Being logical or going with the flow?
A comparison of Complex Event Processing
systems

Elias Alevizos and Alexander Artikis

National Centre for Scientific Research (NCSR) “Demokritos”, Athens 15310, Greece
alevizos.elias@iit.demokritos.gr, a.artikis@iit.demokritos.gr

Abstract. Complex event processing (CEP) is a field that has drawn
significant attention in the last years. CEP systems treat incoming in-
formation as flows of time-stamped events which may be structured ac-
cording to some underlying pattern. Their goal is to extract in real-time
those patterns or even learn the patterns which could lead to certain
outcomes. Many CEP systems have already been implemented, some-
times with significantly different approaches as to how they represent
and handle events. In this paper, we compare the widely used Esper sys-
tem which employs a SQL-based language, and RTEC which is a dialect
of the Event Calculus.

1 Introduction

As the number of possible sources of information which can feed a system with
real-time data increases, so does the need for distributed systems with the ability
to efficiently handle flows of data. The most typical scenario is one in which a
network of sensors has been installed, with each sensor sending its readings to a
(possibly distributed) processing system. The system’s goal is to detect (or even
learn) in real-time certain patterns present in the incoming data flows, so that
the appropriate preventive or reinforcing action be taken. Domains in which such
systems could prove helpful are network intrusion detection, traffic management
and environmental monitoring, to name but a few.

The usual Database Management Systems (DBMS) have certain features,
like the requirement for storing before processing or that of asynchronous pro-
cessing, which prevent them from being directly transferred to the problem of
stream processing and pattern matching. During the last decade, a significant
number of the so-called complex event processing (CEP) systems have appeared
that attempt to overcome the limitations of typical DBMSs [5], [6]. A CEP sys-
tem attempts to inverse the human-active database-passive (HADP) interaction
model of traditional DBMSs. Instead, its goal is to notify its users “immediately”
upon the detection of a pattern of interest. Data flows are seen as streams of
events, some of which may be irrelevant for the user’s purposes. Therefore, the
main focus is on the efficient filtering out of irrelevant data and processing of
the relevant. Obviously, for such systems to be acceptable, they have to satisfy
certain efficiency and accuracy constraints, such as low latency and robustness.

Numerous CEP systems have already been implemented, with very different
approaches to event processing. In this paper we present an initial compari-
son of the widely used Esper system [1], which relies on a SQL-based language
and Java, and the Event Calculus for Run-Time reasoning (RTEC) [2], a logic
programming language for representing and reasoning about events and their
effects. Both engines consume as their input a number of streams of low-level
events, i.e. time-stamped, simple, derived events (SDE) which are themselves
the product of previous computational stages on even more basic events, such as
those coming from sensors. Based on these SDEs and their event representation
language, the user can define the complex events (CE) of interest.

Our intention is not to build a full-scale and general benchmark for CEP
systems. As of this time and to the best of our knowledge, there are no such
standard benchmarks, although work towards this direction has recently ap-
peared [10], [11]. We are rather focusing on gaining some insights with regards
to the possible advantages and shortcomings of applying different event recog-
nition approaches on a specific domain.

The rest of the paper is structured as follows. In Section 2 we present the main
features of Esper and RTEC. Section 3 first describes a task for which RTEC has
already been tested and then it illustrates how these systems express a class of
event patterns for that task. In Section 4, the results from the comparison tests,
in terms of similarity and performance, are presented and explained. Finally, in
Section 5 we draw some conclusions from our tests and discuss some future work
directions.

2 Complex Event Processing Engines

In this section, we briefly present the CEP engines that we investigate.

2.1 Esper
Among the currently available and well-known CEP engines, we have opted for
Esper [1] (see [4], [9] and [13] for some application domains in which Esper has
been used), since it is free, open-source and has already been the target of previ-
ous benchmark studies [10]. Esper is integrated into the Java and .NET languages
and can be used in CEP applications as a library. For ease of understanding,
one could conceptualize the Esper engine as a database turned upside-down.
Traditional database systems work by storing incoming data in disks, according
to a predefined relational schema. They can hold an exact history of previous
insertions and updates are usually rare events. User queries are not known be-
forehand and there are no strict constraints as far as their latency is concerned.
The Esper engine, on the other hand, lets users define from the very start the
queries they are interested in, which act as filters for the streams of incoming
data. Events satisfying the filtering criteria are detected in “real-time” and may
be pushed further down the chain of filters for additional processing or published
to their respective listeners/subscribers.

Esper provides a rich set of constructs by which events and event patterns can
be expressed. One way to achieve event representation and handling is through

the use of expression-based pattern matching. Patterns incorporate several oper-
ators, some of which may be time-based, and are applied to sequences of events. A
new event matches the pattern expression whenever is satisfies its filtering crite-
ria. Another method to process events is through the Event Processing Language
(EPL) queries which resemble in their syntax that of the well-known SQL. The
most usual SQL constructs may also be used in EPL statements. However, the
defined queries are not applied to tables but to views, which can be understood
as basic structures for holding events, according to certain user demands, e.g.
the need for grouping based on certain keys or for applying queries to events up
to certain time point in the past.

2.2 RTEC

The Event Calculus for Run-Time reasoning (RTEC) is a logic-based CEP engine
that has been successfully used in Big Data applications [3], [2]. Moving away
from traditional database-like constructs, it has been written in Prolog, having
as its main goal to capture the expressivity of the Event Calculus [8]. The Event
Calculus is a logic formalism which extends the expressive power of logic systems
so that they can handle events taking place in time. By allowing for the temporal
representation of “actions” (or events), a set of rules may be built which make
reasoning about time intervals, events and their relationships possible.

RTEC uses a number of techniques for increased performance and scalability.
For real-time operation, a windowing mechanism may be used in order to capture
events that arrive with a certain delay. Intermediate results from computations
are stored in “cache” memory so that their recomputation is avoided and an
indexing mechanism tunes the engine to those events that are deemed relevant.

3 Complex Event Definition

The city of Helsinki, Finland, is currently trying to develop a recognition system
to support city transport management. Each vehicle of the transport network
is equipped with sensors that send measurements such as arrival and departure
time from a stop, acceleration information, in-vehicle temperature and noise
levels. Information extracted from the sensors constitutes the SDE streams for a
CEP engine. Based on these SDEs, CEs are recognized related to the punctuality
of a vehicle, passenger and driver comfort, passenger and driver safety and so
on. RTEC has already been tested in the domain of city transport management.
More details may be found in [2].

In order to compare Esper with RTEC, we translated the main RTEC fea-
tures into EPL. RTEC provides its users with four basic constructs which allow
them to define the required rules for their domain: simple fluents that are subject
to the law of inertia, and statically determined fluents defined in terms of three
interval manipulation constructs: union, intersection and complement. Our aim
is to express the RTEC features into pure EPL statements, without resorting to
any Java-implemented algorithms or data structures, except of course for those
holding the input streams and managing the output data.

3.1 Law of inertia

First, we give an example of how a simple fluent is defined in RTEC. The
term F'=V denotes that fluent F' has value V. For a simple fluent F', F=V
holds at time-point T if F'=V has been initiated by an event at some time-
point earlier than T' (using predicate initiatedAt), and has not been terminated
in the meantime (using predicate terminatedAt), which implements the law of
inertia. The occurrence of an event E at time T is modeled by the predi-
cate happensAt(E,T'). Interval-based semantics are obtained with the predicate
holdsFor(F'=V, I), where I is a list of maximal intervals for which fluent F' has
value V' continuously.

Based on the above predicates and the instantaneous SDEs (enter_stop and
leave_stop) about arrival and departure times from a stop, the user can define
the simple fluents for public transport vehicle punctuality with the following
rules:

initially (punctuality(_, -) = punctual) (1)

initiatedAt(punctuality (Id, Vehicle Type) = punctual, T) < @)
happensAt(enter_stop(Id, VT, Stop, scheduled), _)

initiated At (punctuality (Id, Vehicle Type) = punctual, T) < 3)
happensAt(enter_stop(Id, VT, Stop, early), _)

initiatedAt(punctuality (Id, Vehicle Type) = non_punctual, T) < (@)
happensAt(enter_stop(Id, VT, Stop, late), _)

initiatedAt(punctuality (Id, Vehicle Type) = non_punctual, T)
happensAt(leave_stop(Ild, VT, Stop, early), -)

where Id is the id of a vehicle, VehicleType may be a bus or a tram, Stop is the
code of a stop, and ‘.’ is an ‘anonymous’ Prolog variable.

All vehicles are initialized as being punctual. As new SDEs arrive, a vehicle
becomes non punctual if it arrives late at a stop or leaves early. It becomes
punctual again if it arrives early or on time at a stop. The maximal intervals for
which a vehicle is considered continuously (non-) punctual are computed using
the built-in/domain-independent RTEC predicate holdsFor from rules (1)—(5).

Initialization of the punctuality fluent (rule (1) in RTEC) is performed in
Esper with a special InitFvent carrying the appropriate initial value. Rules (2)—
(3) can be expressed in EPL with the following statement:

insert into SF Event
select se.vehicleld as vehicleld,
0as sfld,
createHash(vehicleld,0) as hash,
se.timestamp as timestamp, (6)
punctual as sfValue
from StopFEvent as se
where se.eventType = eventbean.StopEventType. ENTER and
(se.punct = eventbean. Punctuality. EARLY or
se.punct = eventbean.Punctuality.SCHEDULED)

The above statement “listens” to all the SDEs related to arrivals/departures
to/from stops (StopEvent) and keeps only the arrival events
(se.eventType = eventbean.StopEventType. ENTER) in which the vehicle is
early or scheduled. When such an event is detected, it essentially notifies the
system that the vehicle has become (or remains) punctual (as in rules (2) and
(3)). After this initial filtering, the statement forwards the remaining events to-
wards the simple fluent stream (SFEvent in statements (6)—(7)). Each SFEvent
is also accompanied by an attribute called sfValue which indicates the value of
the detected event.

The statement for non punctuality, expressed in RTEC by rules (4)—(5), is
written in EPL as:

insert into SF Fvent
select se.vehicleld as vehicleld,
0as sfld,
createHash(vehicleld,0) as hash,
se.timestamp as timestamp,
non_punctual as sfValue
from StopEvent as se
where (se.eventType = eventbean.StopEventType. ENTER and
se.punct = eventbean.Punctuality. LATE)
or
(se.eventType = eventbean.StopEventType. LEAV E and
se.punct = eventbean.Punctuality. EARLY)

Due to space limitations we do not present here our domain-independent EPL
code for computing the maximal intervals of simple fluents, given their starting
and ending points. We briefly note that the computation method is relatively
simple. A memory is maintained, holding the previously computed intervals as
tuples in the form of [startstamp, endstamp, sfValue] and a current interval in
the form of [startstamp, —1, sfValue], where -1 indicates a still open interval.
Upon the arrival of a new interval, its sfValue is compared against the sfValue
of the current interval. If they are equal, we ignore the new interval. If they are
different, the current interval is closed, with the timestamp of the new interval
replacing -1. Afterwards, a new open interval is created, beginning with the
timestamp and the sfValue of the last interval. When a new interval arrives
delayed, certain extra checks have to be performed as well, which we omit here.

3.2 Interval Manipulation

We now turn our attention to the interval manipulation constructs of RTEC:
union, intersection and complement. Among the patterns that we would like
to detect within the context of city transport management is the case when
a certain vehicle is being driven in a style that is deemed unsafe. The vehicle
sensors feed the system with three relevant data streams, one that informs us
about the intervals during which a vehicle takes a (very) sharp turn and two
more for the intervals of (very) abrupt acceleration and deceleration. The city
transport management domain experts define a driving style as unsafe when a

vehicle takes a very sharp turn or is in a very abrupt acceleration or deceleration.
The RTEC rule for this definition can therefore be written as follows:

holdsFor(driving _style(Id, Vehicle Type) = unsafe, UDI) : —
holdsFor(sharp_turn(Id, Vehicle Type) = very_sharp, VSTI),
holdsFor(abrupt_acceleration(Id, Vehicle Type) = very_abrupt, VAAI), (8)
holdsFor(abrupt_deceleration(Id, Vehicle Type) = very_abrupt, VADI),
union_all([V.STI,VAAI, VADI],UDI)

where Id is the vehicle identifier, VSTI is the list of intervals for a very sharp
turn, VAAI and VADI the lists of very abrupt acceleration and deceleration
respectively and finally UDI is the list of intervals for unsafe driving, to be
computed as the union of VSTI, VAAI and VADI. The holdsFor predicate can be
used in order to define the required domain-dependent rules. I in union_all(L, I)
is a list of maximal intervals that includes each time-point that is part of at
least one list of L. Effectively, union is an implementation of OR over intervals.
sharp_turn, abrupt_acceleration and abrupt_deceleration are streams of incoming
SDEs.

Using the library that we developed for expressing the main RTEC features,
rule (8) can be written:

insert into UnionFEvent
select ste.vehicleld as vehicleld,
1 as unionld,
createHash(ste.vehicleld, 1) as hash,
ste.startstamp as startstamp,
ste.endstamp as endstamp
from SharpTurnFvent as ste
where ste.sharpness = eventbean.Sharpness.VERY SHARP

The above EPL statement consumes events from the stream of sharp_turn SDEs,
keeps only those denoting a very sharp turn and feeds the resulting output into
the stream of Union events. Of course, two similar statements should also be
written for the abrupt_acceleration and abrupt_deceleration streams of SDEs.
These three statements together would complete the definition for unsafe driving.

Until now, we have shown how domain-dependent RTEC rules can be ex-
pressed as domain-dependent EPL statements. It is worth commenting that
RTEC rules can be expressed in a purely declarative and more compact way than
EPL statements. Additionally, when writing EPL statements, the user needs to
have at least some elementary knowledge of how events are represented.

3.3 EPL library

In order to better understand the functionality of the unionld and hash at-
tributes, we take a closer look at the internals of our application-independent
EPL library. EPL can use such SQL-like statements to filter event streams and/or
to push the results of filtering further down to other streams. Besides this basic
functionality, EPL can also make use of the so-called views, which are similar

to SQL tables and can hold multiple events. More complex operations can be
performed on these views, such as aggregation and grouping. For our present
purposes, we are interested in time-based views whose expiry policies (when to
remove an event) employ time windows.

The RTEC constructs (inertia, interval union, intersection and relative com-
plement) that were translated to EPL follow the same pattern for computing the
maximal intervals of a fluent. For each RTEC construct, we maintain a memory
holding the previously computed disjoint intervals up to certain time point in
the past. Under the assumption that the incoming event intervals arrive in an
orderly manner, such a memory would be redundant, since we would need to
maintain only a single interval and update it, in case a new event overlaps with
it or simply release it as a final result if there is no overlap. However, there
are events which arrive delayed, affecting in this way the previously computed
intervals. In order to be able to handle delayed events, we need to store the inter-
mediate results, at least up to a certain time point. RTEC has a sliding window
approach to deal with such delayed information. For the same reason, we need
to use the time-based views provided by EPL. Whenever a new event arrives (for
our union example, a UnionFEvent, similarly for the other three constructs), we
first check whether and how it affects any of the previously computed intervals.
Any new insertions, deletions or updates are performed according to the results
of this checking step.

An additional memory/view for storing intervals of previous events as well,
besides the computed intervals, is required for the operations of intersection and
complement. In these cases, the interval of a new event may not only interact
with the previously computed intervals but with previous events too. Consider,
for example, intersection. I in intersect-all(L,I) of RTEC is a list of maximal
intervals that includes each time-point that is part of all lists of L. In Esper, a
new IntersectionEvent may not overlap at all with any of the stored intervals
but we still cannot deduce that it should be ignored. An overlapping event may
have appeared previously which, at the time of its appearance, had no effect
and was not involved in the construction of an interval. On the other hand,
the union operation is additive and the unionized intervals implicitly take into
account all previous events. All time-points included in previous UnionFEvents
(in their intervals of [startstamp, endstamp)) are also to be found in the stored
intervals and there is no need for additional memories.

For the union operation, the definition of its time-based view is shown in
statement (10). This statement simply creates a view (window), based on the
attributes of the UnionFEvent. Its purpose is to store the currently computed
intervals for the union operation. According to this statement alone, it has no
expiry policy (.win : keepall()) and keeps all intervals until they are explicitly
deleted.

This view is initially empty. Upon the arrival of a new UnionFEvent, a merge
operation is performed which is the equivalent of the SQL upsert (update and
insert) operation. EPL statement (11) performs the merge operation.

The where clause of statement (11) compares all the stored intervals of the
UnionWindow with the new UnionEvent in order to determine whether any
of the intervals overlap with the new event. If there is no such interval then
the new event may simply be inserted as a new interval. If there are affected
intervals, then a new event (CheckAffected) is created whose purpose is to collect
information about those intervals. We omit this step here to save space. We just
note that out of the affected intervals (including the newly arrived interval), what
we need to know is their minimum startstamp and their maximum endstamp.
Every interval that falls between these two time points is subsequently deleted
(we omit the presentation of the deletion statement).

Finally the unionized interval, simply defined as [minstartstamp, mazendstamp),
is stored, according to statement (12) (the AffectedIntervals event holds the re-
quired information and is triggered by the CheckAffected event).

A similar procedure is followed for the other three constructs as well, with
a slight difference. In the cases of intersection and complement, besides storing
intervals, we also need to store previous events.

context UnionContext

create window UnionW indow.win:keepall()

select vehicleld as vehicleld, unionld as unionld, hash as hash, (10)
startstamp as startstamp, endstamp as endstamp

from UnionFEvent

context UnionContext
on UnionFEvent ue
merge UnionWindow uw
where (ue.startstamp >= uw.startstamp and ue.startstamp <= uw.endstamp
and ue.endstamp >= uw.endstamp) or
(uw.startstamp >= ue.startstamp and vw.endstamp <= ue.endstamp) or
(ue.endstamp >= uw.startstamp and ue.endstamp <= uw.endstamp
and ue.startstamp <= uw.startstamp) or
(ue.startstamp >= uw.startstamp and ue.endstamp <= uw.endstamp)
when not matched
then insert select ue.vehicleld as vehicleld, ue.unionld as unionld,
ue.hash as hash,
ue.startstamp as startstamp, ue.endstamp as endstamp
when matched
then insert into CheckAf fected select ue.vehicleld as vehicleld,
ue.unionld as unionld,
ue.hash as hash,
ue.startstamp as startstamp,
ue.endstamp as endstamp

(11)

context UnionContext
on Af fectedIntervals ai
merge UnionWindow uw
where uw.startstamp = ai.minstartstamp and uw.endstamp = ai.maxendstamp
when not matched
then insert select ai.vehicleld as vehicleld, ai.unionld as unionld,
ai.hash as hash, ai.minstartstamp as startstamp,
at.mazxendstamp as endstamp
(12)

Statements 10-12 make use of contexts, as seen at their first lines. Contexts
are an EPL concept for partitioning windows according to a specified key (we
have omitted the declaration of the UnionContext here). In our case, we have
used the hash attribute, created upon the unionld and wvehicleld, as the par-
titioning key. This has the effect that each unique combination of the unionld
and vehicleld attributes has a separate UnionWindow (essentially a separate
memory for each combination), although we only need to define it once. When-
ever a new event is pushed into the UnionEvent stream, as in statement (9),
the Esper engine makes a choice as to which UnionWindow it should be sent,
according to its hash value. For example, UnionFEvents with a value of vehicleld
equal to 75 and participating in the union operation with identifier equal to
1, giving us a hash value of 18880, are fed only to the UnionWindow with
the same hash value. If the UnionWindow was one and the same for all vehi-
cles and unions, then statement (11) would refer to this single window, hold-
ing all union intervals. Its where clause would have to include an extra con-
dition, (ue.vehicleld = ww.vehicleld and ue.unionld = uw.unionld) so that the
new event is checked only against the intervals related to this specific vehicleld
and unionld. By creating different windows for each value of the partitioning
key, contexts implement a more efficient indexing mechanism than checking in
a single window for the right combination of vehicleld - unionld. Additionally,
contexts are more amenable to parallelization when multiple threads are avail-
able.

Of course, for real-time operation, an “infinite” memory that never deletes
intervals and/or events would be impractical. To address this issue, we intro-
duced a windowing parameter, called working memory, as in RTEC, and two
special events, the QueryFvent and the ClearEvent. At each query step (e.g. de-
fined as 1000 time steps), a QueryEvent is first sent to the Esper engine, followed
by a ClearEvent. The QueryFvent releases all the intervals which fall outside of
the working memory window as final results and the ClearEvent deletes those
intervals.

3.4 Event Hierarchy Representation

Figure 1 depicts the event hierarchy of the city transport management appli-
cation, that is, the SDE streams (denoted by incoming arrows on the left), the

10

operations in which they are involved (denoted by boxes) and the CEs to be de-
tected (denoted by outgoing arrows from the operation boxes). The results from
a certain operation can be fed into another operation, so that complex chains of
rules may be implemented.

ENTER STOP HOH PUNCTUAL X1}
—_—

LOW DRAING QUALITY
weavestar | SF | puncruas pe * u
—

SHARF TURH
—_—

HICH DRVING QUALITY

ACCELERATION u UNSAFE (X7 C
DLCCLERATION
—

- MCDIUM DRIVING G UALITY
SHARP TURH - —_—
—_—

C BURE SHARE |LEN

ACCH FHATRIN

HECELERATIN
LIHEIIM FORIARL - (231

U

|

HHIUCING DRIER COM ORI
U e

>

HOISE HIGH HOBE VL ()
M| SF [Meostin g

FLEDICING S5 ENGER COMEOIT

PASSENGER DEHSITY U
——» | SF |HICH PASSENGER DENSTY (%11 >

TCMPLTATURE WERY COLID (X2
—

SF

WIRY WARM (X2]

Fig. 1. The event hierarchy of the city transport management application. SF=simple
fluent, U=union, I=intersection, C=complement. The number besides each CE stream
indicates its fanout.

An important difference between RTEC and Esper in their functioning is
the way in which they process information from new events. RT'EC does not
perform any computations before a query is “triggered”. Being written in Prolog,
it essentially employs a pull method for retrieving information from events. At
the time of a query, it backtracks in order to satisfy its goals which describe the
CEs of interest. On the other hand, Esper employs a push method, performing
on-the-fly processing of new events. Even if a QueryFvent has not appeared
yet, new SDEs are directly pushed towards their respective windows and the
QueryEvent triggers the release of the computed intervals. However, there are
some exceptions to on-the-fly processing, whenever there are event hierarchies in
which an operation requires the results of a previous operation. In these cases,
an operation must wait for the final results of the previous one. For example,
in Figure 1, the uncomfortable CE, depends both on two of the SDE streams
and on the intermediate pure_sharp_turn stream. Before a QueryEvent arrives,
the operation for uncomfortable can unionize the two SDE streams but it has to
wait for the QueryFvent in order to include the pure_sharp_turn stream.

4 Empirical Evaluation

For the tests that follow, we used three different synthetic datasets of SDEs,
based on the city transport management task described above and generated

11

during the PRONTO project (http://wuw.ict-pronto.org). Each dataset con-
sists of 50.000 SDEs. In the first dataset, all SDEs refer to a single vehicle, the
second contains events for 10 vehicles and the third for 100. In total, we have 8
incoming SDE streams and 13 CE streams.

4.1 Similarity Testing

In order to assess the similarity of the results produced by RTEC with those
produced by Esper, we ran a series of tests on the City Transport Manaagement
datasets. Using the intervals computed by RTEC as a reference point, we com-
pared them with the intervals produced by Esper. The comparison metric for
each CE is computed as the division of the intersection of the RTEC and Esper
intervals by their union. Figure 2 presents the comparison results for the three
different datasets.

110-
— * 100 vehicles
x N
<105 —& 10 vehicles
o] —— 1vehicle
-
£
=100 l\—l By A=W -
5 \./. NG
E 95- R
n 1

90— — . —
CEl CE2 CE3 CE4 CE5 CE6 CE7 CE8 CE9 CE10 CE11 CE12 CE13
Complex Events

Fig. 2. Esper/RTEC similarity index for three different datasets.

For most of the CEs in all datasets, the similarity is near perfect (above
99%), while for all of them it lies above 95%. For a few of them, especially in
the dataset with 100 vehicles, it falls to a level of about 95%. These discrep-
ancies are due to a slight difference between RTEC and Esper in the way open
intervals are treated, i.e. intervals which, at the time of a query, have not been
closed, e.g. when a sharp turn has not finished when a query is triggered. In
this case, RTEC produces intervals in the form of [startstamp, inf) which are
ignored during the comparison, whereas Esper produces intervals in the form of
[startstamp, querytime). In the dataset with 100 vehicles, due to its structure,
such open intervals appear more often.

4.2 Performance Comparison

After ensuring that Esper can reproduce the RTEC results with an accepted
level of reliability, we ran another series of experiments in order to compare
their performance, in terms of average latency per query. All the experiments
were conducted on a machine with an Intel Core 2 Duo CPU P8600 @ 2.40
Ghz x 2 processor and 3.0 Gib of memory, running the 32-bit version of Debian
7.3. Esper was run with java-7-openjdk-i386 and RTEC with YAP Prolog 6.2.2.
Both engines were tested as single-threaded applications. Figures 3(a)-3(c) de-
pict the results of the performance comparison tests, with each figure referring

12

to a different dataset. In order to assess the impact of the size of the working
memory window (how far into the past an operation can look into when comput-
ing intervals), we varied its value from 1000 (equal to the query step) to 15000
time-points.

wi400
13 i
ki -
n 1200 - —# RTEC e
E 1,000 =% Esper /
L1}]
- Boo
= = —a
[l -
: 600 e
o 400 L
-3 1 e
g 200- e
Z o - ——a e e ¢ ¥

1,000 3,000 5000 7000 5,000 11,000 13,000 15,000
Working Memory

(a) 1 vehicle

S,
o
o
(=}

E
a_uo * RTEC /.--"’
£ 120]-m-Espe <

g -

" 100- -

-] . .,-’

= 807 e

3 60 A

a . "

o : "

% 40’

L 20 e a— a——— ®
g : ==

£ o - :

1000 3,000 5000 7,000 5,000 11,000 13,000 15,000
Working Memory
(b) 10 vehicles

-2-100 . . . e
= - — -

= T

o so{*RIEC g

c = Esper -

3 =

® 50l ot

iy

2 40

o

& 20

o e "
5 - b

=

< [+]

1000 3,000 5000 7,000 9,000 11,000 13,000 15,000
Working Memory
(c) 100 vehicles

Fig. 3. Esper/RTEC performance comparison

Figures 3(a)-3(c) show that RTEC outperforms Esper significantly, with Es-
per suffering a worst degradation as the working memory window increases (in-
creased gradient). By separating the time of on-the-fly processing from that of
query-time processing (see Section 3 for an explanation of their difference), we
discovered that the observed latency is almost exclusively due to query-time pro-
cessing. In an attempt to isolate the possible bottlenecks, we measured latencies

13

on a per operation basis. The results did not indicate that a specific type of oper-
ation is a significant source of delay. We observed that the latency of an operation
correlates with its fanout. The operations for the unsafe and the uncomfortable
CEs, both with a fanout of 4 (see Figure 1), were consistently among the most
severe bottlenecks. Therefore, we are inclined to assume that one reason behind
Esper’s lower performance lies in the “communication” overhead between the
connected operations.

5 Conclusions

We presented a comparison of two CEP engines with significant differences as far
as their event representation languages are concerned. As CEP engines mature
over time, such comparison tests are expected to become more common. They
will allow for the identification of the possible limitations and advantages of
one solution over another and will facilitate the classification of event-based
systems [12].

For the CEP engines under comparison here —Esper and RTEC—, we showed
that the translation of an event hierarchy from one language to the other, al-
though not a trivial task, is certainly possible. In fact, for certain domains, such
as city transport management above, the whole process could be delegated to
automatic translators. However, when the task of translation is left to the user,
EPL statements are longer and require some low-level knowledge of how events
are represented, which could make them more susceptible to subtle errors. Con-
trary to what one might expect, we also showed that a system from the field
of Artificial Intelligence, like RTEC, may outperform a state-of-the-art system
from the fields of databases and distributed systems.

Our tests are far from being complete and we do not consider the results
presented here to be final. RTEC is very well-suited for problems whose main goal
is to find those time intervals during which certain conditions hold. Moreover,
translating the RTEC constructs directly into EPL statements might very well
result in an inefficient implementation from the point of view of Esper. However,
this is exactly one of our goals, i.e. to find those domains for which a certain
CEP system might be more appropriate than others.

For these reasons, we would like to continue this line of work. We aim to
investigate, for example, whether the recently introduced data flow programming
model of Esper improves performance for the type of event definitions that were
examined in this paper. Additionally, we will compare the two engines using
event patterns that are more readily expressed in EPL. We will also compare
the two systems, along multiple dimensions, both in terms of semantics and
performance (see [14], [10], [7] for examples of studies with a more detailed
treatment of these issues).

Acknowledgments

We have benefited from discussions with Matthias Weidlich on the comparison
of Esper and RTEC. This work has been funded by the EU SPEEDD project
(FP7-ICT 619435).

14

References

10.

11.

12.

13.

14.

. Esper reference document. http://esper.codehaus.org/esper-4.10.0/doc/

reference/en-US/html/index.html. Accessed: 2014-01-21.

A. Artikis, M. J. Sergot, and G. Paliouras. Run-time composite event recognition.
In DEBS, pages 69-80, 2012.

A. Artikis, M. Weidlich, A. Gal, V. Kalogeraki, and D. Gunopulos. Self-adaptive
event recognition for intelligent transport management. In 2018 IEEE Interna-
tional Conference on Big Data, pages 319-325, 2013.

B. Balis, B. Kowalewski, and M. Bubak. Real-time grid monitoring based on
complex event processing. Future Generation Computer Systems, 27(8):1103-1112,
Oct. 2011.

G. Cugola and A. Margara. Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv., 44(3):15, 2012.

O. Etzion and P. Niblett. FEwvent Processing in Action. Manning Publications
Company, 2010.

T. Grabs and M. Lu. Measuring performance of complex event processing systems.
In Topics in Performance Evaluation, Measurement and Characterization, page
8396. Springer, 2012.

R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Generation
Comput., 4(1):67-95, 1986.

T. Ku, Y. Zhu, and K. Hu. Semantics-based complex event processing for RFID
data streams. In The First International Symposium on Data, Privacy, and E-
Commerce, 2007. ISDPE 2007, pages 32—34, 2007.

M. R. Mendes, P. Bizarro, and P. Marques. A performance study of event process-
ing systems. In Performance Evaluation and Benchmarking, page 221236. Springer,
2009.

M. R. Mendes, P. Bizarro, and P. Marques. Towards a standard event processing
benchmark. In Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering, ICPE ’13, page 307310, New York, NY, USA, 2013.
ACM.

A. Voisard and H. Ziekow. Architect: A layered framework for classifying tech-
nologies of event-based systems. Inf. Syst., 36(6):937-957, 2011.

S. Weber, H. J. Lowe, S. Malunjkar, and J. Quinn. Implementing a real-time
complex event stream processing system to help identify potential participants in
clinical and translational research studies. AMIA Annu Symp Proc, 2010:472—476,
2010. PMID: 21347023 PMCID: PMC3041381.

E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over
streams. In Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, page 407418. ACM, 2006.

