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ABSTRACTWe propose a translation into Modal Logic of the ideas thatfalise belief change
in the Situation Calculus. This translation is extendedh®d¢ase of revision. In the conclusion
is presented a set of open issues.
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1. Introduction

An interesting formalisation of belief change has been pseg in the framework
of Situation Calculus [SCH 93, SHA 00, LAK 98, SCH 03]. A simaphpproach has
been proposed in [DEM 00]. The Situation Calculus has thatgadvantage to deal
with classical first order logic with equality (except sormeited fragments that make
use of second order) [REI 01]. However, it has this origieattire that some concepts,
like situations and accessibility relations are integtatethe axiomatics while they
only appear in the semantics in Modal Logic. Moreover, ther@ large community
in the field of belief change that deals with Modal Logic. Tisatvhy we think it is
worth to consider how intuitive ideas expressed in Situe@alculus can be translated
into Modal Logic. That was the motivation of the work preshin this papet.

This translation raises several technical problems. Thegdioblem is that actions
and beliefs are represented in two different heterogeneays in Situation Calculus.
Beliefs are represented in terms of accessibility relati@s usual in Modal Logic,
while actions are represented through the function synibthat appears in the terms
of the type situation. The second problem is that to go fromasion Calculus to

1. Another approach has been followed in [DEM 03] which is blawe regression.
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Modal Logic we have to remove situations. The third problesnthiat in Situation
Calculus it is allowed to quantify over variables of the tygmion, while in Modal
Logic each action has the status of an index of a modal operatal we can not
quantify over indexes.

The intuitive ideas to solve these problems are the follgvaines.

For the first problem we can notidethat a formula of the formp(do(a, s)) is
logically equivalent tovs’(s’ = do(a,s) — p(s")) which has the same form as
Vs'(K(s',s) — p(s’)) which is used to represent a belief, and it can be abreviated
by Act(a,p, s), in the same way as the second formula is abreviateBdiyp, s).

For the second problem we have to distinguish situationsateaquantified and
situations that are represented by ground terms. In theaf@seund terms we impose
to all of them to refer to the same initial situaticfy. Atoms of the formp(Sy)
are translated by; atoms of the formp(do(a, Sp)) are translated in a first step by
Act(a,p, So) and then byAct(a, p) (whereAct(a,.) is considered here as a modal
operator); in the same way(do(b, do(a, Sp))) is translated byAct(a, Act(b, p)). In
the case of universally quantified situations, formulasiefformVsp(s) are translated
by p’ wherep' is obtained fron¥sp(s) by removing the universal quantifier and the
situation arguments in all the atoms af The resulting formula’ has the status of
a global axiom in Fitting’s terminology, and we can apply ttezessitation inference
rule to it.

To solve the third problem we have made a strong assumptienadsume that
there is only a finite number of actions. Then, if we acceptraaia closure axiom for
actions, universal quantifiers can equivalently be reprteskby finite conjunctions.
For instanceYap(a) can be represented pya;) A ... A p(ay,).

Independently of these technical problems we have to @smghe intuitive ideas
that support the formalisation of belief change in Situat@@alculus. That will be
presented in more details in the rest of the paper.

2. A brief introduction to Situation Calculus

We briefly recall the ideas that are relevant to the reprasientof belief change.

Predicates whose truth value may change when actions di@mped are called
fluents. They have exactly one argument of the type situdtienlast argument). For
instancep(z1, ..., zn, s), Wheres is of the type situation, represents a fluent.

Arguments of the type situation are constants, or termsefatmdo(a, s), where
a is of the type action anslis of the type situation. They satisfy the following axiom:

(Al) VCLlVQQVSlVSQ(dO(al, 81> = dO((IQ, 52) —a; =ag N\ S; = 52)

2. The formal proof can be found in [DEM 02].
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This axiom forces situations to have the structure of a seeek. In addition it is
assumed that we have unique name axioms for action symbols.

A key idea to solve the frame problem in Situation Calculumisnpose to each
fluent a successor state axiom. For example, we may havetbessor state axiom :

(1) VsVa(p(do(a,)) < a = a1V (a = az Aq(s)) V (p(s) A —(a = as)))

This axiom intuitively says that there is no other actionnthia anda, that can
causep to be true, and there is no other action thgrthat can causg to be false.

The general form of successor state axioms is:
(Sp) VsVaVE(p(Z, do(a, s)) < T} (#,a,5) V (p(i, s) A T, (,a,5)))
whereF; (Z,a,s) andT'; (7, a, s) do not contain any occurence of the functitn

Beliefs are represented by formulas nofee (p, s), whose meaning is that in the
situations it is believed thap holds. We have:

Bel(p, s) def Vs (K(s',8) — p[s'])
where the predicat& (s, s) plays the same role as an accessibility relation.

To define belief change we have to characterise what is thef setessible situa-
tions after performance of an action. Two kinds of actionsetta be considered. For
non sensing actions the new accessible situations are tcessors of the accessible
ones. For sensing actions the new accessible situatiornthesiccessors of those
situations that are consistent with the “sensed propefgt.instance, if the sensing
actionq; allows to knows whetheg; holds in the situation, all the situations which
are not consistent with the truth valuespgfin s have no successor. In addition it is

assumed that sensing actions do not change the truth vaflueots. This assumption
has to be encoded in the definition of successor state axioms.

The evolution of the set of accessible situations is definetié following axiom:

(Sk) VsVs"Va(K (s",do(a,s)) < Is'(K(s',s) A s" = do(a,s") A (
(Hla=a1)A...A=(a=ay))
Va=oa1A(pi(s) < pi(s))

Va=a, A (pa(s) < pu(s'))))
whereaq, ..., a, is the set of all the sensing actions.

3. Trandation of belief changeinto Modal L ogic

We consider a first order Modal Logic with the following modalerators:

3. As a matter of simplification we accept the Barcan formuld #e converse of the Barcan
formula [FIT 98].
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Act(a, p): whose meaning is thatholds after performance of the actian

Bel(p): whose meaning is that it is believed thetolds.

To represent the structure of the set of situations we havattom schemas:

(ACT1) Act(a,pV q) < Act(a,p) V Act(a,q)

(ACT2) Act(a,—p) < —-Act(a,p)

These axioms are justified by the following properties o$sieal first order logic
with equality*:

F VsVa(Vs'(s" = do(a,s) — p(s") V q(s')) < Vs'(s' = do(a,s) — p(s’)) V
Vs'(s" = do(a, s) — q(s")))

F VsVa(Vs' (s’ = do(a, s) — —p(s')) < —(Vs' (s’ = do(a, s) — p(s))))

To define the translation of the successor state axioms weedtfe functionr
as follows. To make simpler the definition of the translatiibis assumed that each

non fluentp(#) is replaced by the fluent(z, s), and we add the related successor state
axiom: VsVaVi(p(t, do(a, s)) < p(t, s)).

Let us first adopt the following notation:

op(F,a,5) L p(&,do(a,s)) T (Z,a,5) V p(Fs) AT, (&, a,s)

Then(S,) takes the formsVaVio, (¥, a,s). We haver(VsVaVZo,(Z,a,s)) =
T(Va¥Zo,(Z, a, s)) because the result of the translation is considered as algiab
iom. If we have for the actions the domain closure axigffa = a; V... Va = ),
we have:

T(VaVZo,(Z, a, s)) = T(VEo,(Z, a1, 8)) A ... AT(VZ0op(Z, an, 5))
For everya; we have:
7(VZo,(Z, i, 5)) = VE(Act(aq, p(Z)) < T(UF (T, a4, 5)) V p(Z) A —~7(T, (Z, i, 5)))
Thenr (') and7 (T, ) are defined in the same wayad") below.
l)if T' = =I'y, then7(T") = —7(I'1)
)if T =T VI, thent(T') = 7('1) vV 7(Ta)
M) if T = 32Ty, thent(T') = Jz7(T)
IV) if T is an atomic formula:
a) if I has the fornp(%, s), thenr (") = p(%)
b) if I" has the formy; = «;

i) if ; anda; are the same constant symbol, thél') = true
ii) if «; eta; are different constant symbols, theff) = false

4. See Theorem 1 in [DEM 02].
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The result of the translation of the successor state axigpwf {he previous section,
if the set of actions isv, as, ag anday, is equivalent to the set of global axioms:

(2) Act(aq,p

(3) Act(ag,p) <> qVp
(4) Act(
(5) Act(aa,p) < p

The axiom(Sk) that characterises belief change in the Situation Caladuse-
ponds to the following axiom schemzs

) < true

ag, p) > true

ACT3) Act(a, Bel(p)) < Bel(Act(a,p)) if ais nota sensing action.
ACT4) p; — Act(ay, Bel(p;)) if «; is the sensing action relatedza
ACTS5) —p; — Act(ay, Bel(—p;)) if «; is the sensing action relatedzg
ACT6) Bel(p) — Act(a;, Bel(p)) if oy is a sensing action.

~—~ o~ —~

If we consider the translation of these axioms in the Situa€@alculus we get the
following formulas:

(act3) Vs(Bel(p,do(ai, s)) < Bel(Act(a;,p), s))

(actd) Vs(pi(s) — Bel(pi,do(ay, s)))

(actb) Vs(—p;(s) — Bel(—p;,do(a, s)))

(act6) Vs(Bel(p,s) — Bel(p,do(a;, s)))

Itis proven in the Annex that the axiorsct3) to (act6) are logical consequences

of the axiom(Sk ). This guarantees that these axioms are a valid translaftio$0).
Up to now we have not proved that this translation is complete

4. Extensiontorevision

The formalisation of belief change proposed by Scherl angttgue in [SCH 93]
leads to contradictions in the case of revision. To remeidypitoblem a new definition
of beliefs has been proposed in [SHA 00]. The basic idea iss$iga to each situa-
tion a plausibility level and to define belief as truth in theshplausible accessible
situations’.

In formal termspl(s) defines the plausibility level of the situatienlt is assumed
that the successors of a given situation have the same lpildydevel. That is we
have:

5. In [HER 02] Herzig and Longin have independently propodeel axiom schema (SSA)
which is almost the same as (ACT3).
6. For technical reasons it is said thas more plausible thas if pi(s) < pl(s’).
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(P) VsVa(pl(do(a, s)) = pl(s))
For the new definition of beliefs we adopt the following naiat

Kuman(s',s) & K(s,s) AVs" (K (5", 5) — pl(s) < pl(s"))
The predicatdl,,,..(s', s) characterises the most plausible accessible situations.
Then we have:

Bel(p, s) def Vs (Kmaz (', 8) — p[s'])

For practical reasons we think that the definition of the fiompl cannot be given
by extension, that is to explicitly give thé(s) value for each possible situation. Then,
we propose to define it by intension, that is to give for eacugibility levell a for-
mulap that characterises| the situations that have the plausibility leveA formula
which has this property is characterised by the formula teghbyO Belp(p, I, s):

OBelp(p,1,5) & vs'(K(s',5) Apl(s') = 1 = p(s"))

Following the same idea, in Modal Logic we define the modal rajpe
OBelp(p,1) 7. Then, the definition of plausibility levels in a given agglfion do-
main is defined by the following set of assumptions:

L = {OBelp(p1. ), ..., OBelp(pn. 1)}

Itis assumed that the set of plausibility levels is finited #mat for each plausibility
levell; there is inL an assumption of the for@ Belp(p;, ;).

The set of all beliefs is characterised by the formulehich satisfies the property:
(B) VI(OBelp(p,1) NVp;Vl;(OBelp(pi, ;) — 1 < 1;))

This property is represented by the modal operé&tBrel(p). Intuitively O Bel(p)
can be read: the set of all beliefs is definedgbyUnfortunately the propertyB) is
not expressed in first order modal logic because the quantjfiequantifies over the
set of propositions. That means that, if we want to remainrgt éirder modal logic,
the link betweerO Bel(p) and the sefL) is not defined in the theory we consider.

The modal operator® Belp(p,l) and OBel(p) are not operators of a normal
modal logic but operators of a classical modal logic, andr thely property is the
inference rule (RE) of substitutivity of equivalent forrasl(see [CHE 88]).

Beside these two operators we define the operaBei®(p,!) and Bel(p) that
respectively represent what is believed at a given levelvamat is believed. These
two operators obey the properties of a normal modal logiceyTére related to the
previous ones by the following axiom schemas:

(OB1) OBel(p) — Bel(p)

7. We adopt the same notati@Belp in the Situation Calculus and in Modal Logic because
we think there is no risk of misunderstanding.
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(OB2) OBelp(p,l) — Belp(p,1)
Now we have to define belief change in this approach.

For that purpose we only have to define the evolution of belieft have a given
plausibility level (i.e. the binary operatotsBelp and Belp) because the set of beliefs
is derived from these plausibility level dependent beliéésthe property B).

If a is a non sensing action, since the plausibility levels aeestime for the suc-
cessors of a situation, according(t®x ) we have the axiom schema:

(ACT3") Act(a, Belp(p,l)) < Belp(Act(a,p),l)

If «; is the sensing action that allows to know whethghnolds, from the definition
of (Sk), after performance af; a set of beliefs represented pys restricted te A p;
if p; holds andp A p; is consistent, and it is restricted toA —p; if —p; holds and
p A —p; is consistent. Beliefs which are not consistent with thetttivalue” ofp; are
not “propagated” aftety;. Then, we have the following axiom schema:

(ACT45") If o is a sensing action related e
p; — (OBelp(p,1) — Act(a;, OBelp(p A p;,1))) if p A p; is consistent
—p; — (OBelp(p,l) — Act(a;, OBelp(p A —p;, 1)) if p A —p; is consistent

If a is a non sensing action and if we haWelp(p, 1), the set of all the beliefs
at the level after performance ai is determined by the application of the successor
state axioms. Indeed, since the successor state axiomdodra gxioms they are
believed, and the axiom schertdC'T'3") shows how beliefs about the evolution of
the world are equivalent to evolution of beliefs.

For instance, in the example of the previous section the ditar{8) represents an
instance of the successor state axiom for the action

(3) Act(ag,p) < qVp

SinceBelp is a normal modal operator, from the global axiom (3) we cédgrin
(6) Belp(Act(az,p) < qV p,l)

and

(7) Belp(Act(asg,p),l) < Belp(qV p,l)

Also, from (ACT3’) we have:

(8) Act(aa, Belp(p,l)) < Belp(Act(ag,p),l)

Then, we have:

(9) Act(az, Belp(p,1)) < Belp(qV p,1)

This example shows how beliefs can be propagated thanke teuitcessor state
axioms. Then, in general we have the following axiom schema:
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(ACTT7) If ais not a sensing action ards a sentence that implies every formula
p’ such that we have? Belp(p, 1) — Act(a, Bel(p',1))
then we have:

OBelp(p,1) — Act(a,OBelp(q,l))

5. Conclusion

We have shown how the basic ideas that support belief chaangée translated
from Situation Calculus to Modal Logic. The result of thianslation is expressed
by the axiom schemasACT1) to (ACT6), and by the translation function that
transforms the successor state axioms. A limitation of fioncr definition is that it
is based on a domain closure axiom for the set of actions., Xighe domain closure
axiom we have only considered actions that are represegtedrstant symbols. We
should investigate in the future how to adapt this axiom sndhse where actions are
represented by general terms.

Then, we have proposed an extension of this translatioretoake where we deal
with plausibility levels in order to solve the problem of igen. In that case the result
of the translation is represented by the set of axiom sche&§T1), (ACT?2),
(ACT3'), (ACT45)and (ACT'7). However, there are some important issues that
deserve further work. One of them is to find a formal represtént of the fact that
in (L) we assume that we have a complete set of assumptions. Arwthes that
the link between the modal operatOBel(p) and O Belp(p, 1) requires to quantify
over the propositiong; and over the modal operator indexgsFinally, in the axiom
schema ACT'7) the link between the propositiopsandgq is not defined inside the
theory. For all these reasons, this proposal should be deresi as a preliminary step
for further works.
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for their help in writing this paper.
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Annex

THEOREM 1. — Let ¢ be a formula of classical first order logic with equality in
which occurs the termiWe notep|t] the formulap in which a given occurence ohas
been fixed. We notglz] the formula obtained fronp|[¢] by replacing this occurence
oft by z. We have:

= ¢lt] « V(e =t — dla])
PROOF. — See the proof of Theorem 1 in [DEM 02]. ]

THEOREM 2. — The translation in the Situation Calculus of the axiom schem
(ACT3) Act(a, Bel(p)) « Bel(Act(a,p)) if a is not a sensing action, is a logical
consequence of the axioffix ).

PROOF. — The translation of ACT'3) in the Situation Calculus gives:
(1) Vs(Bel(p,do(a;,s)) < Bel(Act(a;,p),s))
We adopt the following notations :
(2) Bel(p,do(a;,s))
(3) Bel(Act(ai,p),s)
We are going to prove that (2) is equivalent to (3).
>From the definitions we have:
(2) & (4) Vs"(K(s",do(ai, s)) — p(s”))
(3) & (5) Vs'(K(s',s) — Act(ai,p,s"))
(5) & (6) Vs'(K(s',s) = Vs'(s" = do(a;,s') — p(s")))

Sincea; is not a sensing action, fro(%x ) we have:
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(7) VsVs"(K(s",do(a;, s)) < 3s'(K(s',s) A s = do(a;,s")))
Then, from (7) we have:

(4) & (8) Vs"(3s'(K(s',8) N s" = do(as,s")) — p(
(8) = (9) Vs'(K(s',5) — Vs"(s" = do(ai, s') — p(s")))
Therefore we havé&) < (9) and(2) < (3).

VA
~
<

~—
~—

THEOREM 3. — The translation in the Situation Calculus of the axiom schem
(ACT4) p; — Act(wy, Bel(p;)) if «; is the sensing action related g, is a logical
consequence of the axioffix ).

PROOF. — The translation of ACT'4) in the Situation Calculus gives:

(1) Vs((pi(s) — Bel(p;, do(a;, s)))

We adopt the following notation:

(2) pi(s) — Bel(p;, do(a, s))

>From the definitions we have:

(2) & (3) pi(s) — Vs"(K(s", do(eu, s)) — pi(s”))

>From (S ), for the sensing action; we have:

(4) Vs"(K(s",do(;,8)) « 3’ (K (s',5)Ns" = do(a, s') A (pi(s) < pi(s'))))

>From (4) we have:

(3) & (5) pi(s) — Vs"(Is'(K(s',5) A 5" = do(ai, s") A (pils) < pi(s'))) —
pi(s"))

(5) & (6) Vs'(pi(s) — (K(s',8) A (pi(s) < pi(s')) — Vs"(s" = do(a;,8") —
pi(s"))))

>From the Theorem 1 we have:

(6) & (7) Vs'(pi(s) A K (s',5) A (pils) < pi(s')) — pido(ai, 7))

Sensing actions do not change the truth values of the fludren,Tfor each fluent
p we havevs’ (p(do(a;, ")) < p(s')). Therefore, for any formulg; we have:

(8) Vs'(pi(do(as, s")) < pi(s'))

>From (8) we have:

(7) < (9) Vs'(pi(s) A K (s',5) A (pi(s) < pi(s') — pi(s'))

(9) & (10) Vs'(K(s',s) = (pi(s) A (pi(s) <= pi(s')) — pi(s')))

We can easily prove that (11) is a theorem of classical fidgiologic.
(11) VsVs'((pi(s) A (pi(s) < pi(s))) — pi(s'))
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Therefore, from (11) we have:
(10) & (12) Vs'(K(s',s) — true)

Since (12) is a tautology and (2) is equivalent to (12) we lmewed that (2) is a
tautology. Then, we have (1).

THEOREM 4. — The translation in the Situation Calculus of the axiom schem
(ACT5) —p; — Act(a;, Bel(—p;)) if a; is the sensing action related {9, is a
logical consequence of the axiqifix ).

PROOF. — The proofis very close to the proof of the Theorem 3. ]

THEOREM 5. — The translation in the Situation Calculus of the axiom schem
(ACT6) Bel(p) — Act(ay, Bel(p)) if «; is a sensing action, is a logical conse-
quence of the axiortSx).

PrROOF. — The translation of (ACT6) in the Situation Calculus gives
(1) Vs(Bel(p,s) — Bel(p,do(ay, s)))
>From the definitions we have:
(1) & (2) Vs(Vs'(K (s, 5) — p(s') — Vs" (K (5", do(ai, 5")) — p(s")))
We adopt the following notations:
(3) Vs'(K(s',5) = p(s)))
(4) Vs"(K(s", do(ev,s")) — p(s"))
>From the axion{Sk) for the sensing action; we have:
(5) VsVs"(K(s",do(ay,s)) < Ts'(K(s',s) As" = do(ay,s') A (pi(s) <
pi(s))))
>From (5) we have:
(4) & (6) Vs"(3s'(K(s',8) A s" = do(eu, s') A (pi(s) < pi(s'))) — p(s”))
(6) < (7) Vs'(K(s,5) A (pis) < pi(s')) — Vs"(s" = do(a, s") — p(s")))
>From the Theorem 1 we have:
(7) & (8) Vs (K(s',8) A (pi(s) < pi(s)) — p(do(as, s')))

Since sensing actions do not change the truth values of taetfluit is the same
for any formula. Then, we have:

(9) Vs'(p(do(ci, s')) < p(s'))
>From (9) we have:
(8) < (10) Vs'(K (s, s) A (pi(s) < pi(s)) — p(s))
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Therefore we have (3) that implies (10), and (3) implies @duse (4) is equiva-
lent to (10). This proves that we have (2) and (1). [ ]



