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Abstract We consider the connections between belief revision, conditional
logic and nonmonotonic reasoning, using as a foundation the approach to the-
ory change developed by Alchourrón, G̈ardenfors and Makinson (the AGM ap-
proach). This is first generalized to allow the iteration of theory change oper-
ations to capture the dynamics of epistemic states according to a principle of
minimal change of entrenchment. The iterative operations of expansion, con-
traction and revision are characterized both by a set of postulates and by Grove’s
construction based on total pre-orders on the set of complete theories of the be-
lief logic. We present a sound and complete conditional logic whose semantics
is based on our iterative revision operation, but which avoids Gärdenfors’s triv-
iality result because of a severely restricted language of beliefs and hence the
weakened scope of our extended postulates. In the second part of the paper, we
develop a computational approach to theory dynamics using Rott’s E-bases as
a representation for epistemic states. Under this approach, a ranked E-base is
interpreted as standing for the most conservative entrenchment compatible with
the base, reflecting a kind of foundationalism in the acceptance of evidence for
abelief. Algorithms for the computation of our iterative versions of expansion,
contraction and revision are presented. Finally, we consider the relationship be-
tween nonmonotonic reasoning and both conditional logic and belief revision.
Adapting the approach of Delgrande, we show that the unique extension of a de-
fault theory expressed in our conditional logic of belief revision corresponds to
the most conservative belief state which respects the theory: however, this cor-
respondence is limited to propositional default theories. Considering first order
default theories, we present a belief revision algorithm which incorporates the
assumption of independence of default instances and propose the use of a base
logic for default reasoning which incorporates uniqueness of names. We con-
clude with an examination of the behavior of an implemented system on some
of Lifschitz’s benchmark problems in nonmonotonic reasoning.

1 Introduction Much recent work in belief revision uses mathematical methods,
building on the work of Alchourŕon, G̈ardenfors and Makinson [1]. In this approach,
known as the AGM approach, a belief state is modeled as a logical theory over a base
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logic constrained only to be consistent and compact, contain the Propositional Cal-
culus andmodus ponens and satisfy the deduction theorem. Three basic operations
on belief states are defined:expansion is the addition to a belief set of a belief and its
consequences;contraction is the removal of a belief from a belief set; andrevision is
the incorporation of a belief into a belief set with which it may be inconsistent. But
not any function from belief sets to belief sets counts as arational belief change op-
eration. The idea is to capture some aspects of rationality by specifying postulates
that such belief change functions should satisfy. One supposedly rational property of
belief change operations is minimal change, i.e., when a belief set has to be modified,
only those changes are made which are necessary to ensure the operation’s success.
A central concern is to make this notion of minimal change mathematically precise.

The notion of minimal change has a long history in belief revision, dating at least
from Ramsey [55], who introduced, but did not formalize, the Ramsey test for ac-
cepting a conditional statement. The Ramsey test was adapted by Stalnaker [59] and
further by Lewis [40] in providing possible worlds semantics for counterfactual con-
ditionals. This has resulted in mathematical models of minimality in change. In Arti-
ficial Intelligence, the intuition of minimal change figures in the modeling of actions
in that when computing the effect of an action, it is assumed that as little as neces-
sary changes in the agent’s model of the world, McCarthy and Hayes [45], Ginsberg
and Smith [28]. Thus minimal change, in either its semantic or epistemic forms, is a
widely-held intuition underlying the dynamics of a rational agent’s mental states.

Any logical formulation of belief revision, the semantics of conditionals and rea-
soning about action must fail to satisfy monotonicity: if� � A then�′ � A whenever
� ⊆ �′. Nonmonotonic reasoning has been studied extensively in Artificial Intelli-
gence and various formalisms exist for representing and reasoning with nonmono-
tonicity. This work grew, in part, out of attempts to formalize reasoning with inher-
itance networks—network structures with a procedural inference system that can be
used to represent defaults such as that birds can typically fly and their exceptions such
as that penguins cannot typically fly (even though all penguins are birds). Exceptions
can also have exceptions, etc. Nonmonotonicity arises when considering the new in-
formation that Tweety is a bird, from which it follows (intuitively) that Tweety flies,
although this conclusion will have to be retracted on acquiring the additional infor-
mation that Tweety is a penguin. An important point is that although inference by
default requires nonmonotonicity, it is not only nonmonotonicity that has to be han-
dled: solving problems in nonmonotonic reasoning also requires methods for dealing
with partial, or incomplete, initial information, as emphasized by Etherington [15].

There is an obvious intuitive connection between conditional logic and non-
monotonic reasoning. The default inference of Tweety’s flying from Tweety’s being a
bird corresponds closely to the indicative conditional “if Tweety is a bird then Tweety
flies.” Indeed this correspondence has been investigated formally by Delgrande [9].
Due to the already identified connection between conditional logic and belief revision
underpinned by the principle of minimal change, there is strong evidence for close
links between all three areas of inquiry: belief revision, conditional logic and non-
monotonic reasoning. It is the purpose of this paper to consider these connections
more formally.

Our work starts with a generalization of the AGM approach to belief revision.
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It is a widely-accepted weakness of the AGM approach that belief change operations
are defined with respect to belief sets—thecontents of belief states—rather than with
respect to belief states themselves. Thus AGM minimal change is a very weak no-
tion. The problem of representing both the contents and dynamics of belief states
has been addressed by Gärdenfors and Makinson [25] who proposed epistemic en-
trenchments as a means of representing belief states so that particular belief change
operations could also be represented (epistemic entrenchment is the epistemic ana-
logue of what Lewis [40] calls comparative possibility). We first propose a set of ex-
tended AGM postulates for epistemic state change, based on interpreting the notion of
minimal change as applying to belief states represented as entrenchments over belief
sets. The iterative theory change operations of expansion, contraction and revision
are characterized using sets of postulates and using Grove’s [32] construction based
on total pre-orders on the set of complete theories of the base logic.

Then by adapting methods familiar from conditional logic, we define a condi-
tional logic of belief revision that captures our version of minimal change. However,
the problem of defining revision by conditionals is not considered in this work, i.e.,
under our approach to the revision of epistemic states, the new information to be ac-
cepted must be nonconditional information. Moreover, the only conditional infor-
mation believed by the agent must be derived from entrenchments over the base lan-
guage and this base language cannot contain conditional operators. Thus we avoid
Gärdenfors’s [19] triviality result by restricting an agent’s “freedom” to believe in
conditionals. Essentially, the triviality result states that with a base logic contain-
ing conditional operators, any belief system in which revisions are in accord with the
AGM postulates and which satisfy the Ramsey test (i.e.,A ⇒ B is accepted in a state
iff B is accepted in the state resulting by a revision to acceptA) must be in some sense
trivial. The problem stems, in part, from the application of the AGM postulates to
conditional beliefs, and we simply rule out this possibility.

Another motivation for our restrictive approach to dealing with the Ramsey test
is our goal of developing a computational version of belief revision able to be used
for solving problems in nonmonotonic reasoning. The AGM approach is not com-
putational because epistemic entrenchments (the representations of belief states) are
total pre-orders on the set of formulas over the base logic of beliefs. Some of these or-
derings are not finitely representable: there may be infinitely many different levels of
entrenchment. Following Rott [56], we use an E-base to represent an epistemic state:
aranked E-base is understood to stand for a uniquely determined entrenchment which
is the most “conservative” entrenchment which extends it—rather as a partially speci-
fied theory is understood as standing for its logical closure, the smallest closed theory
containing it. Our approach to partial information is indeed conservative. Using the
work of Williams [61], we consider the special case of a ranked entrenchment as pro-
viding for each belief a natural number known as its rank, which reflects the degree
of evidence for the corresponding belief. Given an incomplete entrenchment and a
formula whose rank is not explicitly known, the available evidence for that formula
consists of all the proofs of the formula from the belief set: the unknown rank must be
at least that of each minimally ranked formula used in such a proof. We are conserva-
tive in that we take the unknown rank to be exactly the maximum of the ranks of those
formulas which are minimally ranked in a proof of the formula. To substantiate the
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claim that this approach is computational, we present algorithms for the computation
of expansion, contraction, and revision according to our theory of minimal change of
entrenchment.

Incompletely determined entrenchments are not merely of computational con-
cern: incomplete information is a key aspect of problems in nonmonotonic reasoning,
so methods for dealing with partial information about entrenchments form a central
part of this paper. Our idea of conservatism embodies a strong element of founda-
tionalism, in contrast to the purely coherence approach to epistemics advocated by
Gärdenfors [21]. However, we claim that at least this much foundationalism is essen-
tial to handling problems in default reasoning. In the final part of this paper, we con-
sider the connections between nonmonotonic reasoning and both conditional logic
and belief revision. In the case of propositional theories, adapting Delgrande’s [10]
approach, we show that the unique extension of a default theory expressed in condi-
tional logic is exactly the most conservative belief state that respects the theory. In the
case of first order logic with an equality predicate, we define a special revision opera-
tion appropriate for nonmonotonic reasoning, which in addition to conservatism in ac-
cepting evidence, incorporates the assumption of independence of default instances.
Our belief revision approach to nonmonotonic reasoning has been implemented in
a computer system, the details of which are described in Dixon and Wobcke [12]:
the heart of the system is a standard resolution theorem prover incorporating unique-
ness of names, an assumption which is supported by intuitions in default reasoning.
Weconclude with an examination of the behavior of our system on some benchmark
problems in nonmonotonic reasoning collected by Lifschitz [41].

2 The AGM approach to theory change

2.1 Expansions, contractions, revisions In the AGM approach to formalizing be-
lief change, belief states are modeled as logically closed sets of formulas over a base
logic constrained only to be consistent and compact, contain the Propositional Cal-
culus andmodus ponens and satisfy the deduction theorem. Three operations are de-
fined: theexpansion of the belief setK by A, denotedK+

A , represents the addition of
A to K; thecontraction of K by A, denotedK−

A , represents the removal ofA from K;
therevision of K by A, denotedK∗

A, represents the addition ofA to K so as to pre-
serve consistency. In a revision, if the new beliefA is inconsistent withK, some of the
original beliefs must be given up in order to acceptA, whereas in an expansion,A is
added toK regardless of whether it is inconsistent withK. Alchourrón, G̈ardenfors
and Makinson [1] formulated the following “rationality postulates” which state the
desired properties of the belief sets resulting from each of the theory change opera-
tions. In the following definitions,Cn is the logical consequence operation for the
base logic, andK⊥ is the inconsistent set of all beliefs.

First, six postulates for expansion are presented.

(K+1) K+
A is a belief set.

(K+2) A ∈ K+
A .

(K+3) K ⊆ K+
A .

(K+4) If A ∈ K thenK+
A ⊆ K.

(K+5) If K ⊆ H thenK+
A ⊆ H+

A .
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(K+6) K+
A is the smallest belief set satisfying (K+1) – (K+5).

These postulates have the consequence thatK+
A = Cn(K ∪ {A}).

The following postulates for contraction are given.

(K−1) K−
A is a belief set.

(K−2) K−
A ⊆ K.

(K−3) If A 	∈ K thenK−
A = K.

(K−4) If 	� A then A 	∈ K−
A .

(K−5) If A ∈ K thenK ⊆ (K−
A )+A .

(K−6) If � A ↔ B thenK−
A = K−

B .
(K−7) K−

A ∩ K−
B ⊆ K−

A∧B.
(K−8) If A 	∈ K−

A∧B thenK−
A∧B ⊆ K−

A .

Finally, the following postulates for revision are defined.

(K∗1) K∗
A is a belief set.

(K∗2) A ∈ K∗
A.

(K∗3) K∗
A ⊆ K+

A .
(K∗4) If ¬A 	∈ K thenK+

A ⊆ K∗
A.

(K∗5) K∗
A = K⊥ only if � ¬A.

(K∗6) If � A ↔ B thenK∗
A = K∗

B.
(K∗7) K∗

A∧B ⊆ (K∗
A)+B .

(K∗8) If ¬B 	∈ K∗
A then(K∗

A)+B ⊆ K∗
A∧B

These postulates are motivated on the grounds that accepting a new beliefA should
result in a “minimal” disturbance to the setK of existing beliefs. For example, (K∗4)
says that ifA is consistent withK then no beliefs fromK need be removed in accept-
ing A, and (K∗3) says that in any case, there cannot be extra beliefs in the revised
setK∗

A that do not follow fromK andA. (K∗7) and (K∗8) are the analogues of these
for acceptance of conjunctive information. So (K∗8) says that if, after acceptingA,
B is consistent, then no beliefs fromK∗

A need be removed in acceptingA ∧ B, and
(K∗7) says that no extra beliefs can be included inK∗

A∧B that do not follow fromK∗
A

and B. An alternative interpretation of this notion of minimal change can be based
on the idea of partial meet contraction (see [1]), in which the setK−

A is defined as the
intersection of a favored subset of the maximal subsets ofK that do not containA.

The contraction and revision postulates are not constructive in the sense that
there are many functions that satisfy the postulates and so are “rational” belief change
operations. However, it can be shown that particular contraction and revision oper-
ations can be related to each other by the Levi and Harper identities. That is, given
any contraction operation satisfying (K−1) – (K−8), a revision operation satisfying
(K∗1) – (K∗8) can be defined using the Levi identity:K∗

A = (K−
¬A)+A . Similarly, given

any revision operation satisfying (K∗1) – (K∗8), a contraction operation satisfying
(K−1) – (K−8) can be defined using the Harper identity:K−

A = K ∩ K∗
¬A. Moreover,

the Levi and Harper identities are duals to each other in the sense that the revision
operation obtained using the Levi identity from the contraction operation defined us-
ing the Harper identity based on some revision operation is the same as the original
revision operation, and similarly, starting with a contraction operation and using first
the Levi, then the Harper, identity results in a contraction operation identical to the



60 WAYNE WOBCKE

original operation.
It is important to note that in the AGM framework, belief states can be sets of

formulas over any base logic satisfying the above conditions. Typically, the base logic
is a classical logic, but the base logic could be a modal or conditional logic. When
conditional logic is used as the base logic, there arises a special problem. The desire is
to interpret the conditional operator⇒ as signifying revision of beliefs, so that belief
in conditionals is interpreted as conditional belief. The belief of a conditionalA ⇒ B
(in an initial state) is to be interpreted as the belief ofB conditional onA (in that state),
which amounts to full belief inB in the state resulting from the initial state after a
revision to acceptA has occurred. Naturally this interpretation makes sense if and
only if the beliefs in conditionals in fact reflect the actual state of affairs, i.e., a belief
A ⇒ B is held iff B is accepted after a revision to acceptA. This is the Ramsey test
for the truth of the conditional, from [55].

Ramsey, of course, did not have in mind Gärdenfors’s particular postulates for
belief revision when he formulated his test. Thus the question of whether the Ramsey
test can be fulfilled under these conditions on revision functions is a real one. Perhaps
surprisingly, given the strong intuitions behind both the Ramsey test and the AGM
postulates, the answer is that they are incompatible. This is the Gärdenfors triviality
result, reported in [19].

Definition 2.1 A belief set is a logically closed set of formulas over a base logic.

Definition 2.2 A belief system is a collection of belief sets together with a revision
function∗ from belief sets and formulas to belief sets that satisfies (K∗1) – (K∗8).

Definition 2.3 A belief system satisfies the Ramsey test if for all belief setsK and
all formulasA andB, K containsA ⇒ B iff K∗

A containsB.

Definition 2.4 Two formulasA andB aredisjoint if � ¬(A ∧ B).

Definition 2.5 A belief system isnontrivial if there are at least three pairwise dis-
joint sentencesA, B andC and some belief setK in the system that is consistent with
all three sentences, i.e.,¬A 	∈ K, ¬B 	∈ K and¬C 	∈ K.

To incorporate conditional belief and the Ramsey test into the theory, the base logic
must be a conditional logic, but which one? To answer this question, Gärdenfors [19]
defines the following notion of validity, and takes the base logicC to be the set of all
such valid sentences.

Definition 2.6 A sentenceA is valid if in any belief system, the only belief set con-
taining¬A is the inconsistent belief set.

The logicC consists of the following axiom schemata and inference rules.

(A1) All truth-functional tautologies.
(A2) (A ⇒ B) ∧ (A ⇒ C) → (A ⇒ (B ∧ C)).
(A3) A ⇒ true.
(A4) A ⇒ A.
(A5) (A ⇒ B) → (A → B).
(A6) (A ∧ B) → (A ⇒ B).
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(A7) (A ⇒ ¬A) → (B ⇒ ¬A).
(A8) (A ⇒ B) ∧ (B ⇒ A) → ((A ⇒ C) → (B ⇒ C)).
(A9) (A ⇒ C) ∧ (B ⇒ C) → ((A ∨ B) ⇒ C).

(A10) (A ⇒ B) ∧ ¬(A ⇒ ¬C) → ((A ∧ C) ⇒ B).
(MP) From A and A → B infer B.

(RCM) If � B → C infer (A ⇒ B) → (A ⇒ C).

There is a loose (but not exact) correspondence between these axiom schemata and
the postulates. But importantly not all the postulates are needed to derive the triviality
result, in which case not all the above axiom schemata are needed in the base logic.
In fact, the triviality result can be proven without reference to the base logic, using
the following property of belief sets (monotonicity) which is a consequence of the
Ramsey test.

(K∗M) If K ⊆ H thenK∗
A ⊆ H∗

A.

Theorem 2.7 ([19]) Any belief system over the base logic corresponding to (K∗2),
(K∗4), (K∗5) and satisfying (K∗M) is trivial.

This result motivates our alternative modeling of belief revision based on a theory of
the dynamics of epistemic states. We use this theory as a semantics for a conditional
logic: a conditionalA ⇒ B holds at a belief stateK if B holds at the state resulting
from the revision ofK to acceptA with some degree of strength, as determined by a
selection function. The revision operation must satisfy a set of generalized AGM pos-
tulates designed to capture the principle of minimal change of entrenchment. We give
asound and complete axiomatization of our conditional logic. The triviality result is
avoided because of the weakened language of beliefs and the restricted “freedom” of
an agent to have beliefs in conditionals. Essentially, the only conditional beliefs an
agent can have are those that could result from a sequence of revisions each obeying
the principle of minimal change. The net effect of using only certain of the possible
revision functions to represent the possible conditional beliefs is that the full force of
the AGM postulates cannot be applied to conditional beliefs. Note also that the incon-
sistent belief state requires special treatment because the condition of logical closure
implies that the corresponding set of beliefs contains all formulas of the language,
in particularA ⇒ B and A ⇒ ¬B for any A and B. Hence if the Ramsey test is to
be fulfilled whenK = K⊥, K∗

A would have to beK⊥ for any A. But this is in direct
conflict with (K∗5).

2.2 Epistemic entrenchment For a given collection of belief sets, there are typi-
cally many contraction and revision operations satisfying the AGM postulates. The
reason for this is that, although the postulates are an attempt to capture a notion of
minimal change, no purely logical definition of minimal change is possible: the no-
tion of minimality used will be dependent on the domain or context of the belief sys-
tem, just as Lewis’s [40] notion of comparative similarity in possible worlds seman-
tics for conditionals is also context dependent. Thus a method for representing par-
ticular contraction and revision operations is necessary and is of interest both math-
ematically and computationally.

Gärdenfors and Makinson [25] introduce the use of epistemic entrenchments to
represent particular contraction and revision operations. Anepistemic entrenchment
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is a total pre-order≤ (with strict part<) on formulas of the base logic, intuitively rep-
resenting the degree of strength with which a belief is held. An ordering is an epis-
temic entrenchment if it satisfies the following five conditions.

(EE1) If A ≤ B andB ≤ C then A ≤ C.
(EE2) If A � B then A ≤ B.
(EE3) For anyA andB, A ≤ A ∧ B or B ≤ A ∧ B.
(EE4) WhenK 	= K⊥, A 	∈ K iff A ≤ B for all B.
(EE5) If B ≤ A for all B, then� A.

Contractions and revisions are defined using the (C−) and (C∗) conditions. It is shown
that every contraction and revision operation defined as using epistemic entrenchment
satisfies the AGM postulates, and conversely, every contraction and revision opera-
tion satisfying the AGM postulates can be represented by an epistemic entrenchment.

(C−) B ∈ K−
A iff B ∈ K and either� A or A < A ∨ B.

(C∗) B ∈ K∗
A iff either � ¬A or ¬A < A → B.

Epistemic entrenchments are closely related to the comparative possibility orderings
defined by Lewis [40] in his analysis of counterfactual conditionals. In both cases,
the orderings are total pre-orders. The main difference is that for an epistemic en-
trenchment, the least entrenched formulas are the nonbeliefs, whereas for compara-
tive possibility the formulas true in the actual world are minimal in the ordering. In
fact, given a comparative possibility relation≤cp on a set of complete theories (the
epistemic analogue of possible worlds), an epistemic entrenchment≤ee can be de-
fined by A ≤ee B iff ¬A ≤cp ¬B, and vice versa.

Given the close correspondence between epistemic entrenchment and compara-
tive possibility, it is unsurprising that a model-theoretic characterization of belief revi-
sion operations can be based on systems of spheres of complete theories. Such a char-
acterization was provided by Grove [32]. The main difference here is that whereas
Lewis’s spheres are centered on the actual world, Grove’s spheres are centered on the
set of complete theories containing the belief set. Grove’s definitions are repeated be-
low: they will be adapted in the next section dealing with the dynamics of epistemic
states.

Let [K] denote the set of consistent complete theories containingK.

Definition 2.8 A system of spheres centered on [K] is acollectionS of sets of con-
sistent complete theories that satisfies the following conditions.

(S1) S is totally ordered by⊆, i.e., if S andS′ are inS thenS ⊆ S′ or S′ ⊆ S.

(S2) [K] is the⊆-minimum ofS, i.e., [K] ∈ S and if S ∈ S then [K] ⊆ S.

(S3) The set of all consistent theories is an element ofS.

(S4) If A is a formula and some sphere inS intersects [{A}] then there is a smallest
sphere inS that intersects [{A}].

A revision operation can be defined for systems of spheres just as Lewis defines the
truth conditions for conditionals: given a consistent formulaA, let SA be the small-
est sphere intersecting [{A}]. Then K∗

A is the intersection of the theories contained
in minS(A) = SA ∩ [{A}] (if no theory containsA thenK∗

A is K⊥). It is shown that
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revision operations so defined satisfy all the AGM postulates (K∗1) – (K∗8), and con-
versely, any revision operation can be modeled as a system of spheres so that for each
consistent formulaA, K∗

A is the intersection of theories contained in minS(A). Sim-
ilar results hold for contractions whenK−

A is defined as the intersection of theories
contained in [K] ∪ minS(¬A). An illustration of a system of spheres is presented in
the next section.

3 Dynamics of epistemic states It is a widely-recognized weakness of the AGM
approach to theory change that iteration of belief change operations is impossible. If
a belief state is a set of beliefs together with several possible belief change opera-
tions, then this is because each such operation is defined as mapping a belief set and
a formula to a belief set, whereas for an operation to be iterative, the result should
be another beliefstate. Equivalently, if epistemic entrenchments are used to specify
theory change operations, there is no way to specify the entrenchment on the set of
beliefs resulting from a belief change operation.

There are a number of ways to address to this problem, each of which has re-
ceived considerable attention. Historically, the first was to extend the base logic to
include conditional formulas as in Gärdenfors [19]: then using the (C−) and (C∗) con-
ditions, conditional beliefs could hold in the resulting states just as nonconditional
beliefs. As described above, this leads immediately to the triviality result. Either the
Ramsey test or the AGM postulates (or both) have to be weakened. If it is desired to
retain the AGM postulates, one might first try to weaken the Ramsey test. However,
various proposals, e.g., by Gärdenfors [20] and by G̈ardenfors, Lindstr̈om, Morreau
and Rabinowicz [24] have all failed to avoid the triviality result.

Another way to avoid the triviality result is to insist on an epistemological differ-
ence between nonconditional and conditional beliefs, requiring that the Ramsey test
apply only to nonconditional beliefs. Levi [39] is amajor proponent of this position,
and in an AGM context, this line is taken by Rott [56] andMorreau [47]. In such an
approach, belief states are logically closed nonconditional theories, with conditional
beliefs derived from the action of a revision operation. The trouble with this kind of
general framework is that with a natural way of defining the semantics of conditional
beliefs such as that in Wobcke [63], none of the interesting AGM postulates (K∗3),
(K∗4), (K∗7) and (K∗8) are valid in an unrestricted form. Thus if these postulates are
to be retained in some form, restrictions have to be placed on the class of epistemic
states and possibly also on the class of allowable revision operations.

In a non-AGM context, an approach to modeling epistemic states and their dy-
namics was presented by Spohn [58], although Spohn was more concerned with iter-
ations of revision operations than with the Ramsey test and the triviality result. In this
work, an epistemic state is not represented directly by a logical theory with an associ-
ated entrenchment, but indirectly, by an Ordinal Conditional Function (OCF), which
defines an ordering on the models of the language by assigning an ordinal number to
each model. Spohn uses only one operation, OCF revision, to represent all changes to
epistemic states: expansion, contraction, revision and change of entrenchment. The
result of such an operation is another OCF, allowing successive revisions can be per-
formed. Spohn’s approach is model-theoretic in that he provides no way of comput-
ing epistemic change operations: in Wobcke [64], we propose a syntactic analogue
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of Spohn’s OCF revision and present algorithms for its computation.
In an AGM context in which belief states are represented by a theory with an

epistemic entrenchment, various specific constructions for iterated theory change
have been proposed, e.g., by Boutilier [4] and Nayak, Foo, Pagnucco and Sattar [50].
An interesting generalization is presented by Nayak [49] in which the new informa-
tion for a revision is not a formula but a partial epistemic entrenchment. The problem
with all these proposals is that the postulates are too strong. For example, Boutilier [4]
uses the heuristic that the new information is always the least entrenched (he calls
this “natural” revision), yet Nayak, Foo, Pagnucco and Sattar [50] use the heuristic
that the new information is always more entrenched than any current nontrivial be-
lief (“unnatural” revision?). An alternative approach to constraining iterated change
is given by Darwiche and Pearl [8], who present four very general postulates intended
to supplement the AGM postulates (see also Rott [57]). But whereas the specific con-
structions constrain iterated change too much, Darwiche and Pearl’s postulates fail to
constrain iterated change sufficiently, since if the class of epistemic states is taken to
be the theories of the corresponding conditional logic of validity, the postulates for
iterated change will have no impact on the triviality result.

But all this fails to take account of another moral to be drawn from Spohn’s work:
that there is no way to formally determine the strength of the new belief to be ac-
cepted under a revision. Intuitively, the same information could be obtained by dif-
ferent means, so the strength with which the new belief is held will not be a function
of the belief’s content alone, but crucially dependent on the means of its acquisition.
Thus one should not expect very strong postulates to constrain the process of iterated
change if those postulates are to account for all possible ways in which the new belief
can be acquired. In Spohn’s account, this intuition is captured by requiring that the
input to a revision operation be a proposition plus an ordinal number representing the
strength of the new information.

Here, we follow Spohn’s approach both in defining theory change operations on
epistemic states and in assuming the new information comes with a given strength
represented by an ordinal number. However, we adapt the AGM approach in rep-
resenting epistemic states as entrenchments and in specifying postulates for belief
change operations that capture a notion of minimal change of entrenchment. We pro-
vide a characterization of our theory change operations in terms of systems of spheres.
Both for simplicity in presenting the construction, and because of its relevance to
our computer implementation of an AGM belief revision system, we restrict atten-
tion to epistemic entrenchments that are ranked, as in Dixon and Wobcke [12] and
Williams [62].

Definition 3.1 A ranked epistemic entrenchment is a (logically closed) belief set
K together with a ranking function, assigning to each nontheorem a natural number
known as itsrank, that satisfies the following conditions.

(RE1) If A � B thenrank(A) ≤ rank(B).
(RE2) rank(A ∧ B) = min(rank(A), rank(B)).
(RE3) rank(A) = 0 iff A 	∈ K.

A ranked epistemic entrenchment is a special kind of entrenchment defined byA ≤ B
iff rank(A) ≤ rank(B) or� B. Obviously, (RE1), (RE2) and (RE3) are the analogues
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of (EE2), (EE3) and (EE4); the other postulates follow from the properties of the nat-
ural numbers. The main effect of ranking an entrenchment is to rule out infinite de-
scending chains of formulas that are less and less entrenched, and is thus related to
what Lewis [40] calls the limit assumption.

Iterative AGM theory change operations on epistemic states can now be defined
as follows. The idea is to interpret the principle of minimal change, formulated in
Gärdenfors [21] as applying to the contents of a belief set, as also applying to the
entrenchment of formulas in the belief set. This is justified by interpreting the rank
of a belief as representing the strength with which a belief is held. According to this
interpretation, if a belief is not affected by a belief change operation, its rank should
not be affected either. That is, a belief which remains in the new belief set should
retain its rank unless an inconsistency with the postulates of entrenchment forces it
to be changed.

When defining an expansion or revision by a formulaA, the intended new rankα
of A must be given. So that such an operation is successful, we consider only expan-
sions and revisions in whichα is positive. The following special case arises: suppose
A is ranked atβ in K; what should the rank ofA be after expanding or revising to ac-
ceptA with rankα whereα < β? One intuition, based on taking the information that
A is of rankα to be definitive (Spohn’s view), says that the rank should beα in the
new state; another intuition, based on taking the new information as merely further
confirmation of what is already known, says thatA should remain ranked atβ. In this
paper, we adopt the second intuition: new information is incremental and so for an
expansion or revision, the rank of a belief that remains in the revised state can only
increase.1

It is straightforward to make precise our notion of minimal change of entrench-
ment. LetK ′ be the state resulting from an expansion or revision ofK (with ranking
functionrank) toacceptA with rankα. The set of beliefs inK ′ is K+

A or K∗
A according

to the AGM definitions. We define the rankingrank′ on the beliefs inK ′ as follows.

rank′(B) = max(rank(B),min(rank(A → B), α)) if B ∈ K ′.

Intuitively, the informationA (at rankα) only providesnew evidence forB if it can
be combined with the evidence forA → B resulting in a new justification forB of
greater strength than all prior justifications forB. The following consequence of this
definition will simplify subsequent discussion: the ranks of formulas of the formA →
B retained inK ′ are not affected by the operation, but the ranks of formulas of the
form A ∨ B either stay the same or are increased toα.

If K−
A is the contraction ofK by A, it is even simpler to capture our notion of

minimal change of entrenchment.

rank′(B) = rank(B) if B ∈ K−
A .

Another motivation for minimal change of entrenchment derives from the fol-
lowing postulates for expansion, contraction and revision, which are generalizations
of the AGM postulates capturing a notion of “conservatively” accepting the new in-
formation. The key to expressing these postulates is to define a way to compare belief
states in terms of the “amount” of information they contain. For AGM belief sets, this
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is easy: set-theoretic containment is the comparison measure. For ranked epistemic
entrenchments, the following definition serves our purpose.

Definition 3.2 A ranked epistemic entrenchmentK1 (with ranking functionrank1)
is at least as conservative as a ranked epistemic entrenchmentK2 (with ranking
function rank2), denotedK1 ≤ K2, if K1 ⊆ K2 and for all A ∈ K1 such that	� A,

rank1(A) ≤ rank2(A).

Note that this conservativeness ordering is compatible with set theoretic containment
in thatK1 ⊆ K2 is a necessary condition onK1 ≤ K2. The conservativeness ordering
is clearly a partial order. However, we need additional structure to state some of the
postulates. Given two ranked epistemic entrenchmentsK1 and K2, defineK1 ∧ K2

(K1 “meet” K2, generalizing set-theoretic intersection) as the set of beliefs inK1 ∩ K2

with ranking function given byrank(A) = min(rank1(A), rank2(A)), whererank1

andrank2 are the ranking functions ofK1 andK2, respectively. Given this definition,
we could, alternatively, have definedK1 ≤ K2 iff K1 ∧ K2 = K1. The most important
property of≤ is the descending chain condition which is inherited from the natural
numbers: any sequenceK1 ≥ K2 ≥ · · · has a unique minimal element, i.e., an element
K such thatKi ≥ K for all i. Equivalently, any subclass of ranked entrenchments
which is closed under the meet operation has a unique minimal element. The maximal
elements in the conservativeness ordering are those whose belief sets are inconsistent,
and we shall not distinguish among these states.

Wenow specify six postulates for an expansion operation on epistemic states. In
the following, K+

A,α
is the epistemic state resulting fromK by expandingA to have

rankα.

(K+1) K+
A,α

is a belief state.
(K+2) {A : α} ≤ K+

A,α
.

(K+3) K ≤ K+
A,α

.
(K+4) If A ∈ K andrank(A) ≥ α thenK+

A,α
≤ K.

(K+5) If K ≤ H thenK+
A,α

≤ H+
A,α

.
(K+6) K+

A,α
is the most conservative belief state satisfying (K+1) – (K+5).

The notation{A : α} in (K+2) indicates the belief state havingA and all its nontheo-
rem consequences at rankα, i.e., (K+2) says thatA is of rank at leastα in K+

A,α
.

These postulates have the consequence that the content ofK+
A,α

is Cn(K ∪ {A}),
as in the AGM definitions, and formulas are ranked inK+

A,α
the same as inK except

for the consequences ofA, whose ranks are increased toα if they are less thanα in
K.

Theorem 3.3 If K 	= K⊥, K+
A,α

is the AGM belief set K+
A with ranking function

rank+
A,α

defined by rank+
A,α

(B) = max(rank(B),min(rank(A → B), α)) if B ∈ K+
A .

Otherwise K+
A,α

= K⊥.

Wecan also define the following postulates for contraction. Of course, unlike an ex-
pansion, it is necessary to specify only the formula to be removed.

(K−1) K−
A is a belief state.

(K−2) K−
A ≤ K.

(K−3) If A 	∈ K or K = K⊥ thenK−
A = K.
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(K−4) If 	� A andK 	= K⊥ then A 	∈ K−
A .

(K−5) If A ∈ K andrank(A) = α thenK ≤ (K−
A )+A,α

.
(K−6) If � A ↔ B thenK−

A = K−
B .

(K−7) K−
A ∧ K−

B ≤ K−
A∧B.

(K−8) If A 	∈ K−
A∧B thenK−

A∧B ≤ K−
A .

(K−9) K−
A is the most conservative belief state satisfying (K−1) – (K−8).

The contractionK−
A of K by A is the setK−

A as defined by the AGM operations, with
the ranks of the remaining formulas unchanged.

Theorem 3.4 If K 	= K⊥, K−
A is the AGM belief set K−

A with ranking function rank−
A

defined by rank−
A (B) = rank(B) if B ∈ K−

A . Otherwise K−
A = K⊥.

Finally, we specify the following postulates for revision.

(K∗1) K∗
A,α is a belief state.

(K∗2) {A : α} ≤ K∗
A,α.

(K∗3) K∗
A,α ≤ K+

A,α
.

(K∗4) If ¬A 	∈ K or K = K⊥ thenK+
A,α

≤ K∗
A,α.

(K∗5) K∗
A,α = K⊥ only if � ¬A or K = K⊥.

(K∗6) If � A ↔ B thenK∗
A,α = K∗

B,α.
(K∗7) K∗

A∧B,α ≤ (K∗
A,α)+B,α

.
(K∗8) If ¬B 	∈ K∗

A,α then(K∗
A,α)+B,α

≤ K∗
A∧B,α.

(K∗9) If ¬A ∈ K andrank(¬A) = β thenK ≤ (K ∧ K∗
A,α)+¬A,β

.
(K∗10) K∗

A,α is the most conservative belief state satisfying (K∗1) – (K∗9).

Postulate (K∗2) saysthat A must have rank of at leastα in K∗
A,α. (K∗3) says thatK∗

A,α

contains no more beliefs and no beliefs more highly entrenched than ifK is expanded
by A with rankα. (K∗4) says thatK∗

A,α must contain at least as much information as
K+

A,α
(and as a consequence of this and (K∗3), if A has rank greater thanα in K, A

will still have this higher rank inK∗
A,α). In interpreting (K∗5), we consider as indis-

tinguishable any two belief states whose belief sets are inconsistent. The postulate
(K∗9) is an analogue of the recovery postulate for contraction.

The revision ofK to acceptA with rankα is the AGM belief setK∗
A with the

ranks of formulas¬A ∨ B unchanged and ranks of formulasA ∨ B increased (if nec-
essary) toα. That is,K∗

A,α is the most conservative belief state agreeing in ranking
function with K on the setK ∩ K∗

A and havingA rankedα.

Theorem 3.5 If K 	= K⊥, K∗
A,α is the AGM belief set K∗

A with ranking function
rank∗

A,α defined by rank∗
A,α(B) = max(rank(B),min(rank(A → B), α)) if B ∈ K∗

A.
Otherwise K∗

A,α = K⊥.

As distinct from the AGM approach, the contraction and revision postulatesare con-
structive and agree with the definition given above in terms of rank. Moreover, the
Levi identity (in the formK∗

A,α = (K−
¬A)+A,α

) and the Harper identity (in the form
K−

A = K ∧ K∗
¬A,α) both hold for epistemic state dynamics. However, the recovery

postulate for contraction no longer holds in general: ifA ∈ K then(K−
A )+A,α

will have
the same content asK, but the rank ofA in (K−

A )+A,α
will be α rather than the rank of

A in K. Notice also that whereas, as has been observed by Makinson [42], recovery
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Figure 1: AGM Revision of Epistemic States

for contraction plays no role in defining AGM revision, recovery does play a role in
defining our revision operation.

Finally in this section, we generalize the characterization of theory change op-
erations developed by Grove [32] to capture the dynamics of epistemic states. To
illustrate this, an example of our iterative AGM belief revision is shown in Figure 1.
The belief setK = Cn({a, b, c}) is to be revised to accept¬a with rank 10. As we
shall elaborate in Section5, nontheorems inCn({b}) are ranked 100, formulas in
Cn({a, b}) but not inCn({b}) are ranked 50, and formulas inCn({a, b, c}) but not
in Cn({a, b}) are ranked 30. Complete theories are described in terms of the polar-
ity of the proposition symbolsa, b andc that they contain, wherex indicates that the
theory contains¬x.

Figure 1 also illustrates a characterization of iterative AGM revision derived
from Grove’s [32] modeling using systems of spheres of complete theories, again re-
stricted to the case of ranked epistemic entrenchments. For each rankr, there is a
sphereSr, said to be of rankr, consisting of all the complete theories containing all
the formulas ranked higher thanr, so that the rank of a nontheoremA is also the rank
of the smallest sphere containing a complete theory containing¬A. The sphereS0 is
the set of all complete theories containing the belief set. Call such a system of spheres
aranked system of spheres. Grove showed that the belief set resulting from a revision
to accept a consistent formulaA is represented by the set of all complete theories con-
taining A that are contained in the smallest sphere containing at least one complete
theory containingA (this is Sr wherer is the rank of¬A: call it SA). To capture our
iterative AGM revision operation, when acceptingA with rankα, the complete the-
ories containingA in SA are shifted to rank 0 as in Grove’s construction, while in
addition, all the complete theories containing¬A ranked less thanα are moved up to
rankα. No other complete theory is affected.

Theorem 3.6 If rankis a function determining a ranked system of spheres, the op-
eration on ranked systems of spheres of complete theories defined by rank∗

A,α, as fol-
lows, characterizes revision operations on consistent belief states that satisfy (K∗1) –
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(K∗10).

rank∗
A,α(T ) =




0 if A ∈ T andT ∈ SA

rank(T ) if A ∈ T andT 	∈ SA

max(rank(T ), α) if ¬A ∈ T

Thus in addition to capturing minimal change of entrenchment, our generalized AGM
revision operation captures a strong notion of minimal change in the system of
spheres in the sense that only those theories that have to change rank do change rank.

In Figure 1, the revision to accept¬a with rank 10 results in the complete the-
ories containing¬a from S50 moving down toS0 and all the complete theories con-
taininga ranked less than 10 moving up toS10 (in this example, there is only one such
theory, inS0).

For completeness, we present the analogous result for contraction.

Theorem 3.7 If rank is a function determining a ranked system of spheres, the
operation on ranked systems of spheres of complete theories defined by rank−

A, as
follows, characterizes contraction operations on consistent belief states that satisfy
(K−1) – (K−9).

rank−
A (T ) =

{
0 if ¬A ∈ T andT ∈ S¬A

rank(T ) otherwise.

So contraction also captures a principle of minimal change in the system of spheres.

4 A conditional logic of belief revision Wenow consider the relationship of belief
revision to conditional logic. The main idea is that the dynamics of epistemic states
acts as the semantics for a restricted logic which includes formulas of the formA ⇒ B
whereA denotes a base belief. Recall that revisions of epistemic states take two argu-
ments: a formulaA and a rankα. By analogy to standard possible worlds semantics
for conditional logic,A ⇒ B is valid if for every epistemic stateK and for allα, B
holds at the stateK∗

A,α. A conditionalA ⇒ B holds at an epistemic state ifB is ac-
cepted in the state resulting from the acceptance ofA with some anticipated strength
α. That is, a belief inA ⇒ B is interpreted as a commitment to acceptB conditional
on A, but a commitment which is further conditional onA being acquired with the
strengthα. To make our semantics precise, we need to refer to sequences of revision
operations: our definitions are similar to those used by Katsuno and Satoh [36] and
Boutilier [4] to define conditional logics corresponding to belief revision operations.

Definition 4.1 A belief formula is a formula built from the base logic and the pro-
positional and conditional connectives using the following formation rules: ifA is a
base formula andB is a belief formula thenA ⇒ B is a conditional formula; ifB is a
conditional formula then¬B is a conditional formula; base formulas and conditional
formulas are belief formulas and ifB1 andB2 are belief formulas then so areB1 ∧ B2,
B1 ∨ B2, ¬B1 andB1 → B2.

Definition 4.2 A revision sequence is a sequence〈K1, K2, . . . , Kn〉 such that for
eachi < n, Ki+1 = (Ki)

∗
A,α for someA andα.
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Definition 4.3 A belief revision model is a treeτ whose branches are revision se-
quences such that if the root of the tree is the stateK, for every base formulaA there
is one distinguished subtree∗(τ, A) whose root isK∗

A,α for someα: say also that the
rank of the revision,ρ(∗, τ, A), isα. The selection function∗ must satisfy the follow-
ing conditions.

1. If � A ↔ B then∗(τ, A) = ∗(τ, B).
2. If ∗(τ,¬A) = K⊥ then∗(τ, A) = τ.
3. If ∗(τ, A) 	= K⊥ and A � B then∗(τ, B) 	= K⊥ andρ(∗, τ, A) ≤ ρ(∗, τ, B).

In order to avoid conflict with (K∗5), a belief revision modelτ is taken to be over the
base logic whose theorems are those base formulasA such that∗(τ,¬A) = K⊥.

Definition 4.4 A belief formulaB is valid if B is satisfied in all belief revision mod-
els.

A conditional beliefA ⇒ B is a commitment to acceptB upon learningA with some
expected degree of strengthα as determined by the selection function. This choice
of α will make no difference to the base formulas believed at the resulting state, but
will to the conditional beliefs holding at that state. This is why∗ is defined as map-
ping trees and formulas to trees, rather than belief states and formulas to belief states.
Conditions (1) – (3) place some constraints on the expected strength of new informa-
tion. Condition (1) says that two equivalent items of information must be expected
to the same degree and must result in the same tree of sequences (hence conditional
beliefs). Condition (2) says that no change to either belief state or revision sequences
is allowed when accepting a belief regarded as necessarily holding at that state. Con-
dition (3) says that ifA is expected to degreeα then any consequenceB of A must
be expected to at least the same degree, which is reasonable since the informationA
includes the informationB.

Wenow define the semantics for our belief revision language. For a base formula
A, A holds at a belief stateK just in caseA is contained in the belief set ofK. For
conditional formulas, we adapt the Ramsey test:A ⇒ B holds at a belief stateK at the
root of a treeτ of revision sequences ifB holds at the distinguished state selected by
∗ from τ andA. The complex case is that of formulas that mix the conditional arrow
and propositional connectives. The easiest way to define these truth conditions is to
reduce such formulas to equivalent base formulas, which can then be used to define
the truth value of the original formula.

Definition 4.5 A belief stateK satisfies a base formulaB if B is contained in the
belief set ofK.

Definition 4.6 A belief stateK which is the root of a treeτ of revision sequences
satisfiesA ⇒ B if ∗(τ, A) satisfiesB. A belief stateK satisfies a conditional formula
¬B if K does not satisfyB.

Definition 4.7 Let K be the root state of a belief revision modelτ. Assume that
the truth values inK of all conditional formulas which are subformulas of a belief
formula B are known. ThenB reduces inK to the base formulaB′ if B′ is obtained
by replacing subformulas of the formB1 ⇒ B2 by true if K |= B1 ⇒ B2 and byfalse
otherwise. The truth conditions for all formulas can now be given as follows.
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K |=τ A if A is contained in the belief set ofK for A abase formula.
K |=τ B if K |=τ B′ whereB reduces inK to B′.

Definition 4.8 A belief revision model satisfies a belief formulaB if B holds at the
root of the tree of revision sequences comprising the model.

The reason for the non-truth-functionality of the above definition is to account prop-
erly for formulas such as((A ⇒ B) ∧ C) ∨ ((A ⇒ B) ∧ D)), which we take to have
the same truth condition as(A ⇒ B)∧ (C ∨ D): this holds at a state in whichA ⇒ B
holds and in whichC ∨ D is a belief (assumingC andD are base formulas). In par-
ticular, whenD ≡ ¬C the formula holds at every state in whichA ⇒ B holds. Note
also that our semantics is not two-valued: an epistemic state may satisfy neither a base
formula nor its negation. However, conditional formulas are all either true or false at
an epistemic state, in contrast to the definitions of Gärdenfors [19] which allow be-
lief sets to be agnostic about such formulas. The intuition underlying our definition
is that, given a belief revision model, there are determinate facts about which beliefs
hold at which states in which sequences, and hence to which conditional beliefs an
agent is committed.

An equivalent definition can be given using van Fraassen’s [60] supervaluations
for base formulas. The following definition is closely related to the semantics pro-
posed by Katsuno and Satoh [36] and will help explain the technical differences be-
tween the two approaches.

Definition 4.9 Let K be the root state of a belief revision modelτ. ThenK satisfies
A if T satisfiesA for every complete theoryT containingK.

Definition 4.10 Let K be the root state of a belief revision modelτ. A complete
theoryTK containingK satisfies a belief formulaB under the following truth condi-
tions.

TK |=τ A ⇒ B if K ′ |=υ B whereK ′ is the root ofυ = ∗(τ, A).
TK |=τ ¬A if TK 	|=τ A.
TK |=τ A ∧ B if TK |=τ A andTK |=τ B.
TK |=τ A ∨ B if TK |=τ A or TK |=τ B.
TK |=τ A → B if TK 	|=τ A or TK |=τ B.

For the purposes of this definition, note that two identical complete theoriesT may
have different truth assignments for a formula depending on which belief stateK is
under consideration.

Wenow present a conditional logic corresponding to our semantics for belief revision
based on epistemic state dynamics. The logicBR is generated from the following
axiom schemata and inference rules, where unless otherwise stated,A, B andC stand
for base formulas. The formula�A is defined as¬A ⇒ A for a base formulaA.

(B1) All truth functional tautologies.
(B2) A ⇒ A.
(B3) �B → (A ⇒ B).
(B4) (A ⇒ B) → (A → B).
(B5) (A ⇒ B) ∧ (A ⇒ C) → (A ⇒ (B ∧ C)) for B andC belief formulas.
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(B6) (A ⇒ C) ∧ (B ⇒ C) → ((A ∨ B) ⇒ C).
(B7) ¬(A ⇒ ¬B) → ((A ⇒ C) → ((A ∧ B) ⇒ C)).
(B8) ¬(A ⇒ ¬B) → ((A ⇒ (B → C)) → (A ⇒ (B ⇒ C))).
(B9) ((A ∧ B) ⇒ C) ↔ (A ⇒ ((A ∧ B) ⇒ C)).

(B10) ¬�A ∧ (¬A ⇒ (A ⇒ ¬B)) → (((A ∧ B) ⇒ C) ↔
(¬A ⇒ ((A ∧ B) ⇒ C))).

(B11) ((A ∧ B) ⇒ C) ∧ (A ⇒ ((¬A ∨ ¬C) ⇒ C)) →
((A ∧ B) ⇒ ((¬A ∨ ¬B ∨ ¬C) ⇒ C)).

(B12) ((A ∧ B) ⇒ C) ∧ (A ⇒ ¬((¬A ∨ ¬C) ⇒ A)) →
((A ∧ B) ⇒ ¬((¬A ∨ ¬B ∨ ¬C) ⇒ (A ∧ B))).

(B13) (A ⇒ (B ∨ C)) → ((A ⇒ B) ∨ (A ⇒ C)) for B or C conditional
formulas.

(B14) (A ⇒ �B) → ((A ⇒ C) ↔ (A ⇒ (B ⇒ C))) for C abelief formula.
(MP) From A and A → B infer B for A andB belief formulas.

(RCEA) If � A ↔ B infer (A ⇒ C) ↔ (B ⇒ C) for C a belief formula.
(RCM) If � B → C infer (A ⇒ B) → (A ⇒ C) for B andC belief formulas.

When considering only nonnested occurrences of the conditional operator, this logic
is the same as G̈ardenfors’s logicC except for the centering axiom (A6).

(A6) (A ∧ B) → (A ⇒ B).

The reason that (A6) is included inC but not inBR is the difference in the definition
of validity: Gärdenfors [19] takes a formula as valid if its negation is not contained in
any consistent belief set, whereas aBR formula is valid if it holds at all belief revision
models. To show the invalidity of (A6), consider an epistemic state that contains no
nontrivial base formulas and in whichA ⇒ B is false: (A6) is true at such a state iff
¬A ∨ ¬B is a belief at that state (this is the base formula (A6) reduces to), but this is
impossible by assumption (that such a state exists follows from completeness). Our
version of (A6) is the following axiom, which follows from (B8).

(B8′) ((A ⇒ (B ∧ C)) → (A ⇒ (B ⇒ C))

We claim that (B8′) captures (K∗4) more accurately than (A6) does. (B8′) says that
if B ∧ C holds on a revision to acceptA, then on revising the resulting state to accept
B, C still holds. While this follows from (A6) using (RCM), the difference is that in
BR the formulaA ⇒ (B ∧ C) is determinately true or false at an epistemic state, so
whenA is a theorem, (B8′) can be read as “ifB andC hold at an epistemic state, then
C holds at the state resulting from a revision to acceptB”. However, (A6) must be
read as “B ∧ C ∧ ¬(B ⇒ C) does not hold in any epistemic state,” which is a much
weaker statement.

It is also interesting to see why (A6) is atheorem of the logic of Katsuno and
Satoh [36]. Essentially, Katsuno and Satoh define satisfaction for all formulasA us-
ing our supervaluation condition: with a total pre-order on a set of complete theories,
K satisfiesA if T satisfiesA for every complete theoryT containingK. However,
considering only complete theories, (A6) is perfectly reasonable. Our counterexam-
ple is blocked because there is no complete theory that does not contain¬A ∨ ¬B
while makingA ⇒ B false: if a complete theory does not contain¬A ∨ ¬B, it con-
tains A ∧ B and hence satisfiesA ⇒ B.



BELIEF REVISION AND NONMONOTONIC REASONING 73

The axioms (B9) and(B10) capture minimal change of entrenchment. Their ef-
fect is to ensure that the relative entrenchment of all formulas of the formA → B and
A → C is the same inK∗

A as inK, and that the relative entrenchment of all formulas
of the formA ∨ B andA ∨ C ranked higher thanA in a consistent setK∗

A is the same
in K∗

A as inK: formulas of this form not ranked higher thanA in K∗
A are all ranked

at the new rankα of A. The axioms (B11) and (B12) capture condition (3) on the
strength with which new information can be expected. Their effect is to ensure that if
A � B then whenC ∈ K∗

A, if B < C (B ≤ C) in K∗
B thenA < C (A ≤ C) in K∗

A. Hence
suitable ranks for the revisions byA andB can be chosen to fulfill the condition.

The price to pay for the invalidity of (A6) is that either strong completeness or
the deduction theorem must be given up, for certainly{A, B} |= A ⇒ B, so strong
completeness would imply that{A, B} � A ⇒ B and then the deduction theorem that
(A6) were a theorem. The logicBR satisfies the deduction theorem and is weakly
complete. In proving this, it is useful to refer to belief sets with the properties of faith-
fulness and boundedness.

Definition 4.11 A set ofBR sentences� is faithful if whenever�A ∈ � for a base
formula A, A ⇒ B ∈ � iff B ∈ � for all belief formulasB.

Definition 4.12 A setof BR sentences� is bounded to degree n if the language of
� is a finite set of proposition symbols and the only conditional formulas are nested
to depth at mostn.

Theorem 4.13 For every faithful, consistent set � of BR sentences bounded to de-
gree n, there is a belief revision model which satisfies all and only the formulas of �.

Corollary 4.14 BR is sound and complete with respect to the belief revision mod-
els.

Corollary 4.15 There is a nontrivial belief revision model.

Finally, although our approach to iterated revision has been formalized using condi-
tional logic, there are obvious connections to work on nonmonotonic consequence
relations, e.g., Gabbay [18], Makinson [43], Kraus, Lehmann and Magidor [37],
Gärdenfors [23], Makinson and G̈ardenfors [44], Lehmann and Magidor [38], and
Fariñas del Cerro, Herzig and Lang [16]. In such work, properties of the consequence
operations bear an exact correspondence to nonnested conditional formulas. Con-
sidering that Makinson and G̈ardenfors [44] provide a translation between the AGM
postulates and properties of nonmonotonic consequence operations, it should come
as no surprise that the conditional logic versions of those properties agree withBR
over the nonnested formulas. This formal connection between nonmonotonic conse-
quence operations and conditional logic is further investigated by Bell [3], Arlo-Costa
and Shapiro [2] and Crocco and Lamarre [6]. The work of Farĩnas del Cerro, Herzig
and Lang is also of interest because it addresses the question of what inferences hold
given an incomplete ordering. The proposed answer is to defineA |∼ B if B holds
at every belief state that results from acceptingA using an entrenchment compati-
ble with the ordering, giving a consequence operation that does not satisfy rational
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monotony (axiom (B7) in BR). Below, we answer this question using the most con-
servative entrenchment compatible with the given ordering, so that our consequence
operation does satisfy rational monotony.

5 Computational belief change From the earliest work in theory change, e.g., Al-
chourŕon and Makinson (1982), it has been recognized that any practical system us-
ing (in a strong sense) the operations of belief contraction and revision would have
to operate using bases for belief sets. This has led to a large body of work defining
analogues of the AGM postulates for use with theory bases, including Hansson [33],
[34], [35], Fuhrmann [17], Nebel [51], Williams [61] and Nayak [48]. Much of this
work seems concerned with reinterpreting the motivation for the AGM approach in
terms of theory bases, in particular the notions of minimal change and the postulate of
recovery. But the whole motivation for base operations is unclear: if, as is agreed, the
AGM approach is an attempt to model an idealized rational agent, what can be gained
by proposing an idealization that works with the imperfect model of bases rather than
with theories?

Put more concretely, whereas the notion of minimal change of theories has some
intuitive plausibility, the idea that a rational revision operation should be a minimal
change on a base is unmotivated, especially if it implies that a rational operation can
be crucially dependent on the representation (presumably a contingent matter) of the
belief set. That a base operation should “mimic” a theory change operation on its
closure has been called by Dalal [7] the principle of irrelevance of syntax. All of the
above base operations fail this principle. But if one is prepared to accept that a theory
base extends to its most conservative entrenchment, it is possible to define AGM op-
erations on bases that do satisfy the principle of irrelevance of syntax, not on belief
sets but on belief states. Analogous considerations apply to the recovery postulate,
the difference being that thisis controversial from the point of view of theory change.
Again, the fact that some base operations do not satisfy recovery is not a general argu-
ment in favor of base operations: Nayak [48] defines a base operation that does satisfy
recovery on its closure. The upshot is that the base-sensitivity of theory change oper-
ations is in need of further justification. In what follows, we are therefore committed
to the principle of irrelevance of syntax in requiring that an operation on a base is
always a reflection of an operation on the belief state it represents.

The theory of the dynamics of epistemic states that we have developed gener-
alizes the AGM approach to theory change. So far, this approach is not computa-
tional because it is not, in general, possible to represent epistemic states directly: an
epistemic state involves the assignment of a rank to each formula, and if there are in-
finitely many different ranks then the state cannot be finitely represented. A related
concern is that incomplete information about epistemic states, including their ranking
functions, is a fundamental aspect of problems in default reasoning. According to our
approach, which uses the E-bases of Rott [56] and Williams [61], an E-base is taken
to represent the most conservative entrenchment compatible with the initial ordering,
as in Wobcke [63]. We define operations on E-bases that reflect the epistemic state
change operations of expansion, contraction, and revision based on minimal change
of entrenchment. These operations satisfy the principle of irrelevance of syntax in
the sense that any two E-bases that have the same most conservative entrenchment
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will, when expanded, contracted, or revised, result in E-bases generating the same
most conservative entrenchment. But obviously, expanding, contracting, or revising
two different E-bases which have only the same contents will not necessarily result
in E-bases with the same contents, so looking only at the contents of belief states, the
principle of irrelevance of syntax will not be satisfied.

5.1 Bases for epistemic entrenchments Epistemic entrenchments themselves are
not suitable for computation because too much information (the entrenchment rela-
tion betweenevery pair of formulas) has to be provided. Rott [56] investigated the use
of so-calledE-bases for specifying entrenchments. The formulation we use is the spe-
cial case of an E-base in which a belief state is represented by a theory base together
with a function assigning to each element of the base a natural number known as its
rank, asconsidered by Williams [61]. The given ranking on the base formulas is un-
derstood to extend in a unique way to the most conservative entrenchment compatible
with the ranking, (see Wobcke [63]). Recall that since the conservativeness ordering
satisfies the descending chain condition, such a unique most conservative entrench-
ment always exists whenever the base is consistent. Note also that the nonredundancy
condition on E-bases is not essential for theoretical purposes but is useful for compu-
tational efficiency.

Definition 5.1 A ranked E-base � is a set of formulas together with a ranking func-
tion, assigning to each nontheorem a natural number known as itsrank, that satisfies
the following (nonredundancy) condition.

(R) For all A ∈ �, {B ∈ � | rank(B) > rank(A)} 	� A.

Definition 5.2 An epistemic entrenchment≤ (with strict part<) is compatible
with an E-base� if for all A andB contained in�, if rank(A) ≤ rank(B) thenA ≤ B
and if rank(A) < rank(B) then A < B.

In the present context, the use of most conservative entrenchments, which we moti-
vated above in terms of minimal change of entrenchment, now embodies an assump-
tion of foundationalism. The rank of a formula is intended to represent the degree of
evidence possessed by the system for a particular belief. A representation of a be-
lief state is therefore a collection of formulas (those of the base) together with the
degrees of evidence for each formula in the base. The belief set represented is the
logical closure of the belief set base. Similarly, the most conservative entrenchment
is the “closure,” in some sense, of the E-base. To define this sense of closure, we take
it that the only evidence possessed by the system for a belief is that derived from the
evidence for formulas in the base: the evidence for a formula derived from a nonre-
dundant collection of formulas is the evidence for the conjunction of these formulas,
which is just the evidence for the least entrenched formula in the conjunction. In this
sense, the generated entrenchment is conservative in not attributing evidence for a
belief other than that warranted by the evidence for the base beliefs from which that
belief derives.

Williams [61] presents the following characterization of the entrenchment gen-
erated from a ranked E-base. Let the E-base� be partitioned into subsets�1, �2, . . .,
where�r is the set of base formulas with rankr and let�r = ∪∞

i=r�i. Define a ranked
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epistemic entrenchment by settingrank(A) = max({r | �r � A}) when A ∈ Cn(�)

andrank(A) = 0 when A 	∈ Cn(�).

Definition 5.3 An E-base� is abase for a ranked epistemic entrenchmentK if K
is the most conservative ranked epistemic entrenchment compatible with�.

Theorem 5.4 The E-base � is a base for a ranked epistemic entrenchment K iff K
is defined by setting rank(A) = max({r | �r � A}) when A ∈ Cn(�) and rank(A) = 0
when A 	∈ Cn(�).

It is an obvious corollary that in terms of Grove’s systems of spheres, the most conser-
vative entrenchment compatible with an E-base is that represented by allowing each
complete theory to “sink” to the lowest possible rank while still respecting ranks of
the formulas in the base. This provides a strong connection to the rational closure
operation of Lehmann and Magidor [38].

Definition 5.5 A ranked system of spheresrepresents an E-base� if for each non-
theoremA ∈ �, rank(A) is the rank of the smallest sphere containing a complete the-
ory containing¬A.

Corollary 5.6 The most conservative ranked epistemic entrenchment compatible
with an E-base � is represented by the ranked system of spheres defined by setting
rank(T ) to be the smallest r such that T contains A for all A ∈ � ranked greater
than r.

5.2 Algorithms for epistemic state change E-bases are ideal for the direct repre-
sentation of epistemic states, and in this section, we show how they can be used as
the basis of algorithms for the computation of the iterative theory change operations
of expansion, contraction and revision. The algorithms are completely independent of
the base logic; what is assumed is the existence of a theorem prover for the base logic
which can be used by our algorithms. Our algorithms terminate (i.e., they are algo-
rithms) provided the theorem prover is guaranteed to terminate on both consequences
and nonconsequences of a theory. Assuming an oracle for the theorem prover, all the
algorithms have run-time complexity linear in the size of the base. But in practice,
the most expensive part of the algorithms is the use of the theorem prover; hence our
algorithms are written to minimize the number of times the theorem prover is called.
A particular implementation of our algorithms over the base logic of first order logic
with equality (along with some heuristic methods for handling nontermination of the
theorem prover) is described in [12].2

5.2.1 Determination of rank The computation of the rank of a formulaA is the
simplest process to define mathematically, but it is where the complexity of the sys-
tem lies in practice. This is so because rank determination is far worse than theorem
proving since not just one proof, but the “best” proof ofA (the one with the highest
rank) must be found. The following procedure uses a variant of the branch-and-bound
algorithm. It simply finds proofs ofA in turn and associates with each proof a rank
defined as the rank of the lowest ranked formula involved in the proof. This is a lower
bound for the rank ofA. Subsequent attempts to proveA are terminated as soon as a
formula of equal or lower rank is used. When there are no further proofs ofA greater
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than the cutoff, the greatest lower bound of the ranks is returned as the rank ofA.3 If
no proof is found, a rank of 0 is returned, indicating thatA is not a belief.

Supposeproof(�, r, A) denotes a procedure to find all proofs of the formulaA
using only the formulas from the base� of rank at leastr, i.e., using only the formu-
las in�r. The procedurerank(�, A), written below in pseudo-code, repeatedly calls
proof with an increasing rank bound to eventually return the least upper bound of all
proofs of A.

rank(�, A)

r := 0
while p := proof(�, r + 1, A) do % more proofs exist

r := rank(p)

return(r)

5.2.2 Expansion Weimplement the expansion procedureexpand(�, A, newrank)

using the following algorithm, where� is the base of the belief set,A is the belief
being added to the base, andnewrank (assumed positive) is the intended rank ofA.
The procedureupdate(�, A, newrank) either adds the formulaA to the base� with
ranknewrank if A is not already contained in the base or else changes the rank ofA to
newrank, delete(�, A) deletesA from the base�, andtheorem(A) uses the theorem
prover to test whetherA is a theorem.

expand(�, A, newrank)

if theorem(A) or (rank(�,¬A) > 0)

return(�)

else
oldrank := rank(�, A)

if (newrank ≤ oldrank)

return(�)

else
� := update(�, A, newrank)

for eachB ∈ � of rankr such thatoldrank ≤ r ≤ newrank do
if proof(� − {B}, r, B) % B is redundant

� := delete(�, B)

return(�)

Some comments on this algorithm are in order. First, when the base is to be ex-
panded by a formulaA, it is tested for logical consistency with the current base and
the expansion rejected if it is not consistent. This is in conflict with our earlier def-
initions, but this is justified on the basis that inconsistent belief sets, especially over
classical logics, are not useful in practice. Second, if the formula is consistent with
the belief set, its rank is determined for consistency with the rest of the generated en-
trenchment. The given new ranknewrank is taken to indicate further evidence forA,
so if A already has a rank of at leastnewrank, nochange to� is made. If the rank of
A in � is less thannewrank, A is explicitly added to the base with ranknewrank and
any necessary changes to the base are made. The changes are to ensure that the new
base contains no redundancy. Any formula in� with rank at least the old rank ofA
but not greater thannewrank may become redundant by the change in rank ofA, in
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particular if it is derivable with the same or higher rank from the other formulas in the
new base afterA has been added. In this case, it is deleted. Note that determining the
rank of an element in the base does not require the prover but is merely a lookup of its
stored rank in the old base�. Note also that for each iteration of the loop, the test for
whether a base formulaB is derivable uses the base which may have been reduced
after previous iterations of the loop have deleted some formulas. This does not affect
the end result because a formulaC is deleted only if it is derivable from the formulas
in the new base of at least the same rank, soB is derivable from the new base with
some rank if it is also derivable from the new base with the same rank afterC has
been deleted. This means that the expansion algorithm does not need a copy of the
original base� but instead can repeatedly update the one database.

The following theorem guarantees that our expansion algorithm correctly com-
putes an E-base for the belief stateK+

A,α
as defined using the postulates (K+1) –

(K+6).

Theorem 5.7 If � is a base for K 	= K⊥, expand(�, A, α) is a base for K+
A,α

.

5.2.3 Contraction Wenow present an algorithmcontract(�, A) for contraction of
the base� by the formulaA.

contract(�, A)

if theorem(A)

return(�)

else � := �

oldrank := rank(�, A)

for eachB ∈ � of rankr such thatr ≤ oldrank do
if not(proof(�, oldrank+1, A ∨ B)) % (C−) condition

� := delete(�, B)

if (r < oldrank) or not(proof(�, oldrank+1, A → B))

� := update(�, A → B, r)
return(�)

If an attempt is made to contract a theorem, the attempt is rejected in accordance
with the AGM definitions. A change is made only ifA is derivable from the base. In
this case, each memberB of the base is checked to see whetherB is deleted from the
base, and further, ifA → B is to be added to the base. By the (C−) condition,B is
removed from the base ifrank(A) = rank(A ∨ B). The formulaA → B needs to be
added to the base if it will not be derivable in the new base: its rank is that ofB in
the original base. The test for whetherA → B is derivable in the new base can be
greatly simplified. In the case whereB is ranked less thanA, given thatrank(A) =
rank(A ∨ B), A → B must be ranked the same asB by (RE2), henceA → B cannot
be derivable afterB is deleted since the original base� is not redundant. The only
other case is whereA, B andA ∨ B are all ranked the same in the original state. In this
case,A → B must be added to the base with that rank if it is not already derivable from
the set of higher ranked formulas. Note that this algorithm repeatedly tests the ranks
of formulas in the constructed base� rather than in the original base� as the (C−)
condition requires. Again, as with expansion, this does not affect the result because
of the nature of the tests performed. The first tests whether there is a proof ofA ∨ B
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using only formulas ranked higher thanA; the second tests whether there is a proof
of A → B using the same set of formulas. Since none of these formulas are affected
by earlier iterations of the loop, this set of formulas is the same in each� as in the
original�.

The replacement ofB by A → B is necessary because of the AGM postulate
(K−5),4 K ⊆ (K−

A )+A , from which we can derive that ifB ∈ K thenK−
A � A → B (if

B ∈ K, K−
A ∪ {A} � B by (K−5), so K−

A � A → B by the deduction theorem). This
replacement is redundant ifA → B ∈ K. The rank for the added formulaA → B is
that of B in the original base� because, given thatA → B is not provable from the
set of formulas ranked higher thanB, its rank in� is the same as that ofB in �. Note
that the contraction ofA is successful even ifA is not contained in the base because
at least one base formula from each proof ofA is removed.

The following theorem guarantees that our contraction algorithm correctly com-
putes an E-base for the belief stateK−

A as defined using the postulates (K−1) – (K−9).

Theorem 5.8 If � is a base for K 	= K⊥, contract(�, A) is a base for K−
A .

5.2.4 Revision Finally, we present an algorithmrevise(�, A, newrank) for com-
puting the revision of an epistemic state� to acceptA at a positive ranknewrank.

revise(�, A, newrank)

oldrankA := rank(�, A)

if theorem(A) or theorem(¬A) or (newrank ≤ oldrankA)

return(�)

else
� := �

oldrank¬A := rank(�,¬A)

for eachB ∈ � of rankr such thatr ≤ oldrank¬A do
if (r ≤ newrank) or not(proof(�, oldrank¬A +1, A → B)) % (C∗) cond.

� := delete(�, B)

if (r > newrank) and((r < oldrank¬A) or not(proof(�, r + 1, A ∨ B)))

� := update(�, A ∨ B, r)
� := expand(�, A, newrank)

return(�)

If A is a theorem or a contradiction, no change is made to the base. Otherwise
any formulaB such that¬A is of rank equal toA → B in the original base is replaced
by A ∨ B where this is not redundant. It suffices to consider only thoseB ranked less
than or equal to¬A because if¬A < B then¬A < A → B, so B remains in the
revised set. The replacement formula is redundant if its rank is at most the new rank
of A (becauseA ∨ B is a consequence ofA) or if A ∨ B can be proven from the base
with a higher rank. The final step in the algorithm is to expand the remaining base by
A. Note, again, that the repeated calls toproof use only the formulas ranked higher
than¬A, and this set does not change with repetitions of the loop.

The following theorem guarantees that our revision algorithm correctly com-
putes an E-base for the belief stateK∗

A,α as defined using the postulates (K∗1) –
(K∗10).

Theorem 5.9 If � is a base for K 	= K⊥, revise(�, A, α) is a base for K∗
A,α.
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Finally, we briefly discuss the complexity of the revision algorithm in terms of its use
of the theorem prover. The number of calls to the procedureproof depends on the val-
ues ofoldrank (the initial rank of¬A) andnewrank. SupposeN is the size of the base,
Nr the number of base formulas ranked at mostr andnr the number ranked exactly
r. Then, considering only those cases whereA is not initially contained in the base,
in the worst case, AGM revision requiresNnewrank − Noldrank + noldrank calls toproof
if newrank ≥ oldrank and Noldrank − Nnewrank calls toproof if newrank < oldrank.
Thus the complexity of iterative AGM revision in terms of the use of the theorem
prover is proportional to the degree of change made to the base, and this means that
not only is iterative AGM revision a “minimal” change in the theoretical sense, but
that it can be implemented using a “minimal” change in the computational sense. The
most significant fact from a practical point of view is that the size of the base increases
by at most one, which means that the base grows linearly with the number of itera-
tions. With the implementation of Spohn’s [58] OCF revision given in Wobcke [64],
the size of the base may double at each iteration, making iterated OCF revisions much
more expensive than iterated AGM revisions.

6 Nonmonotonic reasoning Wenow investigate the relationship of nonmonotonic
reasoning to both belief revision and conditional logic. The basic idea behind ap-
proaches to nonmonotonic reasoning based on belief revision, e.g., Gärdenfors [23],
Wobcke [63], is that a default represents a policy of belief change. More precisely,
a default such asbird(tweety) ⇒ fly(tweety) represents a commitment to accept the
belieffly(tweety) upon learning thatbird(tweety). Such a commitment is understood
as being with respect to an epistemic state that corresponds to a given initial default
theory, which is usually fixed for the purpose of analysis. Note that if the initial col-
lection of beliefs is to be consistent, there can be no “universal” defaults such as
∀x(bird(x) → fly(x)) if in addition, some instance of the rule contradicts the uni-
versal statement, i.e., some particular bird is known not to fly. Thus under the belief
revision approach to nonmonotonic reasoning, a generic default such as “birds fly”
is represented as the formula∀x(bird(x) → fly(x)), which represents a collection of
belief revision policiesbird(t) ⇒ fly(t), one for each termt in the language. For any
exceptional bird such as the nonflyingtweety, the universal default must be weakened
to ∀x((x 	= tweety) ∧ bird(x) → fly(x)) to ensure the consistency of the belief set.

Belief revision has already been shown to have a close intuitive connection to
nonmonotonic reasoning in Gärdenfors [22]. The connection between belief revision
and nonmonotonic consequence operations was explored in Makinson and Gärden-
fors [44] and extended by G̈ardenfors [23] who introduced the concept of an expec-
tation (the analogue of an entrenchment) and showed how belief revision relates to
the default reasoning system of Poole [54]. All these connections are based on the
observation that belief revision is nonmonotonic, i.e., it is possible thatB ∈ K while
B 	∈ K∗

A. Thus if a consequence operation|∼ is defined byA |∼ B iff B ∈ K∗
A, then|∼

is nonmonotonic. However, there is more at issue in nonmonotonic reasoning than
just nonmonotonicity of the consequence operation. We claim that a central feature
of the core problems of interest is the partiality or incompleteness of the initial in-
formation. So expectations cannot be regarded as a solution to the problems of non-
monotonic reasoning because too much information has to be given initially, e.g., a
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total pre-order on all formulas of the language.
The insufficiency of expectations alone to address problems in nonmonotonic

reasoning can be seen by examining a simple problem in inheritance. Consider the
theory: birds typically fly, robins and penguins are birds, penguins typically don’t
fly, Tweety is a bird and Opus is a penguin. Some desired conclusions are that robins
typically fly, that Tweety can fly but Opus cannot fly and that birds colored black can
fly. What can be shown is thatsome expectation that gives these conclusions can be
defined, but not how this expectation is to be generated from just the initial default
theory. Partial or incomplete orderings on beliefs must be considered.

Incomplete orderings on formulas in a logical language have been proposed in-
dependently as a basis for implementing nonmonotonic reasoning systems. These ap-
proaches, stemming from the intuitions of probability theory, bear a close relation-
ship to those using entrenchments to represent belief revision operations. System
Z, in Pearl [52], uses a total pre-order on a finite collection of defaults to defineε-
entailment, the “core” of nonmonotonic inference, and 1-entailment, an extension of
ε-entailment which has close connections to the rational nonmonotonic consequence
operations of Lehmann and Magidor [38], as shown by Goldszmidt and Pearl [30]. A
number of perceived weaknesses of 1-entailment have been addressed in subsequent
work. Goldszmidt, Morris and Pearl [29] define an approach based on “maximum
entropy” orderings of defaults, while Geffner and Pearl [27] define conditional entail-
ment, which allows partial orderings of defaults. In these approaches, the ordering of
the defaults can be generatedautomatically from a given collection of defaults. This
represents a major difference between approaches based on orderings and those based
on belief revision because the entrenchment or expectation used by a belief revision
system is assumed to be given.

The computational approach to the dynamics of epistemic states that we have
developed allows the possibility of incompleteness in the specification of default the-
ories: a default theory is taken to stand for the most conservative ranked epistemic
entrenchment that respects the defaults. However, this interpretation works only for
propositional default theories, and, moreover, our system corresponds to the 1-entail-
ment of Pearl [52] and the rational consequence of Lehmann and Magidor [38], and
thus yields the same counterintuitive results. Concluding that additional informa-
tion is needed to avoid these results, we require a first order default theory to be
defined by a ranked E-base, analogous to the “variable-strength” defaults of Gold-
szmidt and Pearl [31]. A ranked E-base is taken as standing for the most conserva-
tive ranked epistemic entrenchment compatible with the base, giving a nonmonotonic
consequence operation that satisfies rational monotony, which corresponds to (K∗8).
Rational monotony is central in the AGM account of belief revision, although work
by Rott [57] shows how a generalized form of epistemic entrenchment can be used
as a representation for a class of revision operations that does not, in general, satisfy
rational monotony. Our approach to incomplete information is closely related to that
described in Fariñas del Cerro, Herzig and Lang [16], who take a given base as ex-
tending to all expectations that are compatible with it, also giving a nonmonotonic
consequence operation that does not satisfy rational monotony.

To further motivate our approach to nonmonotonic reasoning, we first consider
the connections to conditional logic. In nonmonotonic reasoning, what is considered
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are theextensions of a default theory, i.e., sets of sentences containing the theory that
include as many default conclusions as are consistently possible. In section6.1, we
show a connection between extensions of a default theory expressed in conditional
logic and the most conservative epistemic state representing the theory. This con-
nection is limited to propositional default theories. We propose to handle first order
default theories by adopting the additional assumptions of uniqueness of names and
independence of default instances, as described in section6.2. We present an algo-
rithm for the computation of belief revision operations which incorporates the inde-
pendence of default instances, whereas uniqueness of names is assumed to be imple-
mented as part of the theorem prover, as it has been in the system described in Dixon
and Wobcke [13]. In section6.3, we show the behavior of the system on a number of
benchmark problems in nonmonotonic reasoning collected by Lifschitz [41].

6.1 Nonmonotonic reasoning and conditional logic The simplest approach to
nonmonotonic reasoning using conditional logic is to use deduction in conditional
logic to derive conclusions nonmonotonically. A default such as that birds fly is rep-
resented as acollection of beliefsbird(x) ⇒ fly(x), one such belief for eachx. Using
the Ramsey test for conditionals, this is taken to be a set of belief revision policies,
i.e., “if I come to accept thatx is a bird, I will also accept thatx flies.” This indicates
that we would conclude “by default”fly(x) from bird(x). Thus given a set of beliefs
�, the set of nonmonotonic conclusions derivable from a factA is the set the beliefs
that would result wereA to be accepted as a belief, which is just the setK∗

A as defined
by the AGM postulates. This is also the set ofB such thatA ⇒ B is contained in the
default theory�.

Unfortunately, this by itself is insufficient to generate all the desired conclusions
from an initial set of defaults. As Delgrande [10] argues, the crux of the problem is
representing the independence or irrelevance of various facts (in relation to particular
defaults). For example, if we are to conclude the default that birds that have wings fly
based on the default that birds fly, we need to know that a bird’s having wings does not
affect its ability to fly. Delgrande achieves this by using specially defined procedures
for constructing extensions of default theories. We develop an approach to nonmono-
tonic reasoning in which assumptions of independence or irrelevance are explicitly
expressed in conditional logic, with extensions defined by logical consequence. This
approach has close connections to Pearl’s [52] SystemZ and to Lehmann and Magi-
dor’s [38] rational closure of a conditional knowledge base.

Definition 6.1 A default theory is a finite set ofBR formulas of the formA ⇒ B
whereA andB are base formulas.

Definition 6.2 A formulaB is independent of A in a theory� if ¬(A ⇒ ¬B) ∈ �.

Intuitively, if I come to believeB, this has no effect on my beliefs that follow from
A by default in the sense that I do not have to revise any of these beliefs in order to
acceptA. The importance of independence assumptions in nonmonotonic reasoning
is that they sanction both strengthening the antecedent and transitivity of defaults,
which enable default conclusions to be propagated. More precisely, the following
are theorems of the logicBR (hereA, B andC are base formulas).
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¬(A ⇒ ¬B) → ((A ⇒ C) → ((A ∧ B) ⇒ C))

¬(B ⇒ ¬A) → ((A ⇒ B) ∧ (B ⇒ C) → (A ⇒ C))

These formulas are consequences of our axiom (B7), corresponding to the AGM pos-
tulate (K∗8), which also arises out of a need to capture the independence of beliefs.

Definition 6.3 An assumption¬(A ⇒ ¬B) is at least as strong as ¬(A′ ⇒ ¬B′)
if A′ � A.

Intuitively, the stronger the independence assumption, the “more” cases of strength-
ening the antecedent and transitivity it allows, in the sense that whenever an object
has the propertyA′ it has the propertyA, sothe class ofA-objects includes at least
all the A′-objects.

Definition 6.4 A set of independence assumptionsS is stronger than a setS′ if S
contains one or more equally strong independence assumptionsA not contained in
S′ and for any other independence assumptionA′ at least as strong asA, A′ ∈ S iff
A′ ∈ S′.

Definition 6.5 An extension of a BR theory� is a faithful, consistent set ofBR
sentences�∗ containing� such that no such set includes a stronger set of indepen-
dence assumptions than�∗.

Since consistent sets ofBR sentences are not, in general, faithful, they do not corre-
spond to entrenchments. However, a consistent set ofBR sentences� can be asso-
ciated with a number of entrenchments, one for each faithful, consistent set contain-
ing �, in which A ≤ B for base formulasA andB iff �B ∨ ¬((¬A ∨ ¬B) ⇒ A) is
contained in�. Note that the formula¬((¬A ∨ ¬B) ⇒ A) is an independence as-
sumption, specifically, one that represents the independence of¬A from ¬A ∨ ¬B.
We now show that the extensions of a theory� correspond to the most conservative
epistemic states that agree with the defaults in�, and hence that a consistent default
theory has exactly one extension. This is analogous to results presented by Pearl [52]
for SystemZ and Lehmann and Magido [38] for rational closure (the correspondence
between these two systems was shown by Goldszmidt and Pearl [30]).

Definition 6.6 A default theory� represents an entrenchment relationA ≤ B (re-
spectivelyA < B) if � contains�B ∨ ¬((¬A ∨ ¬B) ⇒ A) (respectively¬�A ∧
((¬A ∨ ¬B) ⇒ B)).

Definition 6.7 A ranked epistemic entrenchmentrespects a BR theory� if it sat-
isfies all entrenchment relations (over≤ and<) represented in�.

Theorem 6.8 Extensions of a BR theory � are in correspondence with the most
conservative ranked epistemic entrenchments respecting �.

Corollary 6.9 A consistent default theory has a unique extension.

Thus the formation of an extension of a default theory has a direct correlate in epis-
temic entrenchment. The rule is: given a default theory, assume that the beliefs are
ranked as low as possible consistent with the defaults. The default conclusionsB that
follow from a formulaA with respect to the default theory� are those formulasB such
that A ⇒ B is contained in every extension of�, or equivalently, those formulasB
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�
penguin(x) → ¬fly(x)

�
penguin(x) → bird(x)

bird(x) → fly(x)

Figure 2: E-base for Simple Default Theory

that hold at those states which result from a revision to acceptA of every belief state
K that is a most conservative belief state respecting�.

Definition 6.10 A |∼� B if A ⇒ B is contained in every extension of�.

To illustrate the use of independence assumptions, or equivalently, most conserva-
tive entrenchments, in generating nonmonotonic conclusions, consider the simple de-
fault theory with the law�(penguin(x) → bird(x)) and the two defaultsbird(x) ⇒
fly(x) andpenguin(x) ⇒ ¬fly(x). By (B4), our default theory contains the formu-
lasbird(x) → fly(x) andpenguin(x) → ¬fly(x), and therefore contains the formula
¬penguin(x): i.e., anything is, by default, not a penguin. An E-base for the be-
lief state corresponding to this simple theory is shown in Figure 2. The formula
penguin(x) → bird(x) is treated as a theorem of the base logic and is ranked at the
highest level. The defaultsbird(x) ⇒ fly(x) and penguin(x) ⇒ ¬fly(x) are rep-
resented by the entrenchments¬bird(x) < bird(x) → fly(x) and¬penguin(x) <

penguin(x) → ¬fly(x): note that¬bird(x) is a nonbelief and hence is less entrenched
than any belief and that¬penguin(x) is ranked at the level ofbird(x) → fly(x) be-
cause it follows from that formula together withpenguin(x) → ¬fly(x) using the the-
orempenguin(x) → bird(x). Because¬penguin(x) is a belief, there must be at least
two levels of ranking to generate both desired conclusions, and since there are ex-
actly two levels of ranking of the nontheorems in the E-base, this E-base is a base for
the most conservative ranked epistemic entrenchment that respects this default the-
ory. Intuitively, the default forpenguin, the more specific subtype, is higher than that
for the more general typebird because given a conflict between something’s being a
bird and its being a penguin, the more specific information is preferred, hence is the
more highly ranked.

Now consider the question of whether birds that have wings fly. This holds if
bird(x) ∧ wings(x) ⇒ fly(x) is contained in the unique extension of the theory, or
equivalently, if¬bird(x) ∨ ¬wings(x) < bird(x) ∧ wings(x) → fly(x) in the most
conservative entrenchment compatible with the E-base in Figure 2. The indepen-
dence assumption¬(bird(x) ⇒ ¬wings(x)) is consistent with the theory, so by (B7),
it follows thatbird(x) ∧ wings(x) ⇒ fly(x). Alternatively, the rule for most conser-
vative entrenchments says to rank formulas as low as possible consistent with the
postulates (RE1) – (RE3). So the formula¬bird(x) ∨ ¬wings(x) is ranked along
with the nonbelief¬bird(x), whereas the formulabird(x) ∧ wings(x) → fly(x) must
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be ranked at least as highly asbird(x) → fly(x) becausebird(x) → fly(x) implies
bird(x) ∧ wings(x) → fly(x). This means that¬bird(x) ∨ ¬wings(x) < bird(x) ∧
wings(x) → fly(x), sobird(x) ∧ wings(x) ⇒ f ly(x).

However, the problem with the above definitions is that they do not give all the
results that are intuitively desirable. For example, consider the above theory with the
addition of the defaultbird(x) ⇒ wings(x). The question now is whether penguins
have wings. Since the theory containsbird(x) ⇒ ¬penguin(x), the independence as-
sumption that would be used to derive this conclusion,¬(bird(x) ⇒ ¬penguin(x)),
is inconsistent. In fact, there is an independence assumption consistent with the the-
ory, and that is¬(penguin(x) ⇒ wings(x)). This “assumption,” which is intended
to be used to infer properties of nonwinged penguins from the properties of pen-
guins, now answers the original question for us in the negative! Equivalently, the
formulapenguin(x) → wings(x) must be ranked at the level ofbird(x) → fly(x), so
that¬penguin(x) is ranked the same aspenguin(x) → wings(x). This same result
is a well known problem with Pearl’s SystemZ (see [52]). The rule in force can be
summed up in the statement that once an object or subclass is exceptional with re-
spect to one property (such as flying) it is exceptional with respect to all properties
(including having wings).

In our view, the problem is not with the inference patterns, but with the initial in-
formation. We consider that the conclusion that penguins have wings (which is, after
all, the true state of affairs) does not follow from the initial assumptions, but rather
relies on knowing the absence of a connection between not flying and having wings.
To see this, note that it is possible to construct another example in which SystemZ
gives the correct conclusion: e.g., with the default that birds eat insects, SystemZ
infers that penguins don’t eat insects. We thus consider the initial problem to be un-
derspecified and that there is no purely formal way to derive the desired conclusions
without further information. That is, it is not sufficient to use rules such as (i) that ex-
ceptions are exceptions to all properties, or (ii) that exceptions are exceptions to the
smallest set of properties, but rather each property must be considered separately. A
similar conclusion was reached by Goldszmidt and Pearl [31]. Thus from now on, we
consider only those default theories in which such an ambiguity about the status of a
property is absent. That is, we require the initial specification of a problem in default
reasoning to come with a total pre-order on defaults, which corresponds to an E-base.
A further complication is that the above definitions work only with propositional de-
fault theories: in practice, problems in default reasoning need to be formalized using
at least a first order language.

6.2 Nonmonotonic reasoning and belief revision Wehave shown a connection be-
tween the unique extension of a default theory expressed in conditional logic and
the most conservative belief state respecting the theory. However, from the point
of view of nonmonotonic reasoning, this definition gives intuitively acceptable con-
clusions only with propositional default theories: i.e., if a default theory is a consis-
tent collection of ground instances of a collection of defaults. We would like a sys-
tem to operate directly with defaults so a modified revision operation must be used.
The unacceptable behavior resulting from the use of most conservative belief states
is easily seen with the Nixon diamond, formalized as the E-base consisting of just
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two equally ranked formulas∀x(quaker(x) → pacifist(x)) and∀x(republican(x) →
¬pacifist(x)). To find out whether or not Nixon, who is both a quaker and a republi-
can, is a pacifist, we revise byquaker(nixon)∧ republican(nixon). Now according to
the most conservative entrenchment generated by the base, the resulting theory con-
tainsquaker(nixon)∧ republican(nixon) and its consequences, as expected, but noth-
ing else. Both rules are removed because¬quaker(nixon) ∨ ¬republican(nixon) is
ranked the same as each rule: i.e., a default is rejected by its having just one excep-
tion!

We propose to overcome this problem by making two additional assumptions:
uniqueness of names and independence of default instances. First, uniqueness of
names means that any two distinct terms in the logical language denote distinct ob-
jects in the domains. Formally, this means restricting our attention to the Herbrand
models of the belief language. Uniqueness of names has been suggested by Lifs-
chitz [41] as being an intuitively desirable property of default reasoning. Given that
the instances of a default all apply to different objects in the domain by uniqueness of
names, the second assumption means that all these beliefs are independent. That is,
there is no epistemic relationship of justification between two instances of the same
default, so that when one instance of a default is removed from a theory by a revision,
all other instances of the default remain in the theory. In addition, we will use the fol-
lowing restricted language of defaults, which proves to be adequate for representing
many problems in nonmonotonic reasoning.

Definition 6.11 A default is a formula of the form∀x δ(x) whereδ is a clause, each
of whose literals is either of the form [¬] p(x) for some predicate symbolp and vari-
ablex or of the formx = t for some ground termt. Note that the variablex must be
the same in all literals in the clause.

Definition 6.12 A default theory is a finite, consistent ranked E-base over the lan-
guage of defaults and instances of defaults.

Uniqueness of names can be formalized by adopting the standard axioms of equality
and inequality into our logical language. Note, however, that an infinite Herbrand
universe is assumed so that formulas such as∀x((x = t1) ∨ · · · ∨ (x = tn)), usually
used to express domain closure, become inconsistent. This is because it cannot be
assumed that the constants used in expressing the initial defaults are all the constants
in the language: to allow revision by¬δ(t) wheret is a new constant, such domain
closure formulas must be inconsistent.

Independence of default instances can be formalized as follows. The idea is that
on revising to accept a ground exception¬ε(t) to a defaultε, the revision procedure
should leave unchanged all instances of a defaultδ other thanδ(t). More precisely,
given a ranked epistemic entrenchment� corresponding to a default theory, letK be
the set of ground instances of the formulas in� and letKt be the elements ofK in
which the term in the formula ist. Then to capture independence of default instances,
the set of ground formulas in the revision of� to accept¬ε(t) should be(Kt)

∗
¬ε(t) ∪

{Ku : u 	= t}. Moreover, the formulas inKu whereu 	= t should be ranked as inK,
whereas the ranks of the formulas inKt should be as determined by the AGM revision
operation using minimal change. The way this assumption is implemented is that on
a revision by an exception¬ε(t) to a defaultε, for any defaultδ in the initial theory,
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the revised theory entails the weakened default∀x((x 	= t) → δ(x)) and hence all the
instances ofδ exceptδ(t).

We now present an algorithmrevise(�,¬ε(t), newrank) for revising a belief
base� by a formula¬ε(t) with rank newrank, according to the most conservative
entrenchment applied to the set of ground formulasδ(t) and under the assumption of
independence of default instances.

revise(�,¬ε(t), newrank)

oldrank¬ε(t) := rank(�,¬ε(t))
if theorem(ε(t)) or theorem(¬ε(t)) or (newrank ≤ oldrank¬ε(t))

return(�)

else
� := �

oldrankε(t) := rank(�, ε(t))
for eachδ ∈ � of rankr such thatr ≤ oldrankε(t) do

if δ covers an instanceδ(t) and not(proof(�, oldrankε(t) +1, ε(t) ∨ δ(t)))
� := delete(�, δ)

if δ is not identical toδ(t)
let δ′(X) ≡ (X 	= t) → δ(X)

if not(proof(�, r + 1, δ′(X)))

� := update(�, δ′(X), r)
if (r > newrank) and not(proof(�, r + 1, ε(t) → δ(t)))

� := update(�, ε(t) → δ(t), r)
� := expand(�,¬ε(t), newrank)

return(�)

Corollary 6.13 If � is a base for �, revise(�,¬ε(t), α) is a base for �∗
¬ε(t),α un-

der independence of default instances.

The main difference between this algorithm and the original revision algorithm is that
in addition to formulas added to satisfy the recovery postulate, formulasB of the form
δ(X) ranked at most the old rank of¬ε(t) are weakened to(X 	= t) → δ(X) if this
new formula is not redundant, i.e., does not already follow from the formulas in the
base with a higher rank. Note also that the condition for addingε(t) → δ(t) in order
to satisfy recovery requires the use of the theorem prover even whenr < oldrankε(t),
in contrast to the original revision algorithm. This is to take care of the case when
δ(X) andδ(t) have different ranks in�.

6.3 Benchmark problems for nonmonotonic reasoning We now ask if the ap-
proach described above captures the intuitions of nonmonotonic reasoning. To eval-
uate our system, we examine the behavior of the revision algorithm on some bench-
mark problems in nonmonotonic reasoning taken from Lifschitz (1989). The prob-
lems are divided into the categories of default reasoning, inheritance, uniqueness of
names, reasoning about action and autoepistemic reasoning. We discuss how the sys-
tem handles some of these kinds of examples. The following output is produced by
an implementation of our revision system, which is described in more detail in [12],
[13]. The symbols “&” forand, “|” for or, “ ˜” for not, “->” for implies and “!= ” for
not equals are used, and the output is indented with “>>>.”
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6.3.1 Default reasoning The first example covers basic default reasoning, default
reasoning with irrelevant information and default reasoning in an open domain (Lif-
schitz’s examples A1, A2 and A5). The problem is stated informally as follows.

Assumptions: BlocksA andB are heavy.
Heavy blocks are normally located on the table.
A is not on the table.
B is red.

Conclusions: B is on the table.
All heavy blocks other thanA are on the table.

In this example, specific facts are given a higher rank than defaults because specific
information about objects is presumed to be more reliable than general defaults. An
exception¬δ(t) to a defaultδ(X) is input to the system by making a revision to accept
¬δ(t).

# Problem A1, Basic Default Reasoning
100: heavy(a) # Facts
100: heavy(b)

50: All(X) [heavy(X) -> table(X)] # Default
100* ˜ table(a) # Exception
? table(b) # Query
>>>yes : rank = 50

# Problem A2, irrelevant information
100: red(b) # Fact
? table(b) # Query
>>>yes : rank = 50

# Problem A5, open domain
? All(X)[ (X! =a & heavy(X)) -> table(X)] # Query
>>>yes : rank = 50

??
>>>Complete database:
>>>100 : heavy(a)
>>>100 : heavy(b)
>>>100 : ˜ table(a)
>>>100 : red(b)
>>>50 : All(X) [(X! =a) -> (heavy(X) -> table(X))]

Note that when a revision is made to accept an exceptional instance of a default, the
default is weakened to cover all but the exceptional case.

The example involving several defaults (Lifschitz’s problem A3) cannot be han-
dled by our belief revision approach to nonmonotonic reasoning because the ordering
on defaults in the E-base is assumed to be a total pre-order.

Assumptions: BlocksA andB are heavy.
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Heavy blocks are normally located on the table.
Heavy blocks are normally red.
A is not on the table.
B is not red.

Conclusions: B is on the table.
A is red.

According to our theory, any exception to a default at rankr is also an exception
to all defaults at rank less than or equal tor, unless the contrary is explicitly stated,
e.g., by placing an instantiation of a default at a higher rank than the default itself.
So if the default that heavy blocks are on the table is placed at a higher rank than the
default that blocks are red, it is concluded thatB is on the table, but not thatA is
red. If the ranks of the rules are swapped, the opposite results are obtained. The third
possibility is that the defaults are given equal rank, intuitively the most reasonable
choice, yet this yields neither of the desired conclusions, asA andB become excep-
tions to both rules. To state that the two defaults are unrelated would require a partial
order on defaults along the lines proposed by Geffner [26], but then the revision op-
eration would not satisfy rational monotony, which corresponds to (K∗8) and is thus
regarded as an acceptable principle of belief revision. We regard problem A3 as un-
derspecified: the generated conclusions do not reflect a general inference pattern in
nonmonotonic reasoning, but are dependent on the facts in the example, in particular
the assumption that being on the table has nothing to do with being red. We conjecture
that similar examples might give different intuitions.5

The last example in this section is Lifschitz’s problem A8 on reasoning about
unknown exceptions.

Assumptions: BlockA is heavy.
Heavy blocks are normally located on the table.
At least one heavy block is not on the table.

Conclusion: A is on the table.

Note that this example is outside the scope of our theory because of the existen-
tial quantifier: the E-base representing the theory in the system contains the formula
heavy(c) ∧ ¬table(c) wherec is a Skolem constant. The question is whetherc is
different from A. Our system does not assume that uniqueness of names applies to
Skolem constants and so does not generate this conclusion. That is, we do not rule
out the possibility that the block not on the table isA.

6.3.2 Inheritance Reasoning about inheritance networks is a standard problem in
nonmonotonic reasoning, and it is relatively straightforward to solve all of Lifschitz’s
problems B1–B4. We present our solutions to problem set B2, tree-structured inher-
itance.

Assumptions: Animals normally don’t fly.
Birds are animals.
Birds normally fly.
Bats are animals.
Bats normally fly.
Emus are birds.



90 WAYNE WOBCKE

Emus don’t fly.
Conclusions: Animals other than birds and bats do not fly.

Birds other than emus fly.
Bats fly.
Emus don’t fly.

In this example, we use the rank of a formula to encode the relative strengths of the
defaults. The defaults which have no exceptions are given the highest rank. Then the
default rules are ordered such that the more specific defaults (that is, exceptions to
other defaults) override the more general defaults.

100: bird(X) -> animal(X) # Facts
100: bat(X) -> animal(X)
100: emu(X) -> bird(X)

70: emu(X) -> ˜fly(X) # Defaults
60: bird(X) -> fly(X)
60: bat(X) -> fly(X)
50: animal(X) -> ˜fly(X)

? All(X) [animal(X) & ˜bird(X) & ˜bat(X) -> ˜fly(X)]
>>>yes : rank = 50

? All(X) [bird(X) & ˜emu(X) -> fly(X)]
>>>yes : rank = 60

? All(X) [bat(X) - > fly(X)]
>>>yes : rank = 60

? All(X) [emu(X) -> ˜fly(X)]
>>>yes : rank = 70

6.3.3 Uniqueness of names In this category, Lifschitz [41] includes problems
where the uniqueness of names is a default which may have exceptions, such as the
following, problem C1.

Assumptions: Different names normally denote different objects.
The names ‘Ray’ and ‘Reiter’ denote the same person.
The names ‘Drew’ and ‘McDermott’ denote the same person.

Conclusion: The names ‘Ray’ and ‘Drew’ denote different people.

Despite the fact that our system employs uniqueness of names, it cannot be used to
solve such problems. This is because the uniqueness of names is built into the system:
there can be no exceptions since uniqueness of names by default (the first assumption
above) cannot be expressed as a formula in a default theory expressed using first order
logic. This assumption has the character of a meta-level inference rule, but an infer-
ence rule allowing exceptions cannot be added to the system because in the AGM
approach, the base logic of beliefs is assumed to be monotonic: any formula whose
negation follows from the empty theory holds only in the inconsistent belief state.



BELIEF REVISION AND NONMONOTONIC REASONING 91

6.3.4 Reasoning about action Peppas, Foo and Wobcke [53] developed a theory
of actions in which an event is modeled as a belief revision function from complete
theories to complete theories, identifying an event with a revision to accept its post-
condition. In a similar manner, the system can “track” the effects of multiple actions
by making successive revisions, although the use of complete theories is not always
necessary. The following example is Lifschitz’s problem D3.

Assumptions: After an action is performed, things normally remain as they
were.
A block is on the table if and only if it is not on the floor.
When a robot grasps a block, the block will normally be in the
hand.
When the robot moves a block onto the table, the block will
normally be on the table.
Moving a block that is not in the hand is an exception to this rule.
Initially block A is not in the hand.
Initially block A is on the floor.

Conclusion: After the robot grasps blockA, waits, and then moves it to the
table, the block will not be on the floor.

For this example, there are two kinds of facts: those which may change over time, and
those which are time invariant. In contrast to the examples concerning nonmonotonic
reasoning in a static world, the defaults, which are time invariant, are given a higher
rank than the specific facts because a change in the world is presumed to affect the
facts rather than override a default. Any domain constraints have the highest rank of
all.

100: All(X)[table(X) <-> ˜floor(X)] # Domain Constraint

All(X)[ ˜holding(X) & move(X) -> ˜ table(X)] # Defaults
50: All(X)[grasp(X) -> holding(X)]
50: All(X)[move(X) -> table(X)]
10: ˜holding(a) # Facts
10: floor(a)

10* grasp(a) # Actions
10* true
10* move(a)
? ˜floor(a) # Query
>>>yes : rank = 10

Note that the condition giving an exception to a temporal default “moving a block
that is not in the hand is an exception to the previous rule” cannot be expressed in
first order logic because it concerns an exception to a normal revision. This must be
captured by a default stating explicitly that the outcome of the exceptional action is
the negation of the expected outcome: we cannot capture chronological ignorance,
only chronological denial. Note also that the waiting action is presumed to have the
postconditiontrue and so is modeled by a trivial revision. Also because the revision
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system can be used only in a “forwards” direction, it cannot be used directly for tem-
poral explanation or for reasoning about the unknown order of actions.

6.3.5 Autoepistemic reasoning Autoepistemic reasoning, as in Moore [46], con-
cerns the reasoning of an agent about its own beliefs, assuming that an agent has per-
fect introspective ability about what it believes and what it does not believe. This is
illustrated in Lifschitz’s problem E2.

Assumption: At least one of the blocksA, B is on the table.
Conclusions: It is not known whetherA is on the table.

It is not known whetherB is on the table.

These sorts of problems are simply solved if the assumptions and conclusions are con-
verted to first order logic and the initial theory and queries taken to be beliefs of the
system.

10: table(a)| table (b) # Assumption
? table(a)
>>>no
? table(b)
>>>no

However, handling autoepistemic reasoning properly would require the base logic of
beliefs to be the modal logicKD45 with an explicit belief operator.

7 Conclusion Wehave developed an approach to the dynamics of epistemic states
which generalizes in a straightforward manner the AGM approach to belief change.
Our theory, based on interpreting the notion of minimal change to apply not only to the
contents of a belief state but also to its entrenchment, is characterized both axiomati-
cally, using extensions of the AGM postulates, and constructively, using Grove’s sys-
tems of spheres. A conditional logic of belief revision allowing a limited range of
nested conditionals was also presented. We developed a computational approach to
the dynamics of epistemic states, addressing the issue of incompleteness in the speci-
fication of an epistemic entrenchment, which we claimed to be an essential feature of
problems in nonmonotonic reasoning, and gave algorithms for the computation of our
theory change operations on epistemic states. Finally, we considered the connections
between nonmonotonic reasoning and both conditional logic and belief revision. We
showed that the unique extension of a default theory expressed in conditional logic
corresponds to the most conservative epistemic state which respects the theory and
presented a modified belief revision algorithm suitable for nonmonotonic reasoning.
These algorithms have formed the basis of a computer system implemented using
the base language of first order logic with equality in which many problems in non-
monotonic reasoning can be expressed. The system correctly handles a wide range
of benchmark problems in the field.

In closing, we should emphasize that a number of assumptions have been made
in this work which are summarized here for reference. First, the AGM approach to be-
lief revision has been adopted, but in our treatment of the triviality result, following
Levi [39] and Morreau [47], we have insisted on an epistemological difference be-
tween conditional and nonconditional beliefs. Second, in our construction of theory
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change operations, a generalized principle of minimal change applying to belief states
was assumed, together with a commitment to the principle of irrelevance of syntax.
Third, a partially specified ranked epistemic entrenchment was taken as standing for
the most conservative entrenchment that extended it, embodying a version of founda-
tionalism. Fourth, in nonmonotonic reasoning, both the built-in uniqueness of names
and the independence of the instances of defaults were assumed. We do not mean to
imply that these assumptions are the only ones possible in constructing a theory of
belief revision, a semantics for indicative conditionals or a system for nonmonotonic
reasoning: the overall methodology here is pluralistic in that different systems may
be suitable in different contexts or in different domains. For example, one might want
to allow uniqueness of names to be defeasible or one might object to (K∗8) in belief
revision or its counterpart of rational monotony in nonmonotonic reasoning. How-
ever, the most robust feature of this work is the unified approach to belief revision,
the logic of indicative conditionals and nonmonotonic reasoning.

Appendix Proofs of Theorems

Theorem 3.3 If K 	= K⊥, K+
A,α

is the AGM belief set K+
A with ranking function

rank+
A,α

defined by rank+
A,α

(B) = max(rank(B),min(rank(A → B), α)) if B ∈ K+
A .

Otherwise K+
A,α

= K⊥.

Proof: First note that our postulates (K+1) – (K+6) imply the AGM postulates
(K+1) – (K+6), so that the set of beliefs contained inK+

A,α
is the AGM setK+

A by
(K+6). Define the epistemic stateK ′ using the ranking functionrank+

A,α
on K+

A by
settingrank+

A,α
(B) = max(rank(B),min(rank(A → B), α)): this clearly satisfies

(RE1) and (RE2) and so satisfies (K+1). By definition,rank+
A,α

(A) ≥ α so (K+2) is
satisfied. Also by definition, (K+3) and (K+4) are satisfied (that is, ifrank(A) ≥ α,
rank+

A,α
(B) = rank(B) for all B sincerank(B) ≥ min(rank(A → B), rank(A))). It

is also easy to see that (K+5) issatisfied. Finally, we must show that (K+6) holds, i.e.,
that this definition ofrank+

A,α
gives us the most conservative belief state satisfying

(K+1) – (K+5). Take any other stateK ′ with ranking functionrank′ satisfying these
postulates. Then the belief set of this state isK+

A whereas for some formulaB ∈ K+
A ,

rank′(B) < rank+
A,α

(B). But by (K+2), rank′(A) ≥ α and by (K+3), rank′(A →
B) ≥ rank(A → B), so by (RE2)rank′(B) ≥ min(rank(A → B), α) ≥ rank+

A,α
(B),

a contradiction.

Theorem 3.4 If K 	= K⊥, K−
A is the AGM belief set K−

A with ranking function rank−
A

defined by rank−
A (B) = rank(B) if B ∈ K−

A . Otherwise K−
A = K⊥.

Proof: It is straightforward to verify that (K−1) – (K−4) and(K−6) – (K−8) are sat-
isfied by the belief stateK−

A as defined. For the recovery postulate (K−5), consider
(K−

A )+A,α
. First K ⊆ (K−

A )+A,α
by the equivalent AGM postulate. Now by Theo-

rem 3.3, the rank of a formulaB in (K−
A )+A,α

= max(rank−
A (B),min(rank−

A (A →
B), α)) ≥ min(rank(A → B), rank(A)) = rank(B). Thus K ≤ (K−

A )+A,α
. For

(K−9), suppose a more conservative stateK ′ with ranking functionrank′ satisfies the
postulates (K−1) – (K−8). The contents ofK ′ must contain all formulasB such that
rank(A) < rank(A ∨ B), henceK ′ must contain only these formulas if it is to satisfy
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(K−9). SoK ′ has the same content asK−
A but differs in ranking from ourK−

A as de-
fined. Supposerank′(B) < rank−

A (B). In order to satisfy recovery,rank′(A → B)

must equalrank(A → B), and similarly, sinceB ∈ K−
A , rank(A) < rank(A ∨ B),

and sorank′(A ∨ B) must also equalrank(A ∨ B) to satisfy recovery. But then by
(RE2),rank′(B) = rank(B), acontradiction.

Theorem 3.5 If K 	= K⊥, K∗
A,α is the AGM belief set K∗

A with ranking function
rank∗

A,α defined by rank∗
A,α(B) = max(rank(B),min(rank(A → B), α)) if B ∈ K∗

A.
Otherwise K∗

A,α = K⊥.

Proof: Again it is straightforward to verify (K∗1) – (K∗9). Suppose	� ¬A and that
some epistemic stateK ′ with ranking functionrank′ more conservative thanK∗

A,α as
defined satisfies (K∗1) – (K∗9). If ¬A 	∈ K then (K∗3) and (K∗4) imply that bothK ′

andK∗
A,α are identical toK+

A,α
, so suppose further that¬A ∈ K. The contents ofK ′

must contain all formulasB such thatrank(¬A) < rank(A → B): to satisfy (K∗9),
K ′ must contain all formulas inK of the form A ∨ B so thatB follows when¬A is
added, andK ′ must contain a formula of the formA → B ranked higher than¬A
so that this formula’s rank is preserved on adding¬A. ThusK ′ must have the same
content asK∗

A,α, so supposeB is such thatrank′(B) < rank∗
A,α(B). In order to satisfy

(K∗9), rank′(A ∨ B) must equalrank∗
A,α(A ∨ B) and similarlyrank′(A → B) must

equalrank∗
A,α(A → B). Thusrank′(B) = rank∗

A,α(B), acontradiction.

Theorem 3.6 If rank is a function determining a ranked system of spheres, the op-
eration on ranked systems of spheres of complete theories defined by rank∗

A,α, as fol-
lows, characterizes revision operations on consistent belief states that satisfy (K∗1) –
(K∗10).

rank∗
A,α(T ) =




0 if A ∈ T andT ∈ SA

rank(T ) if A ∈ T andT 	∈ SA

max(rank(T ), α) if ¬A ∈ T .

Proof: From Grove’s result, the belief set is the set of formulas contained in all the-
ories ranked 0 and Theorem3.5 provides the ranks of all the formulas inK∗

A,α. It
remains to check that for each formulaB, the lowest ranked (byrank∗

A,α) complete
theory containing¬B is atrank∗

A,α(B). We do this first for the formulasA → B and
A ∨ B. If A → B ∈ K∗

A,α, the new rank ofA → B is equal to the old rank ofA → B,
and since by definition the ranking of the complete theories containingA ∧ ¬B does
not change, the lowest ranked complete theory containingA ∧ ¬B will be ranked by
rank∗

A,α the same as byrank. Similarly, the ranks of the theories containing¬A are
moved to rankα if originally they were ranked less thanα, so the lowest ranked theory
containing¬A ∧ ¬B will be at max(rank(A ∨ B), α)), as required. Hence the low-
est ranked theory containing¬B is ranked at min(rank(B),max(rank(A ∨ B), α)),
as required.

Theorem 3.7 If rank is a function determining a ranked system of spheres, the oper-
ation on ranked systems of spheres of complete theories defined by rank−

A, as follows,
characterizes contraction operations on consistent belief states that satisfy (K−1) –
(K−9).

rank−
A (T ) =

{
0 if ¬A ∈ T andT ∈ S¬A

rank(T ) otherwise.
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Proof: From Grove’s result and the Harper identity, the belief set is given by the set
of formulas contained in all theories ranked 0 and Theorem3.4implies that the ranks
of formulas inK−

A are unchanged fromK. But a theory is ranked byrank−
A the same

as byrank unless it contains¬A and is contained in the smallest sphere containing a
theory containing¬A. Thus the ranks of formulas of the formA → B are preserved,
and similarly the ranks of formulas of the formA ∨ B retained inK−

A are preserved.
So B has the correct rank assigned byrank−

A .

Theorem 4.13 For every faithful, consistent set � of BR sentences bounded to de-
gree n, there is a belief revision model which satisfies all and only the formulas of
�.

Proof: Take such a set of sentences bounded to degreen and consider�(A1, . . . ,

An−i), the set of formulasB such thatA1 ⇒ (. . . An−i ⇒ B . . .) ∈ �. We define a
tree of revision sequences for each such�i by induction oni, i.e., starting from the
end states of the desired sequences. Fori = 0, take all belief statesτi whose con-
tents agree with the base formulas of�i. Clearly for such states and base formulasB,
τi |= B iff B ∈ �i. For i = j + 1, suppose by induction that for each� j, there is a tree
of sequences of length≤ j with root τ j such that for every conditional formulaB,
τ j |= B iff B ∈ � j: weneed to construct a tree of sequences of lengthi with the same
property. The root of the tree is the stateKi with contents as given by the base formu-
las in�i and a ranking such thatA ≤ B iff � B or ¬((¬A ∨ ¬B) ⇒ A) ∈ �i, where
A andB are base formulas. The boundedness assumption ensures that such a ranking
exists (otherwise it might be possible to have two beliefs with infinitely many levels
of ranking between them). To define the function∗ atτi, for each base formulaA, take
the set(�i)

∗
A of formulasB such thatA ⇒ B ∈ �i and define∗(τi, A) to be the treeτ j

corresponding to(�i)
∗
A: each such set is faithful by (B14). Note that condition (i) on

∗ is satisfied because of (RCEA), condition (ii) because of faithfulness and condition
(iii) because of (B11) and (B12). Clearly by definition,τi |= B iff B ∈ �i for a condi-
tional formulaB: for belief formulas, (B5) ensures the validity of the inductive step
for B1 ∧ B2 and (B13) ensures the validity of the inductive steps forB1 ∨ B2, ¬B1

and B1 → B2. Hence for all belief formulas,τi |= B iff B ∈ �i. It remains to show
that the transition fromKi to the rootK j of τ j is a belief revision operation. It suffices
to show that the entrenchments represented by(�i)

∗
A are those that hold at(Ki)

∗
A,α for

someα as determined by Theorem3.5. Now (B9) implies that for all base formulas
A → B and A → C, the relative entrenchment ofA → B and A → C is preserved
in K j, and (B10) implies that the relative entrenchments of any base formulasA ∨ B
and A ∨ C are preserved whenever these formulas are ranked higher thanA. Hence
the entrenchments of all the base formulas ofK j are as determined by(�i)

∗
A. Hence,

we have constructed a belief revision modelτn for the original set� such that for all
belief formulasB, τn |= B iff B ∈ �.

Corollary 4.14 BR is sound and complete with respect to the belief revision models.

Proof: Soundness is easy to check. For completeness, by Lindenbaum’s lemma,
any nontheoremA of BR is contained in a bounded, faithful, consistent set ofBR
sentences containing¬(true ⇒ A), so by Theorem4.13, there is aBR model in which
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A is not true.

Corollary 4.15 There is a nontrivial belief revision model.

Proof: We require three pairwise disjoint sentences and a belief revision model
whose initial state is consistent with all three sentences. Let us take a propositional
language with exactly two atomsp andq. Then the sentencesp ∧ q, p ∧ ¬q and
¬p ∧ q are clearly pairwise disjoint. By completeness, there is a belief revision model
whose initial state satisfies all and only the theorems ofBR: this state is consistent
with all three formulas.

Theorem 5.4 The E-base � is a base for a ranked epistemic entrenchment K iff K
is defined by setting rank(A) = max({r|�r � A}) when A ∈ Cn(�) and rank(A) = 0
when A 	∈ Cn(�).

Proof: We first verify that this definition ofrank provides a ranked epistemic en-
trenchment. For (RE1), ifA � B, any proof ofA from any�r counts as a proof ofB,
so the maximum over suchr is a lower bound on the rank assigned toB, as required.
For (RE2), any two proofs ofA andB can be combined to give a proof ofA ∧ B, sothe
minimum of the ranks ofA andB provides a lower bound on the rank ofA ∧ B. But
by (RE1), the rank ofA ∧ B must be at most the ranks ofA andB, so the minimum of
the ranks ofA andB provides an upper bound as well. For (RE3), ifA 	∈ Cn(�) then
A is ranked 0 by definition. Now we show that the definition gives the most conserva-
tive entrenchment compatible with the E-base. Consider any proof ofA from formu-
las in�. By compactness, there must be a finite set of formulasA = {A1, . . . , An}
such thatA ∈ Cn(A ) but A is not a consequence of any proper subset ofA . Then
by (RE1),rank(A1 ∧ · · · ∧ An) ≤ rank(A), so if Ai is the lowest ranked formula in
A , rank(Ai) ≤ rank(A) by (RE2), andrank(Ai) is equal to the largestr such that
Ai ∈ �r. Thus eachr such that�r � A is a lower bound on the rank ofA, andso
max({r|�r � A}) is a lower bound on the rank ofA. Since in the defined entrench-
ment the ranks of all formulas are set at this lower bound, the entrenchment defined
is the most conservative entrenchment compatible with the E-base.

Corollary 5.6 The most conservative ranked epistemic entrenchment compatible
with an E-base � is represented by the ranked system of spheres defined by setting
rank(T ) to be the smallest r such that T contains A for all A ∈ � ranked greater
than r.

Proof: Take any consistent formulaA of rankr. Wehave to show that the smallest
sphere containing a complete theory containing¬A is also rankedr. By Theorem5.4,
r = max({i|�i � A}). By definition, every complete theory ranked less thanr satisfies
all formulas in�r and hence satisfiesA, so the smallest sphere containing a theory
containing¬A must be ranked at leastr. But since the set of formulas ranked higher
thanr is consistent with¬A (else there would be a proof ofA from this set), there must
be a complete theory containing¬A ranked atr. Hencer is the rank of the smallest
sphere containing a complete theory containing¬A.

Theorem 5.7 If � is a base for K 	= K⊥, expand(�, A, α) is a base for K+
A,α

.

Proof: Since the algorithm adds onlyA and removes only formulas that can be
proven in the new base with the same or higher rank, the belief set isCn(K ∪ {A}) as
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required. We show that the algorithm provides the correct rankings for the formulas in
K+

A . By Theorem3.3, a formula B is to be ranked at max(rank(B),min(rank(A →
B), α)). Any proof of B in K can be converted to a proof inK+

A by replacing any
deleted formulaB′ by its proof, so the rank ofB in the new base will be at least that
in the old. Now note that the addition ofA to the base has no effect on the proofs of
A → B, so this formula is ranked the same inK+

A as inK. So, sinceB follows from
A → B andA, the rank ofB in the new base is at least min(rank(A → B), α). Hence
in the new base,B is ranked at least max(rank(B),min(rank(A → B), α)). To show
that this is the rank ofB in the new base, note that any proof ofB in K+

A either usesA
or it doesn’t: if it does, then by the deduction theorem we have a proof ofA → B in
K, and if it doesn’t, we have a proof ofB in K. Hence the rank ofB in the new base
is max(rank(B),min(rank(A → B), α)), as required.

Theorem 5.8 If � is a base for K 	= K⊥, contract(�, A) is a base for K−
A .

Proof: Consider any formulaB such thatrank(A) < rank(A ∨ B). Then the base
computed by the algorithm containsA ∨ B since this is ranked higher than the rank
of A, and also containsA → B by the test on deletion of formulas from the base,
henceB follows from the new base. Conversely, ifB follows from the new base then
there is a proof ofB from formulasB1, . . . , Bn in the new base and hence proofs of
A ∨ B1, . . . , A ∨ Bn in the old base, all ranked higher than the rank ofA, hence a proof
of A ∨ B ranked higher than the rank ofA. Sothe belief set computed by the algorithm
is K−

A as determined by the (C−) condition. We show that the algorithm provides the
correct rankings for formulas of the formsA ∨ B and A → B. By Theorem3.4, all
formulas are to be ranked as inK. First, sinceA ∨ B is retained only if it is ranked
higher thanA and the algorithm does not affect the ranks of such formulas, the ranks
of A ∨ B will be the same inK andK−

A . Second, note thatK−
A containsA → B iff K

containsA → B. Thenany proof ofA → B in K will remain a proof inK−
A because

changing base formulasC to A → C has no effect on the ranks of proofs of these
formulas, and conversely, any proof ofA → B in the new base will correspond to a
proof in the old base, thus preserving the rank ofA → B. By (RE2), the ranks of all
base formulasB are as required.

Theorem 5.9 If � is a base for K 	= K⊥, revise(�, A, α) is a base for K∗
A,α.

Proof: By analogy to contraction, the belief set computed by the algorithm isK∗
A as

determined by the (C∗) condition. We now show that the ranks of formulas in the new
base are as required by Theorem3.5. First, a formula of the formA → B must have
the same rank inK∗

A,α as inK. This follows from the fact that the revised state con-
tains this formula only if it is ranked higher than the old rank ofA, and these formulas
are unchanged by the algorithm because a proof ofA → B cannot involve the added
formula A. Consider formulas of the formA ∨ B. Since changing base formulasC
to A ∨ C does not affect the ranks of proofs of such formulas, these formulas will be
ranked as inK except when they follow fromA which is added at rankα. Thus the
new rank ofA ∨ B is max(rank(A ∨ B), α). By (RE2), the ranks of all base formulas
B are correct.

Theorem 6.8 Extensions of a BR theory � are in correspondence with the most con-
servative ranked epistemic entrenchments respecting �.
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Proof: extension ⇒ most conservative entrenchment
First suppose we have an extension�∗ of a givenBR theory�. Define a ranked en-
trenchment compatible with�∗ according to the entrenchments that�∗ represents,
i.e., A ≤ B iff �B ∨ ¬((¬A ∨ ¬B) ⇒ A) ∈ �. The finiteness of� ensures that this
is possible. For a contradiction, suppose this entrenchment is not the most conser-
vative entrenchment compatible with�. Then the rank of someB can be lowered
to that of someA resulting in a more conservative entrenchment that is also com-
patible with�. This new entrenchment agrees with the original one on all formu-
las less entrenched thanA, and also corresponds to aBR model of�. Let �′ be the
set of sentences satisfied in this model. Clearly�′ contains�. But �′ also contains
the formula¬((¬A ∨ ¬B) ⇒ B) corresponding to the entrenchmentB ≤ A, which
is not contained in�∗. It follows that�′ is an extension of�, which contradicts
�∗ being an extension of�. To verify this, note that any independence assumption
¬(A′ ⇒ ¬B′), representing the entrenchment¬A′ = ¬A′ ∨ ¬B′, which is stronger
than¬((¬A ∨ ¬B) ⇒ B), i.e., such that¬A ∨ ¬B � A′, is contained in�′ iff it is
contained in�∗, because if¬A′ < A, the new entrenchment agrees with the old over
such formulas, and if¬A′ = A, the set of formulas entrenched equally asA contains
that for the old entrenchment. Thus�∗ is not an extension of�, acontradiction.

most conservative entrenchment ⇒ extension
Suppose we have the most conservative ranked epistemic entrenchment compatible
with a BR theory�. Take theBR model corresponding to this entrenchment, and
let �∗ be the set of formulas holding at the state satisfying� in this model. For a
contradiction, suppose that�∗ is not an extension of�. Then there is a set�′ which
contains� and a stronger set of independence assumptions. In particular,�′ con-
tains independence assumptions¬(A ⇒ ¬B) not contained in�∗. Choose one so
that the entrenchment of¬A is minimized, so that for any formulasC and D less
entrenched than¬A, �′ representsC < D iff �∗ representsC < D. Now from
this independence assumption, it follows usingA ⇒ A that¬(A ⇒ (¬A ∨ ¬B)),
i.e., ¬(((A ∧ B) ∨ A) ⇒ (¬A ∨ ¬B)), which corresponds to the entrenchment
¬A ∨ ¬B ≤ ¬A. Since¬A ≤ ¬A ∨ ¬B by (EE2), we now have¬A = ¬A ∨ ¬B.
This means the entrenchment was not the most conservative entrenchment compati-
ble with�, which is the desired contradiction.

Corollary 6.9 A consistent default theory has a unique extension.

Proof: Since the set of all ranked epistemic entrenchments compatible with� is
closed under meet, there is a unique most conservative entrenchment compatible with
�.

Corollary 6.13 If � is a base for �, revise(�,¬ε(t), α) is a base for �∗
¬ε(t),α under

independence of default instances.

Proof: By Theorem5.9, the algorithm correctly determines the ranks of the in-
stances of defaultsδ(t). If u 	= t andδ(u) is in �, thenδ(u) is also in�∗

¬ε(t),α with
the same rank, since any proof of such a formula in the original base remains a proof
in the revised base, and vice versa.
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NOTES

1. It is possible to define algorithms conforming to either intuition, but implementing
Spohn’s intuition is computationally more expensive.

2. For readers interested in such matters, the system is written in C and uses a variant of
OL-resolution with paramodulation, (cf. Chang and Lee [5]).

3. John Slaney (personal communication, April 3, 1994) has suggested the use of a model
generator to find upper bounds on the rank ofA, but this procedure has not yet been
implemented.

4. For an implementation of the base contraction operation of Williams [61], this step can
simply be omitted; cf. Dixon [11].

5. Interestingly, in a series of psychological experiments, Elio and Pelletier [14] have found
that Lifschitz’s intuitions here are not supported nearly as strongly as in the other ex-
amples. One possible reason for this which is in line with our approach is that sub-
jects are trying to rank the given information, and this ranking is different across sub-
jects/examples. Needless to say, the evidence is inconclusive.
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