2

— ' ;
“InI.......................o.....> . ‘

One of the most
exciting
aspects about
software
product lines is
how they put
technical and
enterprise
Issues on the
Same page.

IEEE SOFTWARE July/August 2002

oftware product lines repre-
sent a paradigm on the rise
in software engineering that
comes with true order-of-
magnitude improvements in
cost, schedule, and quality.
As the field grows and matures, case stud-
ies are becoming more plentiful and bene-
ficial. Books, papers, conferences, work-
shops, and special issues of magazines
such as this one provide ideas that can in-
spire us.

For me, one of the most exciting as-
pects about software product lines is how
they put technical and enterprise issues
on the same page. This is best demon-
strated when a software product line ca-
pability helps a savvy organization
quickly enter and thrive in a whole new
market area. CelsiusTech Systems, a
Swedish seller of shipboard command-
and-control systems, recognized that a
new market lay nearby in ground-based
air defense systems—guns mounted on
moving platforms. On the first day Cel-
siusTech decided to enter that market, 40
percent of its entry system was complete
because of its roots in a ship system prod-
uct line.! Cummins, an American manu-

Pays Off

facturer of diesel engines, recognized that
a vast untapped market in industrial
diesel engines lay right next to its product
line of (software-intensive) automotive
and truck diesel engines. The industrial
diesel domain encompasses an extraordi-
nary range of applications, from ski lifts
to rock crushers, but no single applica-
tion is a high-volume proposition. With-
out the capability to field a product vari-
ant quickly and easily, the market is not
attractive. But with that capability—that
is, with a product line capability—an or-
ganization can score a coup, which is pre-
cisely what Cummins did.?

The key to this enterprise-level strate-
gic positioning is understanding the
scope of the product line. A product
line’s scope states what systems an or-
ganization would be willing to build as
part of its product line and what systems
it would not. In other words, it defines
what’s in and what’s out. Defining a
product line’s scope is like drawing a
doughnut in the space of all possible sys-
tems. The doughnut’s center represents
the set of systems that the organization

continued on page 4

0740-7459/02/$17.00 © 2002 IEEE

- Couniernoint

tories of successful software
product line deployments of-
ten read like epic adventures.
In the end, there is triumph of
inspirational proportions, but
along the journey there is risk,
hardship, sacrifice, heroes, antagonists,
love lost, love found, and fortuitous events
of both happy and tragic consequences.
For example, for Cummins to achieve its
impressive software product line successes,
it stopped all product deployments for six
months while it rearchitected its engine con-
trol software, support technology, organiza-
tional charts, and processes. Imagine the
consequences if, after an extended produc-
tion shutdown, unanticipated events had
led to project failure.

Although these epics make for great,
inspiring reading, many software organi-
zations need to operate on a more pre-
dictable and less dramatic story line.
They can’t afford to slow or stop pro-
duction for six months to reinvent them-
selves, even if the potential payoff is
huge. For most organizations, the risks,
timetables, efforts, and costs experienced
by the pioneers represent an adoption
barrier to software product line practice.

For software product lines to become
part of mainstream software engineering
culture, organizations need software
product line strategies with low adoption
barriers. They need low-risk strategies
that afford small upfront effort, incre-
mental transition from current practices,
and rapid return on investment. Several
organizations have recognized this need
and are successfully creating technology
and techniques that lower the adoption
barrier to software product lines (see
www.biglever.com, www.esi.es/Projects/
Reuse/projects.html, and www.iese.fhg.
de/Business_Areas/Product_Line_
Development).

These new approaches offer two things
not found in the epic proactive software
product line approaches. The first is light-
weight technologies and techniques that
specifically support software product line
engineering. The second is using a variety
of adoption models for establishing and
operating a software product line practice.

Lightweight software product line tech-
nologies and techniques minimize the par-
adigm shift between conventional software

continued on page 4

Although these
epics make for
great, inspiring
reading, many

software

organizations
need to operate

onamore

predictable and
less dramatic

story line.

July/August 2002

IEEE SOFTWARE

3

....O............O............O..................}

could build, and would be willing to
build, under the auspices of its prod-
uct line capability. Systems outside
the doughnut represent those that are
out of scope, that the product line is
not equipped to handle well. Systems
on the doughnut itself could be han-
dled with some effort, but require
case-by-case disposition as they arise.
In a product line of office automation
systems, a product with a conference
room scheduler would be in, but one
with a flight simulator would be out.
One with a specialized intranet search
engine might be in if it could be pro-
duced in a reasonable time and if
there were strategic reasons for doing
so (such as the likelihood that future
customers would want a similar
product).

Explicitly scoping the product line
lets us examine regions in the neigh-
borhood that are underrepresented by
actual products in the marketplace,
make small extensions to the product

line, and move quickly to fill the gap.
In short, a consciously preplanned,
proactive product line scope helps or-
ganizations take charge of their own
fate. The scope feeds other product
line artifacts; the requirements, archi-
tecture, and components all take their
cues for the variabilities they need to
provide from the scope statement.

utting an organization on the
same strategic page requires vi-
sion, strong management,
technical competence, process disci-
pline, and no small amount of dedi-
cated leadership. But the payoffs can
be spectacular, as companies large and
small in all domains are discovering.
Help is available. The Software Engi-
neering Institute’s product line practice
framework (www.sei.cmu.edu/plp) de-
scribes how to extend software engi-
neering and managerial practices from
one-system-at-a-time product building

‘.....O..........O..........O......

engineering and software product line
engineering. They let organizations
reuse their existing software, tools, peo-
ple, organization charts, and processes.
The variety of adoption models let
organizations select one or more
strategies that best meet their busi-
ness objectives, engineering realities,
and management styles. The three
prominent adoption models are
proactive, reactive, and extractive.
The proactive approach to soft-
ware product lines is like the waterfall
approach to conventional software.
You analyze, architect, design, and
implement all product variations on
the foreseeable horizon up front. This

4 IEEE SOFTWARE July/August 2002

approach might suit organizations
that can predict their product line re-
quirements well into the future and
that have the time and resources for a
long waterfall development cycle.
The reactive approach is like the
spiral or extreme programming ap-
proach to conventional software. You
analyze, architect, design, and imple-
ment one or several product varia-
tions on each development spiral. This
approach works in situations where
you cannot predict the requirements
for product variations well in advance
or where organizations must maintain
aggressive production schedules with
few additional resources during the

to make them apply to product line en-
gineering. The growing body of litera-
ture and case studies also provide in-
valuable guidance for practitioners
who want to adopt the approach. To-
gether, we are taking product lines into
the realm where organizations can be
proactive about the systems they are
prepared to build. &7

References

1. L. Brownsword and P. Clements, A Case
Study in Successful Product Line Develop-
ment, tech. report SEI/CMU 96-TR-016,
Carnegie Mellon Univ., Software Eng. Inst.,
Pittsburgh, 1996.

2. P. Clements and L. Northrop, Software Prod-
uct Lines: Practices and Patterns, Addison-
Wesley Longman, Reading, Mass., 2001.

Paul Clements is o senior member of the technical staff
at the Software Engineering Institute, Carnegie Mellon Univer-
sity. His technical interests indude product line systems, software
architecture, software design, and product line practice. He re-
ceived his PhD in computer sciences from the University of Texas
at Austin. Confact him at SEI, 4500 Fifth Ave., Pittshurgh, PA
15213; dements@sei.cmu.edu.

Inier

transition to a product line approach.

The extractive approach reuses one
or more existing software products
for the product line’s initial baseline.
To be an effective choice, the extrac-
tive approach requires lightweight
software product line technology and
techniques that can reuse existing
software without much reengineering.
This approach is very effective for an
organization that wants to quickly
transition from conventional to soft-
ware product line engineering.

The combination of lightweight
technologies and techniques along with
the variety of adoption models offers a
dramatic reduction in the adoption

barrier. For example, Salion, an enterprise software pro-
ducer, needed to transition from conventional one-of-a-kind
software engineering to software product line engineering.!
Based on time and cost constraints, an epic proactive transi-
tion was out of the question. So, it adopted lightweight soft-
ware product line technology from BigLever Software,? an
extractive approach to reuse existing conventional product
as the baseline for the product line and a reactive approach
to implement unanticipated requirements from new cus-
tomers. While maintaining its aggressive production sched-
ule, Salion transitioned to a live software product line in
about four person-months of total effort, which was less
than 5 percent of the time required to build the conventional
product used as the product line’s baseline.

t has been said that “the right point of view is worth 20
points of 1Q.” That is certainly the approach we need
to take in moving software product line practice from

the realm of epic adventures to mainstream software prac-
tice. New advances in technology and methodology show
that, by taking the right viewpoint, the adoption barrier
disappears. &7

1. P. Clements and L. Northrop, Salion, Inc.: A Case Study in Successful
Product Line Practice, tech. report to appear in 2002, Carnegie Mellon
Univ., Software Eng. Inst.

2. C. Krueger, “Easing the Transition to Software Mass Customization,”
Proc. 4th Int’l Workshop Software Product Family Eng., Springer Verlag,
New York, 2001, pp. 282-293.

Charles Krueger is the founder and CEQ of BigLever Software. His technical interests are in
technologies and techniques that bring software product lines into mainstream software engineering
pracice. He received his PhD in computer science from Carnegie Mellon University. Confact him at
BigLever Software, 10500 Laurel Hill Cove, Austin, TX 78730; ckrueger@biglever.com.

Krueger’s identification of adoption models—proactive, reac-
tive, extractive—is a first-rate contribution to this field, as is his
missionary work for low-cost adoption methods. But with the zeal
of some missionaries, | think he’s a little quick to spot the devil
lurking about—in this case, hiding in the proactive approach.

First, the proactive approach does not require a halt in pro-
duction. At Cummins, the new product line manager called a
halt because the projects that were underway were running in
different directions and would clearly not be able to deliver the
large number of products to which the company had already
committed. Turning the whole organization fo the product line
approach was ifs salvation, because it was on the road to major
failure anyway. Here, the risk was in not taking decisive action.

Second, proactive adoption does not mean unanimous si-
multaneous adoption. In our book Software Product Lines:
Practices and Patterns (Addison-Wesley, 2001), Linda
Northrop and | write extensively about how an organization
can launch pilot projects to introduce the concepts, demon-
strate measurable benefit, iron out process and organizational
details, and let other projects climb aboard when ready.

Finally, we read that in the proactive world “all product vari-
ations on the foreseeable horizon are analyzed, architected, de-
signed, and implemented up front.” Well, when you would not
take the foreseeable horizon into account? Granted, in some
environments, your foreseeable horizon might not be very
broad. But shouldn’t you still plan for the variations you know
are coming? If you don't, your architecture (among other things)
might simply not be up to the task. If your next customer wants a
version of your basic product that runs 10 times as fast and sup-
ports 100 times the users, good luck achieving that by just iterat-
ing on your current inventory.

Being proactive simply means actively gathering what you
know about your customers and your application area and us-
ing that knowledge as much as you can to plan for the future
and, in some cases, to manage that future to your advantage.

One of the insightful segments in the Clements and
Northrop book on software product lines is a sidebar entitled
E Pluribus Unum (Latin for “out of many, one”). There,
Clements skillfully articulates how organizations who have
mastered software product line engineering think of them-
selves as building a singular software “system”—the product
line—rather than as building multiple software products.
What this suggests to me is that all the issues that the soft-
ware industry has explored for engineering singular one-of-
a-kind software systems will be explored again for engineer-
ing singular software product lines.

The argument for or against proactive approaches to soft-
ware product line engineering resembles the arguments for or
against waterfall approaches to one-of-a-kind software engi-
neering. Rather than be dogmatic about any particular ap-
proach, | prefer to keep a collection of approaches available
in my toolbox. After exploring business conditions, knowl-
edge of the domain, clarity and stability of the customer re-
quirements, architectural complexity, likelihood of building
the “wrong” system, available time and resources, and so
forth, I can go to the toolbox to select the tool that best solves
the problem.

The issue here, | believe, is whether proactive should
be the only tool in my toolbox rather than whether it's a
good approach. For Cummins, proactive was likely the
most effective approach. For Salion, a combination of ex-
tractive and reactive approaches fit their business condi-
tions perfectly.

For the mainstream software engineering community to
embrace software product lines, the adoption barrier must be
much lower than that experienced by the early pioneers. Pro-
viding lightweight technology and techniques plus a variety of
adoption models will go a long way toward enabling the en-
tire software industry to capitalize on the order-of-magnitude
improvements offered by software product lines.

July/August 2002 IEEE SOFTWARE 5

