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Belief Propagation with Directional Statistics for

solving the Shape-from-Shading problem

Tom S. F. Haines and Richard C. Wilson

The University of York,
Heslington, YO10 5DD, U.K.

Abstract. The Shape-from-Shading [SfS] problem infers shape from re-
flected light, collected using a camera at a single point in space only.
Reflected light alone does not provide sufficient constraint and extra
information is required; typically a smoothness assumption is made. A
surface with Lambertian reflectance lit by a single infinitely distant light
source is also typical.
We solve this typical SfS problem using belief propagation to marginalise
a probabilistic model. The key novel step is in using a directional prob-
ability distribution, the Fisher-Bingham distribution. This produces a
fast and relatively simple algorithm that does an effective job of both
extracting details and being robust to noise. Quantitative comparisons
with past algorithms are provided using both synthetic and real data.

1 Introduction

The classical problem of Shape-from-Shading [SfS] uses irradiance captured by a
photo to calculate the shape of a scene. A known or inferred reflectance function
provides the relationship between irradiance and surface orientation. Surface ori-
entation may then be integrated to obtain a depth map. Horn[1] introduced this
problem with the assumptions of Lambertian reflectance, orthographic projec-
tion, constant known albedo, a smooth surface, no surface inter-reflectance and
a single infinitely distant light source in a known relation with the photo. This
constrained scenario has been tackled many times since[2–7, to cite a few], and
will again be the focus of this work.

Zhang et al.[8] surveyed the area in 1999, concluding that Lee and Kuo[4]
was the then state of the art. Lee and Kuo iteratively linearised the reflectance
map and solved the resulting linear equation using the multigrid method. More
recent methods include Worthington and Hancock[5], which iterated between
smoothing a normal map and correcting it to satisfy the reflectance informa-
tion; Prados et al[6], which solved the problem with viscosity solutions; and
Potetz[7] which used belief propagation. This last work by Potetz is particularly
relevant due to it also using belief propagation, though in all further details it
differs. Belief propagation estimates the marginals of a multivariate probability
distribution, often represented by a graphical model. Potetz makes use of two
variables per pixel, δx/δz and δy/δz, and uses various factor nodes to provide
the reflectance information, smoothness assumption and integrability constraint.
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Whilst this model can be implemented simply with discrete belief propagation
it would never converge and require a large number of labels, instead advanced
continuous methods are used.

The following three sections, 2 through to 4, cover the component details,
starting with the formulation, then belief propagation and finally directional
statistics. Section 5 brings it all together into a cohesive whole, and is followed
by section 6 which solves a specific problem. Following these sections we give
results in section 7 and conclusions in the final section.

2 Formulation

Using previously given assumptions, of Lambertian reflectance, constant known
albedo, orthographic projection, an infinitely distant light source and no inter-
reflection the irradiance at each pixel in the input image is given by

Ix,y = A(̂l · n̂x,y) (1)

where Ix,y is the irradiance provided by the input image. A is the albedo and

l̂ ∈ R
3, |̂l| = 1 is the direction to the infinitely distant light source; these are both

provided by the user. n̂x,y ∈ R
3, |n̂x,y| = 1 is the normal map to be inferred as

the algorithm’s output. The normal map can be integrated to obtain a depth
map, a step with which we are not concerned. By substituting the dot product
with the cosine of the angle between the two vectors you get

Ix,y

A
= cos θx,y (2)

where θ is therefore the angle of a cone around l̂ which the normal is constrained
to[5]. This leaves one degree of freedom per pixel that is not constrained by the
available information. A smoothness assumption provides the extra constraint.

Directional statistics is the field of statistics on directions, such as surface
normals. Using a directional distribution allows the representation of surface
orientation with a single variable, rather than the two used in Potetz[7] and
many others. We propose a new SfS algorithm using such distributions within
a belief propagation framework. This leads to a belief propagation formulation
not dissimilar to Gaussian belief propagation[9] in its simplicity and speed.

3 Belief Propagation

Loopy sum-product belief propagation is a message passing algorithm for marginal-
ising an equation of the form

P (x) =
∏

v∈V

ψv(yv) (3)

where x is a set of random variables and ∀v,yv ⊂ x. Such an equation can be
represented by a graphical model where each variable is a node and nodes that
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interact via ψ functions are linked. In this case the random variables are di-
rections, represented by normalised vectors. Message passing then occurs within
this model, with messages passed along the links between the nodes. As the vari-
ables are directions the messages are probability distributions on directions. The
method uses belief propagation to obtain the maximum a posteriori estimate of
a pairwise Markov random field where each node represents the orientation of
the surface at a pixel in the image. The message passed from node p to node q
at iteration t is

mt
p→q(x̂q) =

∫

x̂p

ψpq(x̂p, x̂q)ψp(x̂p)
∏

u∈(N\q)

mt−1
u→p(x̂p)δx̂p (4)

where ψpq(x̂p, x̂q) is the compatibility between adjacent nodes, ψp(x̂p) is the
prior on each node’s orientation and N is the 4-way neighbourhood of each
node. Once message passing has iterated sufficiently for convergence to occur
the belief at each node is

bp(x̂p) = ψp(x̂p)
∏

u∈N

mt−1
u→p(x̂p) (5)

From bp(x̂p) the most probable direction is selected as output.

4 Directional Statistics

The Fisher distribution, using proportionality rather than a normalising con-
stant, is given by

PF (x̂;u) ∝ exp(uT x̂) (6)

where x̂,u ∈ R
3 and |x̂| = 1. Similarly, the Bingham distribution may be defined

as
PB(x̂;A) ∝ exp(x̂T Ax̂) (7)

where A = AT . By multiplying the above we get the 8 parameter Fisher-
Bingham[10] [FB8] distribution

PFB8
(x̂;u,A) ∝ exp(uT x̂ + x̂T Ax̂) (8)

All three of these distributions have the advantage that they can be multiplied
together without introducing further variables, which is critical in a belief prop-
agation framework. We may decompose the FB8 distribution. As A is symmetric
we may apply the eigen-decomposition to obtain A = BDBT , where B is or-
thogonal and D diagonal. This allows us to write

PFB8
(x̂;u,A) ∝ exp(vT ŷ + ŷT Dŷ) (9)

where v = BT u and ŷ = BT x̂. As |ŷ| = 1 we may offset D by an arbitrary
multiple of the identity matrix, this allows any given entry to be set to 0. We
can therefore consider it the case that D = Diag(α, β, 0), with α > 0 and β > 0
so that

PFB8
(x̂;u,A) ∝ exp(vT ŷ + αŷ2

x + βŷ2
y) (10)



4 T. S. F. Haines and R. C. Wilson

For convenience we may represent the FB8 distribution as

exp(uT x̂ + x̂T Ax̂) = Ω[u,A] (11)

Using this notation multiplication is

Ω[u,A]Ω[v,B] = Ω[u + v,A + B] (12)

Various distributions may be represented by the Fisher-Bingham distribu-
tion, of particular use is the Bingham-Mardia distribution[11]

exp(−k(ûT x̂ − cos θ)2) = Ω[2k cos(θ)û,−kûûT ] (13)

where û is the direction of the axis of a cone and θ the angle of that cone.
This distribution has a small circle as its maximum, which allows the irradiance
information (Eq. 2) to be expressed as a FB8 distribution.

5 Method

We construct a graphical model, specifically a pairwise Markov random field.
Each node of the model is a random variable that represents an unknown normal
on the surface. Belief propagation, as described in section 3, is then used to
determine the marginal distribution for each node. To define the distribution to
be marginalised two sources are used: the irradiance information (Eq. 2) and a
smoothness assumption.

We model the smoothing assumption on the premise that adjacent points on
the surface will be more likely to have a small angular difference than a large
angular difference. We can express this idea by setting

ψpq(x̂p, x̂q) = exp(k(x̂T
p x̂q)) (14)

where ψpq(x̂p, x̂q) is from the message passing equation (Eq. 4). This is a Fisher
distribution with concentration k. Using FB8 for the messages and dropping
equation 14 into equation 4 we have

mt
p→q(x̂q) =

∫

S2

exp(k(x̂T
p x̂q))t(x̂p)δx̂p (15)

t(x̂p) = ψp(x̂p)
∏

u∈(N\q)

mt−1
u→p(x̂p) (16)

Message passing therefore consists of two steps: calculating t(x̂p) by multiplying
FB8 distributions together using equation 12, followed by convolution of the
resulting FB8 distribution by a Fisher distribution to get mt

p→q(x̂q). The next
section documents a method for doing the convolution.

For each node we have an irradiance value. Using equations 2 and 13 we can
define a distribution

Ω[2k
Ix,y

A
l̂,−kl̂̂lT ] (17)
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In principle ψp(x̂p), from equation 16, can be set to this Bingham-Mardia distri-
bution to complete the model to be marginalised. This fails however due to the
concave/convex ambiguity[12]. The formulation presented so far will converge to
a bi-modal distribution at each node, with the modes corresponding to the con-
cave and convex interpretations. A bias towards one of the two interpretations is
required, to avoid arbitrarily selecting between them on a per-pixel basis. Taking
the gradient vector at each node and rotating it onto the irradiance defined cone
to get ĝ provides a suitable bias direction. This is identical to the initialisation
used by Worthington & Hancock[5]. We then multiply equation 17 by a Fisher
distribution using this direction vector with concentration h to get

ψp(x̂p) = exp((hĝ + 2kIx,yA
−1 l̂)T x̂p + x̂T

p (−kl̂̂lT )x̂p) (18)

Using the gradient vector unmodified will produce a concave bias, whilst negating
it will produce a convex bias. The pseudo-gradient defined in appendix A is used.

Once belief propagation has converged equation 5 can be used to extract a
final FB8 distribution for each node. For output we require directions rather than
distributions. A method for finding the maximal mode of the FB8 distribution
is given in appendix B. To optimise the method a hierarchy is constructed and
belief propagation is applied at each level. Each level’s messages are initialised
with the previous, lower resolution, levels messages. This results in less message
passes being required for overall convergence[13].

6 Message Passing

As indicated by equation 15 when passing messages we have to convolve a FB8

distribution by a Fisher distribution. Doing this directly is not tractable, so we
propose a novel three step procedure to solve this problem:

1. Convert the FB8 distribution into a sum of Fisher distributions.
2. Convolve the individual Fisher distributions.
3. Refit a FB8 distribution to the resulting mixture of Fisher distributions.

All three steps involve approximation, in practise this proves not to be a problem.

Step 1 We approximate the Fisher-Bingham distribution as a sum of Fisher
distributions. Starting with equation 10 and rewriting the right-hand side

exp(vT ŷ)exp(αŷ2
x + βŷ2

y) (19)

we may substitute an approximation of the right-hand multiple to get

exp(vT ŷ)

∫ 2π

0

exp(mŷx cos(θ) + nŷy sin(θ))δθ (20)

In practise a small number of Fisher distributions will be sampled, to get

exp(vT ŷ)
∑

i

exp([m cos(θi), n sin(θi), 0]ŷ) (21)
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which may be re-written as a sum of Fisher distributions1

∑

i

exp((v + [m cos(θi), n sin(θi), 0]T )T ŷ) (22)

m and n need to be determined. To explicitly write the approximation

exp(αŷ2
x + βŷ2

y) ∝
∫ 2π

0

exp(mŷx cos(θ) + nŷy sin(θ))δθ (23)

exp(αŷ2
x + βŷ2

y) ∝ 2πI0(
√

m2ŷ2
x + n2ŷ2

y) (24)

where I0 is the modified Bessel function of the first kind, order 0. Whilst sim-
ilar2 the two sides of equation 24 are different, and so a match is not possible,
however, we may consider six values of ŷ; [±1, 0, 0]T , [0,±1, 0]T and [0, 0,±1]T .
These vectors are the minimas and maximas of the Bingham distribution. Using
[0, 0,±1]T we get

exp(0) ∝ 2πI0(0) ≡ 1 ∝ 2π (25)

and, because of normalisation, can write

exp(α) = I0(
√
m2) exp(β) = I0(

√
n2) (26)

which can be rearranged to get suitable values of m and n

m = I−1
0 (exp(α)) n = I−1

0 (exp(β)) (27)

This approximation leaves the minimas and maximas in the same locations with
the same relative values.

Step 2 Mardia and Jupp [14, pp. 44] give an approximation of the convolution
of two Von-Mises distributions. (i.e. distributions on the circle.) If we represent
the n-dimensional von-Mises-Fisher distribution as

PvMF (x̂; ŵ, k) ∝ exp(kŵT x̂) = ψn[ŵ, k] (28)

where x̂, ŵ ∈ R
n and |x̂| = |ŵ| = 1 then the approximation given is

ψ2[ŵ1, k1] ∗ ψ2[ŵ2, k2] ≈ ψ2[ŵ1 + ŵ2, A
−1
2 (A2(k1)A2(k2))] (29)

where Ap(k) =
Ip/2(k)

Ip/2−1(k) . This may easily be extended to the Fisher distribution

with no angular offset between the distributions

ψ3[ŵ, k1] ∗ ψ3[ŵ, k2] ≈ ψ3[ŵ, A
−1
3 (A3(k1)A3(k2))] (30)

As a computational bonus, A3(k) may be simplified

A3(k) =
I1.5(k)

I0.5(k)
= coth(k) − 1

k
(31)

1 Note that they are written here without normalisation terms; to maintain this under
the usual mixture model each Fisher distribution has to be weighted by its inverse
normalisation term.

2 Written as power series they are identical except for the denominators of the terms,
for which the Bessel functions are the square of the exponentials.
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Step 3 To derive a Fisher-Bingham distribution from the convolved sum of
Fisher distributions we first need the rotational component of the Bingham dis-
tribution, which we calculate with principal component analysis.

m̄ =

∑

iWiui
∑

iWi

(32)

Wi is the normalisation constant of the indexed Fisher distribution, ūi is its
direction vector multiplied by its concentration parameter.

X =







W0(u0 − m̄)
W1(u1 − m̄)

...






(33)

XT X = RERT (34)

E is the diagonal matrix of eigenvalues. R is then the rotational component of
the Bingham distribution.

Given six directions and their associated density function values we may fit
the rest of the parameters to get a distribution with matching ratios between
the selected directions. Given six instances of3

exp(vT x̂ + x̂T Dx̂) = p (35)

for a known p and x̂ where D is diagonal, we can apply the natural logarithm
to both sides to get

vT x̂ + x̂T Dx̂ = ln(p) (36)

This is a linear set of equations, which can be solved using standard techniques
to get v and D. The final FB8 distribution is then proportional to

exp((Rv)T x̂ + x̂T RDRT x̂) (37)

The six directions have to be carefully selected to produce a reasonable ap-
proximation, as only these sampled directions will be fitted and the convolved
distribution can differ greatly from a Fisher-Bingham distribution. The selection
strategy used is based on the observation that with no Fisher component the
optimal selection is [±1, 0, 0]T , [0,±1, 0]T and [0, 0,±1]T (There is also a com-
putational advantage of this selection as they are linearly separable.). Given a
Fisher component we may divide through the mixture of Fisher distributions
to leave only a (supposed) Bingham component; the estimation procedure will
then estimate another Fisher component as well as the Bingham component.
This leads to an iterative scheme, where the Fisher component is initialised with
the mean of the mixture of Fisher distributions and updated after each iteration.
In practise convergence happens after only two iterations. It should be noted that
this approach is the inverse operation of the initial conversion to a mixture of
Fisher distributions, i.e. it has error precisely opposite the error introduced by
step 1, ignoring the use of a finite number of Fisher distributions.

3 It should be noted that equality rather than proportionality is used here. This is
irrelevant as multiplicative constants have no effect.
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Fig. 1. Synthetic inputs, derived from the set used by Zhang et al[8]. From left to
right they are referred to as Vase 90◦, Vase 45◦, Mozart 90◦ and Mozart 45◦. The light
source direction vector for the 90◦ images is [0, 0, 1]T , whilst for the 45◦ images it is
[−

√
2, 0,

√
2]T .

Fig. 2. Results for the synthetic Mozart 90◦ input. From left to right they are Lee &
Kuo[4], Worthington & Hancock[5], the presented algorithm and then finally ground
truth. They represent normal maps, with x → red, y → green and z → blue to represent
the surface normal at each pixel. Red and Green are adjusted to cover the whole [−1, 1]
range, blue is left covering [0, 1].

7 Results & Analysis

We compare the presented algorithm to two others, Lee & Kuo[4] and Wor-
thington & Hancock[5], using both synthetic and real data. Figure 1 gives the
four synthetic inputs used, figure 2 gives the results and ground truth for just
one of the four inputs. Qualitatively, looking at figure 2, Lee & Kuo is sim-
ply too blurred to be competitive. Worthington & Hancock shows considerably
more detail, but suffers from assorted artifacts and is still blurred. The presented
algorithm has sharp details and less blurring compared to the others.

Figure 3 gives the results of a quantitative analysis of the synthetic results.
Each table gives the results for one of the four inputs, with each row dedicated to
an algorithm. The columns give the percentage of pixels in each image that are
beneath an error threshold, the error being the angle between the ground truth
and estimated normals. Sticking to the 90◦ images where the light is at [0, 0, 1]T

Lee & Kuo consistently makes fewer large mistakes, this can be put down to
its excessive blurring. Worthington & Hancock appears to have an advantage at
the very lower ends of the scale, this is presumably because it perfectly matches
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Vase 90◦

< 1◦

< 2◦

< 3◦

< 4◦

< 5◦

< 10◦

< 15◦

< 20◦

< 25◦

Lee & Kuo 0.8 3.3 7.0 12.0 21.6 75.7 97.7 100.0 100.0

Worthington & Hancock 6.8 13.3 17.8 22.2 26.7 46.5 59.1 67.9 75.3

Presented Algorithm 7.8 13.4 22.5 34.5 39.0 55.9 68.1 76.7 83.9

Vase 45◦

< 1◦

< 2◦

< 3◦

< 4◦

< 5◦

< 10◦

< 15◦

< 20◦

< 25◦

Lee & Kuo 0.9 3.9 7.4 11.4 15.7 47.0 73.8 85.1 88.8

Worthington & Hancock 6.6 13.4 17.4 20.4 24.1 37.3 49.1 57.9 65.1

Presented Algorithm 0.3 4.4 10.3 18.4 28.4 44.5 58.0 68.4 76.7

Mozart 90◦

< 1◦

< 2◦

< 3◦

< 4◦

< 5◦

< 10◦

< 15◦

< 20◦

< 25◦

Lee & Kuo 0.2 0.7 1.5 2.6 4.1 18.3 36.1 52.5 64.9

Worthington & Hancock 2.7 6.4 10.4 14.3 18.4 34.4 47.2 56.3 63.9

Presented Algorithm 0.9 3.7 8.5 15.4 21.7 42.2 53.5 61.9 68.5

Mozart 45◦

< 1◦

< 2◦

< 3◦

< 4◦

< 5◦

< 10◦

< 15◦

< 20◦

< 25◦

Lee & Kuo 0.2 0.7 1.5 2.5 3.8 16.1 35.0 54.7 67.2

Worthington & Hancock 2.4 5.4 8.0 10.4 13.4 25.0 33.4 40.5 46.8

Presented Algorithm 0.2 0.8 2.1 4.5 7.9 21.9 33.3 43.1 50.4

Fig. 3. Synthetic results. Each grid gives results for the input named in the top left.
Each row gives results for a specific algorithm. Each column gives the percentage of
pixels within a given error bound, i.e. the < 1◦ column gives the percentage of pixels
where the estimated surface orientation is within 1 degree of the ground truth. The
percentage is only for pixels where ground truth is provided.

the irradiance information, unlike the others. The presented approach is always
ahead for the Vase 90◦ input. For the Mozart 90◦ input our approach consistently
exceeds Lee & Kuo but does not do so well at getting a high percentage of spot
on estimates as Worthington & Hancock. However, for error thresholds of 4◦ and
larger the presented algorithm is again better.

Moving to the 45◦ inputs, where the light source direction vector is [−
√

2, 0,
√

2]T ,
things do not go so well. For Vase 45◦ it gets the highest percentage of pixels
with an error less than 5◦, but above that is exceeded by Lee & Kuo and be-
low that beaten by Worthington & Hancock. For Mozart 45◦ Worthington &
Hancock is the clear victor. The presented algorithm doing poorly as the light
source moves away from [0, 0, 1]T can be put down to the bias introduced to
handle the concave/convex ambiguity[12]. The gradient information used for the
bias is necessary to avoid a bi-modal result, but also pulls the solution away
from the correct answer, this effect being more noticeable as the light deviates
away from being at the camera.
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Fig. 4. Input and results for the head. From left to right they are input, Lee & Kuo[4]
and Worthington & Hancock[5] on the first line and the presented algorithm and then
ground truth on the second.

Head < 1◦

< 2◦

< 3◦

< 4◦

< 5◦

< 10◦

< 15◦

< 20◦

< 25◦

Lee & Kuo 0.1 0.4 0.8 1.4 2.2 8.6 19.7 32.1 43.5

Worthington & Hancock 0.1 0.6 1.4 2.6 4.0 13.7 23.4 32.6 41.0

Presented Algorithm 0.1 0.5 1.1 1.9 3.0 11.5 21.4 30.9 39.6

Fig. 5. Results for head input. See figure 3 for explanation.

Figure 4 gives a real world input and the results as 3D renders of the inte-
grated output, figure 5 gives the same quantitative analysis used for the synthetic
results. This input was captured in a dark room using a camera with a calibrated
response curve and the shape determined with a head scanner, with the camera
calibrated to the scanners coordinate system so that a ground truth normal map
could be produced. Looking at figure 5 Worthington & Hancock is quantitatively
ahead, but looking at the actual output it is more blob than face, though some
features are recognisable. To use an analogy, an art restorer painting over a can-
vas with constant colour knowing that the original artist must have used that
colour in some of the areas covered can get the most matches if the competition
is terrible, despite producing a blurred result. Sticking to a qualitative analysis
the presented algorithm is clearly not perfect, but it gives sharper results, with
features such as mouth, eye sockets and hair that are superior to the competition.

For the head image the run time is over 12 hours for Lee & Kuo, 54 minutes
for Worthington and Hancock and 9.5 minutes for the presented algorithm on a
2Ghz Athlon.
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8 Conclusion

We have presented a new algorithm for solving the classical shape from shading
algorithm, and demonstrated its competitiveness with previously published al-
gorithms. The use of belief propagation with FB8 distributions is in itself new,
and a method for the convolution of a FB8 distribution by a Fisher distribution
has been devised. The algorithm does suffer a noticeable flaw in that overcoming
the convex/concave problem biases the result, making the algorithm weak in the
presence of oblique lighting. An alternative solution to the current bias is an
obvious area for future research.

A Pseudo Gradient

A diffusion method is used to calculate an estimate of the gradient direction. This
method is robust in the presence of noise and lacks the distortion of methods
such as the Sobel operator. It is described here in terms of a random walk.

All walks start at the pixel for which the calculation is being applied and
are of fixed length. Each walk contributes a vector going from the walks start
point to the walks end point, the mean of these vectors is the output gradient
direction. Every step the walk moves to one of the four adjacent pixels, the pixels
are weighted by α + Iβ

(x,y) where I(x,y) is the irradiance of the pixel and α and

β are parameters. This creates a walk that tends towards brighter areas of the
image, the mean being a robust gradient direction.

B Maximisation of FB8

For visualisation and integration with non-probabilistic modules finding the di-
rection with the greatest density is needed. This is the quadratic programming
problem of maximising equation 9. It may be solved efficiently by observing that
it is the same problem as finding the closest point on an ellipsoid to a given
point. This latter problem can be expressed as an order 6 polynomial and solved
with Newtons method. As a further convenience the initialisation can be done
in such a way that it always converges directly to the maximal root[15].

The Fisher-Bingham distribution is a conditioned multivariate normal dis-
tribution[14, pp. 175]

Σ =
−(D + cI3)

−1

2
µ̄ = Σv (38)

where cI3 is a scaled identity matrix selected to make D + cI3 negative definite.
The maximal point is therefore the closest point to µ̄ on the unit sphere using
Mahalanobis distance. Mahalanobis distance is

√

(x̂ − µ̄)TΣ−1(ŷ − µ̄) (39)
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To minimise the above equation we consider that Σ is diagonal and rewrite as
√

∑

i

[(ŷi − µ̄i)2σ
−1
i ] (40)

where σi, i ∈ {1, 2, 3} are the elements of Σ, which may be rearranged as
√

∑

i

[(zi −
√

σ−1
i µ̄i)2] (41)

where zi =
√

σ−1
i ŷi. This is now Euclidean distance when solving for zi, and

the constraint that ŷ be of unit length becomes the equation of an ellipsoid
∑

i

[(
zi

√

σ−1
i

)2] = 1 (42)
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