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Abstract. This paper studies different specifications of belief propaga-
tion for stereo analysis of seven rectified stereo night-vision sequences
(provided by Daimler AG). As shown in [4], Sobel preprocessing of im-
ages has obvious impacts on improving disparity calculations. This paper
considers other options of preprocessing (Canny and Kovesi-Owens edge
operators), and concludes with a recommended setting for belief propa-
gation on those sequences.
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1 Introduction

Coarse-to fine belief propagation (see, e.g., [6]) is a possible technique for stereo
analysis, and it receives good rankings for engineered indoor high-contrast stereo
pairs, see [9]. The question arises how this technique behaves on real-world stereo
sequences, such as the seven night-vision sequences provided on [2] in Set 1, and
described in [8]. See Figure 1 for examples for these sequences. Each sequence con-
tains between 250 and 300 stereo pairs, each image 680× 350 in 12-bit resolution.

Fig. 1. Examples of stereo pairs of Set 1 on the enpeda.. test sequence website (from
Sequences 5, 6, and 7, recorded with 12-bit Bosch night vision cameras)
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2 Belief Propagation for Stereo Analysis

Felzenszwalb and Huttenlocher [3] provide a detailed guide for implementing
coarse-to-fine belief propagation (BP); see also people.cs.uchicago.edu/∼pff/bp/

for free sources. In our implementation, we decided for max-product, 4-adjacency,
truncated quadratic cost function (in difference to [4] where only the simple
Potts model was used; the lower envelope calculation may follow [5]), the red-
black speed-up method, and coarse-to-fine processing, for more reliable (and
also time-efficient) matching. Below we provide further specifications of the rec-
ommended BP implementation; those specifications resulted from experimental
optimizations with respect to the given seven test stereo sequences. (So far, we
have not used any initialization of belief values in message boards by those ob-
tained at time t − 1, for t > 0; initialization is always by the data term using
intensity differences at time t.)

Following [3], we also state two ‘typical’ features of belief propagation. (Asym-

metry) The strength of message passing from low-difference (homogeneous) areas
to high-difference (busy) areas is smaller than the strength of message passing
from high-difference areas to low-difference areas. (Influence of Discontinuities)
Message passing is blocked by discontinuities (such as edges in images).

Due to these observed features, it is not surprising that [4] suggests Sobel pre-
processing [12] prior to BP for those real-world sequences. Figure 2 illustrates the

Fig. 2. Upper row: original Tsukuba images and BP result. Second row: their Sobel
images and BP result. Third row: original Map images and BP result. Bottom row:
their Sobel images and BP result.

people.cs.uchicago.edu/~pff/bp/
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Fig. 3. Upper row: original Sawtooth images and BP result. Second row: their Sobel
images and BP result. Third row: original Venus images and BP result. Bottom row:
their Sobel images and BP result.

Table 1. Percentage of bad matches of our BP algorithm on Middlebury stereo pairs,
without or with Sobel preprocessing

Pair Tsukuba with S. Map with S. Sawtooth with S. Venus with S.

Error 1.75 1.81 0.31 0.33 0.94 0.95 0.99 1.02

‘tuned’ BP algorithm on Middlebury stereo examples, without and with Sobel
preprocessing. There is actually a slight increase in errors for those engineered
images.

As shown in [4], the situation is totally different for the studied real-world
sequences; see Figure 4 for an example for Sequence 1. There are (at least) two
obvious problems for original images for Sequence 1, namely bad matches due
to lack of texture (e.g., middle of the road), and mismatches due to ‘fuzzy depth
discontinuities’ (such as in the sky or in trees). Sobel preprocessing contributes
towards solutions of both problems.

This experience can be made for all the seven sequences. Figure 5 shows sam-
ples of depth maps, one for each sequence, without using any edge preprocessing.
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Fig. 4. Sample of left and right image for Sequence 1 (upper row), Sobel images of both
(middle row), and BP results (lower row) for original images (left) and Sobel images
(right)

Fig. 5. Samples of depth maps, one for each of the seven sequences (without any edge
preprocessing)
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For example, Sequences 5 to 7 show many trees along the road side, and trunks,
branches and leaves of the trees cause serious stereo mismatching.

3 Comparing Three Edge Detectors

A Sobel edge image is certainly ‘noisy’, but provides this way features or details
of original images which allow that the message passing mechanism proceeds
more ‘in accordance’ with the actual data. Figure 6 shows typical depth maps
obtained for those seven sequences, for the same pairs of frames as already
illustrated in Figure 5.

In general, compared to BP on original image pairs, major discontinuities are
now, in general, correctly detected. For example, the visual border of a tree may
be recovered despite of an obvious fuzziness of image intensities along its visual
border. In particular, road and sky are now often accurately located. In most
cases, another car is also detected if at a reasonable distance. However, there
are still remaining problems. For example, depth maps of first image pairs of
Sequence 6 show that the traffic light is not matched correctly (there are ‘two
traffic lights’ in the depth maps).

In some images, we cannot identify many depth details, especially in images
with lots of trees. Refer to Sequence 6 again for an example. Vertical edges
disappear in depth maps. The reason might be that we have chosen a small

Fig. 6. BP results based on Sobel edge images
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discontinuity penalty (see next section) based on an attempt to identify one
uniform ‘best’ set of parameters. Using a higher discontinuity penalty in BP
produces more edges or details in depth maps, but also more noise or matching
errors. Automatic adaptation might be a possibility. In Sequence 5, the road in
the generated depth map is not a smooth, even-leveled surface; this is caused by
the shadows of the trees on the road which result in horizontal stripes in depth
maps. Approximately constant intensity within an epipolar line shows negative
impacts, despite the 2D belief propagation mechanism.

We compare effects obtained by using Sobel preprocessing with those possible
if using the popular Canny operator [1]. We briefly recall: a Canny edge algorithm
blurs the image by using a Gaussian mask; it produces a binary image; it adopts
hysteresis between two threshold values to remove edge pixels caused by noise.
We use 5 as lower threshold, and 12 as upper threshold. Resulting Canny edge
images are certainly not ‘noisy’ (compared to Sobel images). The Canny edge
operator ‘aims’ at clear edges in the original images. Figure 7 shows BP stereo
results on Canny edge images, for the same stereo pairs as already illustrated in
Figure 5.

Obviously, results are worse compared to BP results based on Sobel edge
images. For example, depth maps for Sequence 1 show mismatches in the sky
(top right), and the road is not a smooth, even surface. Similar problems occur
in the depth maps of Sequence 2. However, the truck on the right hand side,
and the cars in front of the ego-vehicle may still be recovered. Depth maps of

Fig. 7. BP results based on Canny edge images
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Sequences 3, 4 and 7 show that the road is not correctly located. Moreover, cars
in these images remain undetected. In Sequence 4, we cannot identify trees along
the roadside, the road is often mismatched, and a safety fence in the left lane
is not present in the depth map at all. Canny preprocessing was best for depth
maps of Sequence 5 (the road is smooth, the safety fence is apparent, and cars
at reasonable distances are also detected).

In general we conclude that Canny edge images are filtering out to many
details from images. (This was further verified by varying the used thresholds.)

Finally, we selected the Kovesi-Owens operator [7,10,11] due to its accuracy
in general (for image analysis processes depending on detecting actual edge lo-
cations). The Canny edge detector often fails in low contrast regions. However,
the Kovesi-Owens method has a good response for detecting features in low con-
trast regions. Compared to the Sobel edge image, edges and corners seem to be
brighter, thicker, and larger in Kovesi-Owens edge images.

The Kovesi-Owens edge algorithm is unaffected by changes in image contrast
or brightness; it uses phase congruency values, which a range potentially between
0 and 1. We decided to use 0.4 as the phase congruency value. Figure 8 shows BP
stereo results on Kovesi-Owens edge images, for the same stereo pairs as already
illustrated in Figure 5. Compared with BP on original image pairs of the seven
sequences, most objects of interest (e.g., cars, safety fences, trees) in the image
are now correctly recovered.

Fig. 8. BP results based on Kovesi-Owens edge images
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Fig. 9. An example from Sequence 5: this image pair (with histograms) shows signifi-
cant brightness differences between left and right image

However, the Kovesi-Owens depth map results are in general slightly worse
compared to Sobel-based results. For example, the road is often not an even
surface. The reason might be that the Kovesi-Owens algorithm is here ‘too sen-
sitive’.

Figure 9 illustrates brightness differences between left and right image, which
occur from time to time in these sequences. In any of the tested cases, such
brightness differences create obvious problems for the tested BP techniques, and
Kovesi-Owens seems to adapt best to those cases.

4 Tuning of the Algorithm

The selection of ‘best values’ was based on visual (subjective) evaluation and
also on selected quantitative performance evaluations. For the latter ones we
defined manually rectangular regions in images (such as a face of a truck, or
a rectangular approximation of a car driving in front of the ego-vehicle; see
Figure 10) and identified their 3D location (by specifying manually disparities
of all four corners). This way we also had some approximate ground truth for
those sequences available for a more objective performance evaluation.

Figure 11 illustrates the need of large numbers of iterations if no coarse-to-fine
technique is applied, and Table 2 shows numbers of iterations for different num-

Table 2. About equivalent performance of BP with Sobel preprocessing for different
pyramid levels (coarse-to-fine strategy) and numbers of iterations

Pyramid levels Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5 Seq. 6 Seq. 7

1 410 1210 1120 100 265 150 310
2 100 290 310 35 70 45 100
3 26 120 60 10 25 20 30
4 13 75 20 5 10 10 9
5 5 35 9 3 4 5 5
6 5 15 7 3 3 4 4
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Fig. 10. Examples of manually specified rectangular regions for approximated ground
truth: in original sequences (left) and in Sobel-based BP results (right)

bers of levels of the used pyramid, always aiming at about the same performance
of Sobel-based BP on the given sequence.

For example, Sequence 2 shows a need for a larger number of levels, to ensure
a reasonable reduction of numbers of iterations. Figure 12 illustrates the data in
Table 2 by means of function graphs.

Table 3 shows the actually used numbers of iterations for 5 to 7 levels of the
used pyramid (note: using the fine to coarse strategy!) for the seven sequences
together with used maximum disparity values (defining the number of used mes-
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Fig. 11. BP stereo results without using a coarse-to-fine method: BP results (using
Sobel preprocessing) after 1 (top left), 2 (top right), 4, 8, 16, 32, 64, 128, 256 (bottom,
left), and 300 (bottom right) iterations

sage boards) and truncation thresholds used for discontinuity and data terms.
Running time is the mean per image pair per sequences, including Sobel pre-
processing (as our final choice) for each pair of frames (Intel Quad Core 2.4
GHz, 2 Gigabyte memory, NVIDIA Geforce 8800GT video card, WinXP opera-
tion system).

Note that constant parameter settings cannot handle variations in the input
data, such as different brightness in left and right image. Some type of adaptation
needs to be designed.
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Fig. 12. Performance comparison of BP algorithm with pyramid level and its iteration
number for our stereo image pairs

Table 3. Parameters of the used coarse-to-fine BP algorithm for the given seven se-
quences (number of message boards, truncation thresholds for discontinuity and for
data term), with mean run time for a single stereo pair of one sequence

Sequence Max-disparity Iterations T (discontinuity) T (data) Run time

1 30 pixel 7 11 30 2.9 s

2 35 pixel 7 11 25 3.1 s

3 40 pixel 5 23 20 2.9 s

4 30 pixel 7 20 60 2.9 s

5 30 pixel 5 11 30 2.7 s

6 35 pixel 6 10 30 3.1 s

7 40 pixel 5 11 30 2.9 s

In general we conclude from our experiments with those seven sequences that
a coarse-to-fine strategy not only reduces computation time but also improves
accuracy and robustness of stereo results.

5 Conclusions

In general, edge preprocessing leads to more accurate stereo correspondence
results when using BP. This result, already indicated in [4], was further verified
in more extensive research reported in this paper.

BP stereo results based on Sobel edge images appear to be better in gen-
eral (for those seven sequences!) than those based on Kovesi-Owens or Canny
preprocessing.
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At a very general level, we conclude from our studies:

– The edge detector used for preprocessing should reflect and highlight impor-
tant structural features of the original images.

– It should also not filter any depth-related information or features from the
original images.

– It should not add any information or features, by overemphasizing some edge
information.

Future work should also cover changes in brightness between left and right image,
and some adaptation of parameters in general.

BP has potentials to match real-time requirements in driver assistance systems
(DAS), because the BP message updating mechanism at each iteration is actually
in parallel, that means multi-CPU hardware is able to reduce run time. Thus,
BP is definitely a good candidate for further DAS related studies.
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