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ABSTRACT The bit-flipmethod has been successfully applied to the successive cancellation (SC) decoder to

improve the block error rate (BLER) performance for polar codes in the finite code length region. However,

due to the sequential decoding, the SC decoder inherently suffers from longer decoding latency than that

of the belief propagation (BP) decoder with efficient early stopping criterion. It is natural to ask how to

perform bit-flip in a polar BP decoder. In this paper, bit-flip is introduced into the BP decoder for polar

codes. The idea of critical set (CS), that is, originally proposed by Zhang et al. for identifying unreliable bits

in a SC bit-flip decoder, is extended to the BP decoder here. After revealing the relationship between CS and

the incorrect BP decoding results, critical set with order ω (CS-ω) is constructed to identify unreliable bit

decisions in polar BP decoding. The simulation results demonstrate that compared with the conventional BP

decoder, the BLER of the proposed bit-flip decoder can achieve significant signal-to-noise ratio (SNR) gain

which is comparable to that of a cyclic redundancy check-aided SC list decoder with a moderate list size.

In addition, the decoding latency of the proposed BP bit-flip decoder is only slightly higher than that of the

conventional BP decoder in the medium and high SNR regions.

INDEX TERMS Polar codes, belief propagation, critical set, bit-flip.

I. INTRODUCTION

With infinite code length, polar codes achieve the capac-

ity of binary-input memoryless output-symmetric channels

under the successive cancellation (SC) decoding [3]. How-

ever, the block error rate (BLER) performance of polar

codes under the SC decoding with finite length is inferior

to that of low-density parity-check (LDPC) codes and Turbo

codes [4], [5]. Therefore, cyclic redundancy check (CRC)

aided SC list (CA-SCL) decoder [6] is introduced to improve

the BLER of polar codes in practical code length region.

The CA-SCL decoder that almost approaches the maximum

likelihood decoding performance has long been considered as

the decoding scheme that has the best BLER among practical

polar decoding algorithms.

To reduce the complexity of the SCL decoder, in recent

works [1], [2], [7], [8], it is shown that the SC bit-flip (SCF)

decoder is able to yield the same BLER as the CA-SCL

decoder, and the complexity of SCF decoding approaches

that of the SC decoding in high signal-to-noise ratio (SNR)

region. Works in [9] further reduce the complexity of

the SCF decoder based on fast decoding for some con-

stituent nodes. Despite their superior BLER, above SC-based

decoding algorithms are still sequential in nature, which

causes difficulty in parallel decoding. As contrary, the belief

propagation (BP) decoding of polar codes is inherently par-

allel [10], [11]. It is known that for polar codes, the BLER

of the conventional BP decoding is similar to that of the SC

decoding [4], [5]. Therefore, the BLER of the BP decoding is

not satisfying and needs to be improved. Yuan and Parhi [12]

and Cammerer et al. [13] propose hybrid BP-SC decoding

schemes, where the BP decoding is followed by the SC

decoding. If the result of BP decoding is invalid, the de-

noised log-likelihood ratios (LLRs) are passed to the SC

decoder. Post-processing algorithms are proposed in [14],

where the error types of the BP decoding are classified and the

perturbation-based method is employed to deal with different

type of BP error. Permuted factor graph is introduced in

[15] and [16], based on which BP list (BPL) decoder is

proposed [17]. The idea behind BPL decoder is that when the

standard polar code factor graph fails to produce the correct

decoding result, the permuted version of the standard graph

may yield the correct estimate because the message passing

process is altered. However, even with above enhanced meth-

ods, the BLER of BP decoder is still not comparable to that
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of the CA-SCL decoder. This work aims to design a polar

BP decoder that has the similar BLER to that of the CA-SCL

decoder with moderate list size. The main contributions of

this paper are summarized as follows.

(I) Inspired by the SCF decoder, we introduce bit-flip into

polar BP decoder. In this paper, CRC-polar concatenated

codes are used. If the CRC is not satisfied when themaximum

number of BP iteration is reached, then the bit-flip decoding

is activated. Bit-flip means that the priori knowledge of the

flipped information bit is set to infinity, i.e., if ui is flipped to

0, then the so-called Rmessage of ui is set to plus infinity, and

vice versa. Note that in LDPC codes, there exist bit saturation

methods [18]–[20] that set the initial channel LLRs of vari-

able nodes to infinity for better BLER performance. However,

in this paper, we flip the priori knowledge of information bits,

not that of variable nodes.

(II) The behavior of the incorrect BP decoding results

is analyzed. It is found that in the BP decoding, although

information bits are treated parallel, i.e., they are estimated

simultaneously, when the BP decoding fails, they exhibit

similar behavior to that of the SC decoding: flipping the first

incorrect decision of information bit may yield the correct

decoding result.

(III) Based on the critical set that is originally proposed

for SCF decoder [1], [2], critical set with order ω (CS-ω)

is introduced in this paper to indicate which bits should be

flipped if the original BP decoding fails. CS-ω is a truncated

version of the modified critical set (MCS) [1], [2] in the sense

that CS-ω consists of the most error-prone elements in MCS

(the details are in Section IV). Compared with the MCS,

CS-ω results in less attempt bit-flip decoding and therefore

achieves lower latency. In addition, based on the observations

in [1] and [2], we further explain why critical set is powerful

in identifying unreliable bits.

Simulation results demonstrate that the BLER of the pro-

posed BP bit-flip (BPF) decoder can achieve significant SNR

gains compared with that of the standard BP decoding. For

example, there is 1.1 dB gain at BLER = 10−4 when decod-

ing polar codes with length 2048 and rate 0.5. In addition,

the decoding latency is analyzed by both upper bound and

simulations.

The rest of this paper is organized as follows. Section II

provides preliminaries of polar codes, critical set, and the BP

decoding. Key observations when the BP decoding fails and

a genie-aided BPF decoder are illustrated in Section III. The

bit-flip BP decoder using CS-ω is provided in Section IV.

Simulation results are presented in Section V. Conclusions

are drawn in Section VI.

II. PRELIMINARIES

A. POLAR CODES

Polar codes are linear block codes with generator matrix

GN = BNF
⊗n, where N = 2n denotes code length,

BN denotes the bit-reversal permutation matrix [3], and

F = [ 1 0
1 1 ]. The encoding process can be expressed as

FIGURE 1. An example of CS with P(32, 16) under GA construction at
Eb/N0 = 2.5 dB.

xN1 = uN1 GN , where x
N
1 = (x1, x2, . . . , xN ) represents the

codeword and uN1 = (u1, u2, . . . , uN ) denotes the source vec-

tor. uN1 includes both information and frozen bits. The index

sets of information and frozen bits areA andAc, respectively.

A∩Ac = ⊘ andA∪Ac = {1, 2, . . . ,N }. P(N ,K ) represents

polar codeswith lengthN andK information bits.P(N ,K+r)
denotes that the K + r unfrozen bits of polar codes include r
bits CRC.

In this paper, frozen bits are fixed to zero, and A is con-

structed by Gaussian approximation (GA) [21]. In GA, under

the assumption that all-zero codeword is transmitted in the

additive white Gaussian noise (AWGN) channel, the expec-

tation of LLRs evolves according to equations (5) and (6)

in [21]. Denote E
{

L
(i)
N

}

the expectation of LLR of the i-

th polarized channel, and the error rate of the i-th polarized

channel can be expressed as follows:

Pe(ui) = Q(

√

E
{

L
(i)
N

}

/2), (1)

whereQ(x) = 1√
2π

∫ +∞
x e−

α2

2 dα. The indices ofK polarized

channels with the K largest E
{

L
(i)
N

}

(corresponding to the

K smallest Pe(ui)) are selected to form A, where K is the

number of information bits. Note that although so far there is

no analytical code construction method for the BP decoder,

polar codes constructed for the SC decoding also work well

under the BP decoding.

B. CRITICAL SET

Polar code structure can be represented by a full binary tree.

As shown in Figure 1, black node means that all its leaf nodes

are information bits, while white node means that all its leaf

nodes are frozen bits. Grey node denotes that its leaf nodes

include both information and frozen bits. Black nodes are

referred to as rate 1 nodes [22]. The critical set (CS) takes

the index of the first bit in each rate 1 node [1], [2]:

CS =
⋃

i

Ri[1], (2)

where Ri denotes the i-th rate 1 node, and Ri[1] denotes the

index of the first bit inRi. For example in Figure 1, there are

seven rate 1 nodes and CS = {12, 14, 15, 20, 22, 23, 25}.
Information bits in the CS tend to be unreliable [1], [2].

To facilitate clear understanding, numerical results ofPSCe and

PCSe are provided in Figure 2. PSCe = 1 −
∏

i∈A(1 − Pe(ui))
denotes the BLER of SC decoding under GA [23], while

PCSe = 1−
∏

i∈CS(1−Pe(ui)) only considers information bits
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FIGURE 2. Numerical results of PSC
e and PCS

e under GA.

in the CS. ObviouslyPSCe > PCSe . However, it can be observed

that the values of PSCe and PCSe coincide, which indicates that

bits in the CS dominate the error probability.

In the next section, we also provide further explanations

on the CS, and reveal that CS can be employed to identify

unreliable bits in polar BP decoding. For more details about

CS, readers may refer to [1] and [2].

C. BELIEF PROPAGATION DECODING FOR POLAR CODES

Polar code factor graph is shown in Figure 3, where N = 23

and pair (a, b) denotes the row and column number. There

are three stages in Figure 3 and each stage consists of four

processing elements (PEs). The structure of PE is shown

in Figure 4. One PE has four nodes and each node is associ-

atedwith two types ofmessages, i.e., the right-to-left message

L and left-to-right message R. In this paper, L and R are in the

form of LLR. The message propagation rules are as follows:

L2j−1,i = g(R2j,i + Lγ (i,j)+2n−i,i+1,Lγ (i,j),i+1),

L2j,i = g(R2j−1,i,Lγ (i,j),i+1)+ Lγ (i,j)+2n−i,i+1,

Rγ (i,j),i+1 = g(R2j,i + Lγ (i,j)+2n−i,i+1,R2j−1,i),

Rγ (i,j)+2n−i,i+1 = g(R2j−1,i,Lγ (i,j),i+1)+ R2j,i, (3)

where g(x, y) = 0.9375sign(x)sign(y)min {|x|, |y|}, and

0.9375 follows from the scaling factor used in [24]. γ (i, j)

in fact represents the connections of PEs shown in Figure 3,

and γ (i, j) = 1+mod(j− 1, 2n−i)+ ⌊ j−1
2n−i ⌋2

n−i+1,1 where i
denotes the stage number and j denotes the number of PE in

a stage counting from top to bottom.

Denote LN×(n+1) and RN×(n+1) the two matrices that store

L and Rmessages. Before the iterative decoding, L and R are

initialized as follows:

Li,j =
{

0, j 6= n+ 1

LLRi j = n+ 1,
(4)

Ri,j =
{

0, j 6= 1 or j = 1, i ∈ A

+∞, j = 1, i ∈ Ac,
(5)

1In this work, polar code factor graph is strictly the same as GN =
BNF

⊗n [3], so the decoding index is different from the pipelined form [11].

FIGURE 3. Factor graph of polar codes with length N=8.

FIGURE 4. PE in BP decoding of polar codes.

where LLRi denotes the LLR of the i-th received bit.

The +∞ in the first column of R indicates the pri-

ori knowledge carried by frozen bits. The estimation of

the source vector ûN1 = (û1, û2, . . . , ûN ) and codeword

x̂
N
1 = (x̂1, x̂2, . . . , x̂N ) can be obtained through (6) and (7),

respectively.

ûi =
{

0, Li,1 + Ri,1 ≥ 0

1, Li,1 + Ri,1 < 0,
(6)

x̂i =
{

0, Li,n+1 + Ri,n+1 ≥ 0

1, Li,n+1 + Ri,n+1 < 0.
(7)

In this paper, the bit-flip of information bit ui means that

the priori knowledge of ui is set to infinity, i.e., if ui is

flipped to 1, then we set Ri,1 = −∞ as if ui is frozen.

With this method, the priori knowledge of flipped bits will

propagate in the factor graph, which is expected to correct

the wrongly propagated messages in the original yet failed

BP decoding.

III. ANALYSIS OF THE INCORRECT BP DECODING

RESULTS AND CRITICAL SET

In the first part of this section, we analyze the behavior

of the incorrect BP decoding results, and then a genie-

aided bit-flip decoder is designed to confirm that if we flip

certain information bit, the BLER of the BP decoder will

improve. In the second part, we provide further explanations

on why the critical set can identify unreliable information

bits. Then, by simulations, it is revealed that the critical set

includes the first error bit with high probability under the

BP decoding.
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TABLE 1. Simulation configurations.

A. BEHAVIOR OF THE INCORRECT BP DECODING

RESULTS

The behavior of the incorrect BP decoding results is ana-

lyzed by Monte-Carlo simulations. When the conventional

BP decoding of polar codes fails,2 the first index and whole

indices where ûN1 6= uN1 are represented by i∗ and E , respec-

tively:

i∗ = argmin
i∈A

{

i|ûi 6= ui
}

, (8)

E =
{

i|ûi 6= ui, i ∈ A
}

. (9)

Note that although Pe(ui) in (1) under GA is derived

from the SC perspective, polar codes constructed by Pe(ui)

also work well under the BP decoder. This implies some

similarity between the SC and BP decoding, i.e., the first

error bit ui∗ tends to be error-prone. We hence observe

the following two behaviors of the incorrect BP decoding

results.

Behavior 1: Pe(ui∗ ) tends to be the largest one among

Pe(ui), i ∈ E . Here, Pe(ui), i ∈ E follows from (1).

This can be observed by the following simulation results.

Denote B the event that Pe(ui∗ ) is the largest one among

Pe(ui), i ∈ E :

B : argmax
i∈E

{Pe(ui)} is i∗. (10)

The frequency of event B is provided in Table 2. The

simulation configurations used in Table 2 are summarized

in Table 1. In a wide code length range, it can be seen that with

the increase of SNR, the frequency of event B also increases

and eventually approaches 90%. Such results clearly show

that Pe(ui∗ ) tends to be the largest one among Pe(ui), i ∈ E ,

especially in medium and high SNR range.

Behavior 2: After the original BP decoding fails with the

received signal yN1 = (y1, . . . , yN ), if ui∗ can be flipped to the

true value and an additional BP decoding is then performed,

the BP decoder can yield the correct decoding result using the

same yN1 = (y1, . . . , yN ).

We use a genie-aided manner to show above behavior. The

genie-aided manner means that the decoder knows which

information bit is ui∗ when the original BP decoding fails with

the received signal yN1 . Then, bit-flip BP decoding is activated

using the same yN1 . In the bit-flip decoding, the genie-aided

2The failure of the BP decoding can be detected by some early stopping
criterion, such as G-matrix method [24] or CRC check. G-matrix method
tests if x̂N1 equals ûN1 GN . If x̂

N
1 equals ûN1 GN , the BP decoding stops.

TABLE 2. The frequency (%) of event B under different SNRs and code
lengths with simulation runs 106.

FIGURE 5. The BLER performance comparison between the conventional
BP decoder and the genie-aided BP bit-flip decoder.

decoder sets the priori information of ui∗ to infinity as if ui∗

is frozen:

Ri∗,1 =
{

+∞, the true value of ui∗ is 0,

−∞, the true value of ui∗ is 1.
(11)

The BLER of such genie-aided decoder is presented

in Figure 5. With a wide range of code length, it can be

observed that compared with the conventional BP decoding,

the BLER can be improved by 0.5dB in almost the whole

simulated SNR region. In addition, the BLER improvement

increases as SNR increases. Such phenomenon coincides

with data in Table 2, i.e., in low SNR region, the frequency of

event B is relatively small, which causes inefficient bit-flip.

In medium and high SNR regime, the frequency of event B

is large, yielding efficient bit-flip. The BLER improvement

in Figure 5 shows that even if only one information bit is

flipped, the BLER improvement can be significant.

B. FURTHER EXPLANATIONS ON CRITICAL SET

In [1] and [2], information bits in CS are shown to be error-

prone under binary erasure channel and AWGN channel.

In fact, there exist more general theoretical explanations. As a

result of the recursive structure of polar codes, each rate

1 node consisting of Nr1 information bits can be considered

as a sub-polar code, where Nr1 is power of 2. Inside such sub-

polar code there are Nr1 polarized channels, counting from

0 to Nr1 − 1. According to the partial order of polarized

channels [25], [26], the i-th polarized channel is degraded to

the j-th polarized channel if the binary expansions of i and j
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TABLE 3. The values of α and |CS| under different codes, all codes are
constructed by GA at Eb/N0 = 2.5 dB.

TABLE 4. The frequency (%) of event Q under different SNRs and code
lengths with simulation runs 106.

satisfy:

i = (inr1 , . . . , ip, . . . , i1)2, j = (jnr1 , . . . , jp, . . . , j1)2,

ip = 0, jp = 1, ik = jk , k 6= p, (12)

where (inr1 , . . . , ip, . . . , i1)2 and (jnr1 , . . . , jp, . . . , j1)2 are the

binary expansions of i and j, respectively, and nr1 = log2Nr1.

The first bit inside the rate 1 sub-polar code corresponds to

the 0-th polarized channel whose binary expansion consists of

all zeros. Obviously through (12) we can see that all the other

polarized channels is upgraded to the 0-th one. In other words,

polar codes convey information using rate 1 sub-codes, and

CS selects the most degraded polarized channel in each rate

1 node.

It should be noted that although CS does not necessarily

include all the |CS| bits in A with |CS| largest Pe(ui), where

|CS| is the number of bits in the CS, CS can cover most of

them. Assume that all the |CS| information bits with largest

Pe(ui) form the set D, and α represents that the CS includes

α bits in D. Table 3 presents the values of α and |CS| under

different code configurations. It can be observed that α almost

approaches |CS|, which indicates the CS is a powerful tool

to identify unreliable bits. Note that there exists no explicit

relationship between the first bit in one rate 1 node and the

second bit in another rate 1 node.

In the end of this section, the relationship between the first

error index i∗ and CS is revealed. It is shown by simulations

that the CS includes i∗ with high probability under the BP

decoding. Let event Q denote that i∗ is included by the CS:

i∗ ∈CS. The frequency of event Q is large, and the corre-

sponding results are provided in Table 4, where simulation

parameters are the same as in Table 1. The results in Table 4

imply that without the help of a genie, the CS can serve

as the set that includes i∗ with high probability under the

BP decoding. Note that the results in Table 4 coincide well

with [1, Table 1] and [2, Tables 1 and 2] for SC decoding.

Therefore, in the next section, the bit-flip method for polar

BP decoder is proposed based on flipping bits in the CS.

IV. BIT-FLIP BP DECODER

In this section, critical set with order ω (CS-ω) is proposed

to identify ω error-prone bits that need to be flipped in one

BP decoding turn. We first describe a general case where

ω bits can be identified and corrected in one attempt BP

decoding, and then take the one-bit-flip decoder as a special

case. The decoding latency of the proposed decoder with

CS-ω is analyzed by upper bound.

A. THE CONSTRUCTION OF CS-ω

CS-1 with one-bit-flip is one-dimensional vector that is the

same as CS. Therefore, as shown in Table 4, CS-1 includes

i∗ with high probability and can be used to indicate which

single bit should be flipped. When ω ≥ 2, we must choose ω

indices that include ω error-prone bits. This can be achieved

by constructing new critical sets progressively as proposed in

[1] and [2], and then theMCS is obtained. However, the MCS

includes massive (approximately |CS|ω) error-prone indices
that are required to be tested by the bit-flip decoding [1], [2].

Therefore, to avoid the exponential attempt bit-flip decod-

ing caused by the MCS and obtain lower decoding latency,

we propose CS-ω, a truncated version of the MCS, which

includes the most error-prone elements in the MCS.

CS-ω is a |CS|×ω matrix, and one row of CS-ω represents

theω indices of theω flipped bits in one attempt BP decoding.

CS-ω has |CS| rows, which indicates that CS-ω has the same

number of elements as the CS. Each row in the CS-ω can be

expressed as (j1, j2, . . . , jω), where jk ∈ A, 1 ≤ k ≤ ω. Each

row of the CS-ω is obtained as follows.

First, sort elements in the CS in descending order according

to the error rate Pe(ui), i ∈ CS:
{

CS(k1),CS(k2), . . . ,CS(k|CS|)
}

,

s.t. Pe(uCS(ki)) ≥ Pe(uCS(ki+1)). (13)

Next, the i-th row in the CS-ω is expressed as follows:

CS-ω(i) = (j1, j2, . . . , jω), 1 ≤ i ≤ |CS|
j1 = CS(ki),

j2, j3, . . . , jω ∈ A,

j1 < j2 < . . . < jω. (14)

jp, 2 ≤ p ≤ ω in (14) is obtained through the following

three steps.

(a) Freeze bit indices from 1 to jp−1 and get a new

frozen set Ac
p−1. The reason of this step is that we assume

{

uj1 , . . . , ujp−1
}

are flipped to the correct values, and hence

there are no errors in
{

u1, . . . , ujp−1
}

. Since
{

u1, . . . , ujp−1
}

are assumed correct, they are considered as frozen bits. This

step is the same as the progressively frozen method [1], [2].

(b) UseAc
p−1 to construct a new critical set CSp−1. Accord-

ing to the analysis in Table 4, assuming the former bits
{

u1, . . . , ujp−1
}

are correct, CSp−1 includes the first error

index i∗ after ujp−1 with high probability. Find the index k ∈
CSp−1 such that:

k = argmax
i∈CSp−1

{Pe(ui)} . (15)

(c) Set jp = k , i.e., select the most error-prone bit in

CSp−1 as the p-th flip index and discard the other indices in

CSp−1. Note that the MCS [1], [2] selects every bit in CSp−1,
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Algorithm 1 Construct CS-ω

Input: Ac, ω, {Pe(ui)}i∈A
Output: CS-ω

1: construct CS by (2) using Ac

2: M ← the number of elements in the CS

3: CS-ω← an M × ω matrix. //the row denotes flip index

4: for q = 1 : M do

5: CS-ω(q, 1)← CS(kq) //CS is sorted in (13) off-line

6: for p = 2 : ω do

7: Ac
p−1← freeze indices from 1 to CS-ω(q, p− 1)

8: CSp−1← construct critical set by (2) using Ac
p−1

9: CS-ω(q, p)← argmaxi∈CSp−1 {Pe(ui)}
10: end for

11: end for

which makes the number of elements in the MCS increase

exponentially with the increase of ω. Therefore, CS-ω can be

considered as a truncated version of the MCS.

Note that above operations do not require online data,

while in [1] and [2], online LLRs are needed to sort elements

in the MCS to find the currently most unreliable bit. The

construction of the CS-ω is summarized in Algorithm 1.

B. BIT-FLIP BP DECODER USING CS-ω

In this subsection, the bit-flip BP decoder using CS-ω

is proposed. In general, multi-bit-flip in BP decoding is

more difficult than that in SC decoding. The reason is

as follows. In the SC decoding with ω flipped bits, once

(uj1 , uj2 , . . . , ujω ) is selected as the target bits, the flipped

values of (uj1 , uj2 , . . . , ujω ) are determined by the opposite

direction of their LLRs (L
(j1)
N ,L

(j2)
N , . . . ,L

(jω)
N ) that are suc-

cessively calculated in the SC process. In other words, we do

not need to set the priori knowledge for (uj1 , uj2 , . . . , ujω ) in

the SC bit-flip decoding.

However, in the BP decoding with the proposed bit-flip

method, it is necessary to set the priori knowledge for the

target bits. Once the wrong priori knowledge is used, the BP

decoder will never yield the correct decoding result. There-

fore, we exhaustively enumerate all the possible values of

the target bits. Specifically, for a given row (j1, j2, . . . , jω) in

CS-ω, we exhaustively enumerate all the possible values of

the priori knowledge (Rj1,1,Rj2,1, . . . ,Rjω,1) ∈ {+∞,−∞}ω
for (uj1 , uj2 , . . . , ujω ), i.e., each row in CS-ω may involve 2ω

times of attempt bit-flip decoding. Thus, the worst case num-

ber of bit-flip decoding is Tmax = 2ω×|CS|. Although at first
sight Tmax is quite large, simulation results demonstrate that

the average decoding latency of the above flipping method is

similar to that of the conventional BP decoding in medium

and high SNR regions.

The proposed bit-flip BP decoder using CS-ω is sum-

marized in Algorithm 2, where CRC-polar concatenated

codes are employed. The while in line 4 means that

each row in CS-ω is tested. The for in line 6 means

that all the possible values of the priori knowledge

Algorithm 2 Bit-flip BP Decoder Using CS-ω

Input: llrN1 , A, CS-ω, Tmax

Output: û
N
1

1: Initialize the BP decoder using (4) and (5).

2: û
N
1 ← conventional_BP_decoder(llrN1 , A, L,R)

3: t ← 1 //the number of attempt bit-flip decoding

4: while û
N
1 does not satisfy CRC && t ≤ Tmax do

5: (j1, j2, . . . , jw)← CS-ω(t) //the t-th row of CS-ω

6: for k = 0 : 2ω − 1 do

7: bω
1 ← dec2bin(k, ω) //extend k to ω digits

8: R← O, R(Ac, 1)←+∞ //refresh R

9: for l = 1 : ω do

10: Rjl ,1← (1− 2bl)×∞
11: end for

12: û
N
1 ← conventional_BP_decoder(llrN1 , A, L,R)

13: if û
N
1 satisfies CRC then

14: return û
N
1

15: else

16: if t = Tmax&&k = 2ω − 1 then

17: The ω bits-flip BP decoding fails.

18: end if

19: end if

20: end for

21: t ← t + 1

22: end while

(Rj1,1,Rj2,1, . . . ,Rjω,1) ∈ {+∞,−∞}ω of the current index

(j1, j2, . . . , jω) are enumerated. Lines 9-11 set the priori

knowledge for the target bits.

Further, we comment on the special case where ω = 1.

Since there is only one bit to be flipped, it is much easier

to guess the value of the target bit and therefore exhaustive

enumeration is not necessary. When ω = 1, the original

CS [1], [2] is used to indicate unreliable bits.3 Assume that

uCS(i) is selected to be flipped. We can simply set the value

of uCS(i) to the opposite direction of LCS(i),1 + RCS(i),1 that

is obtained from the original yet failed BP decoding, e.g., if

LCS(i),1 + RCS(i),1 > 0, then in the bit-flip decoding we set

RCS(i),1 = −∞ and vice versa. Such simplified operation will

reduce half of latency in bit-flipping process compared with

the exhaustive enumeration.

The upper bound of the average decoding latency of the

bit-flip BP decoder using CS-ω is provided as follows.

Proposition 1: Without the CRC early termination,

the average iteration number Īω and decoding latency L̄ω (in

clock cycle) of the bit-flip BP decoder using CS-ω (ω 6= 1)

can be upper bounded by (16) and (17), respectively.

Īω ≤ [1+ Pe(N ,K , r, γ )2ω|CS|]I , (16)

L̄ω ≤ [1+ Pe(N ,K , r, γ )2ω|CS|]I2log2N , (17)

3Instead of the CS, we can also select unreliable bits directly based on bits
inAwith the |CS| largest Pe(ui) in (1). However, simulation results show that
the BLER of this scheme is inferior to that of the CS. Thus, in the next section
we only present simulation results based on the CS.
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FIGURE 6. The BLER of the BPF decoder with CS-1. For P(2048,1024+24),
Tmax = |CS| = 220, and for P(4096,2048+24), Tmax = |CS| = 411.

where Pe(N ,K , r, γ ) is the BLER of the conventional BP

decoder when polar code P(N ,K + r) is used at Eb/N0 = γ ,

and I represents the fixed iteration number in each BP decod-

ing without the CRC early termination.

The proof follows by noting that the term 1 in (16) and

(17) denotes the latency of the conventional BP decoding, and

Pe(N ,K , r, γ )2ω|CS| represents the extra latency caused by

the bit-flip decoding in the worst case.

V. SIMULATION RESULTS

In this section, the BLER and average decoding complexity

of the proposed BPF decoder using CS-ω are presented.

A. BLER OF BIT-FLIP DECODER USING CS-ω

In this subsection, the BLER of the proposed BPF decoder

using CS-ω is provided. Simulation configurations are the

same as in Table 1, except that the early stopping criterion is

replaced by 24-bit CRCwith g(x) = x24+x23+x6+x5+x+1.
We first present the BLER of CS-1 in Figure 6.

In Figure 6, there is a benchmark called exhaustive one-

bit-flip (EOBF) decoder. In the EOBF decoder, all bits in A

are to be flipped until the decoding result satisfies the CRC.

The BLER gap between the EOBF decoder and CS-1 can be

considered as a metric that measures the accuracy of CS-1 in

finding the bit flipping whose value will correct the already

failed BP decoding. It can be observed that the BLER of

CS-1 is significantly superior to that of the conventional BP

decoder, e.g., at BLER= 10−4, there is 0.9dB gain under

P(4096, 2048 + 24). Compared with the CA-SCL decoder,

for P(2048, 1024+24) and P(4096, 2048+24), the BLER of

CS-1 approaches that of the CA-SCL with L = 4. Compared

with the EOBF decoder, the BLER gap is round 0.2-0.4 dB in

all simulated SNR region. Such BLER gap can be narrowed

down by decoders using CS-2 and CS-3.

The BLER performances of decoders using CS-2/CS-3 are

provided in Figure 7 under P(2048,1024 + 24). In Figure 7,

at BLER= 10−5, CS-2 outperforms CS-1 0.4dB, while

CS-3 outperforms CS-2 0.2dB. In addition, the BLER of

FIGURE 7. The BLER comparisons between the proposed BP bit-flip
decoder and some existing SC-based decoders. CS-ω decoder has the
maximum bit-flip number T = 2ω × |CS| with |CS| = 220 under
P(2048,1024+24).

FIGURE 8. BLER of BPF CS-3 decoder with V = 5. The permuted factor
graphs are optimized by methods in [16].

CS-3 is comparable to CA-SCL with L = 16 when SNR

<2.2 dB.

The BLER of the SCF decoder based on the critical set [1]

is provided. SCF with T = 8 × 220 means that the SCF

decoder has a limited number T of attempt decoding. SCF

level-3 represents that the SCF decoder uses level-3 MCS

without the limitation on bit-flip number [1]. With the same

number T of attempt bit-flip, the proposed CS-3 BP decoder

outperforms the SCF decoder [1] when SNR < 2.7dB,

e.g., at BLER = 10−4, the CS-3 decoder has 0.3 dB gain

over SCF with the same T . SCF level-3 decoder has similar

BLER to CA-SCL with L = 16. The BLER of the pro-

posed CS-3 decoder can compete with SCF level-3 when

SNR ≤ 2.2 dB, but falls short at higher SNR points, which

may result from the error floor of the BP decoding. However,

in the next subsection we will see that the decoding latency of

the CS-3 decoder is significantly lower than that of SC-based

decoders.

For the rest of this subsection, we provide a possible way to

further improve the BLER of BPF decoder based on permuted
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FIGURE 9. Average number of decoding clock cycles for P(2048,
1024+24). The maximum iteration number is 100 for one BP decoding.

factor graph [15], [16]. The idea is simple: (a) First, perform

Algorithm 2. (b) If Algorithm 2 fails, use a permuted fac-

tor graph to re-execute Algorithm 2. This process continues

until the decoding result satisfies the CRC or all the per-

muted graphs are tested. Denote V the number of permuted

graphs (including the standard graph), and the BLER of

BPF CS-3 with V = 5 is provided in Figure 8 for

P(2048,1024 + 24). It can be seen that compared with

CS-3 decoder, there is 0.2 dB gain at BLER = 10−5, and
the BLER of CS-3 with V = 5 is comparable to that of

CASCL with L = 32. However, in such scheme, the number

of attempt bit-flip decoding is V times larger than that of the

CS-3 decoder. Therefore, the permuted factor graph is only a

potential way to improve the BLER of the BPF decoder.

B. AVERAGE DECODING COMPLEXITY OF BIT-FLIP

DECODER USING CS-ω

For the average decoding latency L̄ω, simulation results are

given in Figure 9 for P(2048, 1024 + 24). Upper bound

curves are derived from (17) without early stopping, while

simulation curves use the CRC as early termination criterion.

In Figure 9, it can be observed that the value of upper bound

increases as ω increases, while the simulation curves almost

overlap with each other in medium and high SNR regions.

It is also observed that the average decoding clock cycle of the

proposed BPF decoder can approach that of the conventional

BP decoder when Eb/N0 ≥ 2.6dB.

Next, we make the decoding latency comparison between

the proposed BPF decoder and SC-based decoders. Recent

works [27], [28] focus on reducing the decoding latency of

SCL decoder by identifying constitute nodes, such as rate

0, rate 1, repetition (Rep), and single parity check (SPC)

nodes [27], and five new nodes called Type I-V [28]. When

there is no limitation on hardware resources, the decoding

clock cycles required by rate 0, rate 1, Rep, SPC, Type I, Type

II, Type III, Type IV, and TypeV nodes are 1, min {L − 1,Ns},
2, 1 + min {L,Ns}, 2, 2, 1 + min {L − 1,Ns − 2}, 1 +
min {L − 1,Ns − 4}, and 2, respectively [27], [28], where Ns

TABLE 5. Decoding clock cycle comparisons between the proposed BPF
decoder and SC-based decoders. SCF-T denotes SCF in [1] with limited
bit-flip number T = 8 × 220, and SCF-3 represents SCF in [1] with
level-3 MCS.

is the number of bits that a node includes. The decoding clock

cycle comparisons are shown in Table 5, where SCL denotes

the conventional SCL scheme [6], Fast SCL represents the

decoding method in [27], and new node denotes the decoding

method in [28]. The target polar code is P(2048, 1024+ 24).

It can be seen that the decoding clock cycle of the proposed

BPF decoder decreases fast with the increase of SNR. CS-1

has slightly higher latency than that of CS-2/CS-3 when

Eb/N0 > 2.4dB because the error correction ability of CS-1

is relatively weaker, which results in more attempt bit-flip

decoding. When SNR ≥ 2.4dB, the average decoding clock

cycle of the proposed CS-3 decoder is the lowest one com-

pared with that of all SC-based decoders in Table 5, which

confirms that the proposed decoder is especially suitable for

medium and high SNR points. The SCF decoders in [1] use

the standard SC that does not involve fast decoding based

on constituent nodes, so the decoding clock cycles of such

decoders converge to 2N − 2.

After latency comparisons, we make complexity

comparisons between the proposed BPF decoder and the

conventional CA-SCL decoder. First, we focus on the com-

putational complexity. Here, for the BP decoder, one com-

putation of one intermediate LLR shown in (3) takes unit

complexity, while for the CA-SCL decoder, one computation

of sign(x)sign(y)min(|x|, |y|) or (1 − 2b)x + y takes unit

complexity, where x, y denotes the LLR and b denotes the

bit value. The comparison results are given in Table 6. It is

not surprising that the SCL decoder has lower computa-

tional complexity than that of the proposed decoder because

SC-based algorithms are famous for their low computational

complexity. However, note that at high SNR points such as

3 or 3.2 dB, the proposed decoder can yield similar compu-

tational complexity compared to that of the SCL decoder.

Next, we focus on the memory requirement (MR). The

MR of the conventional SCL decoder and the proposed BPF

decoder can be expressed as follows:

MRSCL = [N+(N−1)L]QLLR+LQPM+(2N−1)L, (18)

MRBPF = 2N (n+ 1)QLLR + |A| + |CS|ωn. (19)

where QLLR and QPM denote the number of quantization bits

for LLR and path metric, respectively. The three terms in (19)
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TABLE 6. Computational complexity comparisons between the proposed
BPF decoder and the conventional SCL decoder for decoding one received
signal yN

1
. The computational complexity of the BP decoder is calculated

using 2NnĪω . The target code is P(2048, 1024 + 24).

FIGURE 10. The MR comparisons between the proposed CS-3 decoder
and the SCL decoder, ω = 3, QLLR = QPM = 6.

denote the memory required by L/Rmatrices, information bit

output, and CS-ω, respectively. TheMR of the proposed CS-3

decoder and the SCL decoder is shown in Figure 10. When

L = 16, the MR of the proposed decoder and SCL decoder

almost coincides under different code lengths. Since L = 16

is of our interest, we conclude that the proposed decoder has

the similar MR to that of the SCL decoder.

Therefore, the proposed BPF decoder achieves the lower

latency at the cost of higher computational complexity.

In latency-sensitive scenarios, such additional cost is still

worthwhile because the latency of the proposed decoder is

much lower than that of the SCL decoder as shown in Table 5.

VI. CONCLUSION

In this paper, bit-flip is extended to the BP decoding for polar

codes. We analyze the behavior of the wrongly estimated

codewords, and propose the bit-flip decoder based on crit-

ical set with order ω. The BLER and decoding complexity

of the proposed decoder are presented. Simulation results

demonstrate that the BLER of the proposed BPF decoder can

approach that of CA-SCLwith L = 16. The decoding latency

of the proposed decoder can approach that of the conventional

BP decoder in medium and high SNR regions.
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