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Abstract. I show that there is a common order-theoretic structure underlying many of the
models for representing beliefs in the literature. After identifying this structure, and studying it
in some detail, I argue that it is useful. On the one hand, it can be used to study the relationships
between several models for representing beliefs, and I show in particular that the model based
on classical propositional logic can be embedded in that based on the theory of coherent lower
previsions. On the other hand, it can be used to generalise the coherentist study of belief
dynamics (belief expansion and revision) by using an abstract order-theoretic definition of the
belief spaces where the dynamics of expansion and revision take place. Interestingly, many of
the existing results for expansion and revision in the context of classical propositional logic
can still be proven in this much more abstract setting, and therefore remain valid for many
other belief models, such as those based on imprecise probabilities.
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1. Introduction

It is often claimed that epistemic probability theory extends classical propo-
sitional logic from a logic of certainty to a logic of partial belief (see for
instance [12]). I intend to argue here that in some definite sense this claim
is invalid. But that is by no means my only, nor my main purpose with this
paper. Indeed, I also want to point out that many of the models in the literature
for representing a subject’s beliefs (and utilities) share the same interesting
order-theoretic framework.

In the first part of this paper, I identify this framework by concentrating on
the inference methods behind such models. This leads me to the introduction
of what I call belief structures. Roughly speaking, they are special collections
of abstract entities called belief models, which share a number of (order-
theoretic) properties, and which could also be seen as generalised ‘epistemic
states’ [15]. I believe the study of these belief structures to be interesting and
important, because it allows us to find out how different existing models for
representing beliefs are related to each other.

In the second part, I suggest that these abstract belief models—or perhaps
some more developed version of them—can form the basis for, or can at
least be helpful in, a generalised study of the dynamics of epistemic states,
which has received much attention in the AI literature since the publication
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of Gärdenfors’s book [15] on belief change, already some time ago. What
can be said about the dynamics of belief change when the space of epistemic
states in which this dynamics takes place is more general than that consid-
ered by Gärdenfors and others? What happens when the epistemic states we
are interested in are not sets of sentences in classical propositional logic,
but possibility distributions [8] or ordinal conditional functions [31], sets of
probability measures [17, 20], lower previsions [32], preference orderings on
horse lotteries [29], and so on? Below, I make an attempt at beginning to
provide a uniform answer to this question, by only assuming that the space of
epistemic states satisfies the unifying properties of an abstract belief structure,
and in this context deriving a number of interesting general results for belief
expansion and belief revision. Of course, these results remain valid for the
various instances of belief structures found in the literature.

The order-theoretic structures and notions that I want to draw attention to,
are introduced and studied in Sections 2, 3 and 5. They are based directly
on certain aspects of the inference mechanism present in classical proposi-
tional logic, but I show in Section 4 that there are numerous other important
instances of these structures in the literature on uncertainty modelling. In Sec-
tion 5, I introduce a number of notions that allow us to study the relationships
between different belief structures, and I show in particular that the belief
structure based on classical propositional logic can be embedded into that
based on the theory of coherent lower previsions [32].

The rest of the paper deals with the dynamics of epistemic states: Sec-
tion 6 is concerned with expansion of belief models. Revision is discussed in
Section 7, and in Sections 8 and 9, which focus on specific ways to construct
revision operators. Section 10 concludes the paper.

I will make no effort to define or explain the many mathematical notions
borrowed from order theory, as most of them are (or deserve to be) well-
known. I refer to a good introductory treatment (such as [6]) instead.

2. Belief structures

2.1. CLASSICAL PROPOSITIONAL LOGIC

Consider an object language L of well-formed formulae, or sentences, in
classical propositional logic with the usual axiomatisation (see for instance
[6, 28]). We call any subset K of L, i.e., any set of sentences, a belief model.1

Intuitively, a set of sentences K models the beliefs of a subject: it contains
those sentences that the subject is certain are true. Of course, this is a very
simple type of model, because it concentrates on certainty, or full belief. We
shall want to study more general models, that are also able to represent a

1 Gärdenfors [15] speaks of an epistemic state.
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subject’s uncertainty, or his partial beliefs. But for didactic reasons, I shall in
this and the next section start with the well-known example of classical propo-
sitional logic, extract from it those aspects of its reasoning mechanism that
are essential elements of a possible generalisation, and use them to formulate
an abstract and more general notion of belief model. In Section 4, I shall list
a multitude of concrete and interesting other instances of such models.

The collection of all belief models in classical propositional logic is the
power set ℘(L), consisting of all subsets of the object language L. It can
be partially ordered by set inclusion ⊆, and the structure 〈℘(L),⊆〉 is a
complete lattice, whose greatest element is L and whose smallest element
is the empty set /0. In this complete lattice, union plays the role of supremum,
and intersection that of infimum.

There are two distinct ways in which a set of sentences K may be imper-
fect. It may (i) be contradictory or inconsistent, and it may (ii) not contain
all the logical consequences of the sentences it contains. Both types of im-
perfection can be investigated more systematically if we look at the notion of
logical, or deductive, closure.

Recall that a set of sentences is called logically closed if it is closed under
conjunction and modus ponens, or in other words if it contains all the logical
consequences of its sentences. It turns out—and this is of crucial importance
for what follows—that the intersection (the infimum for ⊆) of a collection
of logically closed sets is still logically closed. This means that the logically
closed sets constitute a Moore family [6, 28]. It is well known that we can
associate a closure operator (or Moore closure2.) with a Moore family. In
the present case, this is nothing but the logical closure operator: the Moore
closure of a set of sentences is indeed the smallest logically closed set of
sentences that includes it, or equivalently, the intersection of all logically
closed sets of sentences that include it. This closure operator represents the
essence of the inference mechanism behind classical propositional logic at
the level of belief models, i.e., when we focus on sets of sentences rather than
sentences themselves.

Among the logically closed sets of sentences, there is only one that rep-
resents contradiction: L contains every sentence as well as its negation! A
subject whose belief model is L, is certain of every sentence, and of its nega-
tion. This model is clearly to be avoided. For this reason, a set of sentences is
often called (logically) consistent if its logical closure is different from L. If a
set of sentences is at the same time consistent and logically closed, I shall call
it coherent. Coherence is the type of perfection that we are after. A coherent
set of sentences is what logicians sometimes call a theory. We shall denote
the collection of coherent sets of sentences by CL It is quite interesting to

2 Observe that the properties of a Moore closure are in one-to-one correspondence to those
of a Tarski consequence operation, see for instance [23]
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observe that (i) the partial order ⊆ for coherent models can be interpreted as
‘is less informative than’; and that (ii) the intersection of a non-empty class
of coherent sets of sentences is still coherent.

We are now ready to extend the notion of as belief model from a set of
sentences to something more general and powerful, in a manner based on the
observations just made.

2.2. GENERALISATION

Consider a non-empty set S, whose elements are called belief models. They
are partially ordered by a relation ≤ that is reflexive, transitive and antisym-
metric, but need not be complete: it is not required that any two elements a
and b of S should be comparable in the sense that a ≤ b or b ≤ a. A first
important assumption is that for any subset A of S, its supremum supA and
infimum infA with respect to this order exist, or in other words:3

S1. 〈S,≤〉 is a complete lattice.

Let us denote by 1S the top, or greatest element, supS of this complete lattice.
Its bottom, or smallest element, infS is denoted by 0S. Note that also 1S =
inf /0 and 0S = sup /0. The supremum, or join, of two belief models a and b is
also denoted by a ^ b and their infimum, or meet, by a _ b.

Among the belief models in S, there is a subset C ⊆ S of models that are
called coherent. Coherent belief models are considered to be more perfect
than the others, which will be called incoherent. It is obvious that C inherits
the partial order ≤ from S. A second central assumption is that:

S2. C is closed under arbitrary non-empty infima: for any non-empty subset
C of C, infC ∈ C.

The belief model 1S will represent contradiction, so we assume that:

S3. The partially ordered set 〈C,≤〉 has no top. In particular, 1S is not a
coherent belief model: 1S 6∈ C.

This means that the ordered structure 〈C,≤〉 is a complete meet-semi-
lattice but not a complete lattice: every non-empty subset of C has an infimum
but not necessarily a supremum in this structure. On the other hand, the set
C = C∪ {1S} provided with the ordering ≤ is a complete lattice, whose
infimum (but not necessarily its supremum) coincides with the infimum of
〈S,≤〉. The relation ≤ on C is taken to mean roughly ‘is less informative
than’.

3 We could require here that 〈S,≤〉 should be a completely distributive complete lattice. I
have not done so, as I see no direct need for it in the context of the present work.
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Definition 1 (Belief structure). If 〈S,≤〉 and C satisfy requirements S1–S3,
then we call the triple 〈S,C,≤〉 a belief structure.

We can now introduce a closure operator ClS : S→ S as follows: for any
belief model b in S,

ClS(b) = inf{c ∈ C : b≤ c}.

Note that if b is dominated by some coherent belief model, then ClS(b) is
the smallest coherent belief model that dominates b. The operator ClS has the
following immediate properties.

Proposition 1. Let 〈S,C,≤〉 be a belief structure. For any belief models a
and b in S,

1. a≤ ClS(a);

2. if a≤ b then ClS(a)≤ ClS(b);

3. ClS(ClS(a)) = ClS(a);

4. ClS(a ^ b) = ClS(ClS(a)^ ClS(b));

5. ClS(a) = a if and only if a ∈ C;

This justifies our calling ClS a closure operator. The associated set of closed
belief models, i.e. those belief models a for which a = ClS(a), is precisely
C. The underlying idea is that for any belief model a ∈ S, a and its closure
ClS(a) are equally informative. The closure ClS takes any belief model a with
ClS(a)< 1S into a coherent belief model ClS(a) that is equally informative.

Observe that we do not require that ClS(0S) = 0S: bv = ClS(0S) is the
smallest coherent belief model, also called the vacuous belief model.

The closure operator ClS allows us to give an expression for the supremum
in the complete lattice 〈C,≤〉: for any subset C of C, its supremum in this
structure is given by ClS(supC), where supC is the supremum of C in the
complete lattice 〈S,≤〉.

Recall that the top 1S is assumed to represent contradiction, or inconsis-
tency. The closure operator ClS allows us to take this a step further.

Definition 2 (Consistency). A belief model a∈S is called consistent if ClS(a)∈
C, that is, if ClS(a)< 1S. Two belief models a and b in S are said to be con-
sistent (with one another) if a ^ b is consistent. More generally, a collection
S⊆ S of belief models is called consistent if supS is a consistent belief model.

Coherent belief models are in particular consistent. In fact, they are the ones
that are both consistent and closed. The following proposition explicates a
further relationship between coherence and consistency: the consistent belief
models are the ones that are below some coherent belief model.
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Proposition 2. Let 〈S,C,≤〉 be a belief structure. For any belief model a in
S, the following statements are equivalent:

1. a is consistent;

2. ClS(a)< 1S;

3. a≤ b for some coherent belief model b ∈ C.

Proof. Assume that a is consistent. Then ClS(a) ∈C whence ClS(a)< 1S.
Next assume that ClS(a)< 1S. Then a≤ClS(a) and ClS(a)∈C, which means
that the third statement holds. Finally, assume that the third statement holds.
Then by Proposition 1, ClS(a) ≤ ClS(b) = b < 1S, whence ClS(a) ∈ C, so a
is consistent.

A belief model is inconsistent if closure takes it to the contradictory model
1S. Note that 1S is the only contradictory or inconsistent model in C. In
summary, the idea behind closure is that it takes S to the informationally
equivalent structure C, where 1S is the only inconsistent model. Also note
that if a and b are consistent, then ClS(a ^ b) is a coherent belief model,
and it is the supremum of ClS(a) and ClS(b) in the complete meet-semilattice
〈C,≤〉. It can be interpreted as the least informative coherent belief model
that is at least as informative as a and b.

3. Strong belief structures and their duals

3.1. CLASSICAL PROPOSITIONAL LOGIC

If we start with a logically closed set of sentences K, then we can imagine
trying to make it ‘more informative’ by adding sentences to it. At some point
in this process, however, it will become impossible to add another sentence
without creating a contradiction, i.e., making the result logically inconsistent.
To render this idea more precise, a maximal logically closed set of sentences,
or a complete theory, K is defined as a logically closed set of sentences such
that any set of sentences that strictly includes it is logically inconsistent.

By applying the Boolean Ultrafilter Theorem [6, 28, 32] to the Linden-
baum algebra associated with L [6, 28], we may infer (i) that there indeed are
such maximal coherent sets of sentences; and (ii) that every coherent set of
sentences is the intersection of the maximal coherent sets including it. This
observation marks the starting point for a further refinement of the abstract
notion of a belief structure.
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3.2. GENERALISATION

Consider a belief structure 〈S,C,≤〉. Recall that there is no greatest (or most
informative) coherent belief model: the partially ordered set 〈C,≤〉 has no
top. But it may have maximal elements, that is, elements m that are not
dominated by any other element of C. I denote by M the (possibly empty)
set of these maximal elements:

M = {m ∈ C : (∀c ∈ C)(m≤ c⇒ m = c)}.

We can render the notion of a belief structure much more powerful by making
an extra assumption, which concerns precisely these maximal elements. We
may require that they can be used to construct any coherent belief model:

S4. The partially ordered set 〈C,≤〉 is dually atomic: M 6= /0 and for all c∈C,

c = inf{m ∈M : c≤ m}.

Definition 3 (Strong belief structure). A belief structure 〈S,C,≤〉 for which
the additional requirement S4 is satisfied, is called a strong belief structure.

We also introduce the following notation: for any belief model b ∈ S,

M (b) = {m ∈M : b≤ m}

is the set of all maximal belief models dominating b. M (·) can be interpreted
as a map from S to the power set ℘(M) of M. It will play an important part
in the investigation of the structure of 〈S,C,≤〉.

If b∈C then S4 implies that M (b) 6= /0. For if M (b)= /0, then infM (b)=
1S > b. In other words, in a strong belief structure every coherent belief model
is dominated by at least one maximal coherent belief model. Moreover, there
is the following extension of Proposition 2.

Proposition 3. Let 〈S,C,≤〉 be a strong belief structure, and let a be a belief
model in S. Then each of the three statements in Proposition 2 is equivalent
to M (a) 6= /0.

Proof. It suffices to prove that M (a) 6= /0 is equivalent to the third state-
ment. Assume that there is a b ∈ C such that a ≤ b. It follows from the
definition of M (·) that M (b)⊆M (a). We have argued above that for b∈C,
S4 implies that M (b) 6= /0, whence M (a) 6= /0. Conversely, if M (a) 6= /0, then
a≤ infM (a) and infM (a) ∈ C.

There is a very close relationship between the closure operator ClS and the
map M (·).
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Proposition 4. Let 〈S,C,≤〉 be a strong belief structure. Then for all a ∈ S:

1. M (a) = M (ClS(a));

2. ClS(a) = infM (a);

3. a ∈ C⇔ a = infM (a).

Proof. We begin with the first statement. It follows from Proposition 1
that for all b ∈ C, a ≤ b ⇔ ClS(a) ≤ b, and since M ⊆ C it follows that
for all m ∈ M, m ∈M (a)⇔ m ∈M (ClS(a)). We continue with the sec-
ond statement. First, assume that a is inconsistent. Then on the one hand
ClS(a) = 1S and on the other hand M (a) = /0, by Propositions 2 and 3. So
in this case, infM (a) = inf /0 = 1S = ClS(a). Next, assume that a is consis-
tent. Then the first statement M (a) = M (ClS(a)) implies that infM (a) =
infM (ClS(a)) = ClS(a), taking into account S4 and the fact that ClS(a) ∈C,
by Propositions 2 and 3. The third statement is an immediate consequence of
the second.

It will be very important to pay special attention to the direct images of
the sets C and C under the map M (·):

M= M (C) = {M (c) : c ∈ C}= M (S)
M= M (C) = {M (c) : c ∈ C}.

Both M and M are subsets of ℘(M), i.e., sets of subsets of M. Moreover,
M (bv) = M, so M ∈M. Also, M (1S) = /0 belongs to M but not to M,
whence M=M\{ /0}.

A crucial property of M is that it is an intersection structure with top M,
or in other words that it is closed under arbitrary (also empty) intersections.
Consequently, the partially ordered set 〈M,⊆〉 is a complete lattice, where in-
tersection has the role of infimum. This is made more explicit in the following
theorem.

Theorem 5. Let 〈S,C,≤〉 be a strong belief structure. Then the following
propositions hold.

1. M is a Moore collection of subsets of M [6, 28]: it is closed under arbi-
trary (and therefore also empty) intersections.

2. The complete lattices 〈C,≤〉 and 〈M,⊆〉 are dually order-isomorphic,
with dual order isomorphism M (·).

3. Consider the operator ClM : ℘(M)→℘(M) that is defined by ClM(N ) =
M (infN ) for all N ⊆M. Then ClM is a Moore closure [6, 28] and M
is the associated set of closed sets: M= {N ⊆M : ClM(N ) = N }.
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4. All singletons {m}, m ∈M, are closed.

Proof. We start with the first statement. Let {N j : j ∈ J} be a family of
elements of M. If J = /0, then

⋂
j∈J N j = M = M (bv) ∈M. If J 6= /0, then

let b j = infN j for all j ∈ J. Obviously b j ∈ C, whence by Proposition 4,
N j = M (b j) for all j ∈ J [observe that since N j ∈M, N j = M (c j) for
some c j in C, and use the proposition to show that c j = b j]. Consequently,⋂

j∈J

N j =
⋂
j∈J

M (b j) = M (sup
j∈J

b j) ∈M,

since sup j∈J b j ∈ S. We now turn to the second statement. Consider b1 and
b2 in C. First, if b1 ≤ b2 then obviously M (b2) ⊆M (b1). Conversely, if
M (b2)⊆M (b1), it follows from Proposition 4 that

b1 = infM (b1)≤ infM (b2) = b2.

So we conclude that

b1 ≤ b2⇔M (b2)⊆M (b1). (1)

This means that M (·) is a dual order embedding of 〈C,≤〉 into 〈M,⊆〉. It is
furthermore surjective, since M=M (C). We conclude that M (·) is indeed a
dual order isomorphism. To prove the third statement, we first show that ClM
satisfies the defining properties of a Moore closure. Consider a subset N of
M. For any m∈N we have that infN ≤m so m∈M (infN ), and therefore
N ⊆ClM(N ). Moreover, a = infN ∈C, so a = infM (a) = infM (infN )
by Proposition 4. Consequently, ClM(N ) = M (a) = M (infM (infN )) =
ClM(ClM(N )). Finally, for any subsets N and S of M such that N ⊆S ,
we have infS ≤ infN , whence M (infN ) ⊆M (infS ), or ClM(N ) ⊆
ClM(S ). This means that ClM is indeed a Moore closure. We now look at
its associated set of closed sets. Consider a subset N of M. Then it follows
from N = ClM(N ) that N = M (infN ), so N ∈M since infN ∈ C.
Conversely, if N ∈M, then N = M (a) for some a ∈ C, and by Proposi-
tion 4, a = infM (a) = infN . Consequently, N = M (a) = M (infN ) =
ClM(N ). This means that M = {N ⊆ M : ClM(N ) = N }. The fourth
statement follows at once from M (m) = {m} for all m ∈M.

The elements of M are therefore the closed sets of maximal elements of
〈C,≤〉. Since 1S and /0 correspond in the dual order isomorphism, the partially
ordered sets 〈C,≤〉 and 〈M,⊆〉 are dually order-isomorphic as well, with
essentially the same dual order isomorphism M (·). Other correspondences
are bv and M.

The complete lattice 〈M,⊆〉 is called the dual belief structure, or simply
the dual, of 〈S,C,≤〉. Elements of M will also be called spheres. As 1S is
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the only inconsistent belief model in C, so /0 is the only inconsistent sphere
in M, and it represents contradiction. M is called the vacuous sphere, and it
corresponds to the least informative coherent belief model bv. Singletons {m}
correspond to the maximally informative coherent belief models m ∈M.

We have seen that taking infima is very easy in the structure C: they
coincide with infima in S. But for taking suprema in C, we need to invoke
the closure operator ClS. As an example, for two coherent belief models a
and b, their supremum in C is given by ClS(a ^ b). But the corresponding
operation is much easier in the dual structure: M (ClS(a ^ b)) = M (a ^
b) = M (a)∩M (b), or in other words, we just have to take intersections!
To summarise, the most informative coherent belief model that is at most as
informative as a and b is better described in the ‘direct structure’ [a _ b],
than in the dual structure [ClM(M (a)∪M (b))]; and the least informative
coherent belief model that is at least as informative as a and b is has a
more convenient representation [M (a)∩M (b)] in the dual than in the direct
structure [ClS(a ^ b)].

4. Examples of belief structures

Most of the mathematical models for representing beliefs (or uncertainty) in
the literature that I am aware of constitute belief structures, apart from the
ones that enforce precision or completeness, such as the Bayesian probability
model. Many important ones even give rise to strong belief structures. In this
section, I briefly discuss a number of examples, without aiming at complete-
ness. They provide the main justification for the introduction and study of the
abstract notions in the previous sections.

CLASSICAL PROPOSITIONAL LOGIC

We have seen above that the structure 〈S,C,≤〉= 〈℘(L),CL,⊆〉 that appears
in the context of classical propositional logic is a strong belief structure. To
summarise Section 2.1, the closure operator ClS is here the logical, or de-
ductive, closure operator; consistency is logical consistency; and coherence
is logical consistency together with logical closure.

It is interesting to note that, in this special case, the elements of M, i.e.,
the maximal coherent belief models or sets of sentences, which constitute
the building blocks for the dual structure M, are sometimes called (possible)
worlds. They also correspond to the possible valuations, and constitute the
elements of the so-called dual Boolean space of the Lindenbaum algebra for
L (which is a Boolean algebra). If K is a set of sentences, then M (K) can be
interpreted as the set of those worlds where all the sentences in K are true.

It is well-known that there is a topology on M that turns M into a zero-
dimensional, compact Hausdorff space (also called a Stone space); and that
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the Lindenbaum algebra for L is order-isomorphic to the Boolean algebra of
the clopen subsets of the Stone space M (see for instance [6, 28] for more
details). It is not too difficult to show that the elements of the set M are
precisely the closed subsets of M in this topology, and that ClM is therefore
the topological4 closure operator associated with it! In other words, the union
of two closed sets of possible worlds is closed. Needless to say, this special
property of the closure operator ClM for classical propositional logic makes
the reasoning mechanism behind it (and its direct counterpart ClS) rather
special. We shall come back to this observation a number of times in what
follows.

IMPRECISE PROBABILITY MODELS

In his important work on imprecise probabilities [32], Walley discusses a
number of essentially equivalent imprecise probability models: lower pre-
visions, upper previsions, sets of almost-desirable gambles, sets of strictly
desirable gambles, almost-preference and strict preference relations. Lower
and upper probabilities are special cases of these, and are less expressive. I
shall give a very brief description of two of these models: sets of almost-
desirable gambles and lower previsions, but related considerations can be
made for the other models. For a much more detailed discussion, I refer to
[32].

Sets of almost-desirable gambles
Consider a non-empty set Ω. We could interpret Ω as a set of possible states
of the world, or of possible outcomes of some experiment. A bounded real-
valued map X on Ω is called a gamble, and it represents a (possibly negative!)
uncertain reward: if the actual state of the world turns out to be ω , then the
award will be X(ω), expressed in units of some linear utility. So the reward
is uncertain because the actual state of the world is. The set of all gambles
on Ω will be denoted by L (Ω). It is a linear space under the point-wise
addition of gambles and the point-wise scalar multiplication of gambles with
real numbers.

A subject can model his beliefs about the state of the world by specifying
a set D of so-called almost-desirable gambles, i.e., gambles X such that he
accepts the uncertain reward X + ε for any ε > 0. Any subset of L (Ω) is
therefore a potential belief model, and consequently it makes good sense to
let the power set ℘(L (Ω)) of L (Ω) be the collection S of all belief models
in this context. This set can be partially ordered by set inclusion, and the
structure 〈℘(L (Ω)),⊆〉 is or course a complete lattice, where intersection
plays the role of infimum, and union that of supremum. Since specifying more

4 A topological closure operator is a Moore closure with the additional property that the
closure of any union is the union of the closures.
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almost-desirable gambles leads to a more informative model, set inclusion ⊆
indeed can be given the interpretation ‘is less informative than’.

Since rewards are expressed in units of a linear utility, we see that any
non-negative linear combination of a finite number of acceptable gambles is
acceptable too. A set D of almost-desirable gambles is said to avoid sure loss
if for any finite number of (not necessarily different) gambles X1, . . . , Xn in
D and non-negative real numbers λ1, . . . , λn, we have that

sup
ω∈Ω

[
n

∑
k=1

λkXk(ω)

]
≥ 0.

Indeed, if this condition does not hold, then there are X1, . . . , Xn in D , non-
negative real λ1, . . . , λn, and ε > 0 such that for all ω ∈Ω, ∑

n
k=1 λk[Xk(ω)+

ε] < −ε . In other words, the acceptable gamble ∑
n
k=1 λk[Xk + ε] (a non-neg-

ative linear combination of acceptable gambles) leads to a sure loss of a least
ε , whatever the state of the world.

Taking non-negative linear combinations is the reasoning mechanism that
allows us to infer new acceptable gambles from old ones. Moreover, non-
negative gambles are clearly almost-desirable. It is not difficult to see that a
set of gambles D is closed under this type of inference if and only if it is a
convex cone of the linear space L (Ω) that contains all non-negative gambles
and is furthermore closed in the supremum-norm topology on L (Ω). Any
such set of gambles D is called coherent if it furthermore avoids sure loss
(i.e., does not contain any uniformly negative gambles). These coherent sets
of gambles constitute a belief structure: the intersection of a non-empty class
of coherent sets is again coherent. The associated consistent sets of gambles
are precisely the ones that avoid sure loss. Walley defines the natural exten-
sion of a consistent set of gambles D to be smallest coherent set that includes
it; natural extension therefore coincides with the closure operation of this
belief structure, and it is very closely related to convex closure (under the
supremum-norm topology).

The maximal coherent sets of almost-desirable gambles are the closed
semispaces of L (Ω) that contain all non-negative gambles. Using a sepa-
ration theorem equivalent to the Ultrafilter Theorem [28, 32], it can be shown
that any coherent set of almost-desirable gambles is the intersection of the
maximal coherent sets it is included in. This tells us that coherent sets of
almost-desirable gambles constitute a strong belief structure.

Observe that there is a one-to-one relationship between the closed positive
semispaces of L (Ω) and the so-called linear previsions P on L (Ω), i.e., the
linear maps from L (Ω) to the set R of real numbers that are furthermore
positive (if X ≥ 0 then P(X) ≥ 0) and have unit norm (P(1) = 1): any such
semispace is the set of all gambles X for which the corresponding linear
prevision P(X) is non-negative. Linear previsions are the precise probabil-
ity models: they can be interpreted as coherent previsions, or fair prices, in
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the sense of de Finetti [12]. Thus maximal coherent sets of almost-desirable
gambles can be identified with linear previsions. In the dual belief structure,
closed sets of maximal elements (spheres) can then be identified with (weak*-
)closed convex sets of linear previsions: closure in the dual structure is not
topological, essentially because the union of two convex sets need not be
convex.

Lower previsions
A lower prevision P on K (a belief model) is a map from a set of gambles K
to the extended real interval [−∞,+∞]. For any gamble X , its lower prevision
P(X) is interpreted as a subject’s supremum acceptable buying price for X ,
i.e., the greatest α such that the subject accepts to buy the uncertain reward
X for any price p < α . Let us denote by F(K ) the set of all lower previsions
with domain K .

Lower previsions with the same domain K can be partially ordered point-
wise, and 〈F(K ),≤〉 is a complete lattice, where ≤ is the point-wise order
of lower previsions. The ordering indeed has the interpretation ‘is less in-
formative than’ or ‘is less precise than’: if a subject has a smaller lower
prevision, this means that he is committed to pay less for the gambles in
K , and therefore displays a more conservative behaviour.

The coherent belief models are the lower previsions that are coherent in
Walley’s sense [32, Section 2.5]: for any finite number of (not necessarily
different) gambles Xo, X1, . . . , Xn in K and non-negative real numbers λo,
λ1, . . . , λn, we require that

sup
ω∈Ω

[
n

∑
k=1

λk[Xk(ω)−P(Xk)]−λo[Xo(ω)−P(Xo)]

]
≥ 0.

The point-wise infimum of a non-empty collection of coherent lower previ-
sions is indeed coherent. If we denote the set of coherent lower previsions
with domain K by P(K ), then we see that 〈F(K ),P(K ),≤〉 is a belief
structure. The consistent models turn out to be the lower previsions that avoid
sure loss [32, Section 2.4]: for any finite number of (not necessarily different)
gambles X1, . . . , Xn in K and non-negative real numbers λ1, . . . , λn, it is
required that

sup
ω∈Ω

[
n

∑
k=1

λk[Xk(ω)−P(Xk)]

]
≥ 0.

According to Walley’s definition [32, Section 3.1], the natural extension E of
a lower prevision P that avoids sure loss is the smallest coherent lower previ-
sion that point-wise dominates P. It is clear that natural extension coincides
with the closure operator in the present belief structure.

The maximal coherent belief models are the linear previsions on K (re-
strictions to K of the linear previsions on L (Ω) defined above) [32, Sec-
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14 Gert de Cooman

tion 2.8], which are the precise probability models. A coherent lower pre-
vision is the point-wise infimum of its set of dominating linear previsions,
so lower previsions constitute a strong belief structure. The spheres (closed
sets of maximal elements in the dual belief structure) are the (weak*-)closed
convex sets of linear previsions, and closure in the dual structure is therefore
convex closure, and is not topological.

THE RELATION BETWEEN THESE MODELS

There is a one-to-one relationship between coherent sets of almost-desirable
gambles and coherent lower previsions defined on L (Ω). It follows naturally
from the behavioural interpretations of these belief models.

Consider a subject’s coherent set of almost-desirable gambles D . Then
the subject accepts to buy the gamble X for any price p < α if and only if the
gamble X−α belongs to D . It follows that his lower prevision P(X) for X is
given by:

P(X) = sup{α : X−α ∈D}.
Conversely, consider a subject’s coherent lower prevision P on L (Ω). Then
a gamble X is almost-desirable to him if he is willing to accept the gamble
X + ε , or in other words to buy X for the price −ε , for all ε > 0. This is
equivalent to P(X)≥ 0, Consequently, his set of almost-desirable gambles is
uniquely determined by

D = {X ∈L (Ω) : P(X)≥ 0}.

This relationship is an example of the coherence isomorphisms that will be
introduced in the next section.

SEVERAL OTHER MODELS, BRIEFLY

The confidence relations that I introduced and studied in [7] constitute a
strong belief structure. So do Giles’ so-called possibility functions [16]. With
hindsight, these are precisely the coherent upper probabilities on a field of
sets. Ordinal possibility measures [8, 14] lead to a belief structure that is not
strong: in this structure the belief models are maps from the power set ℘(Ω)
of some non-empty set Ω to a complete lattice (or chain) 〈K,�〉. They can be
ordered point-wise (we consider the dual, or reversed, ordering), and the co-
herent belief models are the normal K-valued possibility measures. These are
closed under infima (i.e., under point-wise suprema), and the corresponding
closure operator can be related to possibilistic extension [4]. The same holds
for Spohn’s ordinal conditional functions [31], which are very closely related
to, but less expressive than, ordinal possibility measures.

Among the hierarchical uncertainty models, the price functions introduced
by Walley and myself [10] constitute a belief structure that is not strong. On
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the other hand, the more general lower desirability functions [9] do lead to
a strong belief structure, for which the maximal coherent belief models are
essentially the Bayesian second-order probabilities.

Aumann’s preference-or-indifference relations defined on a mixture space
[1, 2] lead to a belief structure, and so do the preference relations on horse
lotteries studied by Seidenfeld et al. [29, 30]. In both cases, the belief struc-
tures seem not to be strong, but the authors do pay attention to representation
of their belief models as intersections (i.e., infima) of maximal belief models,
and are able to derive interesting but partial representation results. In any
case, and although the authors would probably object to this (see the discus-
sion in [29, Section VI]), it is possible to get to a strong belief structure by
looking at almost-preference rather than real preference,5 in the spirit of [32,
Sections 3.7 and 3.8]: one item is almost-preferred to a second item if it is
the limit of a sequence of items that are really preferred to the second item.
This amounts to replacing the Archimedean axioms in [1, 29] by a closedness
axiom, and keeping all the other axioms.6

5. Belief substructures

In order to investigate the relations between the many belief structures in the
literature, it is useful to be able to express that one belief structure is more
general than another, or extends it in some way. This can be done with the
notions of belief substructures, belief embeddings and belief isomorphisms.
I want to stress that only a few basic notions are introduced here: the ideas
hinted at below could (and probably should) be worked out and studied in
much more detail.

In order to define belief substructures, we must keep in mind what is im-
portant about belief structures: the ordering between belief models and the
set of coherent belief models . So a substructure of a belief structure will be
a subset of the set belief models that ‘inherits’ its order and its coherent be-
lief models. For strong belief substructures, also the maximal coherent belief
models will have to be ‘inherited’. More explicitly, we get the following.

Definition 4. Let 〈S1,C1,≤1〉 and 〈S2,C2,≤2〉 be belief structures. Then
〈S1,C1,≤1〉 is called a belief substructure of 〈S2,C2,≤2〉 if

1. 〈S1,≤1〉 is a complete sublattice of 〈S2,≤2〉, and consequently S1 ⊆ S2;

2. C1 = C2∩S1.

5 This means that we look at a different notion of preference.
6 See also [25, 26] for a more detailed study of such almost-preference relations over horse

lotteries.
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If 〈S1,C1,≤1〉 and 〈S2,C2,≤2〉 are strong, then 〈S1,C1,≤1〉 is called a strong
belief substructure of 〈S2,C2,≤2〉 if in addition:

3. M1 = M2∩S1.

Belief embeddings, then, allow us to generalise the notion of a belief
substructure, by allowing ‘a copy’ of the first belief structure to be a belief
substructure of the second. This is done as follows.

Definition 5. Let 〈S1,C1,≤1〉 and 〈S2,C2,≤2〉 be belief structures. A map
φ : S1→ S2 is called a belief embedding of 〈S1,C1,≤1〉 in 〈S2,C2,≤2〉 if

1. φ is an order embedding of 〈S1,≤1〉 in 〈S2,≤2〉, i.e.,

(∀(s, t) ∈ S2
1)(s≤1 t⇔ φ(s)≤2 φ(t)).

2. φ(C1) = C2∩φ(S1).

If the belief structures 〈S1,C1,≤1〉 and 〈S2,C2,≤2〉 are strong, then the map
φ : S1→ S2 is a strong belief embedding of 〈S1,C1,≤1〉 in 〈S2,C2,≤2〉 if in
addition:

3. φ(M1) = M2∩φ(S1).

If moreover the map φ is not only injective, but also surjective, and therefore
an order isomorphism between the complete lattices 〈S1,≤1〉 and 〈S2,≤2〉,
then φ is called a (strong) belief isomorphism, and the (strong) belief struc-
tures 〈S1,C1,≤1〉 and 〈S2,C2,≤2〉 are called belief isomorphic. In that case,
φ(S1) = S2, φ(C1) = C2 and φ(M1) = M2.

If φ is a (strong) belief embedding of 〈S1,C1,≤1〉 in 〈S2,C2,≤2〉, then the
structures 〈S1,C1,≤1〉 and 〈φ(S1),φ(C1),≤2〉 are (strongly) belief isomor-
phic, and therefore copies of one another. And the copy 〈φ(S1),φ(C1),≤2〉
is a (strong) belief substructure of 〈S2,C2,≤2〉.

The most important part of a belief structure is its set C of coherent belief
models. Thus it is possible that two belief structures have essentially the same
set of coherent belief models, although they differ as far as their incoherent
models are concerned. Since most types of reasoning only involve the coher-
ent models—because inference amounts to taking closures—we need some
way to recognise that these two structures are identical in what matters most.

Definition 6. Two belief structures 〈S1,C1,≤1〉 and 〈S2,C2,≤2〉 are called
coherence isomorphic if the complete lattices 〈C1,≤1〉 and 〈C2,≤2〉 are order
isomorphic.

This means that in the two belief structures, the coherent models, the
closure operators, the sets of maximal elements and therefore also their dual
structures (if they exist) are essentially the same.
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As mentioned in Section 4, most of the imprecise probability models intro-
duced by Walley [32] lead to strong belief structures: e.g., lower previsions,
upper previsions, sets of almost-desirable gambles and almost-preference re-
lations. These structures are all coherence isomorphic, and they have essen-
tially the same dual structure: (weak*-)closed convex sets of linear previ-
sions. Among these structures, the ones built on lower previsions and upper
previsions are also (strongly) belief isomorphic.

The following important example explains how the strong belief structure
built on classical propositional logic can be seen as a substructure of the one
built on the above-mentioned imprecise probability models.

CLASSICAL LOGIC AND IMPRECISE PROBABILITIES

We intend to show that the strong belief structure based on classical propo-
sitional logic discussed in Section 4 can be embedded into the strong be-
lief structure based on lower previsions described in that same section. We
proceed in two steps.

First of all, lower previsions are expressed in terms of some set Ω of
possible states of the world (or possible worlds). We therefore proceed in the
usual way in relating the propositional logic system L to such a set of possible
worlds, and in relating sentences in L to certain subsets of Ω, called events.
Indeed, by the Stone Representation Theorem applied to the Lindenbaum
algebra (a Boolean algebra) of the system L [6], there is some set Ω (its
dual Boolean space, or the set of two-valued Boolean homomorphisms, or its
set of Boolean ultrafilters, also called its set of possible worlds) and a field
A of subsets of Ω, such that there is a one-to-one correspondence between
sentences in L—after identifying syntactically equivalent sentences—and el-
ements of A . An element A of A is called an event, and it corresponds to an
element of the Lindenbaum algebra of L, or in other words to set of logically
equivalent sentences in L. Moreover, it is easily checked that

(i) sets of sentences (i.e., belief models) correspond to sets of events, or in
other words to subsets of A ;

(ii) consistent and logically closed sets of sentences (i.e., coherent belief
models) correspond to filters of events, i.e., subsets of A that are in-
creasing with respect to set inclusion, and closed under intersection;
and

(iii) maximal consistent and logically closed sets of sentences (i.e., maximal
coherent belief models) correspond to ultrafilters of events, i.e., filters
of events that are maximal elements with respect to set inclusion.

If we denote the set of subsets of A by ℘(A ), its set of filters by F (A )
and its set of ultrafilters by U (A ), then 〈℘(A ),F (A ),⊆〉 is a strong be-
lief structure, with set of spheres U (A ), which we have argued is belief
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isomorphic—after identifying logically equivalent sentences—to the strong
belief structure based on the classical propositional logic system L. The set
U (A ) of maximal elements corresponds in this belief isomorphism to the
set of complete theories of L, i.e., the set of maximal, deductively closed sets
of sentences in L.

As a second step, we consider the set of gambles KA = {IA : A ∈ A }
on Ω, where the gamble IA is the indicator function of the subset A of Ω,
assuming the value 1 on A and 0 elsewhere. We define the map φ from ℘(A )
to the set F(KA ) of lower previsions with domain KA : for any B ⊆ A ,
φ(B) is the lower prevision on KA , defined by

φ(B)(IA) = IB(A) =

{
1 if A ∈B

0 if A 6∈B.

Observe that φ(B) is essentially defined on the field A of events, and we
can therefore call it a lower probability.7 To interpret φ , consider a subset B
of A —which is equivalent to a specific set of sentences, or in other words,
to a specific belief model. Suppose you believe these sentences to be true,
or in the language of events, that you believe that all events in B occur. Now
consider an event A∈A . If A∈B, then you believe that A occurs, and so you
are willing to bet on the occurrence of A at all odds, or equivalently, to buy
the uncertain reward IA for any price up to one. This means that your lower
prevision for IA, or equivalently, your lower probability for A, is equal to one.
If A /∈B, then the only thing we can say is that it is not the case that you
believe that A occurs (you might believe that A doesn’t occur, or you might
be ignorant about the occurrence of A). In that case you will not be prepared
to bet on the occurrence of A at any non-trivial odds, so your lower prevision
for IA, or equivalently, your lower probability for A, is equal to zero. In other
words, φ(B) is the lower probability that corresponds to your believing that
all events in B occur, or that all the corresponding sentences are true, and
nothing more.

It is easy to verify that φ is an order embedding of the complete lattice
〈℘(A ),⊆〉 into the complete lattice 〈F(KA ),≤〉. φ(℘(A )) is the set of the
0−1-valued lower previsions on KA (or 0−1-valued lower probabilities on
A ). Moreover, we can reformulate Walley’s results in [32, Section 2.9.8] to
conclude that

(i) the lower prevision (probability) φ(B) avoids sure loss if and only if
the set of propositions behind B is logically consistent;

(ii) the lower prevision (probability) φ(B) is coherent if and only if the set
of propositions behind B is logically consistent and deductively closed;

7 A (lower) probability is the restriction of a (lower) prevision to (indicators) of events.
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(iii) the lower prevision (probability) φ(B) is a coherent prevision (finitely
additive probability8) if and only if the propositions behind B make up
a maximal, logically consistent and deductively closed set; and

(iv) taking the natural extension of the lower probability φ(B) that avoids
sure loss leads to the lower probability φ(B′) where B′ corresponds to
the logical closure of the sentences corresponding to B.

In other words, φ maps the filters of A onto the coherent 0−1-valued lower
probabilities on A : φ(F (A )) = φ(℘(A ))∩ P(KA ); and in addition, φ

maps the ultrafilters of A onto the 0− 1-valued finitely additive probabil-
ities on A . This tells us that the map φ is a strong belief embedding of
〈℘(A ),F (A ),⊆〉 into 〈F(KA ),P(KA ),≤〉. In this embedding, natural ex-
tension generalises the logical closure operator.

If we denote by F01(A ) the set of 0−1-valued lower probabilities on A ,
by P01(A ) the set of coherent 0− 1-valued lower probabilities on A , and
by P01(A ) the set of 0− 1-valued finitely additive probabilities on A , then
the strong belief structure 〈F01(A ),P01(A ),≤〉 is actually belief isomorpic
to the strong belief structure 〈℘(A ),F (A ),⊆〉, and therefore to the strong
belief structure based on the classical propositional logic system L. The set
of 0− 1-valued precise probabilities corresponds in this belief isomorphism
to U (A ), and therefore to the set of complete theories of L, i.e., the set of
maximal, deductively closed sets of sentences in L. These correspondences
are summarised in Figure 1.

〈℘(L),CL,⊆〉 〈℘(A ),F (A ),⊆〉 〈F01(A ),P01(A ),≤〉y
〈F(KA ),P(KA ),≤〉

Figure 1. Correspondences between the belief structures based on classical propositional
logic and those based on 0− 1-valued lower probabilities. Strong belief embeddings are
depicted using arrows, belief isomorphisms using double lines.

We conclude from these two steps that the strong belief structure built
on classical propositional logic can be embedded in the one built on lower
previsions. In this sense, the theory of coherent lower probabilities is a gen-
eralisation of classical propositional logic. In this embedding, precise previ-
sions (or probabilities) play the role of maximal elements, and correspond
to the maximal consistent logically closed sets of sentences. In this light, it
seems strange that a number of Bayesians continue to claim that probability

8 Finitely additive probabilities are the restrictions of linear, or coherent, previsions to
events.
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measures are the only reasonable extension of classical logic able to deal
with partial beliefs: how many logicians would claim that the only rational
logically closed sets of sentences are the maximal ones—or that the only
rational theories are complete? This result furthermore tells us that, in a very
definite sense, precise probability theory is not powerful enough to generalise
all of classical propositional logic, but that imprecise probability theory (i.e.,
the theory of coherent lower previsions) is!

6. Belief expansion

I now want to show that it can be useful to look at existing types of belief
models as special cases of the abstract order-theoretic structures introduced
above. This is because quite often the exact underlying details of how belief
models are constructed, is not really of crucial importance; what matters is the
reasoning, or inference, method and that is captured completely in the closure
operator ClS and its dual counterpart ClM (if it exists). We shall see below that
in a number of interesting cases, only the order-theoretic properties of these
closure operators are relevant, and not the additional properties which they
may derive from the underlying details of the belief models.

In the sections that follow, I generalise part of the work done by Gärden-
fors [15] on belief expansion and revision of epistemic states in the context of
classical propositional logic, where his so-called epistemic states are logically
closed sets of sentences. In principle, nothing prevents us from considering as
an epistemic state a more general type of belief model, such as the imprecise
probability models or the preference orderings discussed in Section 4. Indeed,
these models are also intended to represent the beliefs (and utilities) of some
subject. But how do we then define belief expansion and revision, and how
can Gärdenfors’s coherentist axioms for belief change be generalised? Below
I sketch how this could be done, and thereby generalise the work done by
Moral and Wilson [24] on belief revision when the epistemic states are closed
convex sets of probabilities, and to some extent the work of Benferhat et al.
[3] and Dubois and Prade [13] for possibilistic belief revision.

I want to stress that it is not my aim in this paper to present a fully worked
out theory of belief change for belief models. The discussion below is only
intended to illustrate the usefulness of my belief structures. I shall therefore
restrict myself to pointing out the more striking results for belief revision and
expansion, and give only little further motivation. I will say only very little
about the notion of contraction, because that seems more involved and outside
the scope of this paper. I want to stress that definitions and results below
(but certainly also the order-theoretic simplicity of their proofs!) should be
compared with the discussion in Gärdenfors’s book [15] in order to be fully
understood. I also hasten to add that my concentrating on Gärdenfors’s work
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does not imply that I think he had the final word in the matter of belief change,
nor that I believe his approach and his axiom systems to be the only, or for that
matter the most reasonable ones. Indeed, Gärdenfors’s view of belief states
as sets of propositional sentences has been criticised and expanded several
times (see for instance [5, 19, 33]). But Gärdenfors’s approach and axioms
did seem simple enough to provide an elegant example of the power of the
order-theoretic machinery introduced above.

Let me start with belief expansion. Assume that we have a coherent belief
model b ∈C, and that new information is obtained, which can be represented
by a (not necessarily coherent) belief model γ ∈ S. This new information
takes b to a new coherent belief model b′. We represent the action of new
information γ ∈ S on the coherent belief model b by an operator E(b; ·) : S→
S, called (belief) expansion operator. In the spirit of the work of Gärdenfors,
we may require that such an operator should satisfy the following postulates:
for b and c in C, and for all γ ∈ S,

E1. E(b;γ) ∈ C;

E2. γ ≤ E(b;γ);

E3. b≤ E(b;γ);

E4. if γ ≤ b then E(b;γ) = b;

E5. if b≤ c then E(b;γ)≤ E(c;γ);

E6. E(b; ·) is the point-wise smallest (least informative) of all the operators
satisfying E1–E5.

E1–E6 correspond one by one to Gärdenfors’s expansion postulates (K+1)–
(K+6), in that order. The correspondence is obvious if we recall that expan-
sion by a proposition has been generalised to expansion by a belief model.

Theorem 6. Let 〈S,C,≤〉 be a belief structure, and consider a coherent belief
model b ∈C. Then the postulates E1–E6 single out a unique belief expansion
operator E(b; ·), given by:

E(b;γ) = ClS(b ^ γ), γ ∈ S.

Proof. Note that ClS(b ^ ·) obviously satisfies E1–E5. Moreover, for
any γ ∈ S it follows from E2 and E3 that b ^ γ ≤ E(b;γ) and from E1
and Proposition 1 that ClS(b ^ γ) ≤ E(b;γ). From E6 we then deduce that
E(b;γ) = ClS(b ^ γ).

It is interesting to note that if b and γ are consistent, then ClS(b ^ γ) is
the supremum of b and ClS(γ) in the complete join-semilattice 〈C,≤〉: it
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is the smallest (least informative) coherent belief model that is at least as
informative as b and ClS(γ). In the dual structure (if it exists), expansion
takes a very simple form: expanding the sphere M (b) ∈M with the sphere
N ∈M amounts to taking their intersection M (b)∩N .

7. Belief revision

Let us now turn to belief revision, where a coherent belief model b is revised
into a belief model b′ under new information in the form of a belief model
γ ∈ S. We again represent the action of the new information γ ∈ S on the
coherent belief model b by an operator R(b; ·) : S→ S, called (belief) revision
operator. Inspired by Gärdenfors’s work, we propose the following postulates
for belief revision: for b in C, and for all γ in S,

R1. R(b;γ) ∈ C;

R2. γ ≤ R(b;γ);

R3. R(b;γ)≤ E(b;γ);

R4. if b and γ are consistent then E(b;γ)≤ R(b;γ);

R5. R(b;γ) is inconsistent if and only if γ is inconsistent;

R6. R(b;γ) = R(b;ClS(γ));

R7. R(b;γ ^ δ )≤ E(R(b;γ);δ );

R8. if R(b;γ) and δ are consistent then E(R(b;γ);δ )≤ R(b;γ ^ δ ).

R1–R8 again correspond one by one, and in that order, to Gärdenfors’s revi-
sion postulates (K∗1)–(K∗8). Here too, the correspondence is straightforward
if (i) we recall that revision by a proposition has been generalised to revision
by a belief model, (ii) we invoke the notion of (in)consistency to capture the
essence of the postulates (K∗4) and (K∗5) involving the negation of proposi-
tions, and (iii) we realise that the conjunction of two propositions corresponds
in our language to the join of two belief models: a belief model generalises a
set of propositions, and revision by a conjunction of two propositions means
revision by both the propositions, i.e., by their ‘union’.

The more striking results can be derived if the belief structure 〈S,C,≤〉
is strong. Let us reformulate these axioms into their dual versions. It should
be noted that R1 and R6 are necessary for this to be possible, as we can
only represent elements of C by closed sets of maximal coherent belief mod-
els. So, whenever we work in the dual space, with a dual revision operator
R(M (b); ·) : M→M, it is implicit that R1 and R6 hold. It is easily verified

belmod.tex; 7/09/2010; 17:29; p.22



Belief models 23

that the other postulates can be reformulated in the following way: for all N
and S in M,

R2. R(M (b);N )⊆N ;

R3. M (b)∩N ⊆R(M (b);N );

R4. if M (b)∩N 6= /0 then R(M (b);N )⊆M (b)∩N ;

R5. R(M (b);N ) = /0 if and only if N = /0;

R7. R(M (b);N )∩S ⊆R(M (b);N ∩S );

R8. if R(M (b);N )∩S 6= /0 then R(M (b);N ∩S ) ⊆ R(M (b);N )∩
S .

I now propose a very particular type of dual revision operator, which will
turn out to be sufficiently general. The central idea behind it is that for every
b ∈C (or every M (b)) there is a selection function Sb : M→M that selects
for any N ∈M a subset Sb(N ) of N under the following conditions:

S1. if M (b)∩N 6= /0 then Sb(N ) = M (b)∩N ;

S2. if M (b)∩N = /0 and N 6= /0 then Sb(N ) is some non-empty closed
subset of N ; and

S3. Sb( /0) = /0.

A dual revision operator R(M (b); ·) can now be defined as follows: for any
N in M,

R(M (b);N ) =Sb(N ). (2)

For the corresponding revision operator R(b; ·) we then have:

R(b;γ) = infSb(M (γ)). (3)

There is the following general representation theorem. In the dual struc-
ture, its proof is a matter of straightforward verification, and it is therefore
omitted.

Theorem 7. Let 〈S,C,≤〉 be a strong belief structure and let b ∈ C be a
coherent belief model. A dual revision operator R(M (b); ·) satisfies R2–R5
if and only if there is a selection function Sb satisfying S1–S3 such that
R(M (b); ·) = Sb(·). Equivalently, a revision operator R(b; ·) satisfies R1–
R6 if and only if there is a selection function Sb satisfying S1–S3 such that
R(b; ·) = infSb(M (·)). Moreover, R(M (b); ·) also satisfies R7–R8, and
R(b; ·) also satisfies R7–R8, if and only if the selection function Sb satisfies,
for all N and S in M:
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S4. if S ∩Sb(N ) 6= /0 then Sb(N ∩S ) = S ∩Sb(N ).

Since a selection function is clearly not uniquely defined, the revision axioms
allow for more than one type of revision. We explore a few interesting revision
methods in the following sections.

8. Revision using linear orderings

In this section, I show how a revision operator can be constructed using a
linear ordering on the set of maximal elements M. The discussion here is
inspired by Gärdenfors relational partial meet contractions [15, Section 4.4]
and by the work of Moral and Wilson on revision based on linear orderings
of probabilities [24].

Let us assume that the elements m of M are ordered by a complete pre-
order, i.e., a relation that is reflexive, transitive and complete, but not neces-
sarily antisymmetrical. This is equivalent to assuming that there is a complete
chain 〈K,�〉 and a map π : M→ K which induces an ordering on M through
the values it takes on K. We denote the top of 〈K,�〉 by 1K and its bottom by
0K .

We can use the ordering induced on M to define a particular selection
function Sπ , as follows: for any N in M,

Sπ(N ) = {m ∈N : (∀n ∈N )(π(n)� π(m))}
= {m ∈N : Π(N )� π(m)}
= {m ∈N : Π(N ) = π(m)}

(4)

where Π(N ) = supm∈N π(m), so Π is the K-valued possibility measure,
defined on ℘(M), with distribution π [8]. We can now ask what properties
π must have for Sπ to satisfy S1–S3. It is no essential restriction to assume
that Π is normal in the sense that Π(M) = supm∈M π(m) = 1K .

Theorem 8. Let 〈S,C,≤〉 be a strong belief structure, and let b ∈ C be
a coherent belief model. Let π be an M−K-map such that the K-valued
possibility measure Π with distribution π is normal. Consider the selection
function Sπ defined by (4). Then Sπ satisfies S1–S3 if and only if

π1. M (b) = {m ∈M : π(m) = 1K}; and

π2. for every N in M, {m ∈ N : π(m) = Π(N )} is a non-empty closed
subset of N .

In that case Sπ automatically also satisfies S4, and the associated dual
belief revision operator satisfies R2–R5 and R7–R8. The associated belief
revision operator then satisfies R1–R8.
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Note that the second condition implies in particular that the map π assumes
its supremum on every closed subset of M.

Proof. Assume that Sπ satisfies S1–S3. Since M∩M (b) = M (b) 6= /0,
it follows from S1 that

M (b) = M∩M (b) =Sπ(M) = {m ∈M : π(m) = 1K},

which tells us that π1 holds. Next, consider any N ∈M, then N 6= /0 and
using S1 and S2, Sπ(N ) = {m ∈ N : π(m) = Π(N )} is a non-empty
closed subset of N , so π2 holds. Conversely, assume that π1 and π2 hold.
Consider an element N of M. If N = /0 then obviously Sπ(N ) = /0. If
N ∩M (b) 6= /0, then it follows from π1 that on the one hand Π(N ) = 1K ,
and consequently on the other hand

Sπ(N ) = {m ∈N : π(m) = 1K}= N ∩M (b).

If N ∩M (b) = /0 and N 6= /0, we know from π2 that Sπ(N ) = {m ∈
N : π(m) = Π(N )} is a non-empty closed subset of N . We conclude that
Sπ satisfies S1–S3: Sπ is a selection function, and it follows from Theo-
rem 7 that the associated dual belief revision operator R(M (b); ·) = Sπ(·)
satisfies R2–R5. To prove that it also satisfies R7–R8, we must show that
Sπ satisfies S4. Consider N and S in M and assume that S ∩Sπ(N ) 6= /0.
This implies that there is an m ∈N ∩S such that π(m) = Π(N ), whence
Π(N ) = Π(N ∩S ). Consequently,

Sπ(N ∩S ) = {m ∈N ∩S : π(m) = Π(N ∩S )}
= {m ∈N ∩S : π(m) = Π(N )}
= S ∩{m ∈N : π(m) = Π(N )}
= S ∩Sπ(N ),

so Sπ satisfies S4. The rest of the proof is now immediate.

9. Revision using a system of spheres

I have called the elements N of a dual belief structure 〈M,⊆〉 spheres be-
cause they are natural generalisations of the spheres studied by Grove [18]
in the context of belief revision in classical propositional logic (see also [15,
Section 4.5]). Sets of such spheres also have an important part in conditional
logic, and selection functions based on such sets of spheres are also very
common in this framework (see for instance [27]). Indeed, Lewis [21, 22]
was probably the first to introduce ‘sets of spheres’ for providing appropriate
semantics in conditional logic.
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In this section, I show that the generalised spheres can also be used to
construct a revision operator.

Let b ∈ C be a coherent belief model, so M (b) 6= /0. We call σ(b) the
collection of spheres that include M (b):

σ(b) = {N ∈M : M (b)⊆N },

so the elements N of σ(b) correspond to coherent belief models infN ≤ b
that are less informative than b. Note that σ(b) is an intersection structure
(Moore family) with bottom M (b) and top M (it is closed under arbitrary in-
tersections). The following definition generalises Grove’s notion of a system
of spheres, but note that contrary to Grove, I do not require that the elements
of a system of spheres should be linearly ordered by set inclusion.9

Definition 7. Let 〈S,C,≤〉 be a strong belief structure and let b ∈ C be a
coherent belief model, so that M (b) 6= /0. We call σ ⊆M a system of spheres
around M (b) if

σ1. σ ⊆ σ(b), i.e. (∀N ∈ σ)(M (b)⊆N );

σ2. M (b) ∈ σ and M ∈ σ ;

σ3.
⋂
{N ∩S : S ∈ σ and N ∩S 6= /0} 6= /0 for all N ∈M.

Given a system of spheres σ around M (b), we define a selection function
Sσ in the spirit of Grove [15, 18]: for any S ∈M,

Sσ (S ) =
⋂
{S ∩N : N ∈ σ and S ∩N 6= /0}

= S ∩
⋂
{N ∈ σ : S ∩N 6= /0}. (5)

This selection leads to a very convenient type of revision operator, as the
following theorem shows.

Theorem 9. Let 〈S,C,≤〉 be a strong belief structure and let b ∈ C be a
coherent belief model, so that M (b) 6= /0. Let σ be a system of spheres around
M (b) 6= /0 and let Sσ be the associated selection function, defined by (5).
Then Sσ satisfies S1–S4, and the corresponding dual belief revision opera-
tor satisfies R2–R5 and R7–R8. The corresponding belief revision operator
then satisfies R1–R8.

Proof. We only have to prove that Sσ satisfies S1–S4. Consider N ∈M.
If N ∩M (b) 6= /0, then all elements of σ intersect with N [use σ1], so⋂
{S ∈ σ : S ∩N 6= /0}=

⋂
σ =M (b) [use σ1 and σ2], and consequently

9 Indeed, this requirement seems unnecessary, and even tends to hide interesting structure,
as it emerges in Theorem 10.
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Sσ (N ) =N ∩M (b), so S1 holds. Obviously, if N = /0 then Sσ (N ) = /0,
so S3 holds. Assume that N 6= /0 and N ∩M (b) = /0. Then Sσ (N ) is
non-empty [use σ3], a subset of N , and closed as an intersection of closed
sets. We conclude that S3 holds. Let N and S be elements of M such that
S ∩Sσ (N ) 6= /0. On the one hand, since {N ′ ∈ σ : N ′∩S ∩N 6= /0} ⊆
{N ′ ∈ σ : N ′∩N 6= /0}, it follows that

S ∩Sσ (N ) = S ∩N ∩
⋂
{N ′ ∈ σ : N ′∩N 6= /0}

⊆S ∩N ∩
⋂
{N ′ ∈ σ : N ′∩S ∩N 6= /0}

=Sσ (S ∩N ).

Conversely, call No =
⋂
{N ′ ∈ σ : N ′ ∩N 6= /0}. Then Sσ (N ) = N ∩

No 6= /0, and it follows from the assumption that S ∩N ∩No =S ∩Sσ (N )
is non-empty. Consequently,

⋂
{N ′ ∈ σ : N ′∩S ∩N 6= /0} ⊆No, whence

Sσ (S ∩N )⊆S ∩N ∩No = S ∩Sσ (N ).

It is not clear to me whether any belief revision operator satisfying R1–R8,
or any selection function satisfying S1–S4, can be generated by a system
of spheres, or in other words, whether Grove’s characterisation result [18]
for belief revision in classical propositional logic can be extended (but see
Proposition 12). The following results should be seen as a first step toward
answering this interesting open question.

Theorem 10. Let Sb be a selection function satisfying S1–S3 and define
σo ⊆ σ(b) as10⋂

S∈M
S∩M (b)= /0

{N ∈ σ(b) : N ∩S 6= /0⇒Sb(S )⊆N ∩S }.

Then σo is a system of spheres around M (b) and it is the greatest (finest)
such system for which Sb(S ) ⊆ Sσo(S ) for all S ∈M, with equality if
S = /0 or S ∩M (b) 6= /0. Consequently, there is a system of spheres that
generates Sb if and only if σo generates Sb, i.e., if Sb =Sσo .

Proof. It is obvious that σo satisfies σ1 and σ2. It is also clear from the
definition of σo that for all S ∈M:

Sb(S )⊆
⋂
{N ∩S : N ∈ σo and N ∩S 6= /0}. (6)

Since for S ∈M, S 6= /0 and therefore Sb(S ) 6= /0 [use S1–S3], it follows
that

⋂
{S ∩N : N ∈ σo and S ∩N 6= /0} 6= /0, so σo satisfies σ3 and is

therefore a system of spheres around M (b). It also follows from (5) and (6)

10 Note that σo is closed under arbitrary intersections.
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that for the associated selection function Sσo : Sb(S )⊆Sσo(S ) for all S ∈
M. Clearly, equality holds if S = /0 or if S ∩M (b) 6= /0. Now let σ be a
system of spheres around M (b) such that Sb(S )⊆Sσ (S ) for all S ∈M.
Let N be an arbitrary element of σ and let S ∈M such that S ∩M (b) = /0.
If N ∩S 6= /0 then it follows from (5) and the assumption that Sb(S ) ⊆
Sσ (S ) ⊆N ∩S , whence N ∈ σo. We conclude that σ ⊆ σo. The rest of
the proof is now trivial.

Corollary 11. A selection function Sb satisfying S1–S4 can be generated by
some system of spheres if and only if for all S ∈M such that S ∩M (b) = /0
there is an N ∈ σo such that S ∩N =Sb(S ).

Proposition 12 gives a simple necessary condition for a revision operator
to be generated by a system of spheres. This condition is satisfied for any
revision operator satisfying R1–R8 in the case of belief models based on
classical propositional logic, as in that case the union of two spheres is a
sphere (the closure operator ClM is topological).

Proposition 12. A necessary condition for a selection function Sb that sat-
isfies S1–S4 to be generated by some system of spheres is that for all N ∈
M:

Sb(N ) = N ∩ClM(M (b)∪Sb(N )). (7)

Proof. Assume that Sb satisfies S1–S4 and that it is generated by some
system of spheres σ . Consider N ∈M. It is clear that (7) holds if N = /0
[use S3] or if N ∩M (b) 6= /0 [use S1]. Assume therefore that N 6= /0 and
N ∩M (b) = /0. Then we know, using (5), that Sb(N ) = N ∩

⋂
{S ∈

σ : S ∩N 6= /0}. Since σ(b) is closed under arbitrary intersections, this
means that there is an S ∈ σ(b) such that Sb(N ) = S ∩N . As a con-
sequence, Sb(N )⊆S and M (b)⊆S , whence, since S is closed,

M (b)∪Sb(N )⊆ ClM(M (b)∪Sb(N ))⊆S ,

and if we take the intersection with N , taking into account that N ∩M (b)=
/0 and Sb(N )⊆N [use S1–S3],

Sb(N )⊆N ∩ClM(M (b)∪Sb(N ))⊆N ∩S =Sb(N ),

which completes the proof.

Example 1. Consider the smallest (or coarsest) system of spheres around
M (b): σ = {M (b),M}. The corresponding selection function is given by

Sσ (S ) =

{
S ∩M (b) if S ∩M (b) 6= /0
S if S ∩M (b) = /0.
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so we find for the corresponding revision operator:

R(b;γ) =

{
ClS(b ^ γ) if b and γ are consistent
γ if b and γ are inconsistent,

In the spirit of Gärdenfors’s work [15], we could call this R(b; ·) a ‘full meet
revision’.

Example 2. Consider a normal possibility distribution π : M→ K on the set
of maximal coherent belief models M. We assume that it satisfies π1 and that
its cut sets are closed: πα = {m ∈M : α � π(m)} ∈M for all α ∈ K. This
implies in particular that π2 is also satisfied. Define the following collection
of closed subsets of M:

σπ = {πα : α ∈ K}.

It follows from π1 that for all α ∈ K, πα ⊇ π1K = M (b). Since moreover
π0K = M, we see that σπ satisfies σ1 and σ2. Next, consider N ∈M. Since
it follows from π2 that π assumes its supremum on every closed set N ∈M,
we have for all α ∈ K that N ∩πα 6= /0 if and only if α �Π(N ), whence⋂
{πα : N ∩πα 6= /0}=

⋂
{πα : α �Π(N )}= {m ∈M : Π(N )� π(m)}

and taking into account π2 and (4),

Sσπ
(N ) = N ∩

⋂
{πα : N ∩πα 6= /0}

= {m ∈N : Π(N ) = π(m)}=Sπ(N ) 6= /0.

This proves that σ3 holds, so σπ is a system of spheres around M (b). We
find for the corresponding selection operator that Sσπ

=Sπ .

10. Conclusion

I am convinced that the study of belief structures, their mathematical proper-
ties and their mutual relationships, can help us relate the many belief models
that have been proposed in the literature. I am aware that the present study
is far from complete, and that refinements and even small modifications may
be necessary. One topic where this may be the case, is belief contraction.
We have seen that for belief expansion and revision, many of Gärdenfors’s
results are valid in a broader context. Although his proofs use the details of
the underlying logical language, I have shown that this is not necessary, and
that simpler and more powerful proofs can be found by using a few general
unifying properties. It turns out, however, that in Gärdenfors’s discussion of
contraction crucial steps are taken which are very specific to classical logic
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(using the topological nature of the closure ClM, for one thing); and which are
hard, if not impossible, to generalise directly. For one thing, preserving the
relationship between contraction and revision (Levi’s and Harper’s identities)
becomes problematical. More effort should be invested in finding out what
can said about belief contraction for more general belief models, what can be
preserved in the generalisation, and how.
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