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Abstract

Rough set theory and belief function theory, two popular mathematical frame-
works for uncertainty representation, have been widely applied in different set-
tings and contexts. Despite different origins and mathematical foundations, the
fundamental concepts of the two formalisms (i.e., approximations in rough set
theory, belief and plausibility functions in belief function theory) are closely re-
lated. In this survey article, we review the most relevant contributions studying
the links between these two uncertainty representation formalisms. In partic-
ular, we discuss the theoretical relationships connecting the two approaches,
as well as their applications in knowledge representation and machine learning.
Special attention is paid to the combined use of these formalisms as a way of
dealing with imprecise and uncertain information. The aim of this work is, thus,
to provide a focused picture of these two important fields, discuss some known
results and point to relevant future research directions.

Key words: Rough set theory, Evidence theory, Belief functions, Uncertainty
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1. Introduction

Many mathematical formalisms to represent and manage uncertainty have
been proposed and studied in the literature, starting from probability theory and
including, among others, imprecise probabilities [4, 103], fuzzy set theory [123],
possibility theory [124], rough set theory [64] and belief functions [22, 74]. These
latter two, that is, rough set theory and belief function theory, represent par-
ticularly important examples.

Rough set theory, originally proposed by Pawlak [64], is a set-theoretic uncer-
tainty model that allows one to study different forms of uncertainty (including:
indiscernibility, granularity and ambiguity), as induced by a relation among
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objects of interest representing their mutual indiscernibility (i.e., equality, sim-
ilarity). By contrast, belief function theory, first introduced by Dempster [22]
and then formalized by Shafer [74], is a framework for representing and reason-
ing with uncertain information based on non-additive measures, which can be
seen as an extension of set theory and probability theory [28].

Despite having had more or less orthogonal developments, the formalisms of
rough set theory and belief functions are strongly related. Indeed, a theoretical
relationship between the two formalisms was already noted by Pawlak [65],
and further studied during the following years [46, 88, 107, 118, 127], leading
to potential applications (mainly driven by the translation of properties and
tools from belief functions to rough sets), especially in the fields of knowledge
representation and machine learning.

In this survey article, we present a review of the most relevant contributions
at the intersection of rough set and belief function theories focusing, in partic-
ular, on the theoretical contributions linking these two formalisms, as well as
on the applications (both theoretical and practical) of such results in the areas
of knowledge representation and machine learning. With respect to knowledge
representation, we highlight the contributions providing theoretical links and
relationships among the mathematical formalisms of rough set and belief func-
tion theories, as well as results highlighting the combined use of the two theories
to represent uncertain data. From the machine learning viewpoint, we highlight
the most relevant contributions providing a direct application of the above men-
tioned theoretical results, with special emphasis on the applications of the two
formalisms to clustering and learning from uncertain or imprecise data.

The rest of the paper is structured as follows. In Section 2 we quickly review
the basics of belief function and rough set theories. In Section 3 we recall the
main theoretical relationships among the two formalisms and their application
to knowledge representation. In particular, in Section 3.1 we discuss results
related to Pawlak’s rough set model, in Section 3.2 we consider the extensions
of the previous results to more general rough set models, while in Section 3.3
we discuss the use of rough sets and belief functions to model uncertain and
imprecise data. In Section 4 we focus on applications in Machine Learning: in
particular, the relationships between evidential and rough set-based clustering
models are discussed in Section 4.1, where we also provide new results on the
link between credal partitions and three-way clustering. In Sections 4.2 and 4.3,
we discuss applications to the management of data affected by uncertainty,
respectively, in the conditional and decision attributes.

2. Background

In this section, we provide the necessary background material on belief func-
tions and rough sets. In particular, we recall the basic notions of belief func-
tion theory in Section 2.1, including the definition of belief and plausibility
functions, the relationship of the model with other uncertainty representation
frameworks, the definitions of the main combination and transformation meth-
ods, as well as the basic concepts concerning the application of belief function
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theory to decision-making and clustering. In Section 2.2, we first introduce
Pawlak’s classical rough set model and its main extensions; we then summarize
the applications of rough set theory in feature selection and classification, as well
as the basic concepts on rough clustering and related soft clustering models.

2.1. Basic notions on Belief Functions

Belief function theory (also referred to as Dempster-Shafer theory or evidence
theory) is a general mathematical framework for uncertainty representation and
management, first proposed by Dempster and Shafer [22, 74] (see also [28] for a
recent introduction to belief function theory). Formally, we have the following
definitions.

Definition 2.1. Let X be a finite set and 2X the corresponding power set. A
basic belief assignment (bba) is a function m : 2X 7→ [0, 1] s.t.

∑
A∈2X m(A) =

1. If m(∅) 6= 0, then we say that the bba is unnormalized.

Starting from a bba, we can define two other set functions, namely the belief
and plausibility functions:

Definition 2.2. Let m be a bba. Then, the belief and plausibility functions,
Bel : 2X 7→ [0, 1] and Pl : 2X 7→ [0, 1] are defined, respectively, as:

Bel(A) =
∑

B:∅6=B⊆A

m(B) (1)

Pl(A) =
∑

B:B∩A 6=∅

m(B). (2)

It is easy to observe that Bel and Pl are dual of each other, that is Bel(A) =
1−m(∅)−Pl(Ac) and Pl(A) = 1−m(∅)−Bel(Ac). Given a bba, we can define
the collection of focal sets Fm = {A ∈ 2X : m(A) 6= 0}, i.e., the sets for which
the basic belief assignment is greater than 0. If m(A) = 1 for some A ⊆ X,
then m is said to be logical.

Example 2.1. Let X = {a, b, c} and let m : 2X 7→ [0, 1] be a bba defined by
m({a}) = 0.1, m({b}) = 0.2, m({b, c}) = 0.3 and m(X) = 0.4. The focal sets
of m are Fm = {{a}, {b}, {b, c}, X}. Then, taking for example A = {a, c}, we
can compute the belief Bel(A) = 0.1, and plausibility Pl(A) = 0.8.

Given two bbas, m1 and m2, we can define their combination (also, orthog-
onal sum) through the so-called Dempster’s rule of combination, namely:

m1 ⊕m2(A) =
1

1−K(m1,m2)

∑
B,C:B∩C=A

m1(B) ·m2(C), (3)

where K(m1,m2) =
∑
A,B:A∩B=∅m1(A) · m2(B) is the conflict between m1

and m2. If K(m1,m2) = 1, then the combination m1 ⊕m2 is undefined. The
rule of combination ⊕ assumes that both sources of information m1,m2 can be
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considered as reliable. This assumption is weakened in the disjunctive rule [23,
85], which only assumes that at least one of the two bbas is reliable:

m1©∪ m2(A) =
∑

B,C:B∪C=A

m1(B) ·m2(C). (4)

Example 2.2. Consider the bba defined in Example 2.1, and let m′ be defined as
m′({a, c}) = 0.6 and m(X) = 0.4. Then, m∗ = m⊕m′ is defined as m∗({a}) =
0.11, m∗({b}) = 0.09, m∗({c}) = 0.21, m∗({a, c}) = 0.27, m∗({b, c}) = 0.14 and
m∗(X) = 0.18. On the other hand, m† = m©∪m′ is defined as m†({a, c}) = 0.06
and m†(X) = 0.94.

Discussing the connections of belief function theory with other uncertainty
representation formalisms, we recall that if the focal sets are all singletons,
then m is said to be Bayesian: in this case, m is equivalent to a probability
distribution and, for each A ⊆ X, it holds that Bel(A) = Pl(A). In this
sense, belief function theory can be understood as a generalization of probability
theory. Indeed, if m1 is a Bayesian bba and m2 is logical, it can be easily seen
that the result of m1 ⊕m2 is equivalent to probabilistic conditioning.

Furthermore, it can also be shown that belief functions are related to impre-
cise probabilities. Indeed, any belief function Bel (and the corresponding bba
m) can be uniquely associated to the (convex) set of probabilities that dominate
(i.e., are point-wise greater than) Bel. Namely,

P(m) = {P : ∀A ⊆ X,P (A) ≥ Bel(A)}. (5)

Thus, in the particular case where Bel is Bayesian, the set Pm contains exactly
Bel as unique element.

If, on the other hand, the focal sets are nested (i.e. for each A,B ∈ Fm,
either A ⊆ B or B ⊆ A) then m is said to be consonant, and it can be shown
that Bel is a necessity measure and Pl is a possibility measure [28]. Thus,
belief function theory can also be understood as a generalization of possibility
theory [124]. However, we note that the two theories differ in their semantics
and in certain formal aspects [37]. In particular, Dempster’s rule (3) does not
preserve consonance and is, therefore, not compatible with possibility theory.

Starting from a bba m, we can define mappings that transform m into a
probability distribution. In particular, the pignistic probability [83, 85], PBetm ,
based on m is defined as:

PBetm(x) =
∑
A:x∈A

m(A)

|A|
, (6)

for all x ∈ X. Similarly, the plausibility probability function [75, 102], PPlm , is
defined as:

PPlm(x) =
Pl({x})∑
y∈X Pl({y})

. (7)
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Example 2.3. Let m be the bba defined in Example 2.1. Then PBetm(a) = 0.23̄,
PBetm(b) = 0.483̄ and PBetm(c) = 0.283̄. On the other hand, PPlm(a) = 0.24,
PPlm(b) = 0.43 and PPlm(c) = 0.33.

The two transformations generally yield different results and satisfy different
properties. For example, it has been shown that the plausibility transform is the
only probabilistic transformation of belief functions compatible with Dempster’s
rule [19], in the sense that

PPlm1⊕m2
= PPlm1

⊗ PPlm2
, (8)

where, for any two probability distribution P1, P2, the orthogonal product is
defined as:

P1 ⊗ P2(x) =
P1(x) · P2(x)∑
x∈X P1(x) · P2(x)

.

On the other hand, the pignistic transform is the only transformation from belief
functions to probability distributions which is linear [84], i.e.,

PBetαm1+(1−α)m2
= αPBetm1

+ (1− α)PBetm2
(9)

2.1.1. Decision-making with Belief Functions

In this section, we recall some basic concepts of decision-making based on
belief function theory [24]. Assume D = {d1, . . . , dn} is a set of states of nature
or classes, and F = {f1, ..., fk} is a set of acts. In the following, we assume
that F ⊆ 2D, where f ∈ F with |f | > 1 represents a partial classification
(or, partial assignment). We consider a utility function U : D × F 7→ [0, 1],
where the entry U(d, f) corresponds to the utility of selecting act f when the
true class is d. We will assume that, for each d ∈ D, U(d, {d}) = k, and, for
d′ 6= d, U(d, {d}) > U(d, {d′}). The information about the utility function can
be expressed in matrix notation, as shown in the following example.

Example 2.4. Let D = {1, 2, 3} and F = {1, 2, 3}. Then, Table 1 represents
the utility function defined by U(d, d) = 1 and, for d′ 6= d, U(d, d′) = 0.

Table 1: An example of utility matrix

F
D

1 2 3

1 1 0 0
2 0 1 0
3 0 0 1

Starting from a basic utility function U : D × D 7→ [0, 1], if we want to
consider also the utility of partial assignments U has to be extended to D× 2D.
Various ways for doing so have been considered in the literature: Campagner et
al. [10] considered an approach based on arbitrary anti-tone functions, while Ma
et al. [57] considered an approach based on Ordered Weighted Average (OWA)
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operators [111]. According to this latter approach, having fixed the utility
function for the singleton acts, the extended utility function is controlled by a
single parameter α, called imprecision tolerance, which interpolates between the
maximum and the minimum OWA operators (see [57] for further details).

Example 2.5. Starting from Table 1, we want to extend the corresponding
utility function to D× 2D. Assume that we adopt the OWA-based approach and
set α = 0.75 (thus, we consider the OWA operator which is half-way between
the maximum and the average), then the extended utility function is represented
in Table 2.

Table 2: An example of extended utility matrix

F
D

1 2 3

1 1 0 0
2 0 1 0
3 0 0 1
{1, 2} 0.75 0.75 0
{1, 3} 0.75 0 0.75
{2, 3} 0 0.75 0.75
{1, 2, 3} 0.67 0.67 0.67

In any case, as long as d ∈ f , it must hold that U(d, f) ≥ 1
|f | (otherwise,

a rational decision-making agent would always prefer choosing a precise act at
random, rather than a partial assignment).

Assume, then, that the knowledge of a decision-making agent is expressed
through a bba m : 2D 7→ [0, 1] on the power set of the classifications. In the
standard decision-theoretic setting, a preference among acts can be determined
by means of the expected utility criterion. Different generalizations of this
criterion to the setting of belief function theory [24] have been considered, here
we recall the following:

– Lower Expected Utility : E(f) =
∑
B⊆2D m(B) mind∈B U(d, f);

– Upper Expected Utility : E(f) =
∑
B⊆2D m(B) maxd∈B U(d, f);

– Hurwicz Expected Utility : Eβ(f) = βE(f) + (1− β)E(f), with β ∈ [0, 1]

Each of these criteria determines a total preorder over the acts: namely, given
an expected utility function E among {E,E,Eβ}, f1 ≥ f2 iff E(f1) ≥ E(f2). A
decision rule can then be obtained by selecting (one of) the acts with maximal
expected utility.

Example 2.6. Consider the utility function given in Table 2 and let m be the
bba defined by m(1) = 0.2, m({1, 3}) = 0.4, m({2, 3}) = 0.2, m(D) = 0.2.
Based on the lower and upper expected utility criteria we get that:
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– E(1) = 0.2, E(1) = 0.8;

– E(2) = 0, E(2) = 0.4;

– E(3) = 0, E(3) = 0.8;

– E({1, 2}) = 0.15, E({1, 2}) = 0.75;

– E({1, 3}) = 0.45, E({1, 3}) = 0.75;

– E({2, 3}) = 0.15, E({2, 3}) = 0.75;

– E(D) = 0.67, E(D) = 0.67;

So, according to the lower expected utility criterion we have:

D > {1, 3} > 1 > {1, 2} = {2, 3} > 2 = 3

while, based on the upper expected utility criterion we have:

1 = 3 > {1, 2} = {1, 3} = {2, 3} > D > 2

Thus, according to the Hurwicz expected utility criterion we get that 1 is the
optimal act as long as β ≤ 2

9 , while if β > 2
9 the optimal act is D (i.e., the most

imprecise classification).

2.1.2. Evidential Clustering

In this section we recall the basic definitions of evidential clustering. LetX =
{x1, . . . , xN} be a set of objects, and C = {c1, ..., cn} a set of clusters. Then, a
credal partition [34] is a collection of bbas {mx}x∈X , where for each x it holds
that mx : 2C 7→ [0, 1] and

∑
A∈2C mx(A) = 1. If for some x ∈ X it holds that

mx(∅) 6= 0, then we say that the credal partition is unnormalized. Irrespective of
the specific evidential algorithm used (see e.g. [3, 25, 27, 31, 34, 51, 59, 60, 128],
or also the recent review [30]), the main goal of evidential clustering models
is to induce a credal partition from the data [29]. This credal partition can be
interpreted as a soft clustering of the data, i.e., the bbas represent the uncertain
assignment of the objects to the clusters.

Example 2.7. Let X = {x1, . . . , x5} and C = {c1, c2, c2}. Then, an example
of evidential clustering is the following:

– mx1
({c1}) = 1;

– mx2({c1}) = 0.8,mx2(C) = 0.2;

– mx3
({c2, c3}) = 1;

– mx4
({c2}) = 1;

– mx5
({c3}) = 0.4,mx5

(C) = 0.6.
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It has been shown [29] that evidential clustering is a very general framework,
extending other clustering approaches, obviously including hard clustering, but
also many other soft clustering approaches like fuzzy clustering [7], rough clus-
tering (see Section 2.2.3) and possibilistic clustering [49]. In Section 4.1, we will
explore the relationships among evidential clustering and rough clustering, as
well as related approaches.

2.2. Basic Notion on Rough Sets

The classical model of rough set theory, first defined by Pawlak [64], is based
on the study of so-called information tables, namely:

Definition 2.3 ([64, 66]). An information table is a tuple S = (X,Att, V, F )
where X is a finite set of objects, Att is a finite set of attributes, V = ∪a∈AttVa
where Va is the set of values of attribute a and |Va| > 1, F is a function mapping
objects and attributes to values, that is F : X ×A 7→ V .

A decision table is an information table where the attributes are divided into
two groups C ∪D, with C condition attributes, which represent the covariates
or predictors, and D decision attributes, which represent the target features.

Example 2.8. An example of decision table is given in Table 3, where condition
attributes are {Temperature, Pressure, Headache, Muscle Pain} and the decision
attribute is Disease.

Table 3: Example of decision table.

Patient Temperature Pressure Headache Muscle Pain Disease
p1 very high 2 yes yes A
p2 high 3 no yes B
p3 normal 1 yes no NO
p4 high 2 yes yes NO
p5 high 2 yes yes A

Given an information (or decision) table, the most basic notion in rough set
theory is that of an indiscernibility relation IB with respect to a set of attributes
B ⊆ Att. Such a relation intuitively represents the fact two distinct objects may
be indistinguishable as a consequence of the chosen representation language (i.e.,
the selected set of attributes B). Thus, this can be formally defined as

∀x, y ∈ X, xIBy iff ∀a ∈ B, F (x, a) = F (y, a).

This relation is an equivalence one, which partitions X into equivalence classes
[x]B that constitute granules of information. Due to lack of knowledge, we are
not able to distinguish objects inside the granules, thus, it can happen that
not all subsets of X can be precisely characterized in terms of the available
attributes B.

8



Example 2.9. Let us consider the table in Example 2.8 and let

B = {Pressure,Headache}.

Then, we have three equivalence classes: {p1, p4, p5},{p2} and {p3}. The set of
patients {p1, p2} cannot be completely characterized, in the sense that it is not
the union of equivalence classes. That is to say, the two attributes in B are not
sufficient to describe the two patients p1 and p2.

However, any set H ⊆ X can be approximated by a lower and an upper
approximation. Intuitively, the lower approximation L(H) of a set H collects all
objects which are surely contained in H: that is, L(H) contains all objects whose
equivalence class is inside H. On the other hand, the upper approximation
U(H) collects all objects which are compatible with H: that is, U(H) contains
all objects whose equivalence class is not disjoint from H. Formally, the two
approximations can be defined as

LB(H) = {x : [x]B ⊆ H}, (10a)

UB(H) = {x : [x]B ∩H 6= ∅}. (10b)

The pair (LB(H), UB(H)) is called a rough set1.
Clearly, we have L(H) ⊆ H ⊆ U(H), which justifies the names lower/upper

approximations. Moreover, the boundary is defined as the collection of objects
belonging to the upper approximation but not to the lower approximation, i.e.,
Bnd(H) = U(H) \ L(H), while the exterior is the collection of objects not
belonging to the upper approximation: E(H) = U c(H). The interpretation
attached to these regions is that the objects in the lower approximation surely
belong to H, the objects in the exterior surely do not belong to H and the
objects in the boundary possibly belong to H. Hence, the boundary represents
the uncertainty on the domain we are describing due to the insufficient ability
of the attributes to discern among objects.

Other forms of imprecision arise in decision tables, when considering the
decision attributes D. Indeed, it may happen that two objects with same con-
ditions have different decision. In this case the decision table is said to be non-
deterministic, and it is useful to introduce the generalized decision. Assume for
simplicity that we have a single decision attribute, that is D = {d}. Then, the
generalized decision for an object x, based on the attribute set B ⊆ Att, is the
set of all decisions that have been associated to objects that are B-indiscernible
from x, that is they have the same values as x on all attributes in B. Formally,
the generalized decision is defined as:

δB(x) = {i ∈ Vd : ∃y ∈ X s.t. F (y, d) = i and xIBy},

that is, for a given set of conditions, it collects all the possible decisions.

1Notice that sometimes with rough set it is meant a set H which cannot be described by
means of the equivalence classes, in contrast with an exact set K such that LB(K) = K =
UB(K) [16].
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Example 2.10. The generalized decision of Table 3 with respect to the whole
collection of condition attributes is δ(x1) = {A}, δ(x2) = {B}, δ(x3) = {NO},
δ(x4) = δ(x5) = {A,NO}.

Thus, in a non-deterministic situation, only a subset of objects can be pre-
cisely classified. These objects form the so-called positive region of the decision
table, defined as

POSB(X, d) =
⋃
x∈X

LB([x]{d}) = {x ∈ X : |δB(x)| = 1}. (11)

Example 2.11. Let us consider objects p4, p5 in Table 3. Clearly, using the
available symptoms (the condition attributes), we are not able to distinguish
them, but on the other hand it is known that they have a different disease (the
decision attribute). The positive region captures this uncertainty by not con-
sidering p4 and p5. Indeed, once fixed X = {p1, . . . , p5} and Att the set of all
condition attributes, we have POSAtt(X, d) = {p1, p2, p3}.

Finally, the Coefficient of Dependence of a decision d, given a set of attributes
B ⊆ Att represents the relative size of the positive region, thus providing a
numeric representation of the granularity of the indiscernibility relation. This
is defined as:

Dip(B, d) =
|POSB(X, d)|

|X|
. (12)

2.2.1. Rough Sets: generalizations

Several generalizations of the basic rough set model have been introduced in
the literature [112, 113]. They are motivated by applications, e.g., to weaken the
requirement of equivalence when generating the approximations, or by theoreti-
cal consideration. For instance, by interpreting the approximations as operators
in a modal logic, we can obtain in a straightforward manner several new rough
set models [114]. In the following, we recall the models that are the most rele-
vant to the forthcoming discussion.

Generalized relation. The classical model recalled in Section 2.2 is based on
an equivalence relation, i.e. a reflexive, symmetric and transitive relation. By
weakening or getting rid of some of these properties we obtain generalized mod-
els [48, 114, 129]. Particularly interesting are similarity (reflexive and symmet-
ric) relations [100], which can account for not exactly equal instances but similar
ones. For instance, we can group objects with at least 80% of equal attributes
or we can impose that two objects are similar if their distance (on a set of nu-
merical features) is less than a fixed threshold. Moreover, dominance (reflexive
and transitive) relations give rise to the so-called Dominance Based Rough Set
approach (DRSA) [82], which can handle ordinal attributes. In general, given
any binary relation R ⊆ X ×X, the granule associated to x ∈ X is defined as
R(x) = {y ∈ X : (x, y) ∈ R}. Thus, R(x) collects all objects that are R-related
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to x. Then, lower and upper approximation operators L,U : 2X 7→ 2X are
defined as:

L(H) = {x ∈ X : R(x) ⊆ H}, (13)

U(H) = {x ∈ X : R(x) ∩H 6= ∅}. (14)

Interval Rough Sets. Interval structures (also called interval algebras) represent
another possible generalization of the classical model [105]. In interval rough
sets, which are directly inspired by the multi-valued mapping in Dempster’s
original study of belief functions [22], the approximation operators (i.e., the
lower and upper approximations) are determined by a multi-valued mapping
between two universe sets, or, equivalently, by a compatibility relation on the
same two universes. Namely, let X,Y be two sets and R ⊆ X × Y be a binary
relation. Relation R defines a multi-valued mapping r : X 7→ 2Y s.t., for each
x ∈ X, r(x) = {y ∈ Y : (x, y) ∈ R}. Approximation operators L,U : 2Y 7→ 2X

can then be defined as:

L(H) = {x ∈ X : r(x) ⊆ H},
U(H) = {x ∈ X : r(x) ∩H 6= ∅},

where H ⊆ Y . Usually, it is required that relation R is at least serial, in order
to be consistent with models of rough sets based on generalized relations. In
particular, it is easy to observe that the interval rough set model extends the
model based on generalized relations: in particular, generalized relation models
coincide with interval rough sets when the two universe sets are the same, i.e.
X = Y (in which case R is a binary relation on X).

Approximation spaces. An approximation space [15, 14] is an abstraction of the
environment of rough set theory. Basically, the granulation of the universe is
given for granted and it is the starting point, instead of being built from data. It
is no longer necessarily a partition, but it can be a covering or a partial covering,
or even a more complex structure. Generally, it comes with a set of axioms that
the granules or the induced approximations should satisfy.

Definition 2.4. An approximation space is a pair (X,G(X)), where G(X) is
a granulation of the universe, i.e., a collection of sets

G(X) = {G(x) : x ∈ X},

such that
⋃
x∈X G(x) = X.

Obviously, the approximation space and generalized relation models are re-
lated. Indeed, the neighborhood generated by any relation forms a granulation.
In the particular case where the approximation space is generated by a binary
relation R, we will denote it as (X,R).

While approximation spaces represent a generalization of information tables,
the same idea can be applied to generalize decision tables instead:

11



Definition 2.5. A decision approximation space is a triple (X,G(X), D(X)),
where (X,G(X)) is an approximation space and D(X) is a partition of X into
decision classes. That is, D(X) = {X1, ..., Xd}, where the decision classes
X1, . . . Xd are pairwise disjoint and cover X.

Compared to approximation spaces, in decision approximation spaces only
the sets corresponding to the decision classes are deemed relevant.

Several definitions of approximation have been studied on approximation
spaces. Only considering covering-based rough sets (i.e., approximation space
models in which the granulation is a covering), more than 30 approximations
are known [116]. In the following, we will not assume a particular definition of
approximation, but we will require that the approximation operators satisfy the
following three axioms:

(R1) L(Hc) = [U(H)]c;

(R2) L(H) ⊆ X;

(R3) If H ⊆ K then L(H) ⊆ L(K).

Fuzzy Rough Sets. Fuzzy rough sets [38] represent another possible generaliza-
tion of the Pawlak’s equivalence relation-based model. In the Fuzzy Rough
Set model, the relation R is assumed to be a fuzzy relation, that is a function
R : X × Y 7→ [0, 1], and then the triple F = (X,Y,R) is called a fuzzy approxi-
mation space. Since X and Y are allowed to be different, fuzzy approximation
spaces can be understood as a generalization of the previously described Interval
Rough Set model. Based on a fuzzy approximation space F , the lower and upper
approximations of any fuzzy set H : Y 7→ [0, 1] can be defined as [108, 109]:

L(H)(x) =
∧
y∈Y

(R(x, y) =⇒ H(y)) (15)

U(H)(x) = ¬L(¬H)(x) (16)

where =⇒ is a fuzzy implication, ∧ is a t-norm and ¬ is a negation operator.
For each fuzzy set H, the pair (L(H), U(H)) is called a fuzzy rough set. Fuzzy
rough sets keep many relevant properties of classical rough set models, and have
been subject to a rich theoretical development in the recent years. Though we
do not provide further details in this sense, as such a topic could be the subject
of another review due to its scope, we refer the interested reader to [21, 101,
108, 109] for further details and developments. As a final note, we remark that
the notion of fuzzy rough sets generalizes the definition of an interval rough set.
Indeed, if H is a crisp set (i.e., for all x ∈ X, H(x) ∈ {0, 1}) and R is a crisp
relation, then the two definitions coincide.

2.2.2. Feature Selection and Classification

Feature selection in rough set theory is based on the central notion of reduct.
A reduct of a set of attributes (that is, features) is a subset of attributes that
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conveys the same information as the whole set, specifically, the same equivalence
relation in the basic rough set model. Thus, a reduct can help in understanding
which feature is relevant and which not and, as such, to perform feature selection
and dimensionality reduction.

Definition 2.6 (Reduct in information table). Given an information table, a
set of attributes B1 is a reduct of B2, with B1 ⊆ B2 if:

(R1) xIB1
y =⇒ xIB2

y, i.e. the set of attributes B1 gives an indiscernibility
relation R which is the same as (or finer than) the one given by B2;

(R2) A minimality condition holds: @C ⊂ B1 s.t. C satisfies condition (R1).

In general, multiple reducts may exist, but it can happen that some at-
tributes belong to all the reducts. This set of attributes is named the core and
it represents the set of indispensable features. We can thus divide the features in
three categories: indispensable (the core), important but dispensable (belong-
ing to some reducts but not to the core), useless (not belonging to any reduct).
However, this clear-cut distinction may not be satisfying in many situations,
where we may tolerate some error and thus define a grade of dispensability or
otherwise stated importance of the different features. This leads to what are
called approximate reducts [63]. Let us remark the following points on reducts:

– Computing the shortest reduct is a NP - hard problem, while computing
the set of all reducts is a NPNP -hard problem [79, 99]. Hence, several
heuristic and approximation algorithms have been proposed to address the
problem of finding reducts, see, e.g., the surveys [6, 90].

– Several generalized definitions have been given, in particular in cases of
inconsistent [126] and incomplete data [50]. For a recent survey, see [43].

When the available information is in the form of a decision table, reducts
can be defined in different ways, e.g., based on the generalized decision, or on
the positive region:

Definition 2.7 (Reduct in decision table - generalized decision). Given a de-
cision table, a set of attributes B1 is a reduct of B2, with B1 ⊆ B2, if

(RG1) B1 and B2 generate the same generalized decision: for all objects x ∈ X,
δB1

(x) = δB2
(x);

(RG2) Minimality: @C ⊂ B1 s.t. δC = δB1 = δB2 .

Definition 2.8 (Reduct in decision table - positive region). Given a decision
table, a set of attributes B1 is a reduct of B2, with B1 ⊆ B2, if

(RP1) Dip(B1, d) = Dip(B2, d);

(RP2) Minimality: 6 ∃C ⊂ B1 such that Dip(C, d) = Dip(B1, d).
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Example 2.12. Consider the decision table given in Table 3. The set of at-
tributes R = {Temperature, Pressure} is a generalized decision-based reduct
of Att. Indeed, for Att we have that δAtt([p1]Att = {p1}) = {A}, δAtt([p2]Att =
{p2}) = {B}, δAtt([p3]Att = {p3}) = {NO}, δAtt([p4]Att = {p4, p5}) = {NO,A}.
The same equivalences can be shown to hold also for R. More generally, it can
be shown that the only other reduct is {Temperature,Headache}. Thus, in
particular, the core is equal to {Temperature}

The same conclusion also holds for positive region-based reducts. Indeed, the
positive region determined by Att is POSAtt(X, d) = {p1, p2, p3}. Thus, the set
of attributes R = {Temperature, Pressure} is a reduct, since POSR(X, d) =
POSAtt(X, d) = {p1, p2, p3}. Similarly, the set {Temperature,Headache} is
also a reduct and thus, also in this case, the core is equal to {Temperature}.

Many other definitions of a reduct exist [43, 81]: the relationships among
these different models have recently been explored in [81].

Finally, we note that reducts can be useful not only for feature selection but
also to perform classification [6, 86]. Indeed, classification rules can be deduced
from a reduct. Let us consider a reduct R = {a1, a2, . . . , an}. Then, for any
object equivalence class [x]R, we can define the rule

If (a1 = F (x, a1)) and . . . and (an = F (x, an)) then d ∈ δR(x).

Intuitively, such a rule can be used for classifying new objects: if the new
object x to be classified fits the pattern described by the antecedent of a given
rule (i.e., x belongs to some equivalence class [y]R, where R is a reduct), then
its decision should be one of those in the associated generalized decision (i.e.,
the correct classification for x lies in δR(y)).

Example 2.13. Consider the decision table in Table 3. As shown in Exam-
ple 2.12, the two reducts of the decision table are R1 = {Temperature, Pressure}
and R2 = {Temperature,Headache}. Thus, R1 induces the following rules:

If Temperature = very high and Pressure = 2 then A
If Temperature = high and Pressure = 3 then B

If Temperature = normal and Pressure = 1 then NO
If Temperature = high and Pressure = 2 then A or NO

On the other other hand, R2 induces the following set of rules:

If Temperature = very high and Headache = yes then A
If Temperature = high and Headache = no then B

If Temperature = normal and Headache = no then NO
If Temperature = high and Headache = yes then A or NO

2.2.3. Rough Clustering

The concept of rough clustering [72] is a generalization of classical cluster-
ing, incorporating some of the principles of rough set theory. In this clustering
model, each cluster c is approximated by a lower cluster l(c), i.e., the elements
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that “certainly” belong to the cluster, and an upper cluster u(c), i.e., the ele-
ments that “possibly” belong to the cluster. Thus, rough clustering (similarly to
evidential clustering reviewed in Section 2.1.2) is a soft clustering model, since
the assignment of objects to clusters is not necessarily clear-cut.

Multiple rough clustering approaches have been considered in the litera-
ture [52, 53, 62, 69, 70, 76, 98], see also the section on clustering in the review
by Bello and Falcon [6]. Nonetheless, the rough clustering model itself has been
formalized by Lingras and Peters in [53], using the following three axioms:

(RC1) Any instance x belongs to at most one lower approximation:

∀x ∈ X, ∃〈l(c), u(c)〉 s.t. x ∈ l(c)⇒ ∃!〈l(c), u(c)〉 s.t. x ∈ l(c);

(RC2) For each cluster, the lower approximation is contained in the upper one:

∀〈l(c), u(c)〉, l(c) ⊆ u(c);

(RC3) If an object x does not belong to any lower approximation, then it be-
longs to at least two upper approximations:

∀x ∈ X, @〈l(c), u(c)〉 s.t. x ∈ l(c)⇒
∃〈l(ci), u(ci)〉, 〈l(cj), u(cj)〉, i 6= j s.t. x ∈ u(ci), u(cj).

Example 2.14. Let X = {x1, ..., x5} and C = {c1, c2, c2}. Then l(c1) =
{x1, x2}, u(c1) = {x1, x2, x3}, l(c2) = {x4}, u(c2) = {x3, x4, x5} and l(c3) =
∅, u(c3) = {x5} is a rough clustering.

Yao et al. in [115] introduced interval–set clustering and Yu in [119] intro-
duced three–way clustering. As in rough clustering, in both interval–set clus-
tering and three–way clustering (which are equivalent, from a formal point of
view) each cluster c is approximated by a lower and an upper approximation
[cl, cu]. However, they impose different conditions on the clusters:

(IC1) The lower approximation of any cluster cannot be empty: ∀c, cl 6= ∅;

(IC2) The upper approximations are a covering of the universe:
⋃
c cu = X;

(IC3) All lower approximations are disjoint: ∀i, j, i 6= j ⇒ cil ∩ c
j
l = ∅.

Example 2.15. Let X = {x1, ..., x5} and C = {c1, c2, c2}. Consider the rough
clustering defined in Example 2.14. Then, the latter one is not a three-way
clustering, since l(c3) = ∅. On the other hand, consider c1l = {x1, x2}, c1u =
{x1, x2, x3}, c2l = c2u = {x4} and c3l = c3u = {x5}. Then, this is a three-way
clustering. Notice, however, that this is not a rough clustering: indeed x3 belongs
only to a single boundary set, namely c1u.
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The two sets of axioms are related. Indeed, obviously, IC3 is equivalent to
axiom RC1. Also, it can be easily seen that axioms IC1, IC2, IC3 imply axiom
RC2 while, conversely, axioms RC1, RC2, RC3 imply axiom IC2. However, the
two systems are not equivalent. Indeed, rough clustering allows lower approxi-
mations to be empty (and in this case, the corresponding objects are required to
belong to at least two upper approximations), which is not allowed in three–way
clustering due to axiom IC1. On the other hand, three–way (and interval–set)
clustering allows objects to be in only one upper approximation, which is not
allowed in rough clustering due to axiom RC3. Nonetheless, in [11], it has been
shown that any three–way clustering can be represented as an equivalent rough
clustering by including a noise cluster, i.e., a cluster to which the object that
belong to only a single upper approximation are assigned. For recent work on
interval-set and three-way clustering see [1, 2, 104, 120, 121, 122], as well as the
section on clustering in the recent review by Campagner et al. [9].

3. Knowledge representation

In this section, we review the most relevant results concerning the theoretical
relationship between rough set belief function theories, focusing, in particular,
on the knowledge representation aspect of these two frameworks. In Section 3.1
we recall the basic results relating Pawlak’s rough set model with belief func-
tions, while in Section 3.2 we consider extensions of these results to more general
rough set models. Finally, in Section 3.3, we consider knowledge representation
models that combine rough sets and belief functions to represent uncertain and
imprecise data.

3.1. Pawlak rough sets

The link between Pawlak rough sets and belief functions is evident from
their definitions, and it was already recognized in the first years after Pawlak
seminal work on rough sets. Indeed, in the introduction of “Rough sets and
probability” [65], we can read:

the inner and outer probabilities considered in this paper may be
viewed as a special case of lower and upper probabilities introduced
by Dempster and as a special case of Shafer’s belief theory.

Formally, given the lower and upper approximations, defined as in Pawlak’s
rough set model, we can define a pair of belief and plausibility functions, as
stated in the following proposition.

Proposition 3.1 ([77]). Let L,U be the lower and upper approximations in-
duced by an equivalence relation, according to (10), on a universe X. Then, for
all H ⊆ X,

Bel(H) =
|L(H)|
|X|

, (17a)

Pl(H) =
|U(H)|
|X|

(17b)
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are a pair of dual belief and plausibility functions. The corresponding bba is:

m(H) =

{
|H|
|X| if H is an equivalence class

0 otherwise.
. (18)

Conversely, given a pair of belief and plausibility functions we can give the
conditions in order to obtain a pair of lower and upper approximations.

Proposition 3.2 ([118]). Let Bel and Pl be a belief and plausibility functions
satisfying the following two conditions:

1. The set of focal elements forms a partition;

2. m(H) = |H|
|X| for every focal set H.

Then, there exists an equivalence relation R such that the derived lower and
upper approximations satisfy (17). More precisely, R is defined as:

R = {(x, y) ∈ X2 : ∃H ∈ Fm s.t. x, y ∈ H}.

Example 3.1. Consider the decision table given in Table 3, and let B =
{Headache, Pressure}. Then, the equivalence classes are [p1]B = {p1}, [p2]B =
{p2}, [p3]B = {p3} and [p4]B = {p4, p5}. Thus, B determines the mass function
mB s.t. mB({p1}) = mB({p2}) = mB({p3}) = 1

5 and mB({p4, p5}) = 2
5 . If we

let H = {p1, p2, p4}, it holds that Bel(H) = 2
5 and Pl(H) = 4

5 .

The interpretation of the relation between, on the one hand, the lower/upper
approximations L,U and, on the other hand, the belief/plausibility functions
Bel, P l is particularly intuitive when we consider a decision table. In this setting
[78], the following result holds:

Proposition 3.3 ([78]). Let S = (X,Att, d, V, F ) be a decision table, let B ⊆
Att and let δB be the generalized decision defined by B. Denote with Xi = {x ∈
X : F (x, d) = i} the decision class corresponding to decision i. Then, we can
define a bba mB

S : 2Vd 7→ [0, 1], s.t. ∀∆ ⊆ Vd:

mB
S (∆) =

|{x ∈ X : δB(x) = ∆}|
|X|

(19a)

BelBS (∆) =
|L(

⋃
i∈∆Xi)|
|X|

(19b)

PlBS (∆) =
|U(

⋃
i∈∆Xi)|
|X|

(19c)

Thus, the belief (resp., plausibility) of a set of decision values can be inter-
preted naturally as the probability of its lower (resp., upper) approximation,
while the bba can be naturally interpreted as assigning to each possible set of
decision values the corresponding probability (or, frequency). Furthermore, the
authors of [78] also show an interesting relationship between Dempster’s rule
of aggregation and the independent product of two decision tables defined as
follows:
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Definition 3.1. Let S1 = (X1, Att1, d1, V1, F1), S2 = (X2, Att2, d2, V2, F2) be
two decision tables. The independent product S1 � S2 is defined as the decision
table S = (X,Att, d) given by:

(i) X = (X1 ×X2) \ (X1 ⊗X2);

(ii) d((x1, x2)) = δAtt1(x1) ∩ δAtt2(x2);

(iii) Att = Att1 +Att2 = (Att1 × {1}) ∪ (Att2 × {2});

(iv) V = V1 ∪ V2;

(v) For (a, i) ∈ Att and (x1, x2) ∈ X, F ((x1, x2), (a, i)) = Fi(xi, a)

where X1 ⊗X2 = {(x1, x2) ∈ X1 ×X2 : δAtt1(x1) ∩ δAtt2(x2) = ∅}.

Under the definition given above, the bba obtained from the independent
product of two decision tables is shown in [78] to be equivalent to the Dempster
combination of the corresponding bbas. That is, the following result holds:

Proposition 3.4 ([78]). Let S1, S2 be two decision tables. Then:

mS1�S2
= mS1

⊗mS2
.

This result implies that, intuitively, Dempster’s rule of combination (at least
when restricted to bbas that can arise from Pawlak’s rough sets, that is bbas
for which the collection of focal sets is a partition) can be interpreted as an
operation of combination on the underlying sources of information (that is, the
decision tables).

Remarks and Prospects. About the interpretation of the link shown above,
Pawlak stated [67]:

Rough set theory is objective − for a given information table, qual-
ities of corresponding approximations are computed. On the other
hand, the Dempster-Shafer theory is subjective − it is assumed that
values of belief (or plausibility) are given by an expert.

This comment highlights how the rough set-theoretic approach, at least as
originally conceived by Pawlak, can be understood as being of value only in-
sofar as it is directly linked with, and grounded on, the available data, which
should guide the application of the theory in practical scenarios. This is con-
trasted with Dempster-Shafer theory, in which knowledge (as represented by a
belief/plausibility function) is elicited by a human expert (hence, subjective).
Although this comment is correct in highlighting the fact that rough sets and
belief functions may have different interpretations and semantics, it neglects the
fact that, in practical applications, belief functions are not necessarily expert-
elicited but can also be computed from the data (in the same way as reducts or
decision rules in rough set theory). In this sense, the equivalences in [77, 118]
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can be interpreted as a way to compute belief and plausibility functions based
on available data, by means of rough set theory. This semantics has been con-
sidered, e.g., also in [47, 78] where the authors also provide an interpretation
of the Dempster’s rule of combination, in terms of a combination operator on
information tables which is conceptually similar to a join between relations (in
the sense of relational algebra). Despite these interesting links and interpreta-
tions, we believe that further research should be devoted at understanding the
relationship between other fundamental concepts in belief function theory (such
as, e.g., other combination rules, marginalization, vacuous extension, etc.) and
Pawlak’s rough set model.

3.2. Generalized rough sets

Starting from the initial results regarding the connection between Pawlak’s
model and belief functions, similar results have also been explored for general-
ized rough set models.

Proposition 3.5 ([118]). Let us consider an approximation space (X,R), where
R is at least a serial relation, with the lower and upper approximation defined
according to (13)-(14). Then, a pair of dual belief and plausibility functions can
be defined as in (17). The corresponding bba is defined as

m(H) =
|{x ∈ X : R(x) = H}|

|X|
. (20)

So, to any serial relation corresponds a belief assignment such that the mass
can assume only rational values. Indeed, the converse of the above proposition
exactly confirms this relationship.

Proposition 3.6 ([118]). Let Bel and Pl be a belief and plausibility such that
for all subsets H ⊆ X, m(H) is a rational number with denominator |X|. Then,
there exists a serial relation R such that the derived lower and upper approxi-
mations satisfy (17). In particular, we can define

R(x) = {y ∈ X : ∃H ∈ Fm s.t. {x, y} ⊆ H}.

More recently, Zhang et al. [127] also showed that the properties of the
relation R uniquely determine the properties of the collection F of focal sets for
the corresponding belief function, and vice-versa. Namely, the following result
holds:

Proposition 3.7 ([127]). Let (X,R) be an approximation space, with R being
at least serial, and let F be the collection of focal sets determined by the belief
function induced by (X,R) according to (17). Then:

– R is symmetric iff ∃φ : X 7→ F s.t. ∀x, y ∈ X, x ∈ φ(y) iff y ∈ φ(x);

– R is transitive iff ∃φ : X 7→ F s.t. ∀x, y ∈ X, x ∈ φ(y) =⇒ φ(x) ⊆ φ(y);

– R is reflexive iff ∃φ : X 7→ F s.t. ∀x ∈ X, x ∈ φ(x).
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In order to consider any rational number, we have to take into account
interval rough sets. Indeed, in this case, similar propositions as the previous
ones can be obtained by substituting the approximations obtained by a serial
relation with the ones obtained by a relation in interval rough sets. Namely, the
following result holds:

Proposition 3.8 ([118]). Let (X,Y,R) be an interval structure, with R ⊆ X ×
Y being at least a serial relation. Then a pair of dual belief and plausibility
functions can be defined as in (17).

As in the previous cases, also the converse result holds, namely:

Proposition 3.9. Let Bel and Pl be a belief and plausibility functions such
that, for each subset H ⊆ X, m(H) is a rational number. Then, there exists an
interval structure (X,Y,R) such that the derived lower and upper approxima-
tions satisfy (17). In particular, assume that there exists a mapping Γ : X 7→ 2Y

and a probability distribution P on X s.t. for all A ⊆ Y ,

m(A) =
∑

x∈X:Γ(x)=A

P (x).

Then, the compatibility relation R can be defined by (x, y) ∈ R ⇐⇒ y ∈ Γ(x).

As already noted in Section 2.2.1, this relationship is not particularly sur-
prising, since the definition of interval rough sets has been directly inspired by
belief function theory [22]. The same results have also been extended to general
continuous belief function by means of random information systems [110], in
which a probability distribution P on the objects (or, on the σ-algebra deter-
mined by the given relation) is also given.

More recently, Tan et al. [89] also investigated the relationship between gen-
eral approximation spaces and belief functions.

Definition 3.2. Let (X,G(X)) be an approximation space. Given an element
a ∈ X, we define:

– The approximated set of a as the collection of sets for which a belongs
to the corresponding lower approximation, that is G(a) = {A ⊆ X : a ∈
L(A)};

– The minimal approximated set of a as the collection of sets, within the
approximated set of a, for which no subset is also in the approximated set
of a. That is, MG(x) = {A ∈ G(a) : ∀B ∈ G(a), B ⊆ A⇒ B = A}.

For each set H, we then define j(H) = {x : H ∈ MG(x)}, that is j(H) is the
set of all objects for which H is in the corresponding minimal approximated set.

In case of an approximation space the following proposition can be proved.

Proposition 3.10 ([89] ). Given an approximation space and a pair of lower-
upper approximations on (X,G) satisfying properties (R1)–(R3),
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1. We can define a basic belief assignment on the universe X as

m(H) =

{
0 j(H) = ∅

1
|X|

∑
x∈j(H)

1
|MG(x)| otherwise;

2. ∀x, |MG(x)| = 1 iff ∀H ⊆ X, Bel(H) = |L(H)|
|X| and Pl(H) = |U(H)|

|X| .

In case of a decision approximation space, we need similar definitions as
before, but referred to a decision class.

Definition 3.3. Let (X,G(X), D(X)) be a decision approximation space. Given
an element a ∈ X, we define

– The approximated set of a as the set G(a) = {A ⊆ X : a ∈ A, A ⊆
L(Xi) for some decision class Xi};

– The minimal approximated set of a as the setMG(x) = {A ∈ G(a) : ∀B ∈
{G}(a), B ⊆ A⇒ B = A};

– j(H) = {x ∈ X : H ∈MG(x)}.

Then, the following result holds.

Proposition 3.11 ([89] ). Given a decision approximation space and a pair
lower-upper approximations on (X,G(X), D(X)) satisfying properties (R1)–
(R3),

1. We can define a basic belief assignment on the universe X as

m(H) =

{
0 j(H) = ∅

1
|Pos|

∑
x∈j(H)

1
|MG(x)| otherwise

;

2. For all decision class Xi, Bel(Xi) = |L(Xi)|
|Pos| and Pl(Xi) = |U(Xi)|

|Pos| .

Finally, the relationship between belief function theory and rough set theory
has been explored also in the fuzzy setting, by drawing a connection between
fuzzy rough set models [38, 109] and fuzzy belief functions [8, 56, 26]. In partic-
ular, Wu et al. [109] proved that, given a fuzzy approximation space (X,Y,R)
and a fuzzy set H, the lower and upper probabilities of H,

P (H) =
∑
x∈X

L(H)(x) (21)

P (H) =
∑
x∈X

U(H)(x) (22)

are exactly the belief and plausibility of the fuzzy event H [8, 26]. Furthermore,
they show that Propositions 3.8, 3.10 and 3.11 similarly apply to the fuzzy
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case, and can also be extended to the case where X is infinite, by noting that
P (H), P (H) are always, respectively, a fuzzy monotone Choquet capacity and a
fuzzy alternating Choquet capacity of infinite order (hence, they always defined
fuzzy belief and fuzzy plausibility functions). Furthermore, the results obtained
by Wu et al. [109] have also been more recently extended to more general families
of fuzzy approximation spaces, including fuzzy converings [39].

Remarks and Prospects. In regard to the interpretation of these results, the
same comments made for Pawlak rough sets hold. A particularly important
direction of research is to determine in which cases (both practical and theoret-
ical) the above mentioned relationships can be proved useful. So far, results in
this sense have been proposed only for generalized relation models: for example,
the relationship between similarity-based rough sets (i.e. rough set models in
which the underlying relation is symmetric and reflexive) and belief functions
has been studied in the setting of feature selection with missing or set-valued
data (see Section 4.2). Similar relationships and practical applications for the
more general results presented in this section have not been considered in the
literature. Consequently, similarly to the case of Pawlak’s rough sets model,
the semantics and usefulness of the presented results should be further clarified.
Further, in this survey we only provided a short account of the results dealing
with the fuzzy case: this is a necessary consequence of the broadness of this
topic. Nonetheless, due to recent interest in this area, also from an application-
oriented point of view (see, e.g., [26, 55, 41]), further work should be devoted
at exploring this rich subject.

3.3. Uncertain Decision Tables

An uncertain decision table [93] is a decision table where the decision at-
tribute is not exactly known and the uncertainty is expressed in the form of a
belief basic assignment on the possible values.

Definition 3.4. An uncertain decision table (UDT) is a structure (X,Att ∪
{d}, V al, F, {mx}x∈X), where (X,Att∪{d}, V al, F ) is a decision table according
to Definition 2.3 and, for each x ∈ X, mx : 2V ald 7→ [0, 1] is a basic belief
assignment on the set of decision values.

Example 3.2. In Table 4, we illustrate an example of an UDT.

Due to this generalized definition, a new definition of decision classes is
required. In [93], they are defined according to a tolerance (that is, similarity)
relation based on the distance between two bbas. Given a decision value v ∈
V ald, let mv be a bba s.t. mv({v}) = 1. Then, given a threshold θ, the θ-
tolerance class Xv represents the collection of all objects x whose bba-valued
decision is not too dissimilar from the bba associated to the decision v. Formally,
this can be defined as

Xv = {x ∈ X : dist(mv,mx) < 1− θ},
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Table 4: Uncertain decision table.

Patient Temperature Headache Disease

p1 very high yes
m(A) = 0.8,m(B) = 0.05,

m({A,B}) = 0.15
p2 high no m(B) = 0.7,m({A,B}) = 0.3
p3 normal no m(NO) = 1

p4 high yes
m(A) = 0.1,m(NO) = 0.8,

m({A,NO}) = 0.1

p5 high yes
m(A) = 0.2,m(B) = 0.2,

m(NO) = 0.2,m({A,B,NO}) = 0.4

where dist denotes Jousselme’s distance [45] defined as

dist(m1,m2) =

√
1

2
(‖−→m1‖2 + ‖−→m2‖2 − 2〈−→m1,

−→m1〉), (23)

with

〈−→m1,
−→m1〉 =

|2V ald |∑
i=1

|2V ald |∑
j=1

m1(Ai)m2(Aj)
|Ai ∩Aj |
|Ai ∪Aj |

, (24)

and Ai, Aj ∈ 2V ald . In (24), the sum is over all the possible subsets of values
that the decision attribute can assume.

Example 3.3. Consider the UDT defined in Example 3.2. Then, if we select
θ = 0.75, the θ-tolerance classes are defined as: XA = {p1}, XB = {p2}, and
XNO = {p3, p4}.

In order to compute the approximations, we first need to combine the bbas
inside each equivalence class defined on the condition attributes. In [93], aver-
aging is proposed for performing this operation. Denote the equivalence class
defined according to a set B of condition attributes as [x]B and the aggregated
bbas as m[x]B . Then, the lower approximation of the tolerance class Xv collects
all the objects for which the equivalence class is surely contained in Xv and,
furthermore, the corresponding averaged bba is not too dissimilar from the bba
associated to v. Thus, for each decision class Xv, the lower approximation is
defined as

L(Xv) = {x ∈ X : [x]B ⊆ Xv and dist(mv,m[x]B ) ≤ 1− θ}. (25)

The definition of the upper approximation is unchanged. As we show in Sec-
tion 4.3, the notion of UDT and the above definitions of approximations have
been used by Lingras et al. [93, 95, 96] to perform feature selection and classi-
fication based on uncertain (in particular, evidential) data.
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Example 3.4. Let C = {Headache}. Then, m[p1]C = (mp1 + mp4 + mp5)/3
and, for the decision classes, it holds that:

– m[p1]C (A) = 0.67;

– m[p1]C (B) = 0.08;

– m[p1]C ({A,B}) = 0.05;

– m[p1]C (NO) = 0.33;

– m[p1]C ({A,NO}) = 0.03;

– m[p1]C ({A,B,NO}) = 0.13.

On the other hand, m[p2]C = (mp2 +mp3)/2, with:

– m[p2]C (B) = 0.35;

– m[p2]C ({A,B} = 0.15;

– m[p2]C (NO) = 0.5.

Therefore L(XA) = L(XB) = L(XNO) = ∅, while U(XA) = {p1, p4, p5},
U(XB) = {p2, p3} and U(XNO) = X.

A related, but different, approach to the representation and management of
uncertain decision tables using rough sets and belief functions was also consid-
ered in [13]. In this work, the authors consider a specific form of UDT, in which
the decision attribute is set-valued: this implies that the bbas attached to the
objects are logical (i.e., they have a single focal set). Based on these definitions,
for each equivalence class [x]B induced by a set of attributes B ⊆ Att, we can
define a bba whose mass values are simply the relative frequency of each set of
decisions, namely

m[x]B (A) =
|{y ∈ [x]B : my(A) = 1}|

|[x]B |
. (26)

The authors, however, do not provide a generalization of the approximations,
focusing on the problem of finding reducts.

Remarks and Prospects. Interestingly, the definition of approximations in [93] is
based on the average combination rule [61] to combine the bbas of the instances
in a given equivalence class, rather than Dempster’s rule. This alternative rule
of combination is also coherent with the semantics of belief functions (indeed,
the average of belief functions is still a belief function) and has the effect that
the aggregation is always possible, even when two bbas are in conflict. For
this reason, the authors suggest that averaging may be better suited to this
context than Dempster’s rule. Nonetheless, we believe that further research
could be devoted to exploring different notions of approximations based on
other aggregation operators, such as Dempster’s rule or the disjunctive rule
(4), which could be useful to account for possible inconsistencies in the UDT.
Similarly, further research could investigate how the approximation defined in
(25) changes if we consider different distance functions among bbas [45].
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4. Applications to Machine Learning

In this section, we discuss the relationships between belief function and rough
set theories in the field of Machine Learning, focusing on applications in which
the two formalisms, and particularly the theoretical results shown in Section 3,
have been related or combined to solve relevant uncertainty representation or
management problems. In Section 4.1, we discuss the connections between rough
clustering (and related formalisms, such as three-way clustering) and evidential
clustering: we first discuss known results about the relationship between rough
and evidential clustering, and we provide an original result extending the pre-
viously mentioned connection to three-way clustering. In Section 4.2, we focus
on the use of rough set and belief function theories to model uncertainty and
data missingness in the covariates, studying, in particular, the problem of fea-
ture selection. Finally, in Section 4.3, we continue the review of work related to
UDTs (see Section 3.3), focusing on the problems of feature selection and rule
induction.

4.1. Clustering

As highlighted in Section 2.1.2, evidential clustering [29] is based on the
concept of a credal partition, in which each object xi is assigned a mass function
mi describing an uncertain assignment to clusters. It can easily be seen that
rough clustering can be understood as a special case of evidential clustering.
Indeed, we have the following result:

Theorem 4.1 ([29]). To each evidential clustering where all mass functions
are logical (i.e., ∀x ∈ X,∃A ∈ 2C s.t. mx(A) = 1) corresponds a unique
rough clustering. Vice-versa, to each rough clustering corresponds a unique
evidential clustering where all mass functions are logical and normalized (i.e.,
∀x ∈ X,∃A ∈ 2C \ {∅} s.t. mx(A) = 1).

More generally, given any evidential clustering , we can obtain from it a
rough clustering. For example, a particularly simple approach to perform such
a transformation is to apply the maximum mass rule [29]. That is, for each
object x, we take the set of clusters A to which the bba mx assigns maximal
mass. Then, we say that x is in the upper cluster of every cluster in A: if,
furthermore, |A| ≤ 1, then we also say that x is in the lower cluster of A.
Formally, we define Ax = arg maxAm(A). Then, if Ax = {c}, set x ∈ l(c).
Otherwise, for each c ∈ Ax, set x ∈ u(c) \ l(c). Finally, all x s.t. Ax = ∅
are assigned to the lower cluster of a noise cluster (thus, in general the rough
clustering may have one additional cluster as compared to the starting evidential
clustering)

Example 4.1. Consider the credal partition M = {mx1 , ...,mx5} introduced
in Example 2.7. Applying the maximum mass rule, we obtain the following
rough clustering: l(c1) = {x1, x2}, u(c1) = {x1, x2, x5}, l(c2) = {x4}, u(c2) =
{x3, x4, x5}, l(c3) = ∅, u(c3) = {x3, x5}. Consider, on the other hand, the
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rough clustering defined in Example 2.14. Then, this can equivalently be repre-
sented as the credal partition: mx1({c1}) = mx2({c1}) = 1, mx3({c1, c2}) = 1,
mx4

({c2}) = 1, mx5
({c2, c3}) = 1.

However, several different criteria can be applied [24]: in the following ex-
ample, we show that the decision-theoretic framework described in Section 2.1.1
can be used for this purpose.

Example 4.2. Consider the credal partition introduced in Example 2.7 and
let D = {1, 2, 3}, where classification i corresponds to assigning an object to
cluster ci. Let U be the utility function described in Table 2, corresponding to
the OWA operator with imprecision tolerance α = 0.75. Suppose we select the
lower expected utility criterion, then:

– The optimal act for object x1 is 1, thus x1 ∈ l(c1);

– The optimal act for object x2 is 1, thus x2 ∈ l(c1);

– The optimal act for object x3 is {2, 3}, thus x3 ∈ u(c2) and x3 ∈ u(c3);

– The optimal act for object x4 is 2, thus x4 ∈ l(c2);

– The optimal act for object x5 is D, thus x5 ∈ u(c1), x5 ∈ u(c2) and
x5 ∈ u(c3).

By contrast, the problem of finding a relationship between three-way cluster-
ing and evidential clustering, to our knowledge, has not been previously studied
in the literature. As previously noted, the axioms for rough and three-way clus-
tering are in general incompatible, and this complication obviously arises also
in the case of evidential clustering. Nonetheless, in [11], it has been shown that
three-way clustering can be represented in terms of rough clustering by adding
a so-called noise cluster. Based on this relationship, a correspondence between
three-way clustering and evidential clustering can also be found. Namely, let
C∗ = C ∪ {cη}, where cη represents a noise cluster. If C = {mx}x∈X is a credal
partition where every bba mx is defined on C∗, then we say that C is an extended
credal partition. Then, the following result holds:

Theorem 4.2. Let C = {mx}x∈X be an extended credal partition satisfying the
following conditions:

1. ∀x ∈ X, ∃Ax 6= ∅ s.t. mx(Ax) = 1 and either Ax ⊆ C, or Ax = {c, cη}
for some c ∈ C

2. ∀c ∈ C, ∃x ∈ X s.t. mx({c}) = 1

Then C corresponds to a unique three-way clustering. Conversely, if T is a three-
way clustering, then there is a unique extended credal partition C corresponding
to T .
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Proof. If C satisfies the two conditions, then we can construct a three-way clus-
tering TC as follows. First, if mx({c}) = 1, set x ∈ cl. Condition (2) guarantees
that, for each cluster c, at least one such object exists. For any other object
x, denote as Ax the set defined as in condition (1). Then, if |Ax| > 1, with
Ax ⊆ C, set x ∈ cu \ cl for all c ∈ Ax. Otherwise (i.e., Ax = {c, cη} for some
c ∈ C), set x ∈ cu \ cl. The converse follows in a similar way.

We note that the equivalence expressed in Theorem 4.2 and, more partic-
ularly, the transformation from a three-way clustering to the corresponding
evidential clustering respects the semantics of belief function theory. Indeed,
we can note that, for any given c ∈ C and x ∈ X, it holds that Belx({c}) = 1
iff x ∈ cl, and, similarly, Plx({c}) = 1 iff x ∈ cu.

Example 4.3. Consider the three-way clustering defined in Example 2.15. It
is easy to see that this can be equivalently represented as the following ex-
tended evidential clustering: mx1

({c1}) = mx2
({c1}) = 1, mx3

({c1, cη}) = 1,
mx4

({c2}) = 1, mx5
({c3}) = 1.

In regard to methods for transforming a general evidential clustering to a
three-way clustering, we note that the same techniques used for rough clustering
cannot be directly used due to the differences between rough clustering and
three-way clustering. In particular, in three-way clustering we need to guarantee
that, for each cluster c, at least one object x ∈ X belongs to the lower cluster
cl. Nevertheless, we propose a relatively simple transformation criterion based
on the decision-theoretic approach introduced in Section 2.1.1.

Basically, we initially set the imprecision tolerance degree α = 1: in this way
all objects are assigned to the upper cluster of all clusters. Then, iteratively,
we reduce the imprecision tolerance until we obtain an assignment that satisfies
the constraints of three-way clustering: namely, we continue decreasing α as
long as there is some cluster whose lower cluster is empty. This procedure is
guaranteed to stop: in the worst case we reach α = 0, in which case we obtain
a hard clustering (which, indeed, is a special case of three-way clustering).

We note that, following this procedure, it may happen that even with α = 0
some of the clusters end up being empty (i.e., the corresponding lower and upper
clusters are both empty). Even though this situation is not problematic from
a procedural perspective (i.e., the empty clusters can simply be removed), it
may indicate that the original evidential clustering algorithm was not able to
find a significant clustering structure. As a consequence, such a situation could
suggest to apply again the clustering algorithm with different parameter settings
(e.g., reducing the number of clusters).

Example 4.4. Consider the credal partition introduced in Example 2.7 and let
D = {1, 2, 3}, where classification i corresponds to assigning an object to cluster
ci. We have shown in Example 4.2 that the value α = 0.75 does not result in
a three-way clustering, since the lower cluster of cluster c3 is empty. Thus, we
need to select a value of α < 0.75. It can easily be shown that for α = 0.55 we
obtain the following assignment:
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– The optimal act for object x1 is 1, thus x1 ∈ c1l ;

– The optimal act for object x2 is 1, thus x2 ∈ c1l ;

– The optimal act for object x3 is {2, 3}, thus x3 ∈ c2u and x3 ∈ c3u;

– The optimal act for object x4 is 2, thus x4 ∈ c2l ;

– The optimal act for object x5 is 3, thus x5 ∈ c3l .
Thus, in this case, we obtain a three-way clustering since all lower clusters are
non-empty. Furthermore, the obtained three-way clustering is not hard, since
object x3 does not belong to any lower cluster. It can be easily shown that for
any α > 0.55, object x5 is assigned to the upper cluster of all clusters. Thus,
the above described procedure would stop at the optimal value α = 0.55.

Remarks and Prospects. Beyond the formal relationships shown above among
evidential, rough and three-way clustering, the relative advantages and strengths
of the different approaches have rarely been considered. Joshi and Lingras [44]
showed, through a set of illustrative examples on simple toy datasets, that evi-
dential clustering may be more effective at identifying outliers, due the increased
flexibility of bbas. By contrast, the main advantage of rough clustering (and, by
extension, three-way clustering) is its simplicity [29, 71]: rough clustering tech-
niques are usually more computationally efficient, and also more interpretable
(e.g., for visualization). Also, rough clustering was found to be more resistant
than evidential clustering to the so-called curse of dimensionality [44]. Nonethe-
less, these comments being based on small toy datasets, we believe that future
work should be devoted at comparing rough, three-way and evidential clus-
tering from an empirical perspective on real-world datasets, both in terms of
performance, and in terms of the possible relationship between rough partitions
induced by rough (resp., three-way) clustering algorithms and the rough par-
titions obtained as approximations to an evidential clustering. A particularly
important problem, in this sense, regards the study and design of general eval-
uation criteria that can be used to compare different forms of soft clustering,
such as those proposed in [11, 33, 35]. Evaluation criteria can be useful also for
the purpose of transforming evidential clustering into rough (resp. three-way)
clustering, and vice-versa: namely, given an evidential clustering one could se-
lect the rough (resp. three-way) clustering which is maximally similar to it.
In particular, we believe that such criteria could be particularly useful for the
case of three-way clustering: indeed, we remark that even though the proce-
dure we proposed is conceptually simple, it can be computationally inefficient
if implemented naively. While binary search or search heuristics can be used to
make searching for the optimal α more efficient, we believe that further research
should be devoted at exploring alternative transformation strategies.

4.2. Uncertainty in the conditions: Belief reducts

The correspondence between generalized relation-based rough set models
and belief functions [118, 127] has been exploited in the literature as a foun-
dation for studying the problem of reduct search (i.e., feature selection) in the

28



presence of missing or set-valued data [106]. The starting point, in this setting,
is the possibility to define belief and plausibility functions from a similarity
relation-based rough approximation. The similarity relation S is used to take
into account missing values and partially specified values. Indeed, given an
information table such that the condition attributes can be set-valued, and a
subset of attributes B ⊆ Att, a similarity relation S can be easily defined by
declaring two objects x, y ∈ X to be B-similar when, for each attribute in B,
the set values for the two objects are compatible (i.e., they are not disjoint).
Formally:

SB = {(x, y) ∈ X ×X : ∀a ∈ B, F (a, x) ∩ F (a, y) 6= ∅}. (27)

Then, belief and plausibility reducts can be defined as follows.

Definition 4.1. Let B ⊆ Att a set of attributes, and SB the similarity relation
defined by B as in Eq (27). Let BelB , P lB be the corresponding belief and
plausibility functions defined as in (17). Then, given two attribute subsets B1 ⊆
B2 ⊆ Att, B1 is a belief reduct of B2 if

1. For all similarity classes [x]S, BelB1([x]S) = BelB2([x]S);

2. A minimality condition hold: @C ⊂ B1 s.t. BelC([x]S) = BelB1
([x]S).

Given two attribute subsets B1 ⊆ B2 ⊆ Att, B1 is a plausibility reduct of B2 if

1. For all similarity classes [x]R, PlB1
([x]S) = PlB2

([x]S);

2. A minimality condition hold: @C ⊂ B1 s.t. PlC([x]S) = PlB1
([x]S).

The following result holds:

Theorem 4.3 ([106]). B ⊆ Att is a reduct iff it is a belief reduct. Furthermore,
if B ⊆ Att is a reduct then it is a plausibility reduct.

Interestingly, the converse of the second statement above in general does not
hold. In case of a decision table, the following definition of reducts is given:

Definition 4.2. Given two attribute subsets B1 ⊆ B2 ⊆ Att , B1 is a relative
belief reduct of B2 if

1. For all decision classes [x]d, BelB1([x]d) = BelB2([x]d);

2. A minimality condition hold: @C ⊂ B1 s.t. BelC([x]d) = BelB1
([x]d).

An attribute subset B1 ⊆ B2 ⊆ Att, A is a relative plausibility reduct of B2 if

1. For all decision classes [x]d, PlB1
([x]d) = PlB2

([x]d);

2. A minimality condition hold: @C ⊆ B1 s.t. PlC([x]d) = PlB1
([x]d).
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Table 5: Example of decision table with set-valued conditions.

Patient Temperature Pressure Muscle Pain Disease
p1 {very high,high} 2 yes YES
p2 {normal, high} 1 no NO
p3 high {1, 2} yes NO
p4 high 2 {no, yes} YES

Example 4.5. Consider the decision table given in Table 5. Define B =
{Temperature,Headache} and let the decision attribute be d = {Disease}.

Then the similarity relation determined by B is

SB = {(p1, p3), (p1, p4), (p3, p4), (p2, p3)}sr,

where, given a relation R ⊆ X ×X, Rsr represents the symmetric and reflexive
closure of R. The similarity classes determined by SB are [p1]B = {p1, p3, p4},
[p2]B = {p2, p3}, [p3]B = {p1, p2, p3, p4} and [p4]B = {p1, p3, p4}. By contrast,
the similarity relation determined by Att is

SAtt = {(p1, p3), (p1, p4), (p3, p4)}sr.

The similarity classes determined by SAtt are [p1]Att = {p1, p2, p3} and [p2]Att =
{p2}. The partition determined by d is [p1]d = {p1, p4} and [p2]b = {p2, p3}.
Thus, the similarity relation SB determines the bba mB({p1, p3, p4}) = 1/2,
mB({p2, p3}) = 1/4 and mB(X) = 1/4. By contrast, the equivalence relation
given by Att determines the bba mAtt({p1, p3, p4}) = 3/4 and mAtt({p2}) = 1/4.
Since it holds that BelB({p1, p4}) = BelAtt({p1, p4}) = 0, BelB({p2, p3}) =
BelAtt({p2, p3}) = 1/4, we have that B is a relative belief reduct. Furthermore,
since PlB({p1, p4}) = PlAtt({p1, p4}) = 3/4, PlB({p2, p3}) = PlAtt({p2, p3}) =
1, B is also a relative plausibility reduct.

In contrast to the case of reducts, for the case of relative reducts the following
results hold:

Theorem 4.4. If the decision table is consistent, then B ⊆ Att is a relative
reduct iff it is a relative belief reduct iff it is a relative plausibility reduct. If
the decision table is not consistent, then B ⊆ Att is a relative reduct iff it is a
relative plausibility reduct.

The results of [106] have been extended to other generalized rough set mod-
els. First, the same authors [110] considered the application of belief and plau-
sibility reducts to random information systems, showing that Theorems 4.3
and 4.4 hold also in this setting. Furthermore, the extension to the case of
continuous and interval-valued data has been widely studied [17, 68, 88], and it
has been shown that the equivalence between belief and classical reducts holds
also in these settings.
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Considering different generalized relations, Du et al. [36] studied the case
of dominance-based rough sets, in which the relation induced by the condition
attributes is a dominance (i.e., reflexive and transitive) relation, showing that
the above described methodology can also be applied to ordinal data. Simi-
larly, Syau et al. [87] considered the extension to reflexive (but not necessarily
symmetric) relations, in order to model two different types of missing values
(don’t know vs doesn’t exist). While in all these models the definitions of belief
and plausibility reducts are the same as in (4.1) and (4.2), it has not yet been
shown whether Theorems 4.3 and 4.4 similarly hold. Finally, the definition of
belief and plausibility reducts has also been extended to the fuzzy case by Yao
et al. [117] and Zhang et al. [125]. Remarkably, in this latter setting it has been
shown that the extension of Theorem 4.4 to fuzzy information tables and fuzzy
approximation spaces holds.

Interestingly, a similar approach has also been proposed for the manage-
ment of more general forms of uncertainty in the condition attributes. More
in particular, Trabelsi et al. [91] studied the problem of reduct search where
the uncertain condition attributes are expressed as bbas. In this case, which is
inspired by the definition of tolerance relations used in UDTs (see Section 3.3),
the similarity relation can be defined by declaring two objects to be B-similar
if they have the same decision and, for each attribute in B the corresponding
bbas for the two objects are not too distant. Formally, this can be defined as:

SB = {(x, y) ∈ X×X : d(x) 6= d(y)∧∀a ∈ B ⊆ Att, dist(ma
x,m

a
y) < 1−θ}, (28)

where, for any object x ∈ X and attribute a ∈ Att, ma
x is the bba for x corre-

sponding to attribute a, and the distance function is defined as in Eq (23). We
note that the obtained similarity relation is certainly symmetric and reflexive,
but it is not, in general, guaranteed to be transitive.

Then, reduct search can be performed through standard techniques based
on the discernibility matrix [91], or through belief and plausibility reducts. We
note, however, that the theoretical properties of these latter types of reducts
have not yet been studied in this setting.

Remarks and Prospects. Even though reduct search is a practical task, due to
its relation with feature selection, all the above mentioned contributions had a
primarily theoretical focus. Indeed, none of the mentioned articles investigates
the performance and efficacy of algorithms for searching reducts in real appli-
cations. Therefore, future work should be devoted at assessing the performance
(in terms of reduct size, as well as classification accuracy) of the different no-
tions of evidence theory-based reducts. In particular, it would be interesting to
assess the practical implications of Theorems 4.3 and 4.4: namely, since plau-
sibility (resp., relative belief) reducts do not coincide with standard reducts in
information (resp., decision) tables, the application of these definitions to real
data should be further evaluated. Finally, it would be interesting to evaluate
whether Theorems 4.3 and 4.4 hold also for the more general similarity-based
approaches proposed in [17, 36, 87, 88], as well as in the bba-based approach
proposed in [91].
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4.3. Uncertainty in the decision: Decision rules in UDT
Feature selection and rule induction tasks have also been studied in the con-

text of UDTs (see Section 3.3). In particular, following the general reduction-
rule process, Trabelsi et al. [93] propose the simplification of an UDT and
generation of belief decision rules. So, as usual, the first step is reduct genera-
tion. The authors of [93] specifically consider the positive region-based reduct
model, which is defined in the standard way according to (11) by using the lower
approximation of (25). The definition of a reduct is not changed, i.e, it is the
same as in Def. 2.8. In particular, to search for the reducts of an UDT (and
hence perform feature selection), the same authors provide a heuristic algorithm
based on a generalized definition of the discernibility matrix [95]. In [96, 97],
they also propose a parallel algorithm for application to big data.

Example 4.6. Consider the UDT defined in Example 3.2. Obviously, S1 =
{Headache} is not a reduct, since POSS1

(X, d) = ∅, while POSAtt(X, d) =
{p1, p2, p3}. In the same way, S2 = {Temperature} is not a reduct, since
POSS2

(X, d) = {p1, p2}. Thus, the only reduct is the full set of features Att.

After performing feature reduction, decision rules can be induced. To do so,
redundant objects and attribute values are eliminated. In particular, concerning
objects, the bbas of objects that are in the same equivalence class (i.e., they have
the same values for the reduced conditional attributes) are aggregated by means
of the averaging combination rule. Decision rules can then be generated by
reading directly in the simplified table the values of the condition attributes and
the corresponding decision, in the form of the averaged bba on V alD. A major
limitation of this definition of rules, is that their accuracy and performance
cannot be easily evaluated, as the decision is represented in the form of a bba.
For this reason, Trabelsi et al. propose [92, 94] to convert the bba for each
rule into a probability distribution, by means of the pignistic transform (6):
accuracy can then be evaluated as a weighted average or by selecting the single
decision with maximal probability.

Example 4.7. Consider the UDT defined in Table 4. In Example 4.6, we
showed that Att is the only reduct. Thus, decision rules are in the form:

If Temperature = very high and Headache = yes then
m(A) = 0.8,m(B) = 0.05,m({A,B}) = 0.15

If Temperature = high and Headache = no then
m(B) = 0.7,m({A,B}) = 0.3

If Temperature = normal and Headache = no then m(NO) = 1

If Temperature = high and Headache = yes then m(A) = 0.15,m(B) =
0.1,m(NO) = 0.5,m({NO,A}) = 0.05,m({NO,A,B}) = 0.2

Based on [92, 94], the decisions of the previous rules can be transformed into
single-valued decisions by applying the pignistic transform and then selecting the
value with maximum probability. The resulting rules are
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If Temperature = very high and Headache = yes then A
If Temperature = high and Headache = no then B

If Temperature = normal and Headache = no then NO
If Temperature = high and Headache = yes then NO

As previously mentioned in Section 3.3, a different approach to the definition
of reducts and rules in UDT is taken in [13], based on the notion of an entropy
reduct [80] and the generalized risk minimization [42] principle. In this setting,
given a set of attributes B ⊆ Att the entropy of the reduced UDT is computed
as

H(B) =
∑
[x]B

1

|[x]B |
min

P∈P(m[x]B
)
H(P ),

where m[x]B is the bba determined by the equivalence class of x as defined
in (26), P(m[x]B ) is the set of probability measures compatible with m[x]B as
defined in (5), and H(P ) = −

∑
p p · log(p) is the Shannon entropy. Thus,

for each equivalence class [x]B , a bba m[x]B is obtained and the entropy for
this bba is simply computed as the lowest possible entropy for all probability
distributions that are compatible with it. Then, B is said to be an entropy
reduct if H(B) ≤ H(Att) and the minimality condition (i.e., @D ⊂ B s.t.
H(D) ≤ H(C)) holds.

After the reduct search, decision rules can be induced: in contrast to the
rule induction procedure studied in [93], the approach proposed in [13] directly
provides rules with single-valued decision, by using the maximum plausibility
criterion [24]. This approach to feature reduction was compared to state-of-
the-art algorithms for feature selection on set-valued data, showing significant
improvements on different datasets.

Remarks and Prospects. While the authors of [96] studied the performance of
the discussed feature reduction and classification methods and reported promis-
ing empirical results, no comparison with other classifiers for evidential data [5,
20, 32, 40, 73] has so far been evaluated in the literature. Furthermore, simi-
larly to the remarks in Section 3.3, also for the case of feature reduction and
rule induction it would be interesting to evaluate the behavior and performance
of different aggregation as well decision rules. In respect to this latter aspect,
while the authors of [96] considered only the pignistic transform, other decision-
making criteria such as mentioned in Section 4.1 or disambiguation methods [42]
should also be evaluated. A final remark regards the relationships among the
methods for feature selection proposed in [93] and [13]. While this has not
been previously evaluated, it is clear that the two approaches are not equivalent
when applied to set-valued data and may thus end up providing different results.
Thus, future work should aim at studying possible conditions for the equiva-
lence between the two approaches, as well as generalizations of the approach
described in [12, 13] to general bbas, and their comparison on real datasets.
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5. Conclusion

In this article, we provided a survey of the literature on belief functions and
rough sets. While our contribution is not intended to be systematic, we drew a
map of the links and cross-fertilizations among these two different research com-
munities, so as to illustrate the most relevant relationships, their interpretation
and semantics, as well as to highlight open problems, prospects and directions
for future research. To this end, we reviewed the known theoretical results re-
lating the rough set and belief function theories, as well as their applications
to knowledge representation and machine learning. We hope that this paper
will stimulate further research and investigations at the cross-road of the two
research communities. To this purpose, we proposed some particularly relevant
open problems related to each covered application, both of a theoretical as well
as of an empirical or practical nature. In particular, to summarize, we recall
and highlight the following relevant open issues:

– While the mathematical picture connecting the basic notions within rough
set theory (i.e., approximations) and belief function theory (i.e., belief and
plausibility functions) has been widely studied, the interpretation of these
connections is much less clear and should be further investigated. Further-
more, the connections between other relevant concepts in the two theories
(e.g., granule refinements or joins of decision tables in rough set theory,
Dempster combination rule or coarsenings in belief function theory) should
be explored.

– While the theoretical results for Pawlak and generalized relation models
have been applied in practical problems (either in knowledge Representa-
tion or Machine Learning), the results for more general rough set models
(e.g., interval rough sets or general approximation spaces) have not yet
seen practical applications. Therefore, it would be interesting to further
explore the applications of these results.

– In this review we only provided a brief introduction to the extension of
the mentioned relationships between rough set theory and belief function
theory to the fuzzy case, due to space constraints. Nonetheless, we believe
that more research should be devoted at further exploring this important
topic, as well as its possible applications.

– In our summary of theoretical results, we focused on a static picture
of the relationship between rough set theory and belief function the-
ory: namely, we assumed the information/decision tables and correspond-
ing belief/plausibility functions to be already given and fixed in time.
Nonetheless, it could be interesting to study the relationships between
these mathematical structures also in so-called dynamic or incremen-
tal settings, in which the available knowledge evolves and changes with
time. Although this issue has been explored within rough set theory [6,
18, 54], we believe that further attention should be devoted at studying
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the connections between rough approximation and the corresponding be-
lief/plausibility functions in the dynamic setting.

– The comparative performance and properties (e.g., with respect to in-
terpretability or ease of visualization) of rough and evidential clustering
algorithms should be further evaluated, by means of experiments on real-
world benchmark datasets. To this end, a particularly interesting open
problem regards the definition of appropriate clustering quality metrics
that could be applied to evaluate different types of soft clustering [33].

– The practical performance of belief and plausibility reducts (see Sec-
tion 4.2) has not yet been evaluated in experimental settings. Further-
more, several theoretical problems related to this approach remain open.
These include finding theoretical conditions for equivalence between the
two reduct definitions, the study of rule induction algorithms, as well as
studying the properties of these definitions of reducts in the other gener-
alized relation-based models that have been more recently considered in
the literature [17, 36, 68, 87, 88, 91].

– The relationships between two existing approaches for dealing with UDTs
(see Sections 3.3 and 4.3) should be further studied, both in theoretical
terms (e.g., when do the two approaches coincide? When they they give
different results?) and experimental ones. To this end, a particularly
interesting open problem regards the extension of the approach proposed
in [12, 13] to general UDTs.

– Finally, while in this article we reviewed a broad and representative se-
lection of possible applications of the links between rough sets and belief
functions, obviously many others have been considered in the literature
that could not be covered within the scope of this article. In particular, the
connections between belief functions and rule induction in rough set theory
seems to be particularly worthy of investigation: indeed, since rough set
theory allows the induction of so-called non-deterministic rules [58] (i.e.,
rules in which either the consequent or antecedent are underspecified), it
would be interesting to study the connections between quality measures
for such rules (e.g., the support) and measures arising from belief function
theory.
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[13] Campagner, A., Ciucci, D., Hüllermeier, E., 2021. Rough set-based feature
selection for weakly labeled data. International Journal of Approximate
Reasoning 136, 150–167.

[14] Cattaneo, G., 1998. Abstract approximation spaces for rough theories, in:
Polkowski, L., Skowron, A. (Eds.), Rough Sets in Knowledge Discovery,
Physica-Verlag. pp. 59–98.

36



[15] Cattaneo, G., Ciucci, D., 2004. Investigation about time monotonicity of
similarity and preclusive rough approximations in incomplete information
systems, in: International Conference on Rough Sets and Current Trends
in Computing, Springer. pp. 38–48.

[16] Chakraborty, M.K., 2016. On some issues in the foundation of rough sets:
the problem of definition. Fundamenta Informaticae 148, 123–132.

[17] Chen, D., Li, W., Zhang, X., Kwong, S., 2014. Evidence-theory-based
numerical algorithms of attribute reduction with neighborhood-covering
rough sets. International Journal of Approximate Reasoning 55, 908–923.

[18] Ciucci, D., 2012. Temporal dynamics in information tables. Fundamenta
Informaticae 115, 57–74.

[19] Cobb, B.R., Shenoy, P.P., 2006. On the plausibility transformation
method for translating belief function models to probability models. In-
ternational Journal of Approximate Reasoning 41, 314–330.
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