are due to weak interactions in the network that cannot be reliably learned

from such a small data set.

5.6. Application to gene expression data

As stated in the introduction our goal is to apply structure estimation methods for causal

learning from gene expression data. We tested our method on a relatively small genetic data

set of Friedman et al. (2000). This data set is derived from a larger data set of S. cerevisiae

cell-cycle measurements reported in Spellman et al. (1998). The data set contains 76 samples

of 250 genes. Friedman et al. discretized each measurement into three values (“under-

expressed”, “normal”, “over-expressed”).

We applied order-MCMC, using an informed greedy initialization. For these runs, we

used: k (max. number of parents in a family) = 3; C (max. number of potential parents) =

45; F (number of families cached) = 4000; and γ (difference in score required in pruning) =

10. (The choice of k = 3 is imposed by computational limitations, induced by the large

number of variables in the domain.) We used a burn-in period of 4000 iterations, and then

sampled every 400 iterations collecting 50 samples in each run.

Figure 12 shows the progression of runs of the two MCMC methods on this data. As

we can see, order-MCMC mixes rapidly (after a few hundred iterations). On the other

hand, structure-MCMC seems to be mixing only after 200,000 iterations. Figure 13 shows

comparison of estimates from two different runs of the order based MCMC sampler. As in

the other data sets, the estimates for Markov features based on the two different runs are very

similar. In this case, we also show the estimates for path features, which are obtained (as

discussed in Section 3.2) by sampling specific networks from the distribution over networks

for a given order, and then evaluating the presence or absence of a path in each sampled

networks. In this case, we sampled 500 networks from our 50 sampled orderings. The

variance of this estimator is, as can be expected, much higher; nevertheless, the estimates

are still quite well-correlated.

Structure Order

-4050

-4000

-3950

-3900

-3850

-3800

-3750

-3700

-3650

-3600

-3550

0 50000 100000 150000 200000 250000

s
c
o
re

iteration

-3080

-3060

-3040

-3020

-3000

-2980

0 5000 10000 15000 20000 25000

s
c
o
re

iteration

Figure 12. Plots of the progression of the MCMC runs on the Genetics data set. Each graph shows plots of 4

independent runs. All the runs are seeded with the network found by searching over network structures.

122 N. FRIEDMAN AND D. KOLLER

Markov features Path features

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 13. Scatter plots that compare posterior probability of Markov and path features on the Genetics data set,

as determined by different runs of order-MCMC.

Markov features Path features

0

20

40

60

80

100

0 20 40 60 80 100

F
a

ls
e

 N
e

g
a

ti
ve

s

False Positives

Boots trap

Order

200

300

400

500

600

700

0 50 100 150 200 250 300 350

F
a
ls

e
 N

e
g
a
ti
ve

s

False Positives

Bootstrap
Order

Figure 14. Classification tradeoff curves for different methods on the simulated Genetics data set. The x-axis and

the y-axis denote false positive and false negative errors, respectively. The curve is achieved by different threshold

values in the range [0, 1].

Since we want to use this tool for scientific discovery, we want to evaluate how well

Bayesian structure estimation performs in this domain. To do so we performed the following

simulation experiments. We sampled 100 instances from the network found by structure

search on the genetics data. We then applied the order based MCMC sampler and the

bootstrap approach and evaluated the success in reconstructing features of the generating

network. Figure 14 shows the tradeoff between the two types of errors for these two methods

in predicting Markov and path features. As we can see, order-MCMC clearly outperforms

the bootstrap approach.

We should stress that the simulation is based on a network that is probably simpler than

the underlying structure (since we learned it from few samples). Nonetheless, we view these

results as an indication that using Bayesian estimates is more reliable in this domain. A

BEING BAYESIAN ABOUT NETWORK STRUCTURE 123

discussion of the biological conclusions from this analysis are beyond the scope of this

paper.

6. Discussion and future work

We have presented a new approach for expressing the posterior distribution over BN struc-

tures given a data set, and thereby for evaluating the posterior probability of important

structural features of the distribution. Our approach is based on two main ideas. The first

is a clean and computationally tractable expression for the posterior of the data given a

known order over network variables. The second is Monte Carlo sampling algorithm over

orders. We have shown experimentally that this approach mixes substantially faster than

the standard MCMC algorithm that samples structures directly.

Once we have generated a set of orders sampled from the posterior distribution, we can

use them in a variety of ways. As we have shown, we can estimate the probabilities of cer-

tain structural features—edge features or adjacency in Markov neighborhoods—directly in

closed form for a given order. For other structural features, we can estimate their probability

by sampling network structures from each order, and testing for the presence or absence of

the feature in each structure.

We have shown that the estimates returned by our algorithm, using either of these two

methods, are substantially more robust than those obtained from standard MCMC over

structures. To some extent, if we ignore the different prior used in these two approaches, this

phenomenon is due to the fact that mixture estimators have lower variance than estimators

based on individual samples (Gelfand & Smith, 1990; Liu, Wong, & Kong, 1994). More

significantly, however, we see that the results of MCMC over structures are substantially

less reliable, as they are highly sensitive to the region of the space to which the Markov

chain process happens to gravitate.

We have also tested the efficacy of our algorithm for the task of recovering structural

features which we know are present. We have shown that our algorithm is always more

reliable at recovering features than MCMC over structures, and in all but one case also

more reliable than the bootstrap approach of Friedman, Goldszmidt, and Wyner

(1999).

We believe that this approach can be extended to deal with data sets where some of the

data is missing, by extending the MCMC over orders with MCMC over missing values,

allowing us to average over both. If successful, we can use this combined MCMC algorithm

for doing full Bayesian model averaging for prediction tasks as well. Finally, we plan to

apply this algorithm in our biology domain, in order to try and understand the underlying

structure of gene expression.

Acknowledgments

The authors thank Yoram Singer for useful discussions and Harald Steck, Nando de Freitas,

and the anonymous reviewers for helpful comments and references. This work was supported

by ARO grant DAAH04-96-1-0341 under the MURI program “Integrated Approach to

Intelligent Systems”, by DARPA’s Information Assurance program under subcontract to

124 N. FRIEDMAN AND D. KOLLER

SRI International, and by Israel Science Foundation (ISF) grant 244/99. Nir Friedman was

also supported through the generosity of the Michael Sacher Trust Alon Fellowship, and

Sherman Senior Lectureship. Daphne Koller was also supported through the generosity

of the Sloan Foundation and the Powell Foundation. The experiments reported here were

performed on computers funded by an ISF infrastructure grant.

Notes

1. More formally, the Markov blanket of X is the set of nodes that are directly linked to X in the undirected

Markov network which is a minimal I-map for the distribution represented by G.

2. Recall that the �(f (n)) denotes both an asymptotic lower bound and an asymptotic upper bound (up to a

constant factor). In this case, the number of BN structures is at least 2(n
2), because we have at least this many

subgraphs for any complete graph over the n nodes. We have at most 3(n
2) structures, because for each possible

pair of nodes X i , X j we have either no edge, an edge X i → X j , or an edge X i ← X j . Hence, we we have

that the number of possible structures is both 2�(n2) and 2O(n2).

3. For each node X i , we have at most (n
k) possible families, so that the number of possible networks is (n

k)n ≤

nkn = 2kn log n , giving us the upper bound. For the lower bound, consider a fixed ordering on the number of

nodes, and consider each of the nodes X i that appear in the second half of the ordering. For each of these, we

have (n/2
k

) possible families, which, for k constant, is �(nk). Considering the choice of family only for these

nodes, the number of possible structures is at least (n/2
k

)n/2, which is 2�(kn log n).

4. For the experiments done so far, the larger domains (those with more than 7–8 variables) were typically

associated with a large set of structural constraints limiting the set of possible structures.

5. Our lower bound in footnote 3 was derived in the case of a fixed ordering, and the matching upper bound certainly

continues to hold in the more restricted case. Clearly, the number of structures in this case is substantially lower,

but that difference expresses only in the different constant factor in the exponent, which is obscured by the �

notation. (Note that a constant factor in the exponent corresponds to a different base for the exponent, a very

significant difference.)

6. An even better estimate would be obtained if we could use all of the samples generated by the MCMC process,

but the computational cost of estimating feature probabilities for all of them would be prohibitive.

7. We note that the maximum number of parents in a family in the original Alarm network is 3, hence our choice

of k = 3.

References

Beinlich, I., Suermondt, G., Chavez, R., & Cooper, G. (1989). The ALARM monitoring system: A case study with

two probabilistic inference techniques for belief networks. In Proc. 2nd European Conf. on AI and Medicine,

Berlin: Springer-Verlag.

Buntine, W. L. (1991). Theory refinement on Bayesian networks. In B. D. D’Ambrosio, P. Smets, & P. P.

Bonissone (Eds.), Proc. Seventh Annual Conference on Uncertainty Artificial Intelligence (UAI ’91) (pp. 52–

60). San Francisco: Morgan Kaufmann.

Buntine, W. L. (1996). A guide to the literature on learning probabilistic networks from data. IEEE Transactions

on Knowledge and Data Engineering, 8, 195–210.

Casella, G., & Robert, C. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83:1, 81–94.

Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.

Machine Learning, 9, 309–347.

Friedman, N., Goldszmidt, M., & Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach.

In Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI’99) (pp. 206–215). San Francisco:

Morgan Kaufmann.

Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data.

J. Computational Biology, 7, 601–620.

BEING BAYESIAN ABOUT NETWORK STRUCTURE 125

Gelfand, A., & Smith, A. (1990). Sampling based approaches to calculating marginal densities. Journal American

Statistical Association, 85, 398–409.

Gilks, W., Richardson, S., & Spiegelhalter, D. (1996). Markov chain Monte Carlo methods in practice. CRC Press.

Giudici, P., & Green, P. (1999). Decomposable graphical Gaussian model determination. Biometrika, 86:4, 785–

801.

Giudici, P., Green, P., & Tarantola, C. (2000). Efficient model determination for discrete graphical models.

Discussion Paper 99-93, Department of Statistics, Athens University of Economics and Business.

Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika, 82, 711–732.

Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in graphical

models. Dordrecht, The Netherlands: Kluwer.

Heckerman, D., & Geiger, D. (1995). Learning Bayesian networks: A unification for discrete and Gaussian

domains. In P. Besnard & S. Hanks (Eds.), Proc. Eleventh Conference on Uncertainty in Artificial Intelligence

(UAI ’95) (pp. 274–284). San Francisco: Morgan Kaufmann.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of

knowledge and statistical data. Machine Learning, 20, 197–243.

Heckerman, D., Meek, C., & Cooper, G. (1997). A Bayesian approach to causal discovery. Technical Report

MSR-TR-97-05, Microsoft Research.

Lander, E. (1999). Array of hope. Nature Genetics, 21:1, 3–4.

Larrañaga, P., Kuijpers, C., Murga, R., & Yurramendi, Y. (1996). Learning Bayesian network structures by search-

ing for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics 26:4,

487–493.

Liu, J., Wong, W., & Kong, A. (1994). Coveriance structure of the Gibbs sampler with applications to the com-

parisons of estimators and augmentation schemes. Biometrika, 81:1, 27–40.

Madigan, D., Andersson, S., Perlman, M., & Volinsky, C. (1996). Bayesian model averaging and model selection

for Markov equivalence classes of acyclic graphs. Communications in Statistics: Theory and Methods, 25,

2493–2519.

Madigan, D., & Raftery, E. (1994). Model selection and accounting for model uncertainty in graphical models

using Occam’s window. Journal Americal Statistical Association, 89, 1535–1546.

Madigan, D., & York, J. (1995). Bayesian graphical models for discrete data. International Statistical Review, 63,

215–232.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., & Teller, E. (1953). Equation of state calculation by

fast computing machines. Journal of Chemical Physics, 21, 1087–1092.

Murphy, P. M., & Aha, D. W. (1995). UCI repository of machine learning databases. Available at

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Francisco, CA: Morgan Kaufmann.

Pereira, F., & Singer, Y. (1999). An efficient extension to mixture techniques for prediction and decision trees.

Machine Learning, 36:3, 183–199.

Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., & Futcher (1998).

Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray

hybridization. Molecular Biology of the Cell, 9, 3273–3297.

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction and search, Vol. 81 of Lecture Notes in

Statistics. New York: Springer-Verlag.

Wallace, C., Korb, K., & Dai, H. (1996). Causal discovery via MML. In Proc. 13th International Conference on

Machine Learning (pp. 516–524).

Received July 25, 2000

Revised June 14, 2001

Accepted August 20, 2001

Final manuscript September 24, 2001

