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Relatively recent work has reported that networks of neurons can produce avalanches of

activity whose sizes follow a power law distribution. This suggests that these networks

may be operating near a critical point, poised between a phase where activity rapidly dies

out and a phase where activity is amplified over time. The hypothesis that the electrical

activity of neural networks in the brain is critical is potentially important, as many simula-

tions suggest that information processing functions would be optimized at the critical point.

This hypothesis, however, is still controversial. Here we will explain the concept of criticality

and review the substantial objections to the criticality hypothesis raised by skeptics. Points

and counter points are presented in dialog form.
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INTRODUCTION

The scene: Two scientists, Critio and Mnemo, are attending a

neuroscience conference. They happen to sit at the same table

for lunch and strike up a conversation. This paper contains a

record of that conversation. In turn, the scientists discuss criti-

cality, evidence for criticality in neural data, various objections

to this evidence, and several responses to those objections.

Critio: Hello professor. I enjoyed your presentation this morning.

Your group is doing some fascinating work on synaptic plastic-

ity. I was particularly interested in your thoughts on how synaptic

changes underlie memory.

Mnemo: Thank you! I can see from your badge that you are

in a physics department. What brings you to a neuroscience

conference?

Critio: Well, I have been using ideas from statistical mechanics

to try to explain how groups of neurons collectively behave. One

of my primary research interests is determining whether or not

the brain is operating at a critical point.

Mnemo: I’ve seen several papers in that area and they seem to

show some interesting results. There also appears to be a great deal

of controversy about criticality in biology (Gisiger, 2001; Mitzen-

macher, 2004) and in neural systems (Bedard et al., 2006; Touboul

and Destexhe, 2010; Dehghani et al., 2012). However, I must admit

that I haven’t had the time to follow that research topic very closely.

Critio: It is definitely true that there is significant disagreement

in the research community about the role criticality plays in neural

dynamics (Stumpf and Porter, 2012). I happen to believe that

criticality plays an important role, but other researchers disagree.

Mnemo: Well, that’s to be expected. Many topics in science are

hotly debated and that’s part of the fun of being a scientist!

Critio: Oh, I agree! I just want to say that, even given my view

that criticality does play an important role in neural dynamics, I

recognize that it is completely possible that criticality, in fact, does

not play an important role in neural dynamics. Other method-

ologies, such as non-linear systems might better explain neural

dynamics (May, 1976; Nicolis and Prigogine, 1989).

Mnemo: Well, this certainly sounds like an interesting topic.

But since we have a few minutes here, why don’t you give me a

quick description of your research? I probably won’t read a review,

but I could learn a few things from you over lunch. Do you mind

if I pick your brain, so to speak?

Critio: Not at all! I guess I could give you an overview of criti-

cality and how it might apply to the brain. I am somewhat biased,

but I’ll do my best to present arguments from researchers who dis-

agree with my view of criticality in neural systems. You can help

me by being as skeptical of my arguments as possible.

TOPOLOGY AND CRITICALITY

Mnemo: That sounds great! But before we get started, I would

like to clear one thing up that has been bugging me. Several of

the other researchers at my institution study network topology. I

always hear them talking about scale-free networks, power laws,

and criticality. Are those all the same thing?

Critio: That is an excellent question and I think it gets at a

point that isn’t widely made in the literature. If we’re interested

in network topology, we’re interested in how the nodes of a net-

work are connected to each other. A scale-free network has nodes

that are connected in a certain way. If we’re interested in crit-

icality, we’re interested in how the network behaves. The two

topics are certainly related, but it is possible for non-scale-free net-

works to exhibit critical behavior and it is possible for scale-free

networks to not exhibit critical behavior. The network connectiv-

ity affects the critical behavior of that network (Haldeman and

Beggs, 2005; Beggs et al., 2007; Gray and Robinson, 2007; Hsu

et al., 2007; Teramae and Fukai, 2007; Larremore et al., 2011;

Rubinov et al., 2011), as we can discuss if you have the time,

but network connectivity and criticality are conceptually quite

different.
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FIGURE 1 | A simple diagram of spins in the Ising model. (Left) At low

temperature, nearest neighbor interactions dominate over thermal

fluctuations. As a result, almost all the spins align in the same direction,

producing a very ordered state. (Right) At high temperature, thermal

fluctuations dominate over nearest neighbor interactions. As a result, the

spins point in different directions, producing a very disordered state.

(Center) At some critical temperature, nearest neighbor interactions and

thermal fluctuations balance to produce a complex state.

EXPLAINING CRITICALITY

Mnemo: That sounds complicated! But, since I hear most people

discussing criticality, let’s discuss that first. So, what is criticality?

Critio: Criticality is a phenomenon that has been observed in

physical systems like magnets, water, and piles of sand. Many sys-

tems that are composed of large numbers of interacting, similar

units can reach the critical point. At that point, they behave in

some very unusual ways. Some people, including myself, suspect

that cortical networks within the brain may be operating near the

critical point.

Mnemo: This all sounds intriguing, but I have no idea what you

mean by the critical point. Can you give me a simple example?

Critio: Sure, let’s use a well explored model in this field: the

Ising model (Brush, 1967; Cipra, 1987). [Critio grabs a napkin

and sketches the left panel of Figure 1.]

This model will illustrate the critical point pretty well. See these

circles? They represent lattice sites in a piece of iron. At each site,

there is an electron whose “spin” is either up or down. You can

think of these arrows as little bar magnets, with the arrowhead

being the North pole of the magnet. In a piece of iron, these bar

magnets influence their nearest neighbors to align in the same

direction. I will represent their influence on each other by drawing

lines between the circles. So, when the temperature T is low, as

in the left panel of Figure 1, these nearest neighbor interactions

dominate and all the spins point in the same direction. This gives

the piece of iron a net magnetization, and makes it behave like

a magnet, sticking to your refrigerator. It is extremely ordered,

almost boringly so. I have a movie here on my laptop from a talk

I gave recently. [Critio opens up his laptop and plays Movie S1 in

Supplementary Material.]

This movie shows a simulated piece of iron as the temperature

is cooled. Each black square represents a spin pointed up, and each

white square is a spin pointed down. See how, over time, all of the

spins begin to point in the same direction? Pretty soon the whole

sample will be either all black or all white. That behavior is caused

by the nearest neighbor interactions.

Mnemo: So all iron is magnetic?

Critio: No, certainly not. Being ordered like that is just one

phase that the piece of iron can be in. And that happens only at

low T. If you heat it up, you can make it change into another phase.

Mnemo: Oh, I have heard some things about a “phase transi-

tion.” Is that where this is going?

Critio: Well, yes. If you heat up the iron quite a lot, then this

increased thermal energy will begin to “jostle around” the spins.

Even though they still have a tendency to align with each other,

this will be overwhelmed by the added heat. [Critio sketches the

right panel of Figure 1.] Now you have no order at all and things

look like random static on a TV screen when it is disconnected

from a cable. Here is the movie of the disordered phase. [Critio

plays Movie S2 in Supplementary Material from his laptop.]

Mnemo: So is this why a magnet loses its ability to stick when

it is heated up too much?

Critio: Exactly. All the spins are pointing in different directions

and they cancel each other. There is no net magnetic field produced

by the sample any more.

Mnemo: So now you have shown me the ordered and the disor-

dered phases. What happens between them, at the so called “phase

transition point?” Is this the same thing as the “critical point?”

Critio: Yes it is. If you add just the right amount of heat to

get to the critical temperature, then the tendency for the spins to

align is exactly counterbalanced by the jostling caused by the heat.

Now you no longer have global order. Instead, there will be local

domains where a group of spins are pointed up, and other domains

where the spins are pointed down (Stanley, 1971; Yeomans, 1992).

[Critio sketches the middle panel of Figure 1 above.] The sizes of

these domains vary widely at this temperature; many are small but

a few are quite large. So, this state is an interesting mix of order

and disorder, and constantly changing over time. You can see that

in this movie of a simulated piece of iron at the critical tempera-

ture. [Critio plays Movie S3 in Supplementary Material from his

laptop.]

Mnemo: Wow, that is really interesting – some of the domains

almost look like amoeba crawling across the screen, with bound-

aries that are extending and contracting. I can see that there are

many different sized domains too. OK, you have been telling me a

lot about this piece of iron, but how does this relate to the brain?

CRITICALITY AND COMMUNICATION

Critio: Good question, but before we get to neural data, we need to

understand a few more things about criticality. You certainly must

agree that communication between neurons is very important for

the brain. If we continue with the magnet analogy, we could ask

how two spins at different lattice sites might communicate with

each other.

Mnemo: Ok, go on. . .

Critio: A simple way to measure this would be to look at the

dynamic correlation between two lattice sites. This is not the corre-

lation that is usually used in statistics, but something that depends

on coordinated fluctuations. Here is the equation for the dynamic

correlation. Critio then writes down Eq. 1:

Cij = 〈(i − 〈i〉)(j − 〈j〉)〉 (1)

The angled brackets here indicate a time average, so 〈i〉 is the

average value of the spin at site i. If the spin is pointed up, we
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could represent the state of the lattice site with a +1. Similarly, if

the spin is pointed down, it would be represented with a −1. The

average over a long time might be something like +0.2, say. So

the term in the left parenthesis, (i − 〈i〉), represents the amount by

which the spin at site i fluctuates from its average at a given time.

Likewise, the term (j − 〈j〉) represents the amount by which site j

fluctuates from its average at a given time. To make Cij large, both

i and j must fluctuate, and they must do so in a coordinated man-

ner, at the same time and in the same direction. So you need both

fluctuations and coordination to have a large dynamic correlation.

Mnemo: Ok, that seems to make sense. Now I see why it is called

the dynamic correlation – if both i and j are stuck pointing up,

the dynamic correlation would be 0, but a static correlation would

still give 1.

Critio: Great, you get it! Now let’s take a look at what happens

to the dynamic correlation for the three different cases we talked

about: low T, high T, and critical T. In the low T case, the piece of

iron is extremely ordered and all the spins are pointed in the same

direction. The dynamic correlation is low because there are no

fluctuations and the terms in parentheses are both nearly 0 all the

time. In contrast, for the high T case, there are plenty of fluctua-

tions, as the spins are constantly deviating from their averages, but

there is no coordination between sites i and j. One term in paren-

thesis might be positive, while the other might be negative. On

another occasion, they might both be positive. So on average the

dynamic correlation is again low. But at critical T, there is enough

heat to allow fluctuations, but not so much heat that it destroys

coordination between spin sites. The spins deviate from their aver-

ages, and they often do so together because the nearest neighbor

influence is not completely overwhelmed by the added heat. Here,

there is both fluctuation and coordination. When one of those

“amoeba-like” domains that you saw in Movie S3 in Supplemen-

tary Material crawls across the screen, it might cause nearby spins

to flip one after the other, setting up a dynamic correlation. I could

sketch the positions of the spins, either up or down or in between,

over time for the three different cases. [Critio now pulls out red

and green markers, grabs another napkin and sketches Figure 2.]

Mnemo: So there is dynamic correlation between spins only at

the critical temperature?

Critio: Well, there might be some dynamic correlation in all

three cases, but it is certainly strongest at the critical tempera-

ture. Another key difference is that the distance over which these

correlations extend is greatest at the critical temperature.

Mnemo: Can you show me what you mean by that?

Critio: Sure. If we were to measure the dynamic correlation

between two spin sites i and j as a function of distance, we would

find out that it decreases with distance in all cases. Remember that

in this model, we have only built in connections between nearest

neighbor spins. So you wouldn’t expect the correlation to extend

much beyond that, at least when the temperature is very high or

very low. But at the critical temperature, we find that the dynamic

correlation is above 0 well beyond the nearest neighbor distance.

[Critio sketches Figure 3.]

Critio: In this example from a simulation, the dynamic correla-

tion at the critical temperature extends about 15 lattice sites before

it drops down to near 0. We call the distance at which the dynamic

correlation first reaches 0 the “correlation length” and it is often

FIGURE 2 | Hypothetical positions of two spins as a function of time.

(Top) At high temperature, the spin orientations fluctuate greatly, but

independently of one another, producing a low dynamic correlation value.

(Middle) At the critical temperature, the spin orientations fluctuate

somewhat and the fluctuations are coordinated, producing a high dynamic

correlation value. (Bottom) At low temperature, the spin orientations do not

fluctuate very much, yielding a low dynamic correlation value.

FIGURE 3 | Average dynamic correlation as a function of distance. At

high and low temperatures, the average dynamic correlation between two

lattice sites decreases rapidly toward 0 as the distance between the lattice

sites is increased. At the critical temperature, the average dynamic

correlation also decreases toward 0 as the distance is increased, but much

more gradually.

given by the Greek capital letter gamma, Γ; in this case the correla-

tion length is 15 lattice sites long. We didn’t build this length into

the model – it merely emerged at the critical temperature. At this

temperature, when one spin flips from down to up, for example,

it might influence one of its nearest neighbors to also flip, which

might in turn influence one of its nearest neighbors and so on. In

this way, the movement at one lattice site can propagate beyond

the nearest neighbor length. You could draw the correlation length

as a function of temperature, and it would show a sharp peak at
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the critical point. [Critio asks another person sitting at the table

for a fresh napkin and draws Figure 4.]

Critio: Again, this shows the separation of phases nicely. On

the left you have the ordered phase, with low temperature. This is

sometimes called the subcritical regime. On the right you have the

disordered phase, with high temperature, and this is sometimes

called the supercritical regime. Between them you have the phase

transition region, which is very narrow and occurs at the critical

temperature.

Mnemo: I think I see what is going on. Only at the critical tem-

perature can you have communication that spans large distances.

So if I were to make an analogy with a neural network, it would

be that at the critical point, the neurons can communicate most

strongly and over the largest number of synapses, right?

Critio: Exactly!

Mnemo: But wait, what do you mean by “communication?”

When the model is at low temperatures, the state of one lattice site

strongly influences the state of lattice sites throughout the whole

network. So, it would seem to me that communication is maxi-

mized when the temperature is low, not when the system is at the

critical point.

Critio: Ah, that is a subtle point. Clearly, we haven’t been very

rigorous with our definition of “communication,” but let me see if

I can clarify my point. When the model is at low temperatures, the

coupling between the lattice sites is strong, so coordination is high.

However, the state of each lattice site doesn’t change very much

through time, so fluctuations are low. Communication requires

both coupling and variability, or in other words, both coordina-

tion and fluctuation. If communication is to take place, lattice

sites must be able to influence each other and that influence must

actually affect changes. Does that make more sense?

Mnemo: Yes, I see your point about the distinction between

communication and coupling.

Critio: Great! So, at the critical point these two qualities of

the system – coupling and variability – are balanced to produce

long distance communication. And it turns out that it is not

FIGURE 4 | Correlation length as a function of temperature for a

simulation of the Ising Model. Near the critical temperature the

correlation length rapidly approaches a maximum value. This sharp peak

separates the ordered phase from the disordered phase and occurs at the

phase transition point.

just communication that would be optimized at the critical point

(Beggs and Plenz, 2003; Bertschinger and Natschlager, 2004; Maass

et al., 2004; Ramo et al., 2007; Tanaka et al., 2009; Chialvo, 2010;

Shew et al., 2011). Many other researchers have pointed out, with

very general models, that information storage (Socolar and Kauff-

man, 2003; Kauffman et al., 2004; Haldeman and Beggs, 2005)

and computational power (Bertschinger and Natschlager, 2004)

are expected to be optimized there as well (Chialvo, 2004, 2010;

Plenz and Thiagarajan, 2007; Beggs, 2008). In addition, the ability

of the network to respond to inputs of many different sizes, called

its dynamic range, is expected to be optimal at the critical point

(Kinouchi and Copelli, 2006; Shew et al., 2009). Phase synchrony

also appears to be optimized at the critical point (Yang et al., 2012).

Mnemo: So this sounds pretty reasonable to me so far. But it

is only an analogy. You haven’t shown me any evidence to suggest

that the brain might be doing this. What evidence, if any, do you

have to make me think that this is connected to real neurons?

CRITICALITY AND POWER LAWS

Critio: Again, a very fair question. Before we can get to the neural

data, I first need to show you how I got interested in this topic. Let

me return for a moment to the plot of the average dynamic cor-

relation length. If I were to change the axes by making them both

logarithmic, then I would get something like this for the dynamic

correlation, plotted now only for the critical case. [Critio draws

Figure 5.]

Critio: When plotted this way, the dynamic correlation approx-

imates a straight line over part of its range. This suggests that it

could be described by a so-called “power law,” where the dynamic

correlation, C, is related to the distance, D, raised to some negative

power, say −α. Note that the slope of the power law line when

plotted logarithmically is given by −α. Well, the physics of criti-

cal phenomena tells us that near the critical point, a system will

have many variables that can be described by power law functions

(Stanley, 1971; Goldenfeld, 1992; Yeomans, 1992; Nishimori and

Ortiz, 2011). In addition to the dynamic correlation as a function

FIGURE 5 | Hypothetical relationship between the average dynamic

correlation between two lattice sites and the distance between those

lattice sites at the critical temperature in a small simulation of the

Ising model.
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of distance, the distribution of domain sizes that we talked about

earlier would also follow a power law at the critical point. The rea-

son the straight line does not extend to larger distances is because

the simulation had a limited size. The bigger the simulation, the

further the power law line would extend.

Mnemo: Ok, for the moment I will assume you are right that

this power law would extend to indefinitely large distances if the

system were large enough. What is so special about a power law,

besides the fact that it might suggest your system is critical?

Critio: An interesting feature of power laws is that they show

no characteristic scale. When plotted in log-log coordinates, they

produce a straight line that has the same slope everywhere. This

implies that the data will have a fractal structure. For example,

imagine what the distribution of correlation strength would look

like if you were only able to sample separation distances from

101 to 102 units. It would be a straight line with a slope of −α

when plotted logarithmically. Interestingly, this would look just

like the distribution that you would observe if you were only able

to sample separation distances from 102 to 103 units. Again, the

exponent would be −α. This has caused some people to use the

phrase “scale-free” when describing power law distributions (Stam

and de Bruin, 2004). If you zoom in or zoom out, things look very

similar (Teich et al., 1997). This self-similarity is a characteristic

of fractals.

Mnemo: So is where the name“scale-free”network comes from?

Critio: Yes! In scale-free networks, the degree distribution – the

distribution of the number of connections each node possesses –

follows a power law. But notice, in the Ising model, the nodes are

connected in a lattice and the Ising model exhibits critical behav-

ior. So, here we can see the distinction between criticality and

scale-free networks in action. The nodes are not connected as in a

scale-free network, yet the activity is scale-free.

Mnemo: That is certainly interesting, but I am still searching

for a strong argument, not nice pictures. So power laws are an indi-

cator of criticality? And you are going to tell me that you see some

power laws in your neural data? This is the argument? It must be

more substantial than that! After all, this is science, not just loose

associations!

Critio: A critical system will produce power laws, yes, but power

laws do not prove criticality! There are many ways to get power

laws, and I can tell you more about that in a minute. The key thing

to remember here is that exhibiting power laws is strongly sugges-

tive of criticality. However, power laws alone are not sufficient to

establish criticality.

Mnemo: Ok, I want to ask about these other ways to get power

laws in a minute. But to return to the issue I raised earlier, you are

going to tell me about some neural data that display power laws?

Critio: Yes, I can tell you about that first and then we can get to

all the potential objections.

Mnemo: That sounds fine. Proceed with the data.

POWER LAWS AND NEURAL DATA

Critio: Well, there were several early reports that the nervous

system could produce power law distributions (Chen et al.,

1997; Teich et al., 1997; Linkenkaer-Hansen et al., 2001; Wor-

rell et al., 2002). These data all came from “one-dimensional”

measurements, were a single variable, like spike count, temporal

correlation, or total energy, was found to follow a power law dis-

tribution. While these important findings were very suggestive,

they did not immediately provide insight as to what the underly-

ing network was doing to produce these distributions. The earliest

data to explore power law distributions at the network level came

from recordings from microelectrode arrays that had 60 electrodes.

There, the experimenters were able to observe bursts of sponta-

neous activity. They found that if they counted the number of

electrodes activated in each distinct burst, that the burst sizes were

distributed according to a power law (Beggs and Plenz, 2003).

Because the statistics of these bursts followed the same equations

used to describe avalanche sizes in critical systems, they called

these events “neuronal avalanches.” I have on my laptop here a

figure from one of their papers that shows the power law distri-

bution of avalanche sizes, measured either as the total number

of electrodes activated per avalanche, or as the total amplitude of

local field potential (LFP) signal measured at all the electrodes

involved in the avalanche. [Critio shows Figure 6 to Mnemo.]

Since these initial results, power law distributions of avalanche

sizes have been reported in awake monkeys (Petermann et al., 2006,

2009), anesthetized rats (Gireesh and Plenz, 2008), isolated leech

ganglion (Mazzoni et al., 2007), and dissociated cultures (Maz-

zoni et al., 2007; Pasquale et al., 2008), suggesting that this is a very

general and robust phenomenon. It is interesting to mention that

some of these reports have relied on spike data, and not just LFP

data (e.g., Beggs, 2007, 2008; Mazzoni et al., 2007; Pasquale et al.,

2008; Hahn et al., 2010; Friedman et al., 2011, 2012). Avalanche

dynamics also have been reported in human brain oscillations

(Poil et al., 2008) and there are several reports of power law scaling

(Miller et al., 2009) even though these are not necessarily attrib-

uted to avalanches. In addition, the size of phase locking intervals

in human fMRI has been reported to follow a power law, and the

authors have related this to criticality in the awake, healthy human

brain (Kitzbichler et al., 2009). This is intriguing, despite the fact

that the temporal resolution of fMRI is much lower than that of

FIGURE 6 | Probability distribution of neuronal avalanche size. (Black)

Size measured using the total number of activated electrodes. (Teal) Size

measured using total LFP amplitude measured at all electrodes

participating in the avalanche (Beggs and Plenz, 2003).
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electrophysiological signals from extra-cellular electrodes, so it is

not yet clear if these power laws are directly related to neuronal

avalanches at the local network scale.

MNEMO’s FIRST OBJECTION: DO THE NEURAL DATA REALLY

SHOW POWER LAWS?

Mnemo: That is an impressive list of neural systems in which power

laws have been observed. However, I seem to recall hearing that

other researchers have found that these power laws were actually

better fit by exponentials. Is that true?

Critio: That is true. Using sophisticated statistical tests, several

researchers have shown that some data sets, none of which were

from neuroscience, that were previously thought to be power law

distributed are actually better fit by an exponential distribution

(Clauset et al., 2009). Using analysis methods from that work,

some researchers in neuroscience have argued that the supposed

power laws associated with neural activity are not actually power

laws, or that the power laws that have been found are artifacts

(Bedard et al., 2006; Bedard and Destexhe, 2009; Touboul and

Destexhe, 2010; Dehghani et al., 2012).

Mnemo: How do you escape that objection? It seems like so

much of your argument is based on power laws. If those really

aren’t there or if they are artifacts, then your system certainly isn’t

operating at the critical point, is it?

Critio: You are right; this is a very important part of my argu-

ment. Let’s talk about each paper separately since they present

distinct arguments and evidence. First, let’s discuss the papers that

argue the observed power laws are artifacts. Some researchers have

produced strong theoretical models that indicate that the extra-

cellular medium may behave as a 1/f filter (Bedard and Destexhe,

2009). If the extra-cellular medium does, in fact, behave this way,

that only explains the observed power law distribution in the LFP

spectrum. But it does not necessarily explain the power law dis-

tribution in other neural phenomena, like the size distribution of

neuronal avalanches. Another paper has made a notable argument

that the power laws observed in avalanche size distributions are

actually artifacts (Touboul and Destexhe, 2010). In that work, the

authors analyzed avalanches using both positive and negative LFP

peaks and found that both were fit by power laws. However, posi-

tive LFP peaks are significantly less correlated with neuron spiking

activity than negative LFP peaks. So, those authors concluded that

the power law avalanche size distribution is not associated with

neuron spiking activity. In response, I think it is important to

point out that the form of this argument is fallacious. The power

law observed in the positive LFP peaks avalanche size distribu-

tion may be due to some other phenomenon and it could still be

the case that the power law observed in the negative LFP peaks

avalanche size distribution is related to spiking activity.

Mnemo: I see your point, what about the other papers?

Critio: Those papers argue that the power laws associated

with neural phenomena that have been observed are not actu-

ally present. Several of the investigators who claimed to show

that neural event size distributions were better fit by exponen-

tials did not use many electrodes in their recordings. In some

of their papers, they only had about eight electrodes (Bedard

et al., 2006; Touboul and Destexhe, 2010). To really assess whether

or not something follows a power law, you should have many

closely-spaced electrodes. A recent paper showed that if you under-

sample a critical process, you can get distributions that deviate

substantially from power laws (Priesemann et al., 2009). The basic

idea is that if your electrodes are too far apart, it will be extremely

rare for an avalanche to occur that will span the distance between

them. This will make it look like all the events are occurring inde-

pendently, and this leads to a distribution with a short tail that

is not a power law, even if the underlying process is indeed crit-

ical (Ribeiro et al., 2010). When people who do have data sets

from large numbers of electrodes tested their data, they found

contradictory results. A paper from 2011 showed that the data

were better fit by power laws than by exponential distributions

using the advanced statistical method I mentioned before (Clauset

et al., 2009; Klaus et al., 2011). They performed this analysis using

recordings taken from acute slices, in vivo recordings from rats,

and in vivo recordings from primates. A more recent work used

the same analysis method and found the opposite result using

in vivo data from cats, monkeys, and humans (Dehghani et al.,

2012). That study used a closely spaced 96 electrode array. So, at

least for that study, it is very unlikely that under-sampling pre-

vented the appearance of a power law. Therefore, it seems that this

point about power laws is still somewhat controversial, and may

take a few years to resolve. But remember, power laws are sugges-

tive of criticality. They are not proof, and there may be better ways

to establish criticality than by looking only at power laws. Hope-

fully we can talk later about these other ways of testing whether a

system is critical or not.

MNEMO’s SECOND OBJECTION: THE ISING MODEL IS AN

EQUILIBRIUM MODEL, BUT NEURAL NETWORKS ARE

DYNAMIC

Mnemo: Ok, but first let me understand this a bit more. You just

told me about a magnetic model – the Ising model – and how that

would settle into different equilibrium states at different tempera-

tures. Now you are jumping to a network of neurons, where things

do not settle at all. In fact, the Ising model seems like it would be

pretty poor at describing how one neuron excites another, leading

to cascades of activity spreading through the network.

Critio: As a neuroscientist, you have a very keen intuition for the

physics! You are absolutely right to point out the potential prob-

lem. The Ising model is an equilibrium model, appropriate for

describing how the system will settle at different temperatures, but

this model does not explicitly account for time. To try to extend

the Ising model into the range of dynamics, some people have

applied a perturbation to the model – a slowly changing magnetic

field for example – and watched how the system responds. Typ-

ically, when the model is at the critical temperature, applying a

local magnetic field will cause several nearby spins to flip, so as to

align with the applied field. These spins will in turn cause a change

in the orientation preference for other nearby spins, and so will

cause them to flip, leading to avalanches of spin flips. This is called

the Barkhausen effect. In both theoretical work (Sethna et al.,

2001) and in experiments (Papanikolaou et al., 2011), the sizes of

these avalanches are distributed according to a power law when the

system is at the critical temperature (Perkovic et al., 1995). Also,

the exponents found in neuronal avalanches, typically near −1.5,

are solidly in the range of exponents reported for the Barkhausen
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effect, which range from −1 to −2.8. These Barkhausen exponents

vary because they apply to many different metals under various

geometries and different models. It seems that there is a reason-

able connection, then, between the equilibrium Ising model and

dynamic avalanches (Liu and Dahmen, 2009).

Mnemo: So to follow your analogy, the neurons in the brain

could be thought of as spins in a magnet at the critical point.

When something comes along and delivers an input, this prop-

agates through the system with maximum distance, because the

correlation length is greatest at the critical point. The avalanches

of activity have sizes distributed as a power law, and you mentioned

that some experimenters have observed power law distributions of

avalanche sizes in neural tissue as well.

Critio: That is a good summary of what I have said so far. Even

though impressive progress has been made recently in applying

the Ising model to neuronal activity patterns found in actual data

(Schneidman et al., 2006; Shlens et al., 2006, 2009; Tang et al., 2008;

Yu et al., 2008, 2011; Tkacik et al., 2009; Yeh et al., 2010) you are

entirely right to say that the Ising model is far too simple to com-

pletely capture all neural phenomena. One problem with the Ising

model is that, without applying an external magnetic field, all states

of an individual lattice site are equally likely. Real neurons are far

more likely to be in one state (quiescent) over another state (spik-

ing). Researchers have developed many models to attempt to more

fully incorporate neural behavior, and specifically to deal with tem-

poral dynamics (Maass et al., 2002). Also, models have been created

to better simulate damaged or malfunctioning neural behavior,

such as models to simulate Alzheimer’s disease (Horn et al., 1993)

and epilepsy (Netoff et al., 2004; Hsu et al., 2008)1. However, I

believe the Ising model serves as an excellent introductory system

for the topic of criticality.

Mnemo: I understand that no model is perfect and that it is

easier to start with a simplified system, but I’m still dissatisfied.

Critio: What’s bothering you?

MNEMO’s THIRD OBJECTION: POWER LAWS DO NOT PROVE

CRITICALITY

Mnemo: You’ve given me a nice story, but this is hardly proof. As

you said, the existence of power laws is a necessary, but not suffi-

cient condition for criticality. So, just because we’ve found some

power laws in neural data, the existence of those power laws not

prove that the neural systems are operating at the critical point. I

don’t know about you, but I don’t like to affirm the consequent.

Critio: You are right to be skeptical. As I said, the power laws are

consistent with the idea that the neural networks that have been

studied are operating near the critical point, but the existence of

these power laws is not proof.

Mnemo: Sure, it seems like now would be a good time for you

to tell me about the many other ways in which power laws can be

generated.

1Critio: As a brief aside, I’m very interested in models of Epilepsy. In epileptic tis-

sue, seizures exist that take the form of widespread coordinated activity. So, when

modeling epileptic neural activity, we must be careful to incorporate seizures into

our understanding of when the model is critical. For instance, during seizures, the

activities of many neurons are highly correlated, so the dynamic correlation between

model neurons is very high, but, by examining other parameters of the network, the

network is not at a critical point.

Critio: There are so many ways to generate power laws that it

is hard to know where to begin. People have written entire arti-

cles devoted largely to this topic (Mitzenmacher, 2004; Newman,

2005; Stumpf and Porter, 2012). Perhaps the simplest mecha-

nism to start with would be successive fractionation. Consider

a stick of some length. Now break it into two parts at a ran-

domly chosen location. Then break each of these parts in two,

again at randomly chosen locations. If you keep successively doing

this, you will eventually produce a power law distribution of

fragment lengths. Related to this, multiplicative noise can also

produce power laws (Sornette, 1998). In one of the papers that

challenged the existence of power laws in neural data that we

discussed earlier, the authors used a random process that, when

thresholded, also produced power law distributions (Touboul and

Destexhe, 2010). Another way to get power laws is through a

combination of exponentials (Reed and Hughes, 2002). As you

know, exponential processes are ubiquitous. If you have a process

that grows exponentially over time, but is terminated at random

times drawn from a negative exponential distribution, then you

will also get a power law distribution of sizes. Reed and Hughes

explored this in a paper whose title included “. . .Why power laws

are incredibly common in nature” (Reed and Hughes, 2002). As

just one more example, consider an array of processes that all

decay exponentially, but with different time constants. Under the

right conditions you can add these decay processes together and

they will produce a power law as well (Fusi et al., 2005). There

are several other mechanisms proposed to generate power laws

(Mitzenmacher, 2004). So you are completely right to be skep-

tical. Just showing a power law by itself doesn’t tell you all that

much.

Mnemo: It now seems that you have dug yourself into a hole

from which you cannot escape. If power laws are so unexceptional,

then why should I be so excited about seeing them in neural data?

CRITIO’s RESPONSE TO MNEMO’s THIRD OBJECTION: EVIDENCE FOR

CRITICALITY BEYOND POWER LAWS

Critio: The fact that other non-critical systems also produce power

laws is very important. Fortunately, recent experiments by several

groups have addressed this issue directly. There are three main

ways to demonstrate that the power laws observed in neural tissue

are the result of a critical mechanism: the ability to tune the net-

work from a subcritical regime through criticality to a supercritical

regime, the existence of mathematical relationships between the

exponents of the power laws for a system, and the existence of a

data collapse within neural data.

Tuning the network through criticality

Critio: First, recall that in a system that displays criticality, the

power law will only occur when the system is between phases, in

other words, at the phase transition point. So, for systems that

really are critical, we should be able to observe different phases on

either side of the critical point and get distributions there that do

not follow power laws.

Mnemo: And you have evidence of this?

Critio: Actually, yes. By blocking excitatory synaptic transmis-

sion, you can dampen network excitability, leading to smaller

avalanches (Mazzoni et al., 2007). Here is a figure I saw from a
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poster at the conference. [Critio pulls out a small copy of the

poster and points to Figure 7.]

In Figure 7A, the resulting distribution of avalanche sizes is

curved downward and has a smaller mean than in the control case

shown in Figure 7B. In Figure 7A, the distribution is beginning to

deviate from a power law. This looks like the subcritical or damped

phase of the system, where activity dies out quickly. Conversely, by

blocking inhibitory synaptic transmission, in Figure 7C, it is pos-

sible to make the tissue hyperexcited, leading to larger avalanches

(Beggs and Plenz, 2003). The resulting distribution here is not a

power law either, but has a big bump out in the tail, indicating that

many extremely large avalanches occur. This looks like the super-

critical phase, where activity is often amplified until it spans the

entire system. The existence of these two phases, on either side of

the critical point, which is shown in Figure 7B, strongly suggests

that the power law arises from a mechanism that is related to a

phase transition.

Critio: Related to this, there have been some very elegant exper-

iments that have shown how information processing functions in

the tissue approach optimal behavior near the critical point (Shew

et al., 2009, 2011). This also suggests that different phases can be

produced in the network.

Mnemo: What do you mean by that? And how is it related to

the idea of phases?

Critio: Shew and colleagues looked at information transmis-

sion through cortical slice networks under three different condi-

tions: where excitatory transmission is reduced; where there is no

manipulation; and where inhibitory transmission is reduced. They

showed that there was a peak in information transmission in the

unperturbed condition, and that information transmission fell to

either side of this point as perturbations increased. In many ways,

they observed behavior just like that seen in the correlation func-

tion in the Ising model that we talked about earlier from Figure 4.

Remember the plot that showed a sharp peak in the middle? – Their

results are similar. In other experiments from the same group, they

demonstrated that dynamic range in the network – similar to sus-

ceptibility in the Ising model – peaks in the unperturbed condition

and declines as perturbations are increased. All of this suggests

that these networks can be tuned from one phase to another, or

left between phases at the critical point. And it underscores why

it would be advantageous for brains to operate near the critical

point, because that is where information processing is optimal.

The presence of different phases indicates that the power law is

related to a phase transition, because the power law is only seen

between the phases. These peaks in information processing func-

tions also occur between the phases, under the same conditions

where the power law occurs.

Mnemo: So it seems that you need to be able to move the system

from one phase to another if it is going to show a critical point.

What you have been telling me is that these neural systems can be

moved in this way.

Critio: That’s right. If a system displays criticality, then it must

be tunable in some sense. Typically, a “control parameter” can be

adjusted to determine the phase of the system. In the Ising model

that we discussed earlier, the temperature is the control parame-

ter. Sweeping the temperature from 0 to some high value would

bring the system from the subcritical, ordered, phase, up to the

critical point, and then into the supercritical, disordered, phase.

The “order parameter” is what tells you the phase. In the case of

the Ising model, the order parameter would be the net magnetic

field produced by all the spins, called the magnetization. In the

subcritical phase, all the spins are aligned and the magnetization

has a large magnitude. In the supercritical phase, all the spins are

pointing in random directions and the magnetization is 0. Near

the critical point, we see the transition of the magnetization from

some large magnitude toward 0. If a system is indeed critical, then

all of the variables that could indicate its phase will depend on the

control parameter.

Mnemo: To continue with the analogy, what would be the

control parameter in neural systems?

Critio: That is a very good question. At the moment, it seems

that the balance between excitation and inhibition can serve as a

control parameter (Mazzoni et al., 2007; Shew et al., 2009; Benay-

oun et al., 2010; Hobbs et al., 2010). Too much inhibition will

cause the system to be subcritical. Too much excitation will cause

the system to be supercritical. A balance between them would lead

to the critical point. But I must say that there is still a lot of work

to be done in this area. Other things, like connection strengths

A B C

FIGURE 7 | Avalanche size distributions in local field potential data

collected with a 60-channel microelectrode array from rat cortical

slice networks. (A) Subcritical regime; excitatory antagonist (3 mM

CNQX) applied. (B) Critical regime; normal network. (C) Supercritical

regime; inhibitory antagonist (2 mM PTX) applied (Haldeman and Beggs,

2005).
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(Haldeman and Beggs, 2005; Beggs et al., 2007; Chen et al., 2010),

or the density or pattern of connections in the network (Gray

and Robinson, 2007; Larremore et al., 2011; Rubinov et al., 2011),

might also serve as control parameters. The key point is that exper-

iments have shown the system can indeed display different phases,

so it is tunable.

Mnemo: So you cannot tune the other, non-critical stochas-

tic systems, like successive fractionation, or a combination of

exponentials?

Critio: Well, you could tune them in some sense, but such tun-

ing would only change the exponent of the resulting power law

distribution. For example, let’s return to the combination of expo-

nentials model proposed by Reed and Hughes (2002). Recall that

there is a process that grows exponentially, let’s say with exponent

α, and it is terminated at random times that are drawn from a

distribution that has exponential decay, let’s say with exponent β.

If you increase α or decrease β, you will decrease the exponent of

the size distribution (thereby making the slope of the size distrib-

ution less steep when plotted logarithmically), but it will still be a

power law. As long as such a process is adequately sampled, it will

never curve downward or curve upward to produce a hump at the

end of the distribution. So this type of non-critical process fails to

show different phases. Therefore it cannot serve as a good model

for what has been observed in the neural data, where clear phases

exist. All of the non-critical models that have been proposed to

generate power laws are like this – they fail to show phases.

Mnemo: I think I get it: if they don’t have different phases, then

they are not operating at a phase transition point, even though

they may produce power laws. That all sounds reasonable. But

you told me that there were additional arguments to support your

point, right?

Mathematical relationships between power law exponents

Critio: Yes, the second main argument comes from a slightly dif-

ferent aspect of critical phenomena. It will take me a minute or

two to explain, but I think it will be helpful. As I said previously,

if a system is truly critical, it will display power law distribu-

tions in more than one variable of interest (Stanley, 1971, 1999;

Goldenfeld, 1992; Nishimori and Ortiz, 2011). For example, recall

that in the Ising model the correlation as a function of distance

followed a power law at the critical point. The domain size dis-

tribution also follows a power law at the critical point. Also, the

susceptibility, the specific heat, and other variables will exhibit

power laws as well. All of these power laws may have differ-

ent exponents, and so will have different “characteristic” expo-

nents. Far away from the critical point, these power laws break

down. Right near criticality, though, there are multiple power

laws.

Mnemo: Why are there multiple power laws?

Crito: Remember how I said that the phase of a critical system

can be determined by a control parameter? Let me describe how

important that parameter is. If we go back to that curve of the

correlation length, recall that it had a sharp peak near Tc, the crit-

ical temperature. This type of curve is observed experimentally in

diverse critical systems (Stanley, 1971; Yeomans, 1992) and would

be expected to go to infinity right at Tc if you had an infinitely

large system. A simple way to describe such a curve would be with

an equation like this:

Γ =

[

Tc

T − Tc

]ξ

(2)

As T approaches Tc, the denominator goes to 0, and the corre-

lation length, Γ, shoots up to infinity. The exponent ξ is another

value that would be obtained from experimental data, and in gen-

eral it would not always be 1. For convenience, physicists often

use something called the “reduced temperature” given here by t, in

describing critical phenomena:

t ≡
T − Tc

Tc
(3)

In general, we don’t know precisely how the correlation length

will depend on the reduced temperature, but I am able to write the

correlation length as a power series in t, like this:

Γ = Atλ
(

1 + Btλ2 + Ctλ3 + · · ·
)

(4)

Near the critical point, the reduced temperature t approaches

0, so all the higher-order terms of this series become very small.

We can then approximate the whole power series by something

like this:

Γ ≈ Atλ (5)

And you should recognize that this as a power law relationship.

Using similar methods, other power laws can be found that relate

other variables associated with the system, such as the relationship

between the dynamic correlation value and distance between lat-

tice sites in the Ising model (Figure 6). Furthermore, in the process

of deriving these power laws, mathematic relationships between

the exponents of the power law distributions can also be derived. It

would take me a while to explain the details of how these exponent

relationships come to be (Griffiths, 1965; Stanley, 1971; Yeomans,

1992), but for now it should be enough to say that near the critical

point, many power laws exist, and they are mathematically related

to one another.

Mnemo: Why wouldn’t successive fractionation produce a

relationship between exponents?

Critio: In that simple, one-dimensional system, there is only one

power law, and that is related to the lengths of the sticks. There is

only one exponent, so it can’t be related to other exponents.

Mnemo: But what about something like a combination of

exponentials?

Critio: Recall that in that model the exponents α and β are the

rates at which exponential processes increase and decrease, not

exponents of power laws observed in variables associated with the

system. The event size distribution is a power law whose exponent

is related to the ratio of α/β. So, again there is only one exponent,

so it can’t be related to other exponents. In addition, α and β are

independent input parameters in the model, so there can be no

relationship between them.

Mnemo: Let us assume for the moment that I agree that you

should have exponent relationships if your system is truly critical.
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Is there any evidence for this type of relationship in neural data

collected so far?

Critio: In fact there is. There is a recent article (Friedman et al.,

2012) where the investigators were recording neuronal avalanches

of spikes from individual neurons. They showed that the expo-

nent for the avalanche size distribution, α, and the exponent for

the avalanche lifetime distribution, β, could be used to predict the

exponent of the power law that related avalanche size to avalanche

lifetime, γ, using Eq. 6.

γ =
(β − 1)

(α − 1)
(6)

They found that the exponent γ, predicted in this way, fit rea-

sonably well to the actual data. So, this is another piece of evidence

suggesting that the system can display critical behavior (Friedman

et al., 2011, 2012).

Mnemo: Alright, this makes sense. It seems to be another way

to assess whether or not the system is critical. But I would still like

to hear more. What is your third argument that the neural data are

collected from a critical process?

Data collapse

Critio: Remember when I said that power law distributions were

scale-free? Recall that this was related to fractals that showed

self-similarity?

Mnemo: Yes, I do. I have read some popular articles about frac-

tals, so I am not completely new to this (Mandelbrot, 1982; Stewart,

2001).

Critio: Good, then I can build on your existing knowledge

to explain my last argument about why the neural data suggest

criticality. It goes like this: The critical point is characterized by

power laws in many variables, all of which express fractal rela-

tionships. We know that neural activity propagates dynamically

through networks of neurons in cascades of activity. If these cas-

cades, or avalanches, are truly critical then there should be some

way to capture a relationship between the avalanches in a frac-

tal way. What if we could take something like avalanche shapes

and show that they were fractal? If we could do this, it would

allow us to go beyond power laws, and show a scaling rela-

tionship that captured the dynamics of these non-equilibrium

systems.

Mnemo: This sounds pretty abstract! Could you give me a more

concrete example of what you are talking about?

Critio: Yes, of course. Let me describe what I mean by the

avalanche shape. Consider how an avalanche of neural activity

might evolve. It could start with one or a few spiking neurons.

These could activate others, so the number of active neurons would

increase over time. Eventually this would decline to 0, marking

the end of the avalanche. If we plotted the average number of

active neurons over time, we might get something that looked

like an inverted parabola. This is what I mean by the average

avalanche shape. Now if the network is at the critical point, then

I should be able to take average avalanche shapes from differ-

ent durations and show that they are all fractal copies of each

other. In other words, I should be able to rescale them with

the appropriate critical exponents and get them all to lie on top

of each other, in what is called a data collapse. [Critio sketches

Figure 8.]

Critio: These are average avalanche shapes taken from

avalanches of different durations. See how they look like they

might have roughly the same shape?

Mnemo: Yes, sort of. They could be copies of one another at

different scales, but how are you going to show this?

Critio: Well, if we divide each curve by its duration, then they

will be rescaled to all have the same length. Then if we rescale their

heights by their duration raised to an exponent, γ from Eq. 2, that

is related to the critical exponents α and β that we discussed earlier,

then we get a picture that looks like this. [Critio draws Figure 9.]

FIGURE 8 | Average avalanche shapes for avalanches of three distinct

durations (Friedman et al., 2012).

FIGURE 9 | Rescaled avalanche shapes from Figure 8 (Friedman et al.,

2012).
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Mnemo: The curves do seem to lie on top of one another pretty

closely. Each curve is an average of how many avalanches?

Critio: Yes, each average avalanche shape is produced by hun-

dreds of avalanches. So this data collapse is highly unlikely to

have occurred by chance. In fact, when the spike train times from

the original data are randomly jittered by 50 ms, the curves no

longer look like copies of each other, suggesting that this scal-

ing relationship has relatively tight temporal precision (Friedman

et al., 2012). This type of data collapse, based on average avalanche

shape, has been explored for several years in a variety of dif-

ferent systems (Perkovic et al., 1999; Kuntz and Sethna, 2000;

Mehta et al., 2006), and has recently been applied to Barkhausen

noise experiments with good success (Papanikolaou et al., 2011).

The fact that it also can be applied to some neural networks

strongly suggests that these networks are operating near the critical

point.

Mnemo: Although I can’t claim to understand all the math

behind this, it certainly seems like your argument does not now

rest on power laws alone. You have shown me a fractal relationship

that ties together both space and time in the dynamic evolution of

the avalanches. From all that you have told me, this should only

occur near the critical point.

Critio: Yes, but it again sounds like you are not fully convinced!

MNEMO’s FOURTH OBJECTION: INFLUENCE OF LOWER

LEVEL PROCESSES THAT EXHIBIT POWER LAWS

Mnemo: You are correct – I still have another question about all

this. In particular, I seem to recall reading somewhere that fractals

are everywhere in neuroscience.

Critio: That’s right. Some have shown that a plot of the number

of spikes produced by a neuron looks roughly the same at all inter-

vals (Teich et al., 1997). When you zoom out to very large time

scales, this pattern of on and off firing appears to be just a copy

of the pattern you see at short intervals. In addition, researchers

have found that neurotransmitter secretion is fractal (Lowen et al.,

1997), and that intervals between sodium channel openings follow

a power law (Toib et al., 1998).

Mnemo: If all this is true, then I guess I shouldn’t be so sur-

prised when you tell me that some networks of neurons also

display fractal behavior. The activity in the network could just

be reflecting power law statistics that appear at other scales

below it.

Critio: You are right to bring this up – with so many frac-

tals out there, why should I get excited about a power law dis-

tribution of activity in small, local networks of neurons? Well,

I have two answers to this. First, I could say that all the evi-

dence I just mentioned about fractals in phenomena related

to individual neurons is actually in favor of my general argu-

ment. We might expect the brain and its underlying systems

to operate near a critical point to optimize information pro-

cessing. However, the existence of the expectation is certainly

not an argument against that which is expected. It seems that

many biological systems would approach optimality by oper-

ating in a regime where they produce power laws (Mora and

Bialek, 2011). That could be why so many biological systems

exhibit power laws. To give my second answer to your point, I

first want to clarify what I think you are saying. It sounds like

you are saying that these power laws at other scales might not

be produced by criticality, and that the power laws that have

been observed in neuronal avalanches are just a reflection of

these non-critical processes at other scales. Is that what you are

saying?

Mnemo: Yes, I think that is a fair description of my objection.

Critio: Ok, let us assume for the sake of argument that power

laws in spike counts, transmitter secretion and channel dynam-

ics are all produced by processes that are not critical. Is it really

clear that if we combined such processes that the resulting cas-

cades of activity on a network also would have to follow a power

law? Would the resulting network therefore not be critical? We

know from computer simulations that the pattern of network

connectivity can have a profound effect on whether the network

produces power laws or not (Teramae and Fukai, 2007; Tanaka

et al., 2009; Rubinov et al., 2011). Not every pattern of connec-

tions leads to a power law. In addition, from experiments we

know that the relative strength of inhibition to excitation can

influence whether or not a network produces power law distri-

butions (Beggs and Plenz, 2003; Stewart and Plenz, 2006; Shew

et al., 2009). These manipulations are done globally at the net-

work level, not at the lower levels, and yet they seem to have

the effect of tuning the network. If it were true that power law

behavior at the network level was simply a result of power law

behavior on the cellular level, then we shouldn’t observe such

effects by altering network level parameters. Furthermore, if the

power law behavior observed at the network level is found to

be critical using the methods discussed previously, then the net-

work level behavior is critical regardless of whether or not the

power law behavior of the underlying systems is also critical. Still,

we don’t know why the network level behavior is critical, or at

the very least why it exhibits power laws. Nor do we know how

this behavior is related to network structure and the underlying

systems.

Mnemo: Oh, is this where all that “self-organized criticality”

literature comes in (Bak et al., 1987; Bak, 1996; Jensen, 1998)? I

have heard that some physicists are extremely skeptical of that

work. So I suppose I should approach your work with similar

caution.

Critio: It is still an open question as to how the network oper-

ates at the critical point, if it is indeed operating a critical point,

and there have been several interesting proposals and experiments

related to this topic (Bienenstock, 1995; Chialvo and Bak, 1999; de

Carvalho and Prado, 2000; Bak and Chialvo, 2001; Eurich et al.,

2002; Freeman, 2005; Kozma et al., 2005; de Arcangelis et al., 2006;

Hsu and Beggs, 2006; Abbott and Rohrkemper, 2007; Buice and

Cowan, 2007, 2009; Juanico et al., 2007; Levina et al., 2007, 2009;

Pellegrini et al., 2007; Hsu et al., 2008; Stewart and Plenz, 2008;

Allegrini et al., 2009; Magnasco et al., 2009; Tanaka et al., 2009;

Buice et al., 2010; de Arcangelis and Herrmann, 2010; Kello and

Mayberry, 2010; Millman et al., 2010; Tetzlaff et al., 2010; Rubi-

nov et al., 2011; Droste et al., 2012). Whether the network gets

to criticality through self-organization or not, it does seem that

at least some networks of neurons can operate at the critical

point. But I would be surprised if this does not involve some

form of self-organization, as synaptic strengths are constantly

in flux.
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Mnemo: I suppose we will have to settle this over another lunch,

as I have to go to another talk!

Critio: Wow, it is late! Hey, do you mind if I write this up and

submit it to a journal? I think you have raised some very interesting

objections, and you have forced me to think through my positions

more thoroughly.

Mnemo: Sure, go ahead. But I am still skeptical, so don’t plan

to include me as a co-author.

Critio: Not a problem. Thanks for sharing lunch.

Mnemo: My pleasure. Good bye.

SUPPLEMENTARY MATERIAL

The Movies S1–S3 for this article can be found online

at http://www.frontiersin.org/Fractal_Physiology/10.3389/fphys.

2012.00163/abstract

Movie S1 | Simulation of an Ising model at low temperature.

Movie S2 | Simulation of an Ising model at high temperature.

Movie S3 | Simulation of an Ising model at the critical temperature.
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