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Abstract. – We employ two different methods, based on belief propagation and TAP, for
decoding corrupted messages encoded by employing Sourlas’s method, where the code word
comprises products of K bits selected randomly from the original message. We show that the
equations obtained by the two approaches are similar and provide the same solution as the one
obtained by the replica approach in some cases (K = 2). However, we also show that for K ≥ 3
and unbiased messages the iterative solution is sensitive to the initial conditions and is likely to
provide erroneous solutions; and that it is generally beneficial to use Nishimori’s temperature,
especially in the case of biased messages.

Belief networks [1], also termed Bayesian networks, and influence diagrams are diagram-
matic representations of joint probability distributions over a set of variables. The set of
variables is usually represented by the vertices of a graph, while arcs between vertices rep-
resent probabilistic dependences between variables. Belief propagation provides a convenient
mathematical tool for calculating iteratively joint probability distributions of variables, and
have been used in a variety of cases to assess conditional probabilities and interdependences
between variables in complex systems. One of the most recent uses of belief propagation is in
the field of error-correcting codes, especially for decoding corrupted messages [2] (for a review
of graphical models and their use in the context of error-correcting codes see [3]).

Error-correcting codes provide a mechanism for retrieving the original message after cor-
ruption due to noise during transmission. A new family of error-correcting codes, based on
insights gained from statistical mechanics, has recently been suggested by Sourlas [4]. These
codes can be mapped onto the many-body Ising spin problem and can thus be analysed using
methods adopted from statistical physics [5-9].

In this letter we will examine the similarities and differences between the belief propagation
(BP) and TAP approaches, used as decoders in the context of error-correcting codes. We will
then employ these approaches to examine a few specific cases and compare the results to the
solutions obtained using the replica method [8]. This will enable us to draw some conclusions
on the efficacy of the TAP/BP approach in the context of error-correcting codes.
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In a general scenario, a message represented by an N -dimensional binary vector ξ is
encoded by a vector J0 which is then transmitted through a noisy channel with some flipping
probability p per bit. The received message J is then decoded to retrieve the original message.
The family of codes, suggested by Sourlas [4], is based on an encoded message of the form
J0
i1,i2...iK

= ξi1ξi2 . . . ξiK , taking the product of K message sites. The original message is then
retrieved by exploring the ground state of the related Hamiltonian

H = −
∑

〈i1,i2...iK〉

A〈i1,i2...iK〉 J〈i1,i2...iK〉 Si1Si2 . . . SiK − F/β
∑
k

Sk , (1)

where S is the N -dimensional vector of binary dynamical variables and A is a sparse tensor
with C unit elements per index (setting the rest of the elements to zero), used for constructing
the code word J0 by selecting K message sites per code word bit. The last term on the right
is required in the case of sparse or biased messages and will require assigning a certain value
to the additive field F/β. Codes of K = 2 and K→∞ have been analysed [4, 5] in the case

of extensive connectivity with C ∼
(
N − 1

K − 1

)
and code-rate R = K/C → 0, corresponding to

the SK [10] and Random Energy [11] models, respectively; the intensive case with finite and
infinite K, which is of greater practical significance (R 6= 0) and which we will consider here,
has only recently been analysed [8].

We will now present two approaches for decoding the corrupted received message based on
the Bayesian framework and on a statistical-mechanics analysis; the two approaches stem from
the same probabilistic framework and can be easily linked [4].

Decoding the received message J in the Bayesian framework can be carried out by calculat-
ing the marginal posterior probability P(Sl|J)=Tr{Sk 6=l}P(S|J)∼Tr{Sk 6=l}

∏
µ P(Jµ|S) P0(S)

for each spin site l, where µ runs over the message components and P0(S) represents the prior;
note the similarities to the statistical-mechanics formulation as the logarithms of the likelihood
and prior terms are directly related to the first and second components of the Hamiltonian
(eq. (1)), respectively. Knowing the posterior, one can calculate the typical retrieved message
elements and their alignment with ±1, which correspond to the Bayes-optimal decoding; how-
ever, this turns out to be rather difficult in general and we therefore resort to the methods of
belief propagation, aimed at providing a good approximation to the marginal posterior. This
approach, which is quite similar to the practical approach employed in the case of Gallager
codes [2], assumes a two-layer system corresponding to the elements of the corrupted messageJ
and the dynamical variables S, respectively, and focuses on the calculation of conditional
probabilities between elements from the two layers when some elements of the system are set
to specific values or removed. Through this process one defines sets of conditional probabilities
relating elements in the two layers (following the general framework of [1] or the more specific
treatments of refs. [2, 3]):

qxµl = P (Sl = x | {Jν 6=µ}) , (2)

rxµl = P (Jµ | Sl = x, {Jν 6=µ}) = Tr{Sk 6=l}P (Jµ | Sl = x, {Sk 6=l}) P ({Sk 6=l} |{Jν 6=µ}) ,

where the index µ represents an element of the multidimensional tensor J which is connected
to the corresponding index of S (l in the first equation), i.e. for which the corresponding
element A〈i1,...,l,...iK〉 is non-zero; the notation {Sk 6=l} refers to all elements of the vector S,
excluding the l-th element, which are connected to the corresponding index of J (µ in this case
for the second equation); the index x can take values ±1. The conditional probabilities qxµl
and rxµl will enable us, through recursive calculations, to obtain an approximated expression
to the posterior.
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Employing Bayes rule and the assumptions that the dependence of Sl on an element Jν is
factorizable and vice versa (which are quite reasonable as variables from the same layer are
not expected to be directly dependent):

P (Sl1 , Sl2 . . . SlK | {Jν 6=µ}) =
K∏
k=1

P (Slk | {Jν 6=µ}) and

P ({Jν 6=µ} | Sl=x) =
∏
ν 6=µ

P (Jν | Sl=x, {Jσ 6=ν}) , (3)

one can write a set of coupled equations for q±1
µl and r±1

µl of the form
qxµl = aµl p

x
l

∏
ν 6=µ r

x
νl ,

rxµl = Tr{Sk 6=l}P (Jµ | Sl = x, {Sk 6=l})
∏
k 6=l q

Sk
µk ,

(4)

where aµl is a normalising factor such that q1
µl+q

−1
µl =1 and pxl =P (Sl=x) are our prior beliefs

in the value of the source bits Sl.
This set of equations can be solved iteratively [2] by updating a closed coupled set of

difference equations for δqµl = q1
µl−q

−1
µl and δrµl = r1

µl−r
−1
µl , derived for this specific model,

making use of the fact that the variables rxµl, and subsequentially the variables qxµl, can be

calculated by exploiting the relation r±1
µl =(1± δrµl)/2 and eqs. (4). At each iteration we can

also calculate the pseudo-posterior probabilities qxl = al p
x
l

∏
ν r

x
νl, where al are normalising

factors, to determine the current typical value of Sl and consequently the decoded message.
Three points that are worthwhile noting: Firstly, the iterative solution makes use of the

normalisation r1
µl+r

−1
µl = 1, which is not derived from the basic probability rules and makes

implicit assumptions about the probabilities of obtaining Sl=±1 for all elements l. Secondly,
the iterative solution would have provided the true posterior probabilities qxl if the graph
connecting the message J and the encoded bits S would have been free of cycles, i.e. a tree
with no recurrent dependences among the variables. The fact that the framework does provide
adequate practical solutions has only recently been explained [12]. Thirdly, it is important to
consider the complexity of this decoding scheme as it is of significant practical relevance. Such
analysis has been carried out in ref. [2] resulting in an O(K/R) operations per decoded bit
with a prefactor which depends on the number of iterations required and is typically around
100, which clearly renders this decoding scheme practical.

We will now turn to an alternative approach, showing that for this particular problem it
is possible to obtain a similar set of equations from the corresponding statistical-mechanics
framework based on Bethe approximation [13] or the TAP approach [14] to diluted systems (1).
In this approach we assign a Boltzmann weight to each set comprising an encoded message bit
Jµ and a dynamical vector S,

wB (Jµ|S) = e−β g(Jµ|S) , (5)

such that the first term of the system’s Hamiltonian (eq. (1)) can be rewritten as
∑L
µ=1 g(Jµ|S),

where the index µ = 1 runs over the L non-zero sites in the multidimensional tensor A

(1) Note that the terminology in the case of diluted systems is slightly vague as an expansion
with respect to the large Onsager fields is meaningless; here we follow the conventional terminology
for the Bethe approximation when applied to disordered systems subject to mean-field–type random
interactions.
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(which multiplies J). We will now employ two straightforward assumptions to obtain a set
of coupled equations for the mean field qSlµl =P (Sl| {Jν 6=µ}), which may be identified as the
same variable as in the belief network framework (eq. (2)), and the effective Boltzmann weight
weff (Jµ|Sl, {Jν 6=µ}):

1) we assume a mean-field behaviour for the dependence of the dynamical variables S
on a certain realization of the message sites J , i.e. the dependence is factorizable and
may be replaced by a product of mean fields.

2) Boltzmann weights for a specific site Sl are factorizable with respect to the message
sites Jµ.

One may argue that these assumptions will provide a reasonable approximation due to the
lack of direct dependence between elements of S and similarly between elements of J (2). The
resulting set of equations are of the form

weff (Jµ | Sl, {Jν 6=µ}) Tr{Sk 6=l} wB (Jµ | S)
∏
k 6=l q

Sk
µl ,

qSlµl = ãµl p
Sl
l

∏
ν 6=µweff (Jν | Sl, {Jσ 6=ν}) ,

(6)

where ãµl is a normalisation factor and pSll represents our prior knowledge of the source’s bias.
Replacing the effective Boltzmann weight by a normalised field, which may be identified as
the variable rSlµl in the belief network framework (eq. (2)), we obtain

rSlµl = P (Sl | Jµ, {Jν 6=µ}) = aµl weff (Jµ | Sl, {Jν 6=µ}) , (7)

i.e. a set of equations equivalent to eqs. (4). The explicit expressions of the normalisation
coefficients, aµl and ãµl, are

a−1
µl = Tr{S} wB (Jµ|S)

∏
k 6=l

qSkµl and ã−1
µl = Tr{Sl} p

Sl
l

∏
ν 6=µ

rSlνl . (8)

The somewhat arbitrary use of the differences δqµl = 〈Sµl 〉q and δrµl = 〈Sµl 〉r in the BP
approach becomes clear form the TAP formulation, where they represent the expectation values
of the dynamical variables with respect to the fields. The statistical-mechanics formulation
also provides a partial answer to the successful use of the BP methods to loopy systems, as we
consider a finite number of steps on an infinite lattice [15]. However, it does not provide an
explanation in the case of small loopy systems which should be examined using other methods.

The formulation so far has been rather general and enabled us to show the similarity between
the set of iterative equations obtained by the BP and TAP approaches. We will now make use
of this set of equations to study the efficacy and usefulness of these methods to the problem
at hand, i.e. decoding corrupted messages encoded using Sourlas’s code. In this case we can
make use of the explicit expression for the function g (from eq. (1)) to derive the relation
between qSlµl , r

Sl
µl , δqµl and δrµl,

qSlµl =
1

2
(1 + δqµlSl) and rSlµl =

1

2
(1 + δrµlSl) , (9)

(2) Obviously, the TAP approach is an approximation in this case and these assumptions will be
validated later on by comparing the solutions to those obtained by a different method.
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as well as an explicit expression for wB (Jµ|S, β),

wB (Jµ|S, β) =
1

2
coshβJµ

1 + tanhβJµ
∏

l∈L(µ)

Sl

 , (10)

where L(µ) is the set of all sites of S connected to Jµ, i.e. for which the corresponding element
of the tensor A is non-zero. The explicit form of the equations for δqµl and δrµl becomes

δrµl = tanhβJµ
∏
l∈L(µ)/l δqµl ,

δqµl = tanh
(∑

ν∈M(l)/µ tanh−1 δrνl + F
)
,

(11)

where M(l)/µ is the set of all indices of the tensor J , excluding µ, which are connected to
the vector site l; the external field F which previously appeared in the last term of eq. (1) is
directly related to our prior belief of the message bias

pSll =
1

2
(1 + tanhFSl) . (12)

We will now employ eqs. (11) and the explicit expressions obtained above, by making use
of differences δqµl and δrµl, to obtain values of q±1

µl and r±1
µl . After these differences are

determined, the (approximated) marginal posterior qSll = (1 + δqlSl)/2 can be calculated,

δql = tanh

 ∑
µ∈M(l)

tanh−1 δrµl + F

 , (13)

providing the Bayes-optimal decoding ξBl = sign 〈Si〉T = sign (δql). The magnetisation M =

1/N
∑N
i=1 ξiξ

B
i serves as our performance measure.

We obtained numerical solutions for the cases K = 2, 5, corruption rate 0≤ p≤ 0.5, two
bias values (0.1, 0.5) and several temperatures, as shown in fig. 1, which will be compared to
previously obtained solutions [8] using the replica method. The latter have been obtained by
replica symmetric and one step replica symmetry-breaking calculations of the system’s free
energy for the ferromagnetic and paramagnetic phases and the spin-glass phase, respectively
(expecting strong replica symmetry breaking only in the latter), following the work of Sherring-
ton and Wong [15]; saddle-point equations have been solved both analytically and numerically
by employing Monte Carlo techniques.

In the experiments, connectivity is set as C=4, 10 for K=2, 5, respectively, which provides
the same code rate R = 1/2 for both cases. For each run, 20000 bit code words J are
generated from 10000 bit message ξ using a fixed random sparse tensor A. The noise-corrupted
code word J was decoded according to eqs. (11) and (13) to retrieve the original message ξ.
Numerical solutions of 10 individual runs [16], for each value of the flip rate p starting from
different initial conditions, obtained for the case K = 2, different biases (f = p1

l = 0.1, 0.5
—the probability of +1 bit in the original message ξ) and temperatures (T = 0.26, Tn) are
shown in fig. 1(a). The choice of T = 0.26, rather than T = 0, for representing solutions at
low temperatures is in order to avoid computational difficulties. We obtain good agreement
between the TAP/BP solutions and the theoretical values obtained using the methods of [8]
(diamond symbols and dashed line, respectively). The results for biased patterns at T = 0.26
presented in the form of mean values and standard deviation, show a suboptimal improvement
in performance, as expected. Obtaining solutions under similar conditions but at Nishimori’s
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Fig. 1. – Numerical solutions for M and different flip rate p. (a) For the case K= 2, different biases
(f = p1

l = 0.1, 0.5) and temperatures (T = 0.26, Tn), we see good agreement between the TAP/BP
solutions and the theoretical values. Results for the unbiased patterns are shown as raw data, i.e.
results of 10 runs for each flip rate value p (diamond), while the theoretical solution is marked by the
dashed line. Results for biased patterns are shown by their mean and standard deviation, showing a
suboptimal improvement in performance as expected for T = 0.26 and an optimal one at Nishimori’s
temperature −Tn. Note that in the case of T =Tn the standard deviation is significantly smaller than
the symbol size. (b) Shows results for the case K = 5 and T = Tn in similar conditions to (a). Also
here iterative solutions may generally drift away from the theoretical values where temperatures other
than Tn are employed (not shown); using Nishimori’s temperature alleviates the problem only in the
case of biased messages and the results are in close agreement with the theoretical solutions (focusing
on low p values in the inset).

temperature −1/Tn =1/2 ln[(1− p)/p] [17], we see that pattern sparsity is exploited optimally
resulting in a magnetization M≈0.8 for high corruption rates, as Tn simulates accurately the
loss of information due to channel noise [6, 7]; results for unbiased patterns (not shown) are
not affected significantly by the use of Nishimori’s temperature. The replica-based theoretical
solutions [8] indicate a profoundly different behaviour for the K = 2 case in comparison to
other K values. We therefore obtained solutions for K=5 under similar conditions (which are
representative for results obtained in other cases of K 6= 2); the results presented in fig. 1(b),
in terms of means and standard deviation of 10 individual runs per flip rate value p, are less
encouraging as the iterative solutions are highly sensitive to the choice of initial conditions and
tend to converge to suboptimal values unless high sparsity and using the appropriate choice
of temperature (Tn) forces them to the correct values, showing then good agreement with the
theoretical results (solid line, see inset). This phenomenon is indicative of the fact that the
ground state of the non-biased system is macroscopically degenerate with multiple equally
good ground states.

The conclusion from these experiments is that the TAP/BP approach may be highly useful
in the case of biased patterns but may lead to errors for unbiased patterns and K≥3, and that
the use of the appropriate temperature, i.e. Nishimori’s temperature, enables one to obtain
improved results, in agreement with results presented elsewhere [5-7].
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In this letter we compared the use of belief propagation to that of TAP for decoding
corrupted messages encoded by using Sourlas’s method. We have discovered that in this
particular case the two methods provide an identical set of equations. We then employed these
equations iteratively to derive solutions for particular scenarios and compared them to those
obtained by the replica method. The solutions indicate that the method is particularly useful
in the case of biased messages and that using Nishimori’s temperature is highly beneficial;
solutions obtained using other temperature values may be suboptimal. For unbiased messages
and K≥3 we may obtain erroneous solutions using these methods.

It would be interesting to explore whether the similarity in the equations derived using
TAP and BP is restricted to this particular case or whether there is a deeper general link
between the two methods. Another important question that remains open is the generality
of our conclusions on the efficacy of these methods for decoding corrupted messages, as
they are currently being applied in a variety of state-of-the-art coding schemes (e.g., [2, 3]).
Understanding the limitations of these methods and the proper way to use them in general,
especially in the context of error-correcting codes, may be highly beneficial to practitioners.
These questions and others, on the relations between statistical mechanics and error-correcting
codes, will be discussed in future publications.
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