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in the Situation Calculus. This translation is extended to the case of revision. In the conclusion
is presented a set of open issues.
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1. Introduction

An interesting formalisation of belief change has been proposed in the framework
of Situation Calculus [SCH 93, SHA 00, LAK 98, SCH 03]. A simpler approach has
been proposed in [DEM 00]. The Situation Calculus has the great advantage to deal
with classical first order logic with equality (except some limited fragments that make
use of second order) [REI 01]. However, it has this original feature that some concepts,
like situations and accessibility relations are integrated in the axiomatics while they
only appear in the semantics in Modal Logic. Moreover, thereis a large community
in the field of belief change that deals with Modal Logic. Thatis why we think it is
worth to consider how intuitive ideas expressed in Situation Calculus can be translated
into Modal Logic. That was the motivation of the work presented in this paper1.

This translation raises several technical problems. The first problem is that actions
and beliefs are represented in two different heterogeneousways in Situation Calculus.
Beliefs are represented in terms of accessibility relations, as usual in Modal Logic,
while actions are represented through the function symboldo that appears in the terms
of the type situation. The second problem is that to go from Situation Calculus to

1. Another approach has been followed in [DEM 03] which is based on regression.
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Modal Logic we have to remove situations. The third problem is that in Situation
Calculus it is allowed to quantify over variables of the typeaction, while in Modal
Logic each action has the status of an index of a modal operator, and we can not
quantify over indexes.

The intuitive ideas to solve these problems are the following ones.

For the first problem we can notice2 that a formula of the formp(do(a, s)) is
logically equivalent to∀s′(s′ = do(a, s) → p(s′)) which has the same form as
∀s′(K(s′, s) → p(s′)) which is used to represent a belief, and it can be abreviated
by Act(a, p, s), in the same way as the second formula is abreviated byBel(p, s).

For the second problem we have to distinguish situations that are quantified and
situations that are represented by ground terms. In the caseof ground terms we impose
to all of them to refer to the same initial situationS0. Atoms of the formp(S0)
are translated byp; atoms of the formp(do(a, S0)) are translated in a first step by
Act(a, p, S0) and then byAct(a, p) (whereAct(a, .) is considered here as a modal
operator); in the same wayp(do(b, do(a, S0))) is translated byAct(a, Act(b, p)). In
the case of universally quantified situations, formulas of the form∀sp(s) are translated
by p′ wherep′ is obtained from∀sp(s) by removing the universal quantifier and the
situation arguments in all the atoms ofp. The resulting formulap′ has the status of
a global axiom in Fitting’s terminology, and we can apply thenecessitation inference
rule to it.

To solve the third problem we have made a strong assumption. We assume that
there is only a finite number of actions. Then, if we accept a domain closure axiom for
actions, universal quantifiers can equivalently be represented by finite conjunctions.
For instance,∀ap(a) can be represented byp(α1) ∧ . . . ∧ p(αn).

Independently of these technical problems we have to translate the intuitive ideas
that support the formalisation of belief change in Situation Calculus. That will be
presented in more details in the rest of the paper.

2. A brief introduction to Situation Calculus

We briefly recall the ideas that are relevant to the representation of belief change.

Predicates whose truth value may change when actions are performed are called
fluents. They have exactly one argument of the type situation(the last argument). For
instance,p(x1, . . . , xn, s), wheres is of the type situation, represents a fluent.

Arguments of the type situation are constants, or terms of the formdo(a, s), where
a is of the type action ands is of the type situation. They satisfy the following axiom:

(A1) ∀a1∀a2∀s1∀s2(do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2)

2. The formal proof can be found in [DEM 02].
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This axiom forces situations to have the structure of a set oftrees. In addition it is
assumed that we have unique name axioms for action symbols.

A key idea to solve the frame problem in Situation Calculus isto impose to each
fluent a successor state axiom. For example, we may have the successor state axiom :

(1) ∀s∀a(p(do(a, s)) ↔ a = a1 ∨ (a = a2 ∧ q(s)) ∨ (p(s) ∧ ¬(a = a3)))

This axiom intuitively says that there is no other action than a1 anda2 that can
causep to be true, and there is no other action thana3 that can causep to be false.

The general form of successor state axioms is:

(Sp) ∀s∀a∀~x(p(~x, do(a, s)) ↔ Γ+
p (~x, a, s) ∨ (p(~x, s) ∧ ¬Γ−

p (~x, a, s)))

whereΓ+
p (~x, a, s) andΓ−

p (~x, a, s) do not contain any occurence of the functiondo.

Beliefs are represented by formulas notedBel(p, s), whose meaning is that in the
situations it is believed thatp holds. We have:

Bel(p, s)
def
= ∀s′(K(s′, s) → p[s′])

where the predicateK(s′, s) plays the same role as an accessibility relation.

To define belief change we have to characterise what is the setof accessible situa-
tions after performance of an action. Two kinds of actions have to be considered. For
non sensing actions the new accessible situations are the successors of the accessible
ones. For sensing actions the new accessible situations arethe successors of those
situations that are consistent with the “sensed property”.For instance, if the sensing
actionαi allows to knows whetherpi holds in the situations, all the situations which
are not consistent with the truth values ofpi in s have no successor. In addition it is
assumed that sensing actions do not change the truth value offluents. This assumption
has to be encoded in the definition of successor state axioms.

The evolution of the set of accessible situations is defined by the following axiom:

(SK) ∀s∀s′′∀a(K(s′′, do(a, s)) ↔ ∃s′(K(s′, s) ∧ s′′ = do(a, s′) ∧ (
(¬(a = α1) ∧ . . . ∧ ¬(a = αn))
∨ a = α1 ∧ (p1(s) ↔ p1(s

′))
. . .

∨ a = αn ∧ (pn(s) ↔ pn(s′))))

whereα1, . . . , αn is the set of all the sensing actions.

3. Translation of belief change into Modal Logic

We consider a first order Modal Logic with the following modaloperators3:

3. As a matter of simplification we accept the Barcan formula and the converse of the Barcan
formula [FIT 98].
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Act(a, p): whose meaning is thatp holds after performance of the actiona.

Bel(p): whose meaning is that it is believed thatp holds.

To represent the structure of the set of situations we have the axiom schemas:

(ACT 1) Act(a, p ∨ q) ↔ Act(a, p) ∨ Act(a, q)

(ACT 2) Act(a,¬p) ↔ ¬Act(a, p)

These axioms are justified by the following properties of classical first order logic
with equality4:

⊢ ∀s∀a(∀s′(s′ = do(a, s) → p(s′) ∨ q(s′)) ↔ ∀s′(s′ = do(a, s) → p(s′)) ∨
∀s′(s′ = do(a, s) → q(s′)))

⊢ ∀s∀a(∀s′(s′ = do(a, s) → ¬p(s′)) ↔ ¬(∀s′(s′ = do(a, s) → p(s′))))

To define the translation of the successor state axioms we define the functionτ
as follows. To make simpler the definition of the translationit is assumed that each
non fluentp(~t) is replaced by the fluentp(~t, s), and we add the related successor state
axiom:∀s∀a∀~t(p(~t, do(a, s)) ↔ p(~t, s)).

Let us first adopt the following notation:

σp(~x, a, s)
def
= p(~x, do(a, s)) ↔ Γ+

p (~x, a, s) ∨ p(~x, s) ∧ ¬Γ−

p (~x, a, s)

Then(Sp) takes the form∀s∀a∀~xσp(~x, a, s). We haveτ(∀s∀a∀~xσp(~x, a, s)) =
τ(∀a∀~xσp(~x, a, s)) because the result of the translation is considered as a global ax-
iom. If we have for the actions the domain closure axiom∀a(a = α1 ∨ . . .∨a = αn),
we have:

τ(∀a∀~xσp(~x, a, s)) = τ(∀~xσp(~x, a1, s)) ∧ . . . ∧ τ(∀~xσp(~x, an, s))

For everyαi we have:
τ(∀~xσp(~x, αi, s)) = ∀~x(Act(αi, p(~x)) ↔ τ(Γ+

p (~x, αi, s)) ∨ p(~x) ∧ ¬τ(Γ−

p (~x, αi, s)))

Thenτ(Γ+
p ) andτ(Γ−

p ) are defined in the same way asτ(Γ) below.

I) if Γ = ¬Γ1, thenτ(Γ) = ¬τ(Γ1)

II) if Γ = Γ1 ∨ Γ2, thenτ(Γ) = τ(Γ1) ∨ τ(Γ2)

III) if Γ = ∃xΓ1, thenτ(Γ) = ∃xτ(Γ1)

IV) if Γ is an atomic formula:

a) if Γ has the formp(~t, s), thenτ(Γ) = p(~t)

b) if Γ has the formαi = αj

i) if αi andαj are the same constant symbol, thenτ(Γ) = true

ii) if αi etαj are different constant symbols, thenτ(Γ) = false

4. See Theorem 1 in [DEM 02].



From Situation Calculus to Modal Logic 5

The result of the translation of the successor state axiom (1) of the previous section,
if the set of actions isα1, α2, α3 andα4, is equivalent to the set of global axioms:

(2) Act(α1, p) ↔ true

(3) Act(α2, p) ↔ q ∨ p

(4) Act(α3,¬p) ↔ true

(5) Act(α4, p) ↔ p

The axiom(SK) that characterises belief change in the Situation Calculuscorre-
ponds to the following axiom schemas5:

(ACT 3) Act(a, Bel(p)) ↔ Bel(Act(a, p)) if a is not a sensing action.

(ACT 4) pi → Act(αi, Bel(pi)) if αi is the sensing action related topi.

(ACT 5) ¬pi → Act(αi, Bel(¬pi)) if αi is the sensing action related topi.

(ACT 6) Bel(p) → Act(αi, Bel(p)) if αi is a sensing action.

If we consider the translation of these axioms in the Situation Calculus we get the
following formulas:

(act3) ∀s(Bel(p, do(ai, s)) ↔ Bel(Act(ai, p), s))

(act4) ∀s(pi(s) → Bel(pi, do(αi, s)))

(act5) ∀s(¬pi(s) → Bel(¬pi, do(αi, s)))

(act6) ∀s(Bel(p, s) → Bel(p, do(αi, s)))

It is proven in the Annex that the axioms(act3) to (act6) are logical consequences
of the axiom(SK). This guarantees that these axioms are a valid translation of (SK).
Up to now we have not proved that this translation is complete.

4. Extension to revision

The formalisation of belief change proposed by Scherl and Levesque in [SCH 93]
leads to contradictions in the case of revision. To remedy this problem a new definition
of beliefs has been proposed in [SHA 00]. The basic idea is to assign to each situa-
tion a plausibility level and to define belief as truth in the most plausible accessible
situations6.

In formal termspl(s) defines the plausibility level of the situations. It is assumed
that the successors of a given situation have the same plausibility level. That is we
have:

5. In [HER 02] Herzig and Longin have independently proposed the axiom schema (SSA)
which is almost the same as (ACT3).
6. For technical reasons it is said thats is more plausible thans′ if pl(s) < pl(s′).
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(P ) ∀s∀a(pl(do(a, s)) = pl(s))

For the new definition of beliefs we adopt the following notation:

Kmax(s′, s)
def
= K(s′, s) ∧ ∀s′′(K(s′′, s) → pl(s′) ≤ pl(s′′))

The predicateKmax(s′, s) characterises the most plausible accessible situations.
Then we have:

Bel(p, s)
def
= ∀s′(Kmax(s′, s) → p[s′])

For practical reasons we think that the definition of the functionpl cannot be given
by extension, that is to explicitly give thepl(s) value for each possible situation. Then,
we propose to define it by intension, that is to give for each plausibility levell a for-
mulap that characterisesall the situations that have the plausibility levell. A formula
which has this property is characterised by the formula denoted byOBelp(p, l, s):

OBelp(p, l, s)
def
= ∀s′(K(s′, s) ∧ pl(s′) = l ↔ p(s′))

Following the same idea, in Modal Logic we define the modal operator
OBelp(p, l) 7. Then, the definition of plausibility levels in a given application do-
main is defined by the following set of assumptions:

L = {OBelp(p1, l1), . . . ,OBelp(pn, ln)}

It is assumed that the set of plausibility levels is finite, and that for each plausibility
level li there is inL an assumption of the formOBelp(pi, li).

The set of all beliefs is characterised by the formulap which satisfies the property:

(B) ∀l(OBelp(p, l) ∧ ∀pi∀li(OBelp(pi, li) → l ≤ li))

This property is represented by the modal operatorOBel(p). Intuitively OBel(p)
can be read: the set of all beliefs is defined byp. Unfortunately the property(B) is
not expressed in first order modal logic because the quantifier ∀pi quantifies over the
set of propositions. That means that, if we want to remain in first order modal logic,
the link betweenOBel(p) and the set(L) is not defined in the theory we consider.

The modal operatorsOBelp(p, l) and OBel(p) are not operators of a normal
modal logic but operators of a classical modal logic, and their only property is the
inference rule (RE) of substitutivity of equivalent formulas (see [CHE 88]).

Beside these two operators we define the operatorsBelp(p, l) and Bel(p) that
respectively represent what is believed at a given level andwhat is believed. These
two operators obey the properties of a normal modal logic. They are related to the
previous ones by the following axiom schemas:

(OB1) OBel(p) → Bel(p)

7. We adopt the same notationOBelp in the Situation Calculus and in Modal Logic because
we think there is no risk of misunderstanding.
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(OB2) OBelp(p, l) → Belp(p, l)

Now we have to define belief change in this approach.

For that purpose we only have to define the evolution of beliefs that have a given
plausibility level (i.e. the binary operatorsOBelp andBelp) because the set of beliefs
is derived from these plausibility level dependent beliefsvia the property(B).

If a is a non sensing action, since the plausibility levels are the same for the suc-
cessors of a situation, according to(SK) we have the axiom schema:

(ACT 3′) Act(a, Belp(p, l)) ↔ Belp(Act(a, p), l)

If αi is the sensing action that allows to know whetherpi holds, from the definition
of (SK), after performance ofαi a set of beliefs represented byp is restricted top∧pi

if pi holds andp ∧ pi is consistent, and it is restricted top ∧ ¬pi if ¬pi holds and
p ∧ ¬pi is consistent. Beliefs which are not consistent with the “truth value” ofpi are
not “propagated” afterαi. Then, we have the following axiom schema:

(ACT 45′) If αi is a sensing action related topi:
pi → (OBelp(p, l) → Act(αi, OBelp(p ∧ pi, l))) if p ∧ pi is consistent
¬pi → (OBelp(p, l) → Act(αi, OBelp(p ∧ ¬pi, l))) if p ∧ ¬pi is consistent

If a is a non sensing action and if we haveOBelp(p, l), the set of all the beliefs
at the levell after performance ofa is determined by the application of the successor
state axioms. Indeed, since the successor state axioms are global axioms they are
believed, and the axiom schema(ACT 3′) shows how beliefs about the evolution of
the world are equivalent to evolution of beliefs.

For instance, in the example of the previous section the formula (3) represents an
instance of the successor state axiom for the actionα2:

(3) Act(α2, p) ↔ q ∨ p

SinceBelp is a normal modal operator, from the global axiom (3) we can infer:

(6) Belp(Act(α2, p) ↔ q ∨ p, l)

and

(7) Belp(Act(α2, p), l) ↔ Belp(q ∨ p, l)

Also, from(ACT 3′) we have:

(8) Act(α2, Belp(p, l)) ↔ Belp(Act(α2, p), l)

Then, we have:

(9) Act(α2, Belp(p, l)) ↔ Belp(q ∨ p, l)

This example shows how beliefs can be propagated thanks to the successor state
axioms. Then, in general we have the following axiom schema:
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(ACT 7) If a is not a sensing action andq is a sentence that implies every formula
p′ such that we have:OBelp(p, l) → Act(a, Bel(p′, l))
then we have:

OBelp(p, l) → Act(a, OBelp(q, l))

5. Conclusion

We have shown how the basic ideas that support belief change can be translated
from Situation Calculus to Modal Logic. The result of this translation is expressed
by the axiom schemas(ACT 1) to (ACT 6), and by the translation functionτ that
transforms the successor state axioms. A limitation of function τ definition is that it
is based on a domain closure axiom for the set of actions. Also, in the domain closure
axiom we have only considered actions that are represented by constant symbols. We
should investigate in the future how to adapt this axiom in the case where actions are
represented by general terms.

Then, we have proposed an extension of this translation to the case where we deal
with plausibility levels in order to solve the problem of revision. In that case the result
of the translation is represented by the set of axiom schemas: (ACT 1), (ACT 2),
(ACT 3′), (ACT 45′)and (ACT 7). However, there are some important issues that
deserve further work. One of them is to find a formal representation of the fact that
in (L) we assume that we have a complete set of assumptions. Anotherone is that
the link between the modal operatorOBel(p) andOBelp(p, l) requires to quantify
over the propositionspi and over the modal operator indexesli. Finally, in the axiom
schema(ACT 7) the link between the propositionsp andq is not defined inside the
theory. For all these reasons, this proposal should be considered as a preliminary step
for further works.

Acknowledgement. I would like to thank Andreas Herzig and Ivan Varzinczak
for their help in writing this paper.
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Annex

THEOREM 1. — Let φ be a formula of classical first order logic with equality in
which occurs the termt.We noteφ[t] the formulaφ in which a given occurence oft has
been fixed. We noteφ[x] the formula obtained fromφ[t] by replacing this occurence
of t byx. We have:

|= φ[t] ↔ ∀x(x = t → φ[x])

PROOF. — See the proof of Theorem 1 in [DEM 02]. ■

THEOREM 2. — The translation in the Situation Calculus of the axiom schema:
(ACT 3) Act(a, Bel(p)) ↔ Bel(Act(a, p)) if a is not a sensing action, is a logical
consequence of the axiom(SK).

PROOF. — The translation of(ACT 3) in the Situation Calculus gives:

(1) ∀s(Bel(p, do(ai, s)) ↔ Bel(Act(ai, p), s))

We adopt the following notations :

(2) Bel(p, do(ai, s))

(3) Bel(Act(ai, p), s)

We are going to prove that (2) is equivalent to (3).

>From the definitions we have:

(2) ⇔ (4) ∀s′′(K(s′′, do(ai, s)) → p(s′′))

(3) ⇔ (5) ∀s′(K(s′, s) → Act(ai, p, s′))

(5) ⇔ (6) ∀s′(K(s′, s) → ∀s′′(s′′ = do(ai, s
′) → p(s′′)))

Sinceai is not a sensing action, from(SK) we have:
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(7) ∀s∀s′′(K(s′′, do(ai, s)) ↔ ∃s′(K(s′, s) ∧ s′′ = do(ai, s
′)))

Then, from (7) we have:

(4) ⇔ (8) ∀s′′(∃s′(K(s′, s) ∧ s′′ = do(ai, s
′)) → p(s′′))

(8) ⇔ (9) ∀s′(K(s′, s) → ∀s′′(s′′ = do(ai, s
′) → p(s′′)))

Therefore we have(6) ⇔ (9) and(2) ⇔ (3).

■

THEOREM 3. — The translation in the Situation Calculus of the axiom schema:
(ACT 4) pi → Act(αi, Bel(pi)) if αi is the sensing action related topi, is a logical
consequence of the axiom(SK).

PROOF. — The translation of(ACT 4) in the Situation Calculus gives:

(1) ∀s((pi(s) → Bel(pi, do(αi, s)))

We adopt the following notation:

(2) pi(s) → Bel(pi, do(αi, s))

>From the definitions we have:

(2) ⇔ (3) pi(s) → ∀s′′(K(s′′, do(αi, s)) → pi(s
′′))

>From(SK), for the sensing actionαi we have:

(4) ∀s′′(K(s′′, do(αi, s)) ↔ ∃s′(K(s′, s)∧s′′ = do(αi, s
′)∧ (pi(s) ↔ pi(s

′))))

>From (4) we have:

(3) ⇔ (5) pi(s) → ∀s′′(∃s′(K(s′, s) ∧ s′′ = do(αi, s
′) ∧ (pi(s) ↔ pi(s

′))) →
pi(s

′′))

(5) ⇔ (6) ∀s′(pi(s) → (K(s′, s) ∧ (pi(s) ↔ pi(s
′)) → ∀s′′(s′′ = do(αi, s

′) →
pi(s

′′))))

>From the Theorem 1 we have:

(6) ⇔ (7) ∀s′(pi(s) ∧ K(s′, s) ∧ (pi(s) ↔ pi(s
′)) → pi(do(αi, s

′)))

Sensing actions do not change the truth values of the fluent. Then, for each fluent
p we have∀s′(p(do(αi, s

′)) ↔ p(s′)). Therefore, for any formulapi we have:

(8) ∀s′(pi(do(αi, s
′)) ↔ pi(s

′))

>From (8) we have:

(7) ⇔ (9) ∀s′(pi(s) ∧ K(s′, s) ∧ (pi(s) ↔ pi(s
′)) → pi(s

′))

(9) ⇔ (10) ∀s′(K(s′, s) → (pi(s) ∧ (pi(s) ↔ pi(s
′)) → pi(s

′)))

We can easily prove that (11) is a theorem of classical first order logic.

(11) ∀s∀s′((pi(s) ∧ (pi(s) ↔ pi(s
′))) → pi(s

′))
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Therefore, from (11) we have:

(10) ⇔ (12) ∀s′(K(s′, s) → true)

Since (12) is a tautology and (2) is equivalent to (12) we haveproved that (2) is a
tautology. Then, we have (1).

■

THEOREM 4. — The translation in the Situation Calculus of the axiom schema:
(ACT 5) ¬pi → Act(αi, Bel(¬pi)) if αi is the sensing action related topi, is a
logical consequence of the axiom(SK).

PROOF. — The proof is very close to the proof of the Theorem 3. ■

THEOREM 5. — The translation in the Situation Calculus of the axiom schema:
(ACT 6) Bel(p) → Act(αi, Bel(p)) if αi is a sensing action, is a logical conse-
quence of the axiom(SK).

PROOF. — The translation of (ACT6) in the Situation Calculus gives:

(1) ∀s(Bel(p, s) → Bel(p, do(αi, s)))

>From the definitions we have:

(1) ⇔ (2) ∀s(∀s′(K(s′, s) → p(s′)) → ∀s′′(K(s′′, do(αi, s
′′)) → p(s′′)))

We adopt the following notations:

(3) ∀s′(K(s′, s) → p(s′))

(4) ∀s′′(K(s′′, do(αi, s
′′)) → p(s′′))

>From the axiom(SK) for the sensing actionαi we have:

(5) ∀s∀s′′(K(s′′, do(αi, s)) ↔ ∃s′(K(s′, s) ∧ s′′ = do(αi, s
′) ∧ (pi(s) ↔

pi(s
′))))

>From (5) we have:

(4) ⇔ (6) ∀s′′(∃s′(K(s′, s) ∧ s′′ = do(αi, s
′) ∧ (pi(s) ↔ pi(s

′))) → p(s′′))

(6) ⇔ (7) ∀s′(K(s′, s) ∧ (pi(s) ↔ pi(s
′)) → ∀s′′(s′′ = do(αi, s

′) → p(s′′)))

>From the Theorem 1 we have:

(7) ⇔ (8) ∀s′(K(s′, s) ∧ (pi(s) ↔ pi(s
′)) → p(do(αi, s

′)))

Since sensing actions do not change the truth values of the fluents, it is the same
for any formula. Then, we have:

(9) ∀s′(p(do(αi, s
′)) ↔ p(s′))

>From (9) we have:

(8) ⇔ (10) ∀s′(K(s′, s) ∧ (pi(s) ↔ pi(s
′)) → p(s′))
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Therefore we have (3) that implies (10), and (3) implies (4) because (4) is equiva-
lent to (10). This proves that we have (2) and (1). ■


