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Highlights 

• Belief load of premises impact logical decisions  

• Regional importance in distinguishing belief load changes in different TRs 

• Belief load of assumptions elicits emotional and salience responses 

• Regional connectivity changes as the reasoning process evolves at different TRs  

• Insula, caudate, amygdala, and IFG were among highly connected hubs during the 

task 

 

 

Significance 

 It has been experimentally shown that decision-makers often ignore given assumptions in 

favor of their own beliefs, potentially leading them towards a subjective rather than a logical 

decision. Consider “Carbon emission tax” given the assumption of “global warming”. If a 

decision-maker does not believe in “global warming”, the final decision on “Carbon emission 

tax” is not driven by factual premises but by the personal belief of the decision-maker. 

Understanding neural mechanisms underlying the interaction between the decision-makers’ 

beliefs and factual premises sheds light on factors driving belief bias and potential 

interventions to circumvent it. The main contribution of this study is to investigate neural 

mechanisms in a logical reasoning task in which the belief load of the assumptions was 

manipulated. 
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Abstract 

Prior knowledge and beliefs influence our reasoning in daily life and may lead us to draw 

unwarranted conclusions with undesirable consequences. The underlying neural correlates of 

the interaction between belief and logic, prior to making logical decisions, are largely 

unknown. In this study, we aimed to identify brain regions important in distinguishing belief 

load of assumptions in logical decision making. Thirty-one healthy volunteers (18-29 years 

old) participated in an fMRI study and were asked to respond to a series of syllogistic 

arguments in which assumptions were either congruent (believable) or incongruent 

(unbelievable) with common knowledge. An interpretable machine learning algorithm, an L1 

regularized Support Vector Machine, was used to explain the discriminatory pattern of 

conditions given the brain activation patterns. Behavioral results confirmed that believable 

premises were incorrectly endorsed more than unbelievable ones. Imaging results revealed 

that several connectivity patterns anchored around the insula, amygdala, and IFG were 

important in distinguishing believable from unbelievable assumptions at different time points 

preceding logical decisions. Our convergent behavioral and imaging results underscore the 

importance of the belief loads of our assumptions for a logically sound decision. Our results 

provide new insights into neural and potential cognitive mechanisms underlying the 

interaction between belief and logic systems, with important practical implications for social, 

complex decisions. 

 Keywords: Logic; belief bias; assumption; amygdala; syllogistic reasoning; machine 

learning 
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Introduction  

Logical reasoning requires the recruitment of related facts, assumptions, and prior 

knowledge to come to reasonable conclusions. Beliefs and prior knowledge, however, may 

overshadow logic and lead to unwarranted conclusions, a phenomenon known as the belief 

bias (De Neys, 2012; 2013). Consider, for example, “carbon emission tax” given the 

assumption of “global warming”; if a decision-maker does not believe in “global warming”, 

even though supported by scientific evidence, the final decision on “carbon emission tax” 

might not be driven by the factual premises but by the personal belief of the decision-maker. 

Syllogistic reasoning, drawing a conclusion from given assumptions, with manipulated belief 

load is frequently used to study the interaction between belief and logic. To investigate belief 

bias using syllogistic reasoning, most previous neuroimaging studies have focused on the 

influence of belief load during the conclusion (decision making) stage (Goel et al., 2004a; 

Knauff et al., 2003; Monti et al., 2007; Reverberi et al., 2012a). These studies argue that the 

believability of the conclusion influences reasoning by motivating people to reason more 

thoroughly when the statements are unbelievable (Evans et al., 1983; Johnson-Laird, 2001).   

A few studies, however, have investigated how the belief load of assumptions may impact 

the performance of decision-makers (Halford et al., 2015; Maybery et al., 1986; Thompson, 

1996). These studies have shown that conclusions supported by believable premises are more 

likely to be accepted, emphasizing the importance of the belief load of the assumptions in 

drawing correct conclusions. To our knowledge, only one neuroimaging study has measured 

neural responses in a logical reasoning task when the content of the assumptions or 

conclusion was not congruent with prior beliefs, known as belief-content conflict (Stollstorff 

et al., 2012). It was found that the activity in the right lateral prefrontal cortex (PFC) varies 

with the degree of belief-content conflict, i.e., the number of unbelievable statements in the 

syllogistic task. The role of other brain areas and their connections underlying the interaction 
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between the decision-makers’ beliefs and factual premises, however, was not thoroughly 

investigated. Such investigation of neural mechanisms would shed light on factors driving 

belief bias and potential interventions to circumvent it.  

The primary aim of this study was thus to investigate how the neural mechanisms involved 

in decision making differ when the belief load of given assumptions in a reasoning task is 

manipulated. Healthy younger adults completed a syllogistic reasoning task in which they 

were asked to either endorse or reject a conclusion statement, and the belief load of 

assumptions was either congruent (all parrots are birds) or incongruent (all parrots are 

lizards) with common knowledge. Based on previous behavioral studies, we expected that 

participants to be “deceived” by the belief load of the premise, hence, incorrectly endorsing 

statements with believable premises more often than statements with unbelievable premises. 

This would consequently lead to a higher false-negative rate and lower false-positive rate in 

statements with unbelievable premises comparing to believable premises. For the imaging 

data, we used an interpretable classification method to identify brain regions, characterized 

by the mean brain activation signals from anatomically defined regions of interest, important 

in differentiating experimental conditions, defined according to whether participants were 

processing believable or unbelievable assumptions. This approach reduces the number of 

features fed into the classifier. Hence, the method does not suffer from the ‘curse of 

dimensionality’, a common issue in Multivoxel Pattern Analysis (MVPA) algorithms. Based 

on the probabilistic association between regions, the method was extended to establish a 

graphical model of the regions that are most likely to work together to explain the 

experimental condition. Given the complexity of the interactions between belief and logic 

systems, we anticipated multiple cognitive processes to be involved in differentiating 

believable from unbelievable assumptions. For instance, we expected that assumptions would 

involve the retrieval of currently-held beliefs from memory, engaging the hippocampus (Goel 
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et al., 2004b; Ziaei et al., 2020a), and that conflict between assumptions and an individual’s 

belief is likely to elicit an emotional response, involving the amygdala (Eimontaite et al., 

2019; Stollstorff et al., 2012). Inhibition of currently-held beliefs to achieve a logical decision 

is expected to involve the insula, a critical node of the salience network (Menon, 2015), and 

the inferior frontal gyrus, a primary node in inhibitory control (Aron et al., 2014; Ziaei et al., 

2020b).  

Materials and Method 

Participants  

Thirty-one healthy young adults participated in this study. Two participants’ imaging data 

were excluded due to technical issues such as failure of the image reconstruction stage, 

extensive head movement during scanning, and corruption of data. Therefore, only twenty-

eight participants were included in the final analyses (age 18-26 years, M = 21.13, SD = 2.72; 

15 females). All participants were students recruited from the University of Queensland in 

exchange for course credits or a payment of $20 per hour. Screening for claustrophobia, 

neurological and psychiatric disorders, and magnetic resonance imaging (MRI) 

incompatibility was conducted prior to the experiment. All participants were right-handed 

English speakers, had normal or corrected-to-normal vision, and had no history of 

neurological impairment or psychiatric illnesses. They first undertook the fMRI scanning 

task, followed by a break, and then completed the neuropsychological assessments. 

Participants provided written consent and were debriefed upon completion of the experiment. 

The experiment was approved by the Bellberry Human Research Ethics Committee. 

Materials 

In brief, logical arguments used in this study included three statements, two premises and 

one conclusion, in the form of a standard syllogism. In a premise, the subject and the 
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predicate are arbitrary sets (e.g., dogs, mammals, furniture). Exactly one set is shared 

between the two premises that may appear in either the subject or the predicate in either of 

the premises. Hence, an argument with two premises involves exactly three sets (����, ����, 

and ���� in the example), two uniquely used in each premise and one used in both. The 

conclusion of a syllogism is a statement about the sets that appear uniquely in premises (���� 

and ���� in the example). A conclusion “follows” from the premises if the premises provide 

conclusive evidence to support it. Otherwise, the conclusion “does not follow” from the 

premises. This includes a conclusion that is wrong, given the premises, or is not completely 

supported by the premises. 

The conclusion and the premises can be believable or unbelievable statements. For 

example, “all birds are mammals” is an unbelievable statement while “all parrots are birds” is 

a believable statement. In addition, premises were used to provide a neutral context as a 

control, for example, “all dogs are sothods”, where “sothods” is a pseudo-word. This type of 

statement was only used in the premises in a way that the pseudo-word was always the shared 

set between the premises. Hence, the premises were either believable, unbelievable, or neutral 

while the conclusion was either believable or unbelievable. The phrases “believable 

premises”, “neutral premises”, and “unbelievable premises” refer to the believability load of 

the second assumption. The following are two examples of syllogisms with a believable 

premise / unbelievable conclusion and an unbelievable premise / believable conclusion 

respectively: 

All sparrows are birds; all birds are animals; therefore, no animals are sparrows 

(believable premise/unbelievable conclusion) 

All oranges are citrus; no citrus are fruits; therefore, some fruits are not oranges 

(unbelievable premise/believable conclusion) 
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In a syllogism, in addition to a subject, a predicate and a proposition, each statement 

includes a quantifier (All, No, and Some) and a copula (Is or Is not). Two types of 

proposition were used, defined by the following combinations of <quantifier, copula>: 

1. Proposition type A: <All, is> , 2. Proposition type E: <No, is> 

From here on, we denote syllogisms as <premise 1; premise 2; conclusion> for simplicity. 

In all of our premises, we used proposition types A and E (counterbalanced across all runs). 

We avoided the use of proposition E in both premises as it simplifies the reasoning task. For 

the conclusions, however, we used the propositions required to ensure that conclusions that 

followed the premises and those that did not follow the premises were balanced. We 

controlled for the difficulty and negation in all syllogisms.  

A total of 96 syllogisms was generated, comprising a total of six conditions: 1. believable 

premise / believable conclusion, 2. believable premise / unbelievable conclusion, 3. 

unbelievable premise / believable conclusion, 4. unbelievable premise / unbelievable 

conclusion, 5. neutral premise / believable conclusion, 6. neutral premise / unbelievable 

conclusion. An algorithm that creates all the syllogisms based on criteria specified above was 

developed (see Supplementary Material for access to all the syllogisms used in the study).   

Task design 

The scanning session lasted 45 minutes and included two components: structural MRI 

(sMRI) and the logical reasoning task with fMRI. Prior to the scan, participants were verbally 

instructed about the task and a practice run was continued until they were familiar with the 

timing and instruction of the task. During the logical reasoning task, participants were 

instructed to ascertain if the conclusion logically followed from the premises. They 

responded with two keys on an MRI-compatible response box. The first premise was 

presented for 2 seconds followed by a second premise for 4 seconds. After the second 
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premise, the conclusion statement was presented for 12 seconds. To minimize the working 

memory load, all statements remained on the screen until the end of the presentation of the 

conclusion. A fixation cross was presented after the conclusion which was randomly jittered 

using four intervals: 0.5 seconds (24 trials), 1 second (24 trials), 1.5 seconds (24 trials), and 2 

seconds (24 trails) across all runs. The task consisted of 6 runs, each run lasting for 5.16 

minutes. Three runs of the task were presented before the sMRI and three after the sMRI.  

Background measures 

After a break following completion of the imaging session, all participants were asked to 

complete a range of background measures assessing executive control such as a Stroop task 

(Jensen et al., 1966) and Trail Making Test (Reitan et al., 1986) and intelligence measured by 

National Adult Reading Test (Nelson, 1982); emotional well-being measured by Depression, 

Anxiety, Stress Scale (DASS-21, Lovibond & Lovibond, 199525). Descriptors of background 

measures are reported in Table 1. 

[Insert Table 1 about here] 

Image acquisition 

Functional images were acquired at the Centre for Advanced Imaging using a 3T Siemens 

scanner with a 32-channel head coil. The functional images were obtained using a whole-

head T2*-weighted multiband sequence (473 interleaved slices, repetition time (TR) = 

655ms, echo time (TE) = 30ms, flip angle = 60º, field of view (FOV) = 190mm, multi-band 

acceleration factor = 4, voxel size = 2.5mm3). High-resolution T1-weighted images were 

acquired with an MP2RAGE sequence (176 slices with 1mm thickness, TR = 4000ms, TE = 

2.89ms, TI = 700ms, FOV = 256ms, voxel size = 1mm3). Participants observed the tasks on a 

computer screen through a mirror mounted on top of the head coil. To reduce the noise and 
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minimize head movement, participants were provided with earplugs and cushions inside the 

head coil.  

Preprocessing 

For functional analysis, T2*-weighted images were pre-processed with Statistical 

Parametric Mapping Software (SPM12; http://www.fil.ion.ucl.ac.uk/spm) implemented in 

MATLAB 2015b (Mathworks Inc., MA). Following the realignment to a mean image for 

head-motion correction, images were segmented into gray and white matter. Then, images 

were spatially normalized into a standard stereotaxic space with a voxel size of 2 mm3, using 

the Montreal Neurological Institute (MNI) template, and then spatially smoothed with a 6 

mm Gaussian Kernel.  

Signal extraction (MarsBar settings) 

For each condition, participant, and repetition time during the conclusion stage, we 

extracted the mean BOLD parameter estimate value using the MarsBar toolbox (order 2 auto-

regressive model) for 50 hand-picked ROIs, taken from the AAL (anatomical automatic 

labelling) atlas (Tzourio-Mazoyer et al., 2002).  

Data analysis 

Our aim was to investigate whether the believability of premises would lead to a 

significant difference in brain activation during the conclusion stage. For this reason, we only 

included believable and unbelievable conditions and compared the brain signals for each 

regions of interest in these two conditions only. We first extracted signals for 50 handpicked 

a priori regions at each TR during the conclusion stage (18 TR) for both believable and 

unbelievable premise conditions. This process provided 2 � 28 samples (56 samples in total 

with 2 conditions and 28 individuals) for each TR, with each sample involving a mean value 

for 50 regions of interests. The selection of regions was based on their involvement in 
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cognitive functions deemed to be important based on previous literature and meta-analysis in 

logical reasoning (Prado et al., 2011). These regions included areas from prefrontal and 

parietal lobes, as well as subcortical areas such as the amygdala, hippocampus, caudate and 

putamen. As the number of picked regions used as features is smaller than the sample size 

(56), our method does not suffer from the issue of large feature size and small sample size.  

Separating conditions at each TR: At each TR, the samples formed independent 

variables for an interpretable classification method, specifically the support vector machine 

(SVM) with �� regularization (Bi et al., 2003), to separate believable and unbelievable 

premises, labelled as �1 and 1. Interpretable classifiers such as SVM not only distinguish 

between classes but also provide insights to the importance of features (regions) involved in 

the classification (Pereira et al., 2009; Tibshirani, 1996; Weston et al., 2001). Therefore, an 

interpretable method can be used to rank features according to their importance in 

distinguishing between experimental conditions.  

At each TR, we performed a shuffle test to determine if the accuracy of the classifier in 

separating the conditions was significantly better than chance (the null hypothesis was that 

the premise load could be described by the regions’ activity at the chance level, t-test, 

p<0.05) (Pereira et al., 2009). Specifically, we ran the classifier 2000 times and, for each run, 

we selected a subset of participants (90% of participants, standardized to mean equal to zero, 

standard deviation equal to one) as a training set. We picked the regularization parameter for 

SVM-L1 using a 5-fold cross validation on the range of [0, 1] with a step size of 0.1 for the 

training set. We then trained the classifier using this regularization factor on the training set 

and calculated the accuracy using the remaining participants as the test set (10% of 

participants, transformed using the standardization factors obtained for the training set). We 

used the area under the curve (AUC) of the receiver operating characteristic (ROC) curve to 

measure accuracy. Then, on the same training set, we shuffled the labels randomly, found the 
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best regularization factor, trained the classifier, and calculated its accuracy on the test set 

using a similar standardization procedure to the non-shuffled case. A t-test was used to 

compare the performance of the classifier trained on the original training set and the shuffled 

training sets, the null hypothesis being that the classifier performs at chance level (Pereira et 

al., 2009). To decrease the population biases and impact of outliers on our analyses, we 

implemented a bootstrap aggregation (bagging) method (Jollans et al., 2019), as described 

below.  

Stability of regional contributions to discriminative pattern of conditions at each TR: 

SVM-�� provides a hyperplane with sparse coefficients (Bi et al., 2003). The sparsity of the 

coefficients enables their use as a measure of the importance of features (in this case the 

importance of the regions) in separating the conditions. This direct approach, however, is 

prone to population effect and outliers (Meinshausen et al., 2010). To address this issue, we 

used a bootstrap aggregation (bagging) method to find a stable set of regions that contribute 

to the discriminative pattern (Rondina et al., 2013). We ran the SVM_L1 2000 times on a 

subset of participants and regions (50% of regions, called in-bag regions) selected randomly 

at each run. The distribution of the coefficient values of each region across runs provides an 

insight into the importance of that region. The fraction of the runs in which a region was 

selected for training and had a non-zero coefficient value after training was called the 

importance stability factor (ISL). The ISL indicates the stability of the contribution of the 

region in separating the classes (the larger the ISL, the greater the stability). Defining �� the 

event of a region i being important, the ISL of that region provides the probability of that 

region being important, denoted as ����. This procedure reduces the dependence of 

estimating regional importance on the population (Meinshausen et al., 2010; Rondina et al., 

2014; Schrouff et al., 2018).   
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The absolute value of the coefficients found by SVM-L1 provides an insight into the 

importance of the region in separating the conditions, for samples standardized in the same 

manner as for the training set. For coefficients that were flagged as stably important using the 

above procedure, we calculated the median of the absolute value of the coefficient and its 

95% confidence interval using a bootstrap aggregation method (5000 resampling for 

calculation of the mean). This median, called the bagged importance level (BIL) throughout 

the paper, for each stably important region was used to rank the regions in terms of their 

importance in separating the conditions. 

Probability of functional connections between regions to explain the response 

patterns: Under the i.i.d assumption, the non-zero coefficients of SVM-L1 indicate a sparse 

network of regions functioning together to explain the response pattern. This network, 

however, may vary for each run (bag) when the bagging approach is used because the 

instances and features involved at each run may be different from one another. Therefore, we 

modelled the bagging process by a Markov random field (Kindermann et al., 1980), each 

independent run being an observation and each region being a variable, to form a 

probabilistic undirected graphical model. This undirected graphical model formulates a 

probabilistic association between regions working together as a part of the same network to 

explain the experimental condition. We defined functional connection probability (FCP) 

between two regions, implementing the association factor for the undirected graphical model, 

by the joint probability of both regions i and j being important in separating the experimental 

conditions (���  �  ���). This probability can be obtained by the fraction of runs in which 

both regions i and j were in-bag and important (non-zero coefficient). A large FCP between 

two regions indicates that they are likely to be involved together in explaining the 

discriminative pattern of the response.  
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One should note that the standard association measures frequently used in Markov random 

fields, such as marginal correlation, sparse inverse covariance, and Kendall’s �, are not 

sensitive to the means of association between regions in the interest of this study. As an 

example, these factors may indicate a high level of association between two regions that are 

highly correlated, but not necessarily important (low ISL) in most runs. This, however, is not 

desirable as we seek a factor that formulates the joint importance in explaining the 

experimental conditions.  

FCP provides a measure of association (dependence) between regions being important for 

explaining the experimental conditions. Based on the Kolmogorov definition of the 

conditional probability, ���  �  ���  �  �����������, where ������� is the conditional 

probability of a region i being important given that the region j is important. If region i and 

region j are independent then ���  � ���  �  ��������, which is smaller than each of ���� 

or ����, hence smaller than the ISL of i or j. When the importance of the two regions is 

dependent, however, the knowledge about the importance of one provides information about 

the importance of other, formulated in the term �������.  

The undirected graphical model is defined by a set of nodes, regions in this study, and 

vertices, the FCP between each two regions. The degree-related parameters of each node in 

this graph (e.g., node degree, degree centrality; Bullmore et al., 2012; Vecchino et al., 2017) 

indicate to what extent that node is required to function with other nodes to separate 

experimental conditions successfully. In the context of brain imaging and this study, this 

analysis reveals which brain regions are most likely to function together to describe the 

response patterns. The nodes with largest degree centrality, so called hubs, indicate the 

regions which are engaged the most with other regions to describe the response patterns. The 

decision points for each step of analysis are summarized in Figure 1.  
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[Insert Figure 1 around here] 

Why SVM-L1? 

While many studies have used the multivoxel pattern analysis (MVPA) to model classes 

that can distinguish between experimental conditions, this method has some limitations, in 

particular the curse of dimensionality and the issue of small sample size and a large feature 

size. A recent study (Jollans et al., 2019) has shown that, in the context of neuroimaging and 

MVPA, a sample size of over 400 is usually required to detect a small to moderate effect size 

when the number of features is large. To avoid this issue, we chose to summarize signals at 

the regional level, provided by MarsBar (see section “ Signal extraction” for details), over 

MVPA to reduce the impact of large feature size and small sample size in this study (Jollans 

et al., 2019). We used SVM for classification, a multivariate binary classification algorithm, 

that finds a hyperplane that best separates the classes. In comparison with other classification 

methods such as Logistic Regression and Partial Least Squares, SVM prioritises the 

hyperplane which has maximum distance from the instances in each class, minimizing the 

empirical risk. This approach presumably decreases the classification error on unseen 

instances (Cortes et al., 1995). L1 regularization in SVM leads to sparsity in the coefficients 

of the separating hyperplane, enabling the use of the coefficients as a measure for the 

importance of independent variables. This, of course, assumes that the independent 

identically distributed (i.i.d) assumption holds, which makes standardization (usually 

standardizing the variables to have a mean of zero and standard deviation of 1.0) essential for 

this conclusion to be accurate (Weston et al., 2001). In comparison with univariate methods 

such as ANOVA, SVM-L1 considers all independent variables at the same time, forming a 

sparse linear combination which best distinguishes the classes. This enables patterns to be 

described that involve multiple independent variables functioning together in a network. In 

the context of brain analysis, the classifier establishes a relationship between regions and 
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conditions (Pereira et al., 2009). This means that the classifier assumes a dependency 

between brain responses (region activations) and conditions and formulates that relationship 

to be used for broader samples. SVM-L1 provides a set of sparse coefficients, forming a 

separating hyperplane (linear combination of the regions), while minimizes the empirical 

risk, enabling estimation of the importance of the regions while minimizing the error on the 

unseen samples.  

Behavioral analysis 

We used two accuracy measures from signal detection theory: False negative rate and 

False positive rate. False negative rate is the number of incorrectly rejected responses divided 

by the number of statements that should have been rejected in each condition. This measures 

the tendency of participants towards rejecting statements without paying attention to the 

logical validity of the syllogism. False positive rate is the number of incorrectly accepted 

responses divided by the number of statements that should have been accepted in each 

condition. This measures the tendency of participants towards accepting statements without 

paying attention to the logical validity of the syllogism.  

Results 

Behavioural results 

Endorsement rate: Endorsement rate, defined by the number of endorsed statements 

divided by the number of statements that should have been endorsed, differed significantly 

based on the believability of premises (t(31) = 3.24, p = 0.002, Cohen’s d = 0.83), with 

endorsement rate being higher for statements with believable premise (M = 1.11, SD = 0.23) 

than unbelievable premise (M = 0.95, SD = 0.16). However, no difference was found between 

believable and unbelievable conclusions, (F(1,30) = 0.051, p = 0.82, ���= 0.05).  
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Accuracy: It was found that the false negative rate is higher for statements with 

unbelievable premises (M = 0.14, SD = 0.14) than the statements with believable premises (M 

= 0.03, SD = 0.04; t(31) = 3.97, p = 0.0002, Cohen’s d = 1.07). In contrast, false positive rate 

was significantly higher for statements with believable premises (M = 0.25, SD = 0.24) than 

the statements with unbelievable premises (M = 0.12, SD = 0.14; t(31) = 2.5, p < 0.016, 

Cohen’s d = 0.66). 

Imaging results 

Modelling the discriminative pattern of conditions 

At each run for over 2000 runs, 90% of the participants were selected randomly for 

training purposes and the rest were left for testing. An SVM-L1 was trained on the training 

set with the original class labels and another SVM-L1 was trained on the training set when 

the class labels were shuffled randomly. The accuracy of the two models was calculated on 

the test set of that run. After 2000 runs, the accuracies of the models were compared using a 

t-test for each TR separately. As shown in Table 2, there is a significant difference between 

the original and the shuffled labels in TRs 1, 2, 3, 4, 5, 6, 10, 11, 17, indicating that the model 

can distinguish the original classes significantly better than chance in those TRs (all p < 

0.001). As the most responses were recorded within the first 6 TRs, the rest of our analyses 

focused on TRs from 1 to 6 only. Further, a moderate to large effect size, measured by 

Cohens’ d larger than 0.5, was observed in TRs 1, 3, and 6.  

[Insert Table 2 about here] 

Importance stability factor (ISL) and bagged importance level (BIL) of regions 

We calculated the ISL factor for TRs 1 to 6 as they were among TRs in which the machine 

learning method could distinguish between classes significantly better than chance. The ISL 

and BIL values for regions are shown in Figure 2. A full list of regions with their importance 

stability factors above 0.95 for each TR is presented in the GitHub link provided for this 
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study. Among those TRs, TR 3 seems to have a large effect size (Cohen’s d larger than 0.8). 

Regions such as left amygdala, right hippocampus, left putamen, and left superior frontal 

gyrus were identified as significant (ISL>0.95) in this TR for differentiating between 

believable and unbelievable load.  

One of the regions found to be important in differentiating the conditions was right insula 

in TRs 2, 3, and 4 (ISL 0.97, 0.99, and 0.99, respectively). Our results indicated the 

importance of subcortical areas such as left putamen in TRs 1, 2, and 3 (ISL 0.98, 0.96, and 

1.00, respectively), right caudate in TR 6 (ISL 1.00), and right hippocampus in TRs 3 and 6 

(ISL 1.00, 0.99, respectively) during the task. Another interesting region that was found to be 

involved in differentiating between our experimental conditions is the amygdala (right: TRs 

1, 5, and 6, ISL 0.95, 0.97, and 0.96 respectively; left: TR 3, ISL 0.99) throughout the 

decision-making stage.  

 [Insert Figure 2 about here] 

Functional connection probability (FCP) 

We next sought to determine what patterns of connectivity, defined by the joint probability 

of two regions being important, between regions of interest distinguish our experimental 

conditions in separate TRs (Figure 3). We focused on TRs 1, 3, and 6 for which a moderate to 

large effect size in distinguising experimental conditions was achieved. In those TRs, we only 

focused on region pairs with FCF > 0.95, i.e., the pair of regions which were important with a 

joint probablity larger than 95%. Finally, for each of these three TRs, we focused our 

analyses on the hubs, the nodes with highest degree centrality depicted in Figure 5.  

[Insert Figure 3 about here] 

Several novel findings have emerged from the connectivity analyses at these TRs. At TR 1 

with moderate effect size (Cohen’s d of 0.63), thalamus was a highly connected node (degree 
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centrality of 0.54) and was connected to regions such as fusiform gyrus, superior temporal 

gyrus, and putamen. At TR 3 with a large effect size (Cohen’s d of 1.03), insula and putamen 

had the largest degree centrality (degree centrality of 0.8). Insula was connected to the 

amygdala, hippocampus, putamen, fusiform gyrus, precuneus, and superior frontal gyrus. 

Amygdala and hippocampus were also directly connected. The putamen was connected to the 

amygdala, insula, hippocampus, superior frontla gyrus, precuneus, and fusiform gyrus. At TR 

6 with effect size of 0.58, caudate and orbitofrontal cortex were the most connected regions 

(degree centrality of 0.89). The caudate was connected to regions such as the hippocampus, 

amygdala, orbitofrontal cortex and inferior frontal gyrus. Orbitofrontal cortex was also 

connected to caudate, amygdala, posterior cingulate gyrus, hippocampus, superior frontal 

gyrus and inferior frontal gyrus.  

 [Insert Figure 4 about here] 

Discussion 

Despite the number of studies that have investigated belief-logic bias in the literature, our 

understanding of the neural correlates underlying interaction between belief and logic 

remains limited. Importantly, there is a gap in the literature relating to the impact of the 

content of premises versus the content of conclusions on logical decision making. Given the 

importance of assumptions in our daily decision making, this study was set up to clarify these 

gaps in the literature using a novel analytical machine learning approach. Our behavioral 

results support the impact of belief load of premises, with participants favoring their own 

belief over the logical soundness of the statements. Using a regularized linear classifier, we 

were able to differentiate between believable and unbelievable assumptions given regional 

brain activity patterns. By using a bootstrap aggregation strategy, we found that the insula, 

hippocampus, amygdala, striatum, and inferior frontal gyrus are all important in 

distinguishing believable from unbelievable content before making a decision. We further 
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introduced a measure for an association between regions, defined by the probability of pairs 

of regions functioning together. This association network established an undirected graphical 

model that revealed that connectivity anchored around the insula, amygdala, striatum, and the 

inferior frontal is critical for distinguishing between experimental conditions. Our task design 

and analytical approach allow us to speculate about cognitive mechanisms that underlie 

making a logical decision. 

In line with our hypothesis, we anticipated that syllogisms with different belief loads 

would elicit emotional responses due to the manipulation of belief content. Although our task 

did not explicitly manipulate the emotional content of syllogisms, it is reasonable to assume 

that content-logic conflict elicits emotional responses, even implicitly, towards the 

syllogisms. Our results revealed that the content of assumptions, irrespective of emotional 

content, could interfere with the currently-held belief systems of decision-makers, which 

could elicit emotional responses in them. Previous studies have also suggested that decision 

making relies on a complex interaction between cognitive and emotional systems (Gupta et 

al., 2009). The importance of the amygdala in processing salience and ambiguous and 

emotionally-laden stimuli is also well established (Buhle et al., 2014; Urry et al., 2006; Ziaei 

et al., 2016), all of which are important processes involved in our logical reasoning task. 

Finally, another important function during reasoning is the ability to control emotional 

responses to logically decide and respond to the task. This might in turn activate the 

amygdala and prefrontal areas’ connections. The role of the amygdala is in accordance with 

the emotion regulation literature highlighting top-down regulatory control from prefrontal 

areas when personal emotions are required to be suppressed (Buhle et al., 2014; Ochsner et 

al., 2005). This pattern of connectivity seems to be important when making a logical decision. 

That is, our results resemble a regulatory pattern of connectivity between the inferior frontal 

gyrus, orbitofrontal cortex, and amygdala that are important in distinguishing believable from 
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unbelievable inferences. Further studies are required to investigate the direction of interaction 

between limbic and frontal areas during the logical reasoning task. 

During the logical reasoning task, integration of currently-held beliefs with externally 

given information in the syllogisms is warranted. No matter the outcome of this integration, 

the content of syllogisms activates the currently-held beliefs in reasoners. This function 

possibly engages the insula, a critical region important in integrating internal and external 

information to guide behaviour (Sridharan et al., 2008). The insula is implicated in a variety 

of cognitive and affective tasks, from cognitive control and attention orientation to emotional 

responses and empathy, making this region a candidate for detecting salient information 

(Menon, 2015; Menon et al., 2010). The engagement of insula during our task is not 

surprising given that integration of internal and external stimuli is needed to perform the task 

and thus the insula acts as a “switchboard” between the two worlds. Alternatively, due to the 

inconsistency between belief content and currently-held beliefs, a salient response might have 

been triggered engaging the insula. Salience processing is thought to play a role in decision 

making in emotionally driven situations (Eimontaite et al., 2019). Having said this, more 

research is needed to fully investigate the link between salience rating and participants’ 

emotional responses towards syllogisms that include different belief content.   

Confirming our expectations and in line with previous studies (Goel et al., 2004b; Ziaei et 

al., 2020a), the hippocampus was engaged at a relatively early stage of the task to possibly 

retrieve currently-held beliefs stored in memory to compare with given assumptions. The 

amygdala-hippocampal connectivity concords with the memory-modulation hypothesis that 

the arousal level induced by items is a critical factor for memory (Mather et al., 2011). 

Extending previous work (Preston et al., 2013; Ziaei et al., 2020a), we demonstrated that 

memory processing and retrieval of semantic information played a critical role during the 

logical reasoning task engaging the hippocampus in connection with the prefrontal areas and 
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the insula. We speculate that this pattern of activity might suggest that retrieving currently-

held beliefs from memory is required during the reasoning task. There is still a need for 

further investigation to highlight the exact link between memory and syllogistic reasoning 

ability in more detail.   

One other important component of a decision making is planning of a response (Melrose 

et al., 2007), before making a response, which is expected to elicit striatum activation. In line 

with our results, a previous study of intense training in logical reasoning reported a 

strengthening of prefrontal-parietal and parietal-striatal connections following training, 

possibly through dopaminergic inputs (Ashby et al., 2010), supporting the importance of the 

striatum in reasoning (Mackey et al., 2013). A link between dopaminergic neurotransmission 

in the striatum and salience detection in decision-making tasks has also been reported 

previously (Esslinger et al., 2013; Rausch et al., 2014). Only a few studies, however, have 

reported activity of the putamen specifically during the premise integration stage and during 

reasoning (Eimontaite et al., 2019; Reverberi et al., 2012). Additionally, some studies have 

confirmed functional and structural connectivity between the putamen and prefrontal areas 

(Di Martino et al., 2008) and the insula (Postuma et al., 2005). Altogether, cognitive 

mechanisms involved in our task suggest that activities and connections between prefrontal 

and subcortical areas are essential in transitioning from planning and integrating assumptions 

to forming a logical decision and implementing a logical response.   

In line with our expectation, the inferior frontal gyrus was activated during the task 

possibly to inhibit unnecessary responses and assumptions. This region has received lots of 

attention in the literature highlighting the role of inhibitory control during logical reasoning 

(Ziaei et al., 2020b). There is mounting evidence that the inferior frontal gyrus plays a key 

role during both emotional and non-emotional reasoning tasks (Prado et al., 2011; Rotello et 

al., 2014; Tsujii et al., 2011). In the current study, the role of IFG has been further delineated 
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by its connection with the striatum, limbic, and salience hubs at a later stage of reasoning 

confirming our predictions about the importance of inhibitory control over currently-held 

beliefs before making a decision.  

Our imaging and analytical method allow us to expand previous neurocognitive models of 

reasoning and propose a link between neural and cognitive processes involved in different 

stages of reasoning. It has to be noted that although we did not measure the cognitive 

processes in each stage of the reasoning separately, our high temporal resolution data allows 

us to investigate the different neural and cognitive mechanisms involved in each stage of 

reasoning prior to making a logical decision. Here, we integrate previous dominant theories, 

such as the Mental Models (Johnson-Laird, 2010) and the neurocognitive model of reasoning 

(Knauff, 2009), with our results to offer a modification for the multi-stage process, that relies 

on several cognitive and neural processes.  

While some empirical studies have initiated the investigation of brain regions underlying 

cognitive processes of reasoning (Fangmeier et al., 2006; Reverberi et al., 2012a), the brain 

regions related to the underlying cognitive functions have not been fully mapped out. In the 

earlier stage of reasoning (TR 1-2), it is speculated that a mental image of assumptions will 

be constructed, activating regions such as the thalamus and visual and parietal areas. During 

the middle stage (TR 3-4), content-logic conflict appears to trigger the retrieval of currently-

held beliefs from memory and elicit emotional responses, activating regions such as the 

hippocampus and amygdala, mediating memory and affective response respectively. At this 

stage, integrating internal and external information is required activating the insula as a 

functional ‘switchboard’. Subsequently, inhibition of retrieved beliefs and emotional 

responses are necessary for logical decision making, and prefrontal regions are engaged to 

validate the final decision during the late stage of the decision-making process (TR 5-6; 

Figure 5). 
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Unlike most previous studies, our approach facilitates the detection of multiple regions 

that are simultaneously involved in reasoning at different time points. Future behavioral and 

neuroimaging studies are needed to confirm and extend our proposed model using reasoning 

tasks that vary in their emotional and conflict contents. Additionally, given that our analyses 

aimed to represent important regions at different time points, future studies are needed to 

examine the chronological dependencies of the processes at different stages of reasoning.  

[Insert Figure 5 about here] 

Conclusion 

We have shown that the belief load of premises affects logical decision making during the 

conclusion stage of the decision-making process. Multiple brain areas were found to be 

important in distinguishing belief loads manipulated before a logical decision being made. By 

employing a machine learning method, we were able to further identify connections between 

different brain areas such as IFG, insula, and limbic areas that play a critical role in 

discriminating between believable and unbelievable premises. Our results shed light on the 

interaction between multiple brain areas, and the underlying cognitive mechanisms involved 

in belief bias. Our results offer a closer mapping between brain and cognitive functions 

involved in reasoning based on the believability load of assumptions, allowing us to extend 

existing brain-based models of logical decision making.  
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Figure captions 

Figure 1. A flowchart summarizing decision made in each step of the analysis. 

Regions were selected from AAL atlas and weighted mean values were derived from each 

region of interest using Marsbar. SVM-L1 then applied on the brain signals. Importance 

stability level was used to identify regions that are important in distinguishing experimental 

conditions. We further used ISL to establish undirected graphical model to identify highly 

connected nodes (hubs) with high degree of centrality important in differentiating 

experimental conditions.   

Figure 2. Importance of Regions. Regional importance in distinguishing experimental 

conditions derived form support vector machine (SVM-L1) are presented for each region, 

separated by repetition time (TR). Sizes indicate the importance stability factor (the larger the 

more likely to be important), colors indicate bagged importance level (the darker the more 

important, normalized from 0 to 1000).  

Figure 3. Undirected graphical model of functional connection of regions. The 

regions (nodes) with functional connection factor larger than 0.95 have been shown in the 

graph. Colors of the nodes represents the “degree centrality” (the lager, the more nodes that 

node is connected to).  

Figure 4. Degree centrality of regions at repetition time 1 to 6. The degree centrality of 

the top 5 regions have been reported across repetition time (TR)1 to 6. Functional connection 

factor has been thresholded at 0.95 for the calculation of the degree centrality. Abbreviations: 

TR = repetition time; AMY = amygdala; FFG = fusiform face gyrus; ORBinf = inferior 

orbitofrontal cortex; PUT = putamen; STG = superior temporal gyrus; THAL = thalamus; 

INS = insula; PCG = posterior cingulate gyrus; HIP = hippocampus; PCUN = precuneus; 
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SFGdor = dorsal superior frontal gyrus; IFGtriang = Triangular inferior frontal gyrus; CAU = 

caudate; ORBsupmed = superior medial orbitofrontal gyrus.  

Figure 5. A schematic brain-based model of decision-making process involved in 

predicting belief load. Regions such as thalamus and fusiform face areas were involved 

during the initial stage of reasoning (mental image construction stage). Regions such as 

insula, amygdala, striatum and hippocampus were primarily engaged during the middle stage 

of reasoning (around repetition time (TR) 3 or comprehension stage) to possibly link between 

internal and external information for making a decision. Regions such as Inferior frontal 

gyrus and orbitofrontal were among the regions that were mostly activated and connected to 

other areas during the final stage (TR 6; validation stage) in which the final decision was 

being validated. Abbreviation: FFG = fusiform face gyrus; OFC = orbitofrontal cortex; IFG = 

inferior frontal gyrus.  
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Tables 

Table 1. Descriptive statistics of logical reasoning task performance and background measures 

Measure Conditions  Mean (Standard Deviation)  

Age   20.65 (2.66) 

Gender  15 females, 14 males  

Education (years)  15.28 (1.97) 

DASS – 21    

Stress  6.06 (5.19) 

Anxiety  2.68 (3.55) 

Depression  3.31 (4.60) 

NART FSIQ  112.02 (4.77) 

Stroop Test in second     

Congruent  0.72 (0.12) 

Incongruent  0.82 (0.16) 

Neutral  0.70 (0.10) 

Stroop effect  0.16 (0.12) 

Premise condition     

RT (sec) Unbelievable 4.81 (1.37) 

  Believable  4.70 (1.22) 

  Neutral 4.98 (1.20) 

Rejection rate  Unbelievable  0.98 (0.13) 

  Believable  0.93 (0.07) 

  Neutral 0.97 (0.13) 

Note. NART FSIQ = National Adult Reading Test Full-Scale Intelligence Quotient; Stroop 

effect = (Incongruent – neutral/neutral); DASS-21 = Depression, Anxiety, Stress Scale with 

21 items; Rejection rate = number of times each participant correctly rejected a given 

syllogism divided by the total number of statements that should have been correctly 

rejectedSD = Standard Deviation; Stroop effect = (Incongruent – neutral/neutral) *100; RT = 

reaction time; sec = second; M = mean; SD = standard deviation.  
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Table 2. Inferential statistics of model performance for the 90% training dataset in 2000 runs 

compared with the shuffled data. The mean column provides the mean of accuracy measure in the test 

examples with no shuffling. 

TR t-stat p-value mean Cohen's d 

0 12.76 0.0000 0.427 0.404 

1 20.11 0.0000 0.615 0.636 

2 5.39 0.0000 0.528 0.201 

3 32.83 0.0000 0.689 1.038 

4 7.23 0.0000 0.541 0.229 

5 10.16 0.0000 0.556 0.321 

6 18.5 0.0000 0.611 0.585 

7 5.89 0.0000 0.469 0.186 

8 1.9 0.0579 0.483 0.06 

9 5.91 0.0000 0.53 -0.187 

10 10.76 0.0000 0.558 -0.34 

11 8.63 0.0000 0.551 -0.273 

12 17.34 0.0000 0.394 0.548 

13 12.66 0.0000 0.432 0.4 

14 19.93 0.0000 0.385 0.63 

15 14.74 0.0000 0.421 0.466 

16 2.26 0.0237 0.492 0.072 

17 4.75 0.0000 0.535 -0.15 

TR = repetition times; t-stat = t student statistics; cohen’s d = effect size calculated for 

each TR; small (between 0.2 and 0.5), medium (between 0.5 and 0.8), and large (larger than 

0.8).  
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