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Abstract—In this paper, a generic rule-base inference method-
ology using the evidential reasoning (RIMER) approach is pro-
posed. Existing knowledge-base structures are first examined, and
knowledge representation schemes under uncertainty are then
briefly analyzed. Based on this analysis, a new knowledge repre-
sentation scheme in a rule base is proposed using a belief struc-
ture. In this scheme, a rule base is designed with belief degrees
embedded in all possible consequents of a rule. Such a rule base
is capable of capturing vagueness, incompleteness, and nonlinear
causal relationships, while traditional if–then rules can be repre-
sented as a special case. Other knowledge representation para-
meters such as the weights of both attributes and rules are also
investigated in the scheme. In an established rule base, an input to
an antecedent attribute is transformed into a belief distribution.
Subsequently, inference in such a rule base is implemented using
the evidential reasoning (ER) approach. The scheme is further
extended to inference in hierarchical rule bases. A numerical study
is provided to illustrate the potential applications of the proposed
methodology.

Index Terms—Decision-making, evidential reasoning approach,
expert system, fuzzy sets, inference mechanisms, rule-based
system, uncertainty.

I. INTRODUCTION

AMONG many alternative means for knowledge represen-
tation, rules seem to be one of the most common forms for

expressing various types of knowledge for a number of reasons
[1]. It has been argued that other knowledge representation
schemes can be transformed into logic (rule)-based schemes
[2]–[4]. As such, knowledge-based systems (e.g., rule-based
expert systems), usually constructed from human knowledge in
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forms of if–then rules, have become the most visible and fastest
growing branch of artificial intelligence (AI) [1].

There are two essential components in a rule-based system:
a knowledge base and an inference engine. They are combined
to infer useful conclusions from rules established by experts
and observation facts provided by users. In the design and
implementation of rule-based systems for supporting human
decision making, it is inevitable to deal with uncertainty caused
by vagueness intrinsic to human knowledge and imprecision
or incompleteness resulting from the limit of human knowl-
edge [5], [6]. It is therefore necessary to use a scheme for
representing and processing vague, imprecise, and incomplete
information in conjunction with precise data.

The development of methods for dealing with uncertainty
has received considerable attention in the last three decades.
Several numerical and symbolic methods have been proposed
for handling uncertain information. Three of the most com-
mon frameworks for representing and reasoning with uncertain
knowledge are:

1) Bayesian probability theory;
2) Dempster–Shafer (D–S) theory of evidence;
3) fuzzy set theory.

Each of these frameworks is aimed at a special application
environment and has its own features [7]–[12]. In fact, different
kinds of uncertainty may coexist in real systems, e.g., fuzzy
information may coexist with ignorance, leading to the induc-
tion of knowledge without certainty but only with degrees of
belief or credibility regarding a hypothesis [13]. Therefore, it
is highly desirable to develop a hybrid knowledge representa-
tion scheme and inference methodology to deal with different
kinds of uncertainty. For instance, the benefit of combining
fuzzy set theory with D–S theory of evidence may be substan-
tial in situations where fuzziness and ignorance in data become
prevalent [12], [14].

In addition, attributes involved in the premise of rules may
not be of the same type. Indeed, they could be quantitative or
qualitative in nature, and input data may be different both in
type and in scale. Hence, there is also a need to establish a
mathematical framework that can provide a basis for handling
various types of input information.

This paper reports an investigation into the design and im-
plementation of hybrid rule-based systems based on the D–S
theory of evidence, decision theory, and fuzzy set theory. As a
result of the investigation, a new methodology will be proposed
for modeling a hybrid rule base using a belief structure and
for inference in the rule-based system using the evidential
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reasoning (ER) approach [15]–[20]. The methodology is re-
ferred to as a generic rule-base inference methodology using
the evidential reasoning (RIMER) approach. In the RIMER
approach, a detailed analysis is first conducted on the nature
of antecedent attributes and various types of uncertainties in
knowledge. A generic knowledge representation scheme is then
proposed using a belief structure. A rule base designed on the
basis of the belief structure, called belief rule base, is used to
capture nonlinear causal relationships as well as uncertainty.
Relevant knowledge representation parameters, including the
weights of both attributes and rules, are also considered in the
scheme.

In an established belief rule base, input for each antecedent
is transformed into a distribution on the referential values
of this antecedent. This distribution describes the degree of
each antecedent being activated. Moreover, the antecedents
of an if–then rule form an overall attribute, called a packet
antecedent attribute. The activation weight of a rule can be
generated by aggregating the degrees to which all antecedents
in the rule are activated. In this context, an if–then rule can
be considered as an evaluation problem of a packet antecedent
attribute being assessed to an output term in the consequent of
the rule with certain degrees of belief. Finally, the inference of
a rule-based system is implemented using the ER approach. A
further investigation into the inference problem in a hierarchical
knowledge base is also provided. A numerical study is used to
illustrate the application of the proposed methodology. The new
methodology is also applied to the safety analysis of an offshore
engineering system and is reported in another paper [21], [22].

The paper is organized as follows: In Section II, an inves-
tigation into rule-based system design is presented, including
the structure of a knowledge base and knowledge representation
schemes under uncertainty. Based on this investigation, a new
generic knowledge-base inference methodology using the ER
approach (RIMER) is proposed in Section III. A further inves-
tigation into knowledge representation and inference in a hier-
archical knowledge base is given in Section IV. In Section V,
a numerical study is provided to illustrate the methodology. The
paper is concluded in Section VI.

II. INVESTIGATION INTO RULE-BASED SYSTEM DESIGN

A. Attribute Types in a Rule Base

1) Attribute as a Proposition: In rule-based systems, there
are three main types of propositions: boolean, fuzzy, and ran-
dom. Boolean propositions represent concepts that can only
be evaluated to be either false or true. Fuzzy propositions are
related to vague concepts. Take a rule in medical diagnosis for
example [23].

“If presence of creatinine then renal failure is definite.”

In the above rule, presence of creatinine is a fuzzy proposi-
tion, which can be quantified by the degree of membership of
a numerical value to a fuzzy set. The presence of creatinine is
modeled by defining a fuzzy set [24] that takes as argument the
numerical value in millimolar per liter of creatinine.

On the other hand, the proposition “raining causes flooding”
or “disease D is a common illness” is a probabilistic rather

than deterministic or fuzzy proposition, which is determined by
previous statistics.
2) Attribute as a Variable: This type of attribute is defined

by a set of values that an attribute can take. Type distinction is
one of the forms used to separate the different types of exist-
ing data.

Let U = {Ui; i = 1, . . . , T} be a set of attributes, and
LUi

be a set of feasible values for Ui (i = 1, . . . , T ). Each
attribute Ui (i = 1, . . . , T ) in U can be one of the following
types [11]:

1) continuous, where LUi
is a convex subset of real numbers

(e.g., distances and measures on a continuous scale);
2) numeric, where LUi

is a discrete finite set of real numbers
(e.g., number of legs for mammals);

3) symbolic, where LUi
is a discrete finite set of symbols

(e.g., car models or telephone numbers);
4) ordered symbolic, where LUi

is a discrete finite set of
ordered symbols. For instance, colors can be ordered
by their wavelength. Linguistic information is a kind of
ordered symbolic information.

It is possible that some attributes can be measured numer-
ically (e.g., age) and other attributes can only be described
subjectively (e.g., good). In general, continuous and numerical
attributes can be in quantitative format, while symbolic and
ordered symbolic attributes can be in qualitative format.

B. Uncertainty in Data and Knowledge Bases
and Their Representation

In conventional information processing techniques, it is often
assumed that problems are well structured, complete infor-
mation is always available, and information processing pro-
cedures can be clearly defined. However, in many real-world
decision-making problems, this is not always the case, and
decision making may be associated with uncertainty. Uncer-
tainty can occur because information is not clearly described,
or only by partial and imprecise evidence, which is a result
of ill-defined concepts in observations, or due to the inac-
curacy and poor reliability of instruments used to make the
observations.

In the design of decision-making models based on multi-
source data, it poses a challenge to find an appropriate frame-
work for an identified form of uncertainty and to combine
different strategies for formulating a proposition or a vari-
able that can express more than one type of uncertainty. In
knowledge-based systems, there are situations where informa-
tion cannot be acquired precisely in a quantitative form but
may be extracted in a qualitative form. Human judgments and
domain knowledge can be represented in forms of if–then
rules, which are normally based on linguistic variables because
they are more natural and expressive than numerical num-
bers. This makes it necessary to use a linguistic approach to
process qualitative information. Fuzzy logic [24], [25] provides
a mathematical framework to systematically process linguistic
information.

Furthermore, propositional statements provided by domain
experts may be crisp and uncertain, crisp and certain, fuzzy and
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certain, or fuzzy and uncertain, as illustrated by the following
examples:

1) John is young with a certainty of 1 (fuzzy and certain).
2) John is young with a certainty of 0.8 (fuzzy and

uncertain).
3) John is 25 years old with a certainty of 1 (crisp and

certain).
4) John is 25 years old with a certainty of 0.9 (crisp and

uncertain).

In (2), 0.8 means that “we are 80% sure” and that the
remaining 20% is ignorance. In the following proposed rule-
base inference procedure, fuzziness and ignorance in input
information are both taken into account.

In a rule-based system, a rule is used to describe causal
relationships between antecedent attributes and their associated
consequent. In the design and implementation of rule-based
systems, ignorance may be caused by weak implication that
may occur when an expert is unable to establish a precise
correlation between premise and conclusion [26] but only with
degrees of belief or credibility [13]. The D–S theory of evidence
[27], [28] is based on the concept of belief function and is
well suited to modeling subjective credibility induced by partial
evidence [29]. It describes and handles uncertainties using the
concept of the degrees of belief, which can model ignorance
explicitly. It also provides appropriate methods for computing
belief functions for combination of multiple pieces of evidence.

Although the D–S theory was not specifically proposed in
relation to AI, it has been increasingly used in AI and expert
systems in the past two decades [30]–[36]. The D–S theory has
also been used for multiple attribute decision analysis (MADA)
under uncertainty, as shown in the development of the ER
approach [14]–[20], [37]. Different from conventional MADA
methods that describe a MADA problem using a decision
matrix, the ER approach uses a belief decision matrix, in which
the assessment of an alternative on each attribute is described
by a distribution using a belief structure. The main advantage
of doing this is that one can model precise data and also capture
various types of uncertainties such as ignorance and vagueness
in subjective judgments. In the following proposed new rule-
based systems, the ER approach will be used as the basis for
rule combination in the final steps of the inference procedure.

Fuzzy set theory is well suited to dealing with fuzziness,
and D–S theory provides an ideal framework for handling
ignorance. It seems reasonable to extend the fuzzy logic
framework to cover credibility uncertainty. Several researchers
have investigated the relationships between fuzzy sets and
D–S theory and suggested different ways of integrating them.
Ishizuka et al. [38], [39] extended the D–S theory to include
fuzzy knowledge for structural damage assessment. Ogawa
et al. [40] subsequently proposed an inexact inference proce-
dure on the base of the D–S theory of evidence and fuzzy sets
to make the structural damage assessment more general and
practical. Chen [41] extended Ishizuka’s rule-base inference for
more general decision-making problems. Binaghi and Madella
[13] used fuzzy D–S reasoning for rule-based classification.
Yager [42], Yager and Filev [43], and Baldwin et al. [44] also

considered fuzzy sets in the D–S belief structure to deal with
probability uncertainty.

C. Basic Knowledge Base Structure

The starting point of constructing a rule-based system is to
collect if–then rules from human experts or based on domain
knowledge. A knowledge base and an inference engine are
then designed to infer useful conclusions from the rules and
observation facts provided by users.

Formally, a rule-based model is represented as

R = 〈U,A,D, F 〉

where U = {Ui; i = 1, . . . , T} is the set of antecedent at-
tributes, with each of them taking values (or propositions) from
an array of finite sets A = {A1, A2, . . . , AT }. Ai = {Aij ; j =
1, . . . , Ji = |Ai|} is a referential set of values (or propositions)
for an attribute Ui (i = 1, . . . , T ), and the values or propo-
sitions in Ai (e.g., Aij) are referred to as referential values,
which can be taken in different types of value, as mentioned in
Section II-A. The array {U1, U2, . . . , UT } defines a list of finite
conditions, representing the elementary states of a problem
domain, which may be linked by “∧” or “∨” connectives.
Note that “∧” is a logical connective to represent the “AND”
relationship and “∨” a logical connective to represent the
“OR” relationship. D = {Dn; n = 1, . . . , N} is the set of all
consequents, which can either be conclusions or actions. F is a
logical function, reflecting the relationship between conditions
and their associated conclusions.

Note that in a rule base, a referential set can be a set of
meaningful and distinctive evaluation standards for describing
an attribute by subjective linguistic terms. To estimate failure
likelihood in safety analysis, for example, one may use such
linguistic terms as “highly frequent,” “frequent,” “average,”
“low,” and “very low.” These linguistic terms are the referential
values for an antecedent attribute “failure likelihood.” In a
general rule base, a referential set may be different in type.

To establish a rule base, one has to determine which referen-
tial set for each antecedent attribute needs to be used and how
many referential values should be used. More specifically, the
kth rule in a rule base in forms of a conjunctive “if–then” rule
can be written as

Rk : if Ak
1 ∧ Ak

2 ∧ · · · ∧ Ak
Tk

, then Dk (1)

where Ak
i (i = 1, . . . , Tk) is a referential value of the ith

antecedent attribute in the kth rule, and Tk is the number of
the antecedent attributes used in the kth rule. Dk (∈ D) is the
consequent in the kth rule. For example, the following is an
if–then rule for safety analysis [20].

If failure rate of a hazard is frequent and consequence sever-
ity is catastrophic and failure consequence probability is likely,
then safety estimate is poor.

The linguistic terms frequent, catastrophic, and likely are
the referential values of the attributes failure rate, consequence
severity, and failure consequence probability, respectively. Poor
is the consequent of the rule corresponding to the output at-
tribute safety estimate.
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A basic rule base is composed of a collection of such simple
“if–then” rules. In the next section, more complicated rules are
taken into consideration.

D. Additional Knowledge Representation Parameters

1) Relative Importance of an Antecedent Attribute (Attribute
Weight): The relative importance of an attribute to its conse-
quent (attribute weight) plays an important role in rule base
inference. For example, in medical diagnostic systems, a par-
ticular symptom combined with other symptoms may lead to
a possible disease. It is important to assign a weight to each
symptom (attribute) in order to show the relative importance of
each symptom to the consequent (disease).
2) Relative Importance of a Rule (Rule Weight): A relative

weight can also be assigned to a rule, which is used to rep-
resent the relative importance of the rule to the associated
conclusions. The weight of a rule can also take into account the
degree to which the rule is activated, which is related to input
information.

Weights can be assigned at the knowledge acquisition phrase
when a rule base is established. Apart from the simple scaling
methods, pairwise comparisons may also be used to estimate
relative weights of attributes or rules in several approaches,
including the eigenvector method [45], the geometric least
squares method [46], and the geometric mean method [47].

III. NEW GENERIC RULE-BASE

INFERENCE METHODOLOGY

A. Generic Rule-Base Structure and Representation Schema

To take into account belief degrees, attribute weights, and
rule weights in a rule, the kth rule given in (1) is extended as

Rk : if Ak
1 ∧ Ak

2 ∧ · · · ∧ Ak
Tk

then, Dk

with a belief degree βk, a rule weight θk

and attribute weights δk1, δk2, . . . , δkTk
(2)

where Ak
i (i = 1, . . . , Tk) is the referential value of the ith

antecedent attribute in the kth rule, Tk the number of antecedent
attributes used in the kth rule, and βk the belief degree to
which Dk (∈ D) is believed to be the consequent, given “Ak

1 ∧
Ak

2 ∧ · · · ∧Ak
Tk

” in the kth rule. θk is the relative weight of the
kth rule, and δk1, δk2, . . . , δkTk

are the relative weights of the
Tk antecedent attributes used in the kth rule.

Rule (2) can be further extended to a so-called packet rule us-
ing a belief structure, where all possible consequents are associ-
ated with belief degrees. A collection of packet rules constitute
a rule base with a belief structure (called a belief rule base) as

Rk : if Ak
1 ∧ Ak

2 ∧ · · · ∧ Ak
Tk

, then{
(D1, β1k), (D2, β2k), . . . , (DN , βNk)

}(
N∑

i=1

βik ≤ 1

)
, with a rule weight θk

and attribute weights δk1, δk1, . . . , δkTk

k ∈ {1, . . . , L} (3)

where βik (i ∈ {1, . . . , N} is the belief degree to which Di is
believed to be the consequent if, in the kth packet rule, the input
satisfies the packet antecedents Ak = {Ak

1 , A
k
2 , . . . , A

k
Tk
}. L is

the number of all packet rules in the rule base. If
∑N

i=1 βik = 1,
the kth packet rule is said to be complete; otherwise, it is
incomplete. Note that

∑N
i=1 βik = 0 denotes total ignorance

about the output, given the input in the kth packet rule.
Rule (3) is referred to as a belief rule in the paper.

Take, for example, the following belief rule in safety
analysis:

Rk : if the failure rate is frequent and the

consequence severity is critical and the failure

consequence probability is unlikely,

then the safety estimate is

{(good, 0), (average, 0), (fair, 0.7), (poor, 0.3)}

where {(good, 0), (average, 0), (fair, 0.7), (poor, 0.3)} is a
belief distribution representation for safety consequent, stating
that it is 70% sure that safety level is fair and 30% sure that
safety level is poor. In this belief rule, the total degree of
belief is 0.3 + 0.7 = 1, so that the assessment is complete.
The referential value set for failure rate is given by AFR =
{very low, low, reasonably low, average, reasonably frequent,
frequent, and highly frequent}.
Remark 1: Antecedent attributes or the number of attributes

is not required to be the same from one rule to another, even
though they share a common consequent set D = {Dn; n =
1, . . . , N}.
Remark 2: Rules (1) and (2) are the special cases of rule (3),

with {β1k, β2k, . . . , βNk} being given special values. In fact, if
βik = 1, βjk = 0, j �= i, j = 1, . . . , N are applied in rule (3),
then rule (1) can be established; if βik = βk, βjk = 0, j �= i,
j = 1, . . . , N are used, then rule (2) will be derived.

A belief rule base given in the form shown in (3) represents
functional mappings between antecedents and consequents with
uncertainty. It provides a more informative and realistic scheme
for uncertain knowledge representation. Note that the degrees
of belief βik could be assigned directly by experts, or more
generally, they may be trained and updated using dedicated
learning algorithms if prior or up-to-date information regarding
the inputs and outputs of a rule-based system is available. Once
such a belief rule base is established, the knowledge contained
in the belief rule base can be used to perform inference for given
inputs. The inference procedure is investigated in the following
subsections.

B. Input Transformation

Before an inference process can start, the relationship be-
tween an input (fact) and each referential value in the an-
tecedents of a rule needs to be determined so that an activation
weight for each rule can be generated. The basic idea is to
examine all the referential values of each attribute in order to
determine a matching degree to which an input belongs to a
referential value. This is equivalent to transforming an input
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into a distribution on referential values using belief degrees
[17]. Once the matching degrees between an input and the
referential values of all antecedents in a rule are determined,
they are processed to generate an activation weight for the
rule, which is used to measure the degree to which the packet
antecedent of the rule is activated by the input.

In a belief rule base shown in (3), a general input form
corresponding to all antecedent attributes is given as

(A∗
1, ε1) ∧ (A∗

2, ε2) ∧ · · · ∧ (A∗
T , εT ) (4)

where εi expresses the degree of belief assigned to the input
value A∗

i of the ith attribute (i = 1, . . . , T ), which reflects
the uncertainty of the input data, and T is the total number
of different antecedent attributes involved in all the rules in a
rule base. For example, (red, 0.9) means that there is a 90%
certainty that the input can take the value “red” of the attribute
“color.”

To facilitate data collection, it is desirable to acquire as-
sessment information in a manner appropriate to a particular
attribute. By using the distribution assessment approach [17],
a referential value of an attribute may in general be regarded as
an evaluation grade, and the input (A∗

i , εi) for the ith attribute
can be transformed to a distribution on the referential values of
the attribute using belief degrees as

S (A∗
i , εi) = {(Aij , αij); j = 1, . . . , Ji} , i = 1, 2, . . . , T

(5)

where Aij is the jth referential value of the ith attribute, αij

the degree to which the input A∗
i belongs to the referential

value Aij with αij ≥ 0 and
∑Ji

j=1 αij ≤ 1 (i = 1, 2, . . . , T ),
and Ji the number of the referential values used for describing
the ith antecedent attribute. The distributed assessment above
reads that the input A∗

i is assessed to the referential value
Aij with the degree of belief of αij ( j = 1, 2, . . . , Ji and
i = 1, 2, . . . , T ). An assessment S(A∗

i , εi) is complete if∑Ji

j=1 αij = 1 and incomplete if
∑Ji

j=1 αij < 1. A special case

is
∑Ji

j=1 αij = 0 (or αij = 0 for all j = 1, 2, . . . , Ji), which
means that the input does not affect the ith attribute at all. Such
incompleteness will be handled in the inference procedure of
the rule base using the ER approach. αij could be generated
using various ways, depending on the nature of an antecedent
attribute, which will be investigated in Section IV.

For instance, in evaluation of qualitative antecedent attri-
butes, subject judgments could be used. In assessment of the
brakes of a motorcycle (if its referential set is {poor, indifferent,
average, good, excellent}), for example, assessors may be

“30% sure that its braking stability is at the average level
and 70% sure that it is good.”
Hence, S(brake) = {(poor, 0), (indifferent, 0), (average, 0.3),

(good, 0.7), (excellent, 0)}.
Given the input for the packet antecedent Ak in the kth

rule, denoted by A∗k, the corresponding activation weight for
each rule, denoted by wk, can be generated as discussed in the
following subsection.

C. Activation Weight for the Packet Antecedent of a Rule

Consider an input given in a format shown in (5) correspond-
ing to the kth rule defined as in (3)(

Ak
1 , α

k
1

) ∧ (
Ak

2 , α
k
2

) ∧ · · · ∧ (
Ak

Tk
, αk

Tk

)
where Ak

i ∈ {Aij ; j = 1, . . . , Ji} and αk
i ∈ {αij ; j =

1, . . . , Ji}. For example, an input in safety analysis transformed
into the kth rule is given by [20].

“Failure rate is (frequent, 0.45) and consequence
severity is (critical, 0.8) and failure consequence proba-
bility is (unlikely, 0.2).”

The total degree αk to which the input matches the packet
antecedent Ak in the kth rule can be calculated using the
following formula:

αk = ϕ
((

δk1, α
k
1

)
, . . . ,

(
δkTk

, αk
Tk

))
. (6)

Here, ϕ is an aggregation function that reflects the relation-
ship among the Tk antecedents in the kth rule, and δki (i =
1, . . . , Tk) is the relative weight of the ith antecedent attribute
in the kth rule.

Care should be taken in selection of the aggregation func-
tion ϕ. Considering that αk is a belief degree (or a subjective
probability), the following pair of aggregation functions may
be used for generating such subjective probabilities, which are
referred to as the “probability-product” and “probability-sum”
operators for the “∧” and “∨” connectives in a rule-based
system, i.e., ϕproduct(a, b) = ab and ϕsum(a, b) = a + b− ab,
respectively. This pair is also referred to as the triangular norm
(t-norm) operator and the triangular conorm (t-conorm) opera-
tors [48], [49].

Suppose the “∧” connective is used for all antecedents in a
rule, such as “if A ∧B ∧ C.” In other words, the consequent
of a rule is not believed to be true unless all the antecedents
of the rule are activated. In such cases, one may use the
following simple weighted multiplicative aggregation function
to calculate αk:

αk =
Tk∏
i=1

(
αk

i

)δki (6a)

where

δki =
δki

max
i=1,...,Tk

{δki} so that 0 ≤ δki ≤ 1.

The above aggregation function is used in the case study
in Section V. Note that 0 ≤ αk ≤ 1, αk = 1 if αk

i = 1 for
all i = 1, . . . Tk, and αk = 0 if αk

i = 0 for any i = 1, . . . Tk.
Furthermore, the contribution of an antecedent attribute
towards αk is positively related to the weight of the attribute.
In other words, an important attribute plays a greater role in
determining αk, which is further explained as follows:

1) If δkl = 0 (l ∈ {1, . . . Tk}), then (αk
l )δkl = 1, which

shows that an attribute with zero importance does not
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have any impact on the aggregation process; if δkl = 1,
then (αk

l )δkl = αk
l , which shows that the most impor-

tant antecedent has significant impact on the aggregation
process proportional to the degree to which it is matched
by the input.

2) Note that if a > b, then (a)δ ≥ (b)δ for δ > 0, which
means that the function (α)δ is monotonically nonde-
creasing in the argument α if δ > 0. In other words, if the
individual belief with regard to the antecedent attribute is
increased, the overall belief should not decrease.

3) Furthermore, (α)δ is nonincreasing in δ for 0 ≤ α ≤ 1.
In other words, if δ1 < δ2, then (α)δ1 ≥ (α)δ2 for 0 ≤
α ≤ 1. Therefore, as the ith antecedent attribute in the kth
rule becomes less important, δki decreases, which will
decrease the possibility of αk being dominated by αk

i .

If the “∨” connective is used for all antecedents in a rule,
such as “if A ∨B ∨ C”, then one may use the following recur-
sively defined weighted product–sum aggregation function to
calculate αk:

αk(1) =hk
1

= δk1 × αk
1

αk(i+1) =αk(i) +
(
1 − αk(i)

)
hk

i+1 for i = 1, . . . , Tk − 1

αk =αk(Tk) (6b)

where hk
j = δkj × αk

j , j = 1, . . . , Tk. Note that 0 ≤ αk ≤ 1,
αk = 1 if αk

i = 1 and the ith antecedent attribute is the most
important attribute in the kth rule, and αk = 0 if αk

i = 0 for
all i = 1, . . . Tk. In addition, the contribution of an antecedent
attribute towards αk is positively related to the weight of
the attribute. In other words, an important attribute plays a
greater role in determining αk based on the definition of
hk

j , j = 1, . . . , Tk, which can be explained in the similar
way as for (6a).

However, the antecedents of a rule could be more compli-
cated. The combination of conjunction and disjunction, like
(A ∨B ∨ C) ∧ (A ∨B), is common in rule-based systems.
On the other hand, the meanings of the relationships “AND”
and “OR” are not fixed. In some cases, they correspond to
disjunction and conjunction, and in other cases, their meanings
may be reversed [50]. It is also possible that they do not corre-
spond to either disjunction or conjunction, in particular, when
various criteria support each other and trigger a rule collectively
[51], or when the criteria display conjunctive and disjunctive
behavior simultaneously [49], or when aggregation depends on
the values of the criteria [52]. Consequently, it may not be
feasible to predefine the universal form of a general aggregation
function ϕ and use it throughout a rule base. Instead, each rule
should be examined individually, and an aggregation function
appropriate for each rule should be used [53].

A rule may use both the “∨” connective and the “∧” con-
nective. Such a rule can be decomposed into a collection of
equivalent rules, using standard techniques from crisp logic.
Suppose, for example, a rule is expressed as

Rk : if
(
Ak

1 ∧Ak
2 ∧ · · · ∧Ak

m

) ∨ (Ak
m+1 ∧ · · · ∧Ak

Tk

)
, then D.

This rule can be expressed as in the following two equivalent
rules

R
(1)
k : if Ak

1 ∧Ak
2 ∧ · · · ∧Ak

m, then D

and R
(2)
k : if Ak

m+1 ∧ · · · ∧Ak
Tk

, then D.

Then, aggregation functions similar to (6a) could be used for
each of the two rules.

The activation weight wk of the packet antecedent Ak in
the kth rule is generated by weighting and normalizing the
matching degree αk given by (6) as

wk =
θkαk

L∑
i=1

θiαi

(7)

where θk is the relative weight of the kth rule. Note that 0 ≤
wk ≤ 1 (k = 1, . . . , L), and

∑L
i=1 wi = 1. Note also that wk =

0 if the kth rule is not activated.

D. Degrees of Belief in the Consequent of a Rule

The degree of belief βik in the ith possible consequent
term Di in the kth rule is already given when a rule base is
established with 0 ≤∑N

i=1 βik ≤ 1. The kth rule is complete
if
∑N

i=1 βik = 1, and it is incomplete if
∑N

i=1 βik < 1. The
incompleteness of the consequent of a rule can also result
from its antecedents due to lack of data. For instance, the input
for an antecedent attribute may not be available or may be only
partially known. In the inference process, such incompleteness
should be considered. An incomplete input for an attribute will
lead to an incomplete output in each of the rules in which
the attribute is used. The original belief degree βik in the ith
consequent Di of the kth rule is updated based on the actual
input information as

βik = βik

Tk∑
t=1

(
τ(t, k)

Jt∑
j=1

αtj

)
Tk∑
t=1

τ(t, k)
(8)

where

τ(t, k) =
{

1, if Ut is used in defining Rk (t = 1, . . . , Tk)
0, otherwise.

αtj is given in (5) with αtj ≥ 0, and
∑Jt

j=1 αtj ≤ 1. βik is

given in (3). Note that 0 ≤∑N
i=1 βik ≤ 1 for all k and (1 −∑N

i=1 βik) represents both ignorance incurred in establishing
Rk and the incompleteness that may exist in the input.

To demonstrate (8), suppose there are three antecedent at-
tributes used to determine the output of a rule Rk. It is possible
that an antecedent attribute may not be used in defining Rk. For
example, suppose T = 3 in (4) and that the third attribute is not
used to define the rule Rk, which is given by

Rk : if Ak
1 ∧Ak

2 , then
{
(D1, β1k), . . . , (DN , βNk)

}
.
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Then, τ(1, k) = 1, τ(2, k) = 1, and τ(3, k) = 0. Hence

βik = βik

3∑
t=1

(
τ(t, k)

Jt∑
j=1

αtj

)
3∑

t=1
τ(t, k)

= βik

J1∑
j=1

α1j +
J2∑

j=1

α2j

2
.

If the input for the first two attributes is both complete, or∑J1
j=1 α1j = 1 and

∑J2
j=1 α2j = 1, then

βik = βik ∗ 2
2

= β̄ik.

Suppose all the three attributes are used to define the rule
Rk, but the input of an attribute is incomplete. For example, the
input for the second antecedent is incomplete, and that for the
first and the third is complete, e.g.,

∑J2
j=1 α2j = 0.9 < 1, and∑J1

j=1 α1j =
∑J3

j=1 α3j = 1. Then

βik = βik

3∑
t=1

(
τ(t, k)

Jt∑
j=1

αtj

)
3∑

t=1
τ(t, k)

= βik ∗ 2.9
3

.

Hence, the incompleteness in the input for the second at-
tribute will be reflected in βik. Furthermore, if the input for
the second attribute is unknown, or

∑J2
j=1 α2j2 = 0, then βik =

βik ∗ (2/3).

E. Belief Rule Expression Matrix for a Belief Rule Base

Suppose a belief rule base is given by R = {R1, R2,
. . . , RL}. The kth rule can be represented as

Rk : if U is Ak, then D with belief degree βk (9)

where U represents the antecedent attribute vector (U1, U2,
. . . , UTk

), Ak the packet antecedents {Ak
1 , A

k
2 , . . . , A

k
Tk
}, D

the consequent vector (D1,D2, . . . , DN ), and βk the vector
of the belief degrees (β1k, β2k, . . . , βNk) for k ∈ {1, . . . , L}.
This is the vector form of a belief rule, which can be explained
as follows.

The packet antecedent Ak of a belief if–then rule can be
considered as a global attribute, which is considered to be
assessed to a consequent Di with a belief degree of βik(i ∈
{1, . . . , N}). This assessment can be represented by

S(Ak) = {(Di, βik); i = 1, . . . , N} (10)

which is a distribution assessment and referred to as a belief
structure, where βik measures the degree to which Di is the
consequent if the input activates the antecedent Ak in the kth
rule for i = 1, . . . , N , k = 1, . . . , L. L is the number of rules
in the rule base, and N is the number of possible conse-
quents. If

∑N
i=1 βik = 1, then the kth rule is said to be com-

plete; if
∑N

i=1 βik = 1 for all k = 1, . . . , L, then the rule base
is a complete rule base; otherwise, it is incomplete. Note that∑N

i=1 βik = 0 denotes total ignorance about the output of the

TABLE I
BELIEF RULE EXPRESSION MATRIX FOR A RULE BASE

kth rule. Here, it is assumed that all the L rules are indepen-
dent of each other, which means that the packet antecedents
A1, . . . , AL are independent of each other.

A belief rule base established using belief rules given by
(10) can be summarized using a belief rule expression matrix
shown in Table I.

In the matrix, wk is the activation weight of Ak, which
measures the degree to which the kth rule is weighted and
activated.

In the following section, the inference procedure is imple-
mented in order to combine all rules for generating the final
belief degrees for D1, . . . , DN based on the rule expression
matrix.

F. Rule Inference Using the Evidential Reasoning Approach

Based on the above belief rule expression matrix, the ER
approach can be used to combine rules and generate final
conclusions.

Having represented each rule by using (10), the ER approach
can be directly applied as follows. First, transform the degrees
of belief βjk for all j = 1, . . . , N , k = 1, . . . , L into basic
probability masses using the following ER algorithm [17], [18]:

mj,k =wkβj,k, j = 1, · · · , N

mD,k =1 −
N∑

j=1

mj,k = 1 − wk

N∑
j=1

βj,k

mD,k =1 − wk

m̃D,k =wk

1 −
N∑

j=1

βj,k


for all k = 1, · · · , L, where mD,k = mD,k + m̃D,k for all k =
1, · · · , L and

∑L
j wj = 1. The probability mass assigned to

the consequent set D, which is unassigned to any individual
consequent, is split into two parts: one caused by the relative
importance of the kth packet antecedent Ak (or mD,k) and the
other by the incompleteness of the kth packet antecedent Ak

(or m̃D,k).
Then, aggregate all the packet antecedents of the L rules

to generate the combined degree of belief in each possible
consequent Dj in D. Suppose mj,I(k) is the combined degree
of belief in Dj by aggregating the first k packet antecedents
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(A1, . . . , Ak), and mD,I(k) is the remaining degree of be-
lief unassigned to any consequent. Let mj,I(1) = mj,1 and
mD,I(1) = mD,1. Then, the overall combined degree of belief
βj in Dj is generated as

{Dj} : mj,I(k+1) =KI(k+1)

[
mj,I(k)mj,k+1 + mj,I(k)

× mD,k+1 + mD,I(k)mj,k+1

]
mD,I(k) =mD,I(k) + m̃D,I(k), k = 1, · · · , L

{D} : m̃D,I(k+1) =KI(k+1)

[
m̃D,I(k)m̃D,k+1 + m̃D,I(k)

× mD,k+1 + mD,I(k)m̃D,k+1

]
{D} : mD,I(k+1) =KI(k+1)

[
mD,I(k)mD,k+1

]
KI(k+1) =

1 −
N∑

j=1

N∑
t=1
t�=j

mj,I(k)mt,k+1


−1

k = 1, · · · , L− 1

{Dj} : βj =
mj,I(L)

1 −mD,I(L)
, j = 1, · · · , N

{D} : βD =
m̃D,I(L)

1 −mD,I(L)
.

βD represents the remaining belief degrees unassigned to any
Dj . It has been proven that

∑N
j=1 βj + βD = 1 [18]. The final

conclusion generated by aggregating the L rules, which are
activated by the actual input vector A∗ = {A∗k, k = 1, . . . , L},
can be represented as

S(A∗) = {(Dj , βj); j = 1, . . . , N} . (11)

Suppose the utility (or score) of an individual consequent Dj

is denoted by u(Dj). The expected utility (or score) of S(A∗)
is given as [21]

u (S(A∗)) =
N∑

j=1

u(Dj)βj . (12)

Note that βj denotes the lower bound of the likelihood that
the output is assessed to Dj . The upper bound of the likelihood
is given by (βj + βD). Complementary to the distribution
assessment as shown by (11), a utility interval can also be
established [17] if the assessment is incomplete or imprecise,
characterized by the maximum, minimum, and average utilities
of S(A∗) defined as follows, provided that u(Dn+1) ≥ u(Dn):

umax (S(A∗)) =
N−1∑
j=1

βju(Dj) + (βN + βD)u(DN ) (12a)

umin (S(A∗)) = (β1 + βD)u(D1) +
N∑

j=2

βju(Dj) (12b)

uavg (S(A∗)) =
umax (S(A∗)) + umin (S(A∗))

2
. (12c)

These utilities are used for characterizing an assessment but
not used in the aggregation process. Note that if the assess-
ment of S(A∗) is complete, then βD = 0, and u(S(A∗)) =
umax(S(A∗)) = umin(S(A∗))= uavg(S(A∗)).

The logic behind the approach is that if the output in the kth
rule includes Di and the kth rule is activated, then the overall
output must be Di to a certain degree. The degree is measured
by both the degree to which the kth rule is important to the
overall output and the degree to which the antecedents of the
kth rule are activated by the actual input.

The computational complexity of reasoning within the
Dempster’s rule of combination could be one of the major
points of criticism if the combination rule is not used prop-
erly. In fact, Orponen [54] showed that the combination of
mass functions or basic probability assignments (bpas) using
Dempster’s rule is #P-complete (the class #P is a functional
analogue of the class NP of decision problems), but the compu-
tational complexity of reasoning using Dempster’s rule based
on the specific ER decision analysis framework above becomes
linear rather than #P-complete [15]–[17]. It should also be
noted that conflicting information can be explicitly modeled
using the framework shown in Table I using the normalized
activation weight wk and can be logically processed using
the ER algorithm described earlier in this subsection, thereby
overcoming another drawback of the Dempster’s original com-
bination rule in dealing with conflicting evidence.

IV. EXTENSION TO HIERARCHICAL KNOWLEDGE BASE

As mentioned in Section II, attributes involved in the premise
of a rule could be quantitative or qualitative, so that input data
may be different both in type and in scale. Hence, there is a
need to establish a framework that provides a basis for multidi-
mensional information synthesis. In this section, a scheme for
handling various types of input information will be investigated
first, and the basic knowledge-base structure discussed in the
previous section will be extended to a hierarchical structure.

A. Transformation of Various Types of Input Information

Transformation of input variables could be implemented
using various ways, depending on the nature of an antecedent
attribute. The following cases are discussed.
1) Quantitative Attribute Described Using Linguistic Terms:
a) Transformation based on fuzzy linguistic values using

fuzzy membership functions: An antecedent attribute can be
described by fuzzy linguistic values characterized using fuzzy
membership functions. In this case, the referential values of
an antecedent attribute are fuzzy linguistic values. An input
may be uncertain and can be obtained from historical data and
expert’s experiences using the following numerical forms to suit
conditions under study:

1) a single deterministic value with 100% certainty;
2) a closed interval defined by an equally likely range;
3) a triangular distribution defined by a most likely value,

with lower and upper least likely values;
4) trapezoidal distribution defined by a most likely range,

with lower and upper least likely values.
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Suppose the ith antecedent attribute is a quantitative attribute
described using linguistic terms. To get the belief degree αij

as required in (5), the first step is to determine the degree
to which an input matches each of the appropriate fuzzy sets
via membership functions. In general, S(A∗

i , εi) of (5) can be
calculated using

S (A∗
i , εi) = s {(Aij , αij); j = 1, . . . , Ji} , i ∈ {1, 2, . . . , T}

(13)

where

αij =
τ (A∗

i , Aij) εi

Ji∑
j=1

[τ (A∗
i , Aij)]

where τ is a matching function, and τi = τ(A∗
i , Aij) is called

a matching degree. Note that 1 ≥ αij ≥ 0 and
∑Ji

j=1 αij ≤ 1.
If A∗

i completely belongs to the jth linguistic expression, i.e.,
τ(A∗

i , Aij) = 1, then αij may not be equal to 1 due to εi.
In summary, S(A∗

i , εi) is determined using the following
three steps:

1) Determining the matching degree τi between A∗
i and the

jth expression of the ith antecedent attribute by using a
matching function, j = 1, . . . , Ji.

2) Normalizing the matching degree τi.
3) Generating αij by combining the normalized matching

degree with the belief degree εi.
One possible matching function τ for a quantitative attribute

is given as follows. If an input A∗ is one of the above four
numerical forms (which can be considered as the special fuzzy
sets) and A is a referential value characterized using fuzzy
membership functions, then the matching degree between A∗

and A is defined by

τ(A∗, A) = max
x

[min (A∗(x), A(x))] (14)

where x covers the domain of the input A∗. A(x) [or A∗(x)]
represents the membership function of A (or A∗). If A∗

i is a
crisp value x0, then τ(A∗, A) = A(x0). Otherwise, τ(A∗, A) is
the highest point of the intersection of the input fuzzy set A∗

and the fuzzy set A.
The max–min operation is used for illustration purpose be-

cause it is a classical tool to set the matching degree between
fuzzy sets, and it is shown as a similarity measure between the
input fuzzy set A∗ and the fuzzy antecedent A [49]. However,
other functions could also be chosen, such as the t-conorm
function and the t-norm function [49]. Alternatively, various
similarity measures based on the geometric model [55], the set-
theoretic approach and the matching function [56], [57], the
best-fit method for discrete membership functions [58], and the
grade matching method for continuous membership functions
[14] may be used.

b) Rule or utility-based equivalence transformation tech-
niques for quantitative data: For a quantitative attribute de-
scribed by linguistic values, another way to generate αij in (5)
is to use the rule or utility-based equivalence transformation
techniques [17], which is outlined as follows.

Suppose the input of a quantitative antecedent attribute is
given by numerical values. In this case, equivalence rules first
need to be extracted from the decision maker to transform a
value to an equivalent expectation, thereby relating a particular
value to a set of referential values.

In general, suppose U = {Ui; i = 1, . . . , T} is the set of
antecedent attributes, Ai = {Aij ; j = 1, . . . , Ji = |Ai|} (i =
1, . . . , T ) is the referential set of the antecedent attribute Ui,
and a value aij for an antecedent attribute Ui is judged to be
equivalent to a referential value Aij(j = 1, . . . , Ji), or

aij means Aij (j = 1, . . . , Ji). (15)

Then, it needs to represent the numerical value using an
equivalent expectation.

Without loss of generality, suppose Ui is a “profit” attribute,
that is, a large value ai(j+1) is preferred over a smaller value
aij . Let aiJi

be the largest feasible value and ai1 the smallest.
Then, an input value A∗

i for Ui may be represented using the
following equivalent expectation:

S (A∗
i ) = {(aij , γij); j = 1, . . . , Ji} (15a)

where

γij =
ai(j+1) −A∗

i

ai(j+1) − aij

γi(j+1) =1 − γij if aij ≤ A∗
i ≤ ai(j+1) (16a)

γik = 0 for k = 1, . . . , Ji, k �= j, j + 1. (16b)

Note that representing A∗
i by (15a) means that A∗

i is calcu-
lated by the expected value of S(A∗

i ) denoted by E(S(A∗
i )),

or A∗
i = E(S(A∗

i )), and the utility of A∗
i is calculated by

u(S(A∗
i )). It has been proven that the above equivalence re-

lations are justified if the underlying implicit utility function
of the attribute Ui is assumed to be piecewise linear [17].
The use of a piecewise linear utility function is of general
interest and wide applicability as any nonlinear function may
be approximated by a piecewise linear function if a suffi-
cient number of values of the nonlinear function are estimated
[59], [60].

Given the equivalence rules described in (15), a value A∗
i can

be represented by the following equivalence expectation:

S (A∗
i ) = {(Aij , αij); j = 1, . . . , Ji} (17)

where

αij = γij , j = 1, . . . , Ji. (18)

Thus, given the equivalence rules between aij and Aij

and assuming a piecewise linear utility function for Ui, a
numerical value is represented by an equivalent distribution
using (16)–(18).

A quantitative antecedent attribute may also be a random
variable and may not always take a single value but several
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values with different probabilities. To assess such an attribute
Ui, the following distribution is used [17]:

S(Ui) = {(A∗
l , pl) ; l = 1, . . . ,M} (19)

where A∗
l is a possible value that Ui may take, and pl is the

probability that Ui takes the value A∗
l , where

∑M
l=1 pl = 1. The

above distribution reads that an attribute Ui takes a value A∗
l

with a probability pl. Note that Ui taking a single value A∗
l for

sure is a special case of (19) with pl = 1 and pm = 0 (m =
1, . . . ,M , m �= l).

Assuming a piecewise linear utility function for Ui, the dis-
tribution S(Ui) given by (19) can be equivalently represented
using aij by

S(Ui) =
{
(aij , γij); j = 1, . . . , Ji

}
(20)

where

γij =



∑
l∈πj

plγlj , for j = 1∑
l∈πj−1

pl

(
1 − γl(j−1)

)−∑
l∈πj

plγlj , for 2 ≤ j ≤ Ji − 1∑
l∈πj−1

pl

(
1 − γl(j−1)

)
, for j = Ji

(21)

πj =
{
l
∣∣aij ≤ A∗

l ≤ ai(j+1), l = 1, . . . ,M
}
,

j = 1, . . . , Ji − 1 (22)

and γij is calculated by (16a) and (16b). Note that πn ∩ πm =
∅ (n, m = 1, . . . , Ji − 1; n �= m) and

Ji−1⋃
j=1

πj = {1, 2, . . . ,M}.

Given the equivalence rule represented by (15), S(Ui) can
be equivalently represented by the following expectation using
the antecedent referential value set:

S(Ui) = {(Aij , αij); j = 1, . . . , Ji} with αij = γij . (23)

2) Quantitative Attributes Described Using Interval Form:
In this case, an antecedent attribute is described by an interval
of values. In this case, the way to get αij is similar to that in
the linguistic value case using (12), as discussed earlier in this
section. The difference is the way to determine the matching
function τ(A∗, A). The interval matching function, introduced
by Bustince and Burillo [61] and Chen and Hsiao [62], can be
used to determine τ(A∗, A).
3) Qualitative Attributes Assessed Using a Subjective Belief

Distribution Vector: It is natural that qualitative attributes are
assessed using human judgments, which are subjective in nature
and are inevitably associated with uncertainties caused due
to human being’s inability to provide precise judgments, or

the lack of information, or the vagueness of meanings about
attributes and their assessments. Qualitative parameters in a
model may be assessed using a subjective scale against which a
range of linguistic values is mapped in domains defined by the
model builder. A subjective scale is called a psychometric scale,
since it comes from the model builder’s minds [63]. The range
of a psychometric scale is determined by the level of granularity
and fine details in the model. Due to subjectivity, a qualitative
attribute could be directly assessed to a distribution using
linguistic terms with the degrees of belief based on subjective
judgments. In other words, αij can be assigned directly by the
decision maker using his subjective judgments for each Aij . For
example, if εij is the degree of belief assigned to the association
of Aij , then αij = εij .
4) Symbolic Attributes Assessed Using a Subjective Belief

Distribution Vector: Usually, a symbolic attribute is determin-
istic, but one may not be sure about which symbol may be taken
for an attribute. Similar to a qualitative linguistic value, if εij is
the degree of belief assigned to the symbolic term Aij , then
αij = εij .

Based on the above transformation techniques, an input can
be represented as a belief distribution, which can provide a
panoramic view about the status of an attribute. Using such a
distributed assessment framework, the features of a range of
evidence can be catered for while the assessor is not forced to
preaggregate various types of evidence into a single numerical
value. The main advantage of doing so is that both precise data
and subjective judgments with uncertainty, whether complete
or incomplete, can be consistently modeled under the unified
framework without loss of their original features.

In summary, an input can be expressed as

S (A∗
1, ε1) ∧ S (A∗

2, ε2) ∧ · · · ∧ S (A∗
T , εT ) . (24)

Comparing (5) with each rule given in (3), an input can be
rewritten as(

Ak
1 , α

k
1

) ∧ (Ak
2 , α

k
2

) ∧ · · · ∧ (Ak
Tk

, αk
Tk

)
where αk

i (i = 1, . . . , Tk) is the degree of belief to which the
input (A∗

i , εi) belongs to Ak
i of the ith individual antecedent in

the kth rule, and αk
i ∈ {αij ; αij ≥ 0 and

∑Ji

j=1 αij ≤ 1, j =
1, . . . , Ji}. αij is calculated using the above transformation
techniques according to the type and nature of an attribute.
The belief degrees were used in Section III-C for generating
the activation weights of antecedent attributes. It should be
noted that in the above discussion, the development of a belief
rule-based system is divided into three parts: belief rule-base
construction; input information transformation; and belief rule-
base inference. The concepts and techniques in fuzzy set theory,
utility theory, and belief theory are used for rule construction
and input information transformation, while the inference is
implemented using ER.

B. Hierarchical Knowledge Base

The rules of a knowledge base for a complex decision-
making problem can be of a hierarchical structure. In general,
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Fig. 1. Simple hierarchical structure.

a bottom-up approach can be used to solve such a problem.
Pieces of evidence for the lowest level attributes are aggre-
gated as evidence for the second lowest level attributes, which
is, in turn, aggregated to produce evidence for higher level
attributes.

Fig. 1 shows a hierarchical knowledge base, composed of
three sub-rule bases: sub-rule base 1; sub-rule base 2; and sub-
rule base 3. Information is propagated from the bottom level
states (X , Y , G, H , and Z) up to the goal state W . Sub-rule
base 1 and sub-rule base 2 are independent of each other. The
output of sub-rule base 1 (i.e., D) and the output of sub-rule
base 2 (i.e., R) together with the independent input state Z are
taken as the input states to sub-rule base 3. Each of the three
sub-rule bases constitutes a basic rule base, as investigated in
Section III-A and can be dealt with using the methodology
developed in Section III, where sub-rule base 1 and sub-rule
base 2 are solved first, followed by the solution of sub-rule
base 3.

C. Hierarchical Rule-Base Inference

Consider the simple case of two pieces of evidence shown in
sub-rule base 1 in Fig. 1, where two evidential states X and Y
determine the output state D.
1) X and Y are Independent Evidential States: Note that

the evidential state X can consist of multiple interrelated at-
tributes, which all affect the output state D and are considered
simultaneously. In other words, X may be in forms of “X1 ∧
X2 ∧ · · · ∧XT.” The evidential state Y may have a similar
form.

Rules describing the relations between X and D and between
Y and D can be formulated as follows.

1) Rule base describing the relations between X and D

if X is A1, then D is {(D1, η11), (D2, η21),

. . . , (DN , ηN1)}
else if X is A2, then D is {(D1, η12), . . . , (DN , ηN2)}
. . .

else if X is Ai, then D is {(D1, η1i), . . . , (DN , ηNi)}
. . .

else X is AL, then D is {(D1, η1L), . . . , (DN , ηNL)} .

2) Rule base describing the relations between Y and D

if Y is B1, then D is {(D1, γ11), . . . , (DN , γN1)}
else if Y is B2, then D is {(D1, γ12), . . . , (DN , γN2)}
. . .

else if Y is Bj , then D is {(D1, γ1j), . . . , (DN , γNj)}
. . .

else Y is BP , then D is {(D1, γ1P ), . . . , (DN , γNP )}

where Ai (i = 1, . . . , L) denotes a packet antecedent attribute
corresponding to (X1 ∧ · · · ∧XT ) in the ith rule, and ηki is
the degree of belief to which D is believed to take Dk due to
X being Ai; Bj (j = 1, . . . , P ) denotes a packet antecedent
attribute corresponding to (Y1 ∧ · · · ∧ YT ) in the jth rule, and
γkj is the degree of belief to which D is believed to take Dk

due to Y being Bj .
Once the inputs for X and Y are given, the output for D can

be inferred using the sub-rule base and the proposed RIMER
method based on X and Y , respectively. The final output for D
is a combination of the outputs from X and Y , which can be
done by directly using the ER algorithm.

Suppose there are several sources or experts, denoted by
Ek (k = 1, . . . ,K), and A∗

k is the input derived from Ek for
the evidential state X . For each input, the corresponding output
D∗

k = {(D1, η
∗
1k), (D2, η

∗
2k), . . . , (DN , η∗Nk)} can be derived,

which can be formulated as

if X is A∗
1, then D is {(D1, η

∗
11) , . . . , (DN , η∗N1)}

if X is A∗
2, then D is {(D1, η

∗
12) , . . . , (DN , η∗N2)}

. . .

if X is A∗
k, then D is {(D1, η

∗
1k) , . . . , (DN , η∗Nk)}

. . .

if X is A∗
K , then D is {(D1, η

∗
1L) , . . . , (DN , η∗NK)} .

Furthermore, it may be assumed that different experts/
different sources may have different reliability weights wEk

(k = 1, . . . ,K). Then the final output for D can be gener-
ated by taking into account both the experts’ views and their
weights.
2) X and Y are Dependent Evidential States: In this case,

the rule base may be expressed as

if X is A1 ∧ Y is B1, then D is {(D1, λ11), . . . , (DN , λN1)}
else if X is A2 ∧ Y is B2, then D is {(D1, λ12),

. . . , (DN , λN2)}
. . .

else if X is Ai ∧ Y is Bi, then D is {(D1, λ1i),

. . . , (DN , λNi)}
. . .

else if X is AL ∧ Y is BL, then D is {(D1, λ1L),

. . . , (DN , λNL)}
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Fig. 2. Hierarchical structure of a small exploratory expert system.

where “∧” is a connective to reflect the corelationship between
X and Y , which are combined to get the goal state D. The “∨”
connective might also be used for this purpose. In this case, the
RIMER approach can also be used to infer the goal state D.

Similarly, sub-rule base 2, and finally, sub-rule base 3, may
be implemented to assess the final goal state W .

Note that the new RIMER method developed above requires
that the input attributes of a rule are independent of each
other. In a so-called “recursive” (not hierarchical) rule base,
the consequent of a rule may be used as an attribute in another
rule, and the consequent of the latter rule may then be used
as an attribute in the former rule. Such a “recursive” rule base
may not be allowed by RIMER if the independence requirement
is violated.

V. NUMERICAL STUDY

A. Problem Description

A numerical example, which is based on a fuzzy rule base
for an exploratory expert system discussed by Hodges et al.
[64], is studied in this section. The example aims to determine a
confidence degree to which the system believes that a container
may contain graphite.

The input variables defined in the exploratory expert system
include the following:

1) accuracy of the weight measurement;
2) degree to which the calculated density is consistent with

graphite;
3) observer’s experience;
4) observer’s confidence that the real-time radiography

(RTR) shows graphites,
For illustration purposes, each of these input variables and

the output variable (confidence to which a container contains
graphite) are defined as having values of high (H), medium (M),
or low (L). The system structure is shown in Fig. 2.

In Fig. 2, the parameters are defined as follows.
X1 Observer’s experience.
X2 Accuracy of the fill height determination.
X3 Accuracy of the weight measurement.
X4 Accuracy of the calculated density.
X5 Consistency of the calculated density with graphite.

X6 Confidence that the density indicates graphite.
X7 Observer’s confidence that the RTR shows graphite.
X8 Confidence that the RTR shows graphite.
X9 Confidence that the container contains graphite.
This example uses four input variables (X1, X3, X5, X7)

and four intermediate variables (X2, X4, X6, X8) to predict X9

in terms of qualitative linguistic values. The expert knowledge
is coded as if–then rules, hierarchically organized in five
sub-rule bases [64]. In sub-rule base 2, for example, the fol-
lowing if–then rules are included:

if X2 is L, then X4 is L

if X3 is L, then X4 is L

if X2 is H ∧X3 is H, then X4 is H

if X2 is H ∧X3 is M, then X4 is H

if X2 is M ∧X3 is H, then X4 is H

if X2 is M ∧X3 is M, then X4 is M.

Based on the rule base, fuzzy inference was used in [64]. The
process of the fuzzy inference consists of the following steps:

1) Fuzzification of a crisp input by input membership
functions.

2) Fuzzy aggregation of antecedents in each rule (∧
connective).

3) Implication relation for each individual rule (if–then
connective).

4) Aggregation of the rules (also connective).
5) Deriving inference from the set of rules, using the crisp

input to obtain the fuzzy output.
6) Defuzzification of the output.
There are a number of different ways to implement a fuzzy

inference engine. Mamdani and Assilian [65] described an
inference engine in terms of a fuzzy relation matrix and used
the composition rule of inference (CRI) to arrive at an output
fuzzy set for a given input fuzzy set. This CRI was applied in
[64]. The results generated from 12 test runs conducted using
CRI are summarized in the sixth column of Table III, as shown
later in this section.

B. Extension of the Original Rules Using the Belief Structure

Each rule used in [64] has only one consequent with a belief
degree being always exactly one, which is a special case of the
belief structure discussed in Sections III and IV. In this subsec-
tion, the rules are extended using the belief structure to provide
better flexibility and versatility for more precisely imitating
human reasoning using rule-based systems. The definitions of
the extended rules with the consequents having the dedicated
degrees of belief are given in Table II. These degrees of belief
in the consequents were assigned by the researchers as a re-
sult of the observation of the given expert judgments. In a
more systematic scheme, the belief degrees could be trained
using expert judgments as test data and may also be updated
once new evidence becomes available. The rules are numbered
and clustered in conjunction with the five sub-rule bases. The
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TABLE II
NEW RULE BASE WITH THE BELIEF STRUCTURE

extended rule base can imitate both discrete and continuous
reasoning processes. The numbers shown in the second column
represent the weights assigned to the rules, where H stands
for high, M for medium, and L for low. For example, rule (7)
means: if “the accuracy of the fill height determination” is high
and “the accuracy of the weight measurement” is medium, then
“the accuracy of the calculated density” is high with a belief
degree of 0.3 and medium with a belief degree of 0.7 and the
rule is assigned a weight of 0.7.

Note that rules (6)–(9) indicate that “the accuracy of the
calculated density” depends on “the accuracy of the fill height
determination” and “the accuracy of the weight measurement.”
However, rules (4) and (5) check each of these two factors (fill
height accuracy and weight accuracy) separately rather than in
a compound fashion as found in rules (6)–(9), i.e.,

if X3 is L, then X4 is {(L, 1)}
if X2 is L, then X4 is {(L, 1)} .

The definitions of the two rules result from the expert’s
experience that one negative piece of evidence, such as an
inaccurate fill height determination, would make the confidence
in the final result low, regardless of other evidence that may also

TABLE III
TEST RUN RESULTS COMPARED WITH THE EXPERT’S JUDGEMENT

be available. Furthermore, the differences between the rules
with different antecedents can be shown using the belief degrees
in the conclusion part, e.g.,

if X2 is H ∧X3 is H, then X4 is {(H, 1)}
if X2 is H ∧X3 is M, then X4 is {(H, 0.3), (M, 0.7)}
if X2 is M ∧X3 is H, then X4 is {(H, 0.3), (M, 0.7)}

which, however, had the same consequent (H) in the original
rule base in [64].

Test 3 is examined in detail in the following subsection to
demonstrate the procedure involved in the inference engine.
The other tests are conducted in the same way using the RIMER
approach, and the generated results are summarized in Table III.

C. Implementation of the RIMER Inference Process

1) Transformation of Input: Before the inference can be
started, input values need to be transformed and represented in
terms of the referential values: low, medium, and high using
belief degrees to which the values belong to the referential
values. Note that the transformation based on the max–min
matching method, which was used by Hodges et al. in [64],
seems to not be rational. For example, belief degrees would
be calculated as follows using the max–min matching method
in (13):

0.98 is transformed to {(H, 1)}
1 is transformed to {(H, 1)}
0.8 is transformed to {(H, 1)}
0.4 is transformed to {(L, 0.31), (M, 0.69)}
0.2 is transformed to {(L, 1)}
0.1 is transformed to {(L, 1)}
0.6 is transformed to {(M, 0.66), (H, 0.34)} .

Note that in the above transformation 0.98, 1, and 0.8 are
given the same matching degree of 1 to high, and 0.2 and 0.1
are given the same matching degree of 1 to low. This is not
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intuitively reasonable and would cause inaccuracy in subse-
quent inference, thereby sacrificing the credibility of results
subsequently generated. Because of these concerns, the rule-
based transformation technique [17] is used for the quantitative
data transformation, shown by using (15)–(18). The equiva-
lence rules are given as

1 is equivalently transformed to {(H, 1)} or H = 1

0.5 is equivalently transformed to {(M, 1)} or M = 0.5

0 is equivalently transformed to {(L, 1)} or L = 0.

Hence

0.98 is equivalently transformed to {(H, 0.96), (M, 0.04)}
0.8 is equivalently transformed to {(H, 0.6), (M, 0.4)}
0.6 is equivalently transformed to {(H, 0.2), (M, 0.8)}
0.4 is equivalently transformed to {(M, 0.8), (L, 0.2)}
0.2 is equivalently transformed to {(M, 0.4), (L, 0.6)} .

Furthermore, the “∧” connective in the antecedent is defined
as the product operation, as shown in (6a). In the following, as-
sume that all antecedent attributes in any rule have equal weight
for illustration purpose, i.e., δki = 1 for any k = 1, . . . , 36;
i = 1, 2.
2) Inference of the Sub-Rule Base 1: The input for X1 is 0.8

or equivalently given by

X1 : {(H, 0.6), (M, 0.4), (L, 0)}

which means that there is a 60% certainty that X1 is H, 40%
that X1 is M, and 0% that X1 is L.

In the sub-rule base for X2 as shown in Table III, the
activation weights wk for the three rules Rk (k = 1, 2, and 3)
are generated by using (6a) and (7) by w1 = 0.60, w2 = 0.4,
and w3 = 0, respectively. Note that the rule weights θk are
assumed to be equal to 1 for all k = 1, 2, and 3.

Based on the sub-rule base for X2 and using the window-
based and graphically designed intelligent decision system
(IDS) [66], the consequent estimates are generated. The final
assessment result for X2 is obtained as

X2 : {(H, 0.6923), (M, 0.3077), (L, 0)}

which has a corresponding confidence score of 0.8462 gener-
ated by using (12).
3) Inference of the Sub-Rule Base 2: Note that the input for

X3 is given by

X3 : {(H, 0.96), (M, 0.04), (L, 0)} .

Considering the sub-rule base for X4 shown in Table III and
since the “∧” connective is used in the antecedents, the activa-
tion weights wk for the rules Rk (k = 4, . . . , 9) are generated
by using (6a) and (7) by w4 = 0, w5 = 0, w6 = 0.7390, w7 =
0.0216, w8 = 0.2299, and w9 = 0.0096, respectively. Note that
the antecedent weight δi is 1 for all i = 1, 2, and 3, and the rule

weights are given by θ4 = θ5 = θ6 = 1, and θ7 = θ8 = θ9 =
0.7. The final assessment result for X4 is obtained using IDS as

X4 is {(H, 0.9304), (M, 0.0696), (L, 0)}

with a corresponding confidence score of 0.9652.
Note that the above result is determined by the activation

weights, the rule weights, and the belief degrees for rules
(4)–(9). Rule R6 has the highest activation weight of 0.7390 and
the highest rule weight of 1, and thus it plays the most important
role in determining the output, followed by rule R8. The other
four rules have only made marginal or no contribution to the
result. Moreover, the consequents for R6 and R8 are given by
{(H, 1)} and {(H, 0.3), (M, 0.7)}, respectively. Hence, the final
output generated should be close to high to a large degree. This
is confirmed in the above result.
4) Inference of the Sub-Rule Base 3: In this rule base, X6

is determined by X4 and X5. Note that the input for X5 is
given by

X5 : {(H, 0), (M, 0.4), (L, 0.6)} .

From the sub-rule base for X6 shown in Table III, the
activation weight wk for the rules Rk (k = 10, . . . , 18) are
generated by using (6a) and (7) by w10 = 0, w11 = 0, w12 = 0,
w13 = 0.6934, w14 = 0.0207, w15 = 0, w16 = 0.2080, w17 =
0.0778, and w18 = 0, respectively. The rule weights are θ10 =
1, θ11 = 1, θ12 = 1, θ13 = 1, θ14 = 0.4, θ15 = 1, θ16 = 0.2,
θ17 = 1, and θ18 = 1, respectively. The final assessment result
for X6 is generated using IDS as

X6 : {(H, 0.1707), (M, 0.7473), (L, 0.0820)}

with a confidence score of 0.5444.
This output for X6 also seems logical as the activation weight

w13 is as high as 0.6934, the rule weight θ13 is 1, and the
consequent of the rule R13 is given by {(H, 0.3), (M, 0.7),
(L, 0)}, which is assessed to medium to a large degree of 0.7.
The second most important rule is R16 with w16 = 0.2080,
though its rule weight is only 0.2. The consequent of the rule
R16 is given by {(H, 0.1), (M, 0.3), (L, 0.6)}), which is also
assessed to medium to a degree of 0.3.
5) Inference of the Sub-Rule Base 4: Note that the input for

X7 is given by

X7 : {(H, 0.6), (M, 0.4), (L, 0)}

and the input for X1 is also given by

X1 : {(H, 0.6), (M, 0.4), (L, 0)} .

From the sub-rule base for X8 shown in Table III, the activa-
tion weights wk for the rules Rk (k = 19, . . . , 27) are generated
by using (6a) and (7) by w19 = 0.5056, w20 = 0.0674, w21 =
0, w22 = 0.3371, w23 = 0.0899, w24 = 0, w25 = 0, w26 = 0,
and w27 = 0, respectively. The rule weights are θ19 = 1, θ20 =
0.2, θ21 = 0.8, θ22 = 1, θ23 = 0.4, θ24 = 1, θ25 = 1, θ26 = 1,
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Fig. 3. Evaluation on the final output X9.

and θ27 = 1, respectively. The final assessment result for X8 is
generated using IDS as

X8 : {(H, 0.7459), (M, 0.2541), (L, 0)}

with a confidence score of 0.8730.
Note that for the rules R19 and R22, the activation weights

are w19 = 0.5056 and w22 = 0.3371, the rule weights are
θ19 = 1 and θ22 = 1, and the corresponding consequents are
given by {(H, 1)} and {(H, 0.4), (M, 0.6), (L, 0)}, respectively.
The output for X8 therefore should be to a large extent close to
H, which is confirmed by the above result for X8.
6) Inference of the Sub-Rule Base 5: Since X6 has already

been inferred from X4 and X5 by {(H, 0.1707), (M, 0.7473),
(L, 0.0820)}, using the sub-rule base for X9 shown in
Table III, the activation weights wk for the rules Rk (k = 28,
. . . , 36) are generated by using (6a) and (7) by w28 = 0.1862,
w29 = 0.0381, w30 = 0, w31 = 0.4892, w32 = 0.1666, w33 =
0, w34 = 0.0895, w35 = 0.0305, and w36 = 0, respectively.
The rule weights are θ28 = 1, θ29 = 0.6, θ30 = 1, θ31 = 0.6,
θ32 = 0.6, θ33 = 1, θ34 = 1, θ35 = 1, and θ36 = 1, respec-
tively. The final assessment result for X9 is obtained using
IDS as

X9 : {(H, 0.2685), (M, 0.6772), (L, 0.0543)}

with a confidence score of 0.6071.
Note that for the rules R28, R31, and R32, the activation

weights are given by w28 = 0.1862, w31 = 0.4892, and w32 =
0.1666, the rule weights by θ28 = 1, θ31 = 0.6, and θ32 = 0.6,
and the consequents by {(H, 1)}, {(H, 0.2), (M, 0.8)}, and
{(M, 1)}, respectively. Therefore, the output for X9 should be
close to medium to the largest degree, followed by high. Thus,
the output for X9 seems to be a logical result as well, which is
shown in Fig. 3.

D. Test Runs Compared With the Expert’s Opinions

The results are summarized in Table III, which are generated
from 12 test runs conducted using the CRI approach [64] and

the proposed RIMER approach. The final values generated
using the RIMER approach, which can be represented by both
the confidence scores and the distributed assessments with the
belief degrees to which the system believes that the container
contains graphite, are compared with the confidence scores
provided by an expert. In the study, the same input values as
given by Hodges et al. [64] are used.

Column 6 (X91) summarizes the results generated using the
CRI approach by Hodges et al. [64]. Column 7 (X92) presents
the results generated using the RIMER approach and the same
rule base as the CRI approach used, i.e., without the belief
structure. Moreover, the same matching function is used in
these two approaches. Column 8 (X93) summarizes the results
generated using the RIMER approach and the new rule base
given in Table II with the belief structure. The IDS software
is used to generate the consequent estimates. Column 9 (X9E)
summarizes the expert’s confidence that contents are graphite.

The following remarks can be made from the results shown
in Table III.

1) The results generated using the RIMER approach with
the belief structure in the rule base are much closer to the
expert’s judgments compared with the CRI approach.
RIMER also provides scope and flexibility for better
knowledge acquisition, including the definitions of input
and output variables, the construction of rule bases, and
the assignment of rule weights.

2) The rule base with the belief structure is constructed on
the basis of the original rule base provided by Hodges
et al. [64]. The belief degrees are assigned to each rule
by the researchers by examining the original rule base
and perceiving the expert’s way of making the judgments.
For example, as shown in Table III, the expert’s final
confidence in the verification of the graphite code tends
to be quite low in the presence of a piece of negative in-
formation such as the inexperience of the observer. Such
a human reasoning process can be accurately imitated by,
for example, assigning weights to antecedent attributes
and/or by adjusting belief degrees in the consequents of
rules in a systematic manner. This is one of the prominent
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TABLE IV
SENSITIVE ANALYSIS FOR RULE WEIGHTS AND BELIEF DEGREES

features of the rule base with the belief structure, and the
rules may even be trained in different ways.

3) If the same inputs and matching degrees are used, most
of the results generated using the CRI approach and the
RIMER approach are similar, though the results gen-
erated using the RIMER approach seem closer to the
expert’s judgments in a number of the tests.

4) Note that the activation weights for rules play an essential
role in the inference procedure. The final output tends to
be close to the consequents of rules with high activation
weights. In addition, belief degrees in each rule and rule
weights also affect output while activation weights are
fixed. This feature can be demonstrated in the following
sensitive studies.

Take test 3 for example. The global antecedent weights
wk for the rules Rk (k = 28, . . . , 36) are generated by
w28 = 0.1862, w29 = 0.0381, w30 = 0, w31 = 0.4892, w32 =
0.1666, w33 = 0, w34 = 0.0895, w35 = 0.0305, and w36 = 0,
respectively. The rule weights are θ28 = 1, θ29 = 0.6, θ30 = 1,
θ31 = 0.6, θ32 = 0.6, θ33 = 1, θ34 = 1, θ35 = 1, and θ36 =
1, respectively. Now consider the three rules with the high-
est global antecedent weight w31 = 0.4892, the lower weight
w29 = 0.0381, and the lowest weight w33 = 0. The changes
caused by adjusting the rule weights or the belief degrees are
shown in Table IV. Note that the original output of X9 is
given as

X9 : {(H, 0.2685), (M, 0.6772), (L, 0.0543)}

with a confidence score of 0.6071.
For example, in Table IV, (0.2373, 0.7315, 0.0312)

means the distribution assessment {(H, 0.2373), (M, 0.7315),
(L, 0.0312)}. From Table IV, the following remarks may be
made.

1) First, if the activation weight of a rule is equal to 0 (e.g.,
w33 = 0), then the weight and the belief degree of this
rule will have no influence on the final output.

2) If the activation weight of a rule is not equal to 0, then the
weight and the belief degrees of this rule will affect the
final output. The degree to which the final output can be
affected is determined by the magnitude of the activation
weight and the belief degrees. Moreover, if a rule has the
highest activation weight (e.g., R31), a small change in its
belief degrees [e.g., from (0.2, 0.8, 0) to (0.3, 0.7, 0)] will

TABLE V
RULE BASE FOR X6 WITH THE UPDATED BELIEF DEGREE

result in a significantly different final output (e.g., 0.6401)
from the original output (0.6071). This seems logical and
reasonable.

3) The distribution assessment provides a panoramic view
about the output status, from which one can see the var-
iation between the original output and the revised out-
put on each linguistic term. A distribution is easy to
understand and flexible to represent input information
than a single average value.

E. Inference Based on Incomplete Input Information

Both complete and incomplete inference can be accommo-
dated in a unified manner within the proposed RIMER frame-
work. To illustrate how incomplete input can be dealt with in the
inference methodology, in the above case study, the same input
for X1, X3, and X7 is used, but the input for X5 is modified to
{(L, 0.8)}, so that the actual assessment for X5 is assumed to be
incomplete. This assumes that the experts are only 80% certain
that the consistency of the calculated density with graphite is
“low.” In other words, the degree of ignorance is 0.2 in this
assumption.

Note that the assessment for X4 has already been generated
by {(H, 0.9304), (M, 0.0696), (L, 0)}, which is complete. From
the sub-rule base for X6, the new activation weight wk for
the rules Rk (k = 10, . . . , 18) based on the revised input are
generated by using (6a) and (7) by w10 = 0, w11 = 0, w12 = 0,
w13 = 0, w14 = 0, w15 = 0, w16 = 0.7278, w17 = 0.2722, and
w18 = 0, respectively. The rule weights are still θ10 = 1, θ11 =
1, θ12 = 1, θ13 = 1, θ14 = 0.4, θ15 = 1, θ16 = 0.2, θ17 = 1,
and θ18 = 1, respectively.

Due to the assumed incomplete input for X5, the belief
degree of the relevant rules needs to be updated to reflect the
incompleteness. Using (8)

βik =βik

2∑
t=1

(
τ(t, k)

3∑
j=1

αtj

)
2∑

t=1
τ(t, k)

= βik

1.8
2

=βik ∗ 0.9, i = 1, 2, 3; k = 10, . . . , 18.

Therefore, 0 <
∑3

i=1 βik < 1 for all rules that are associated
with X5. The sub-rule base for X6 with the updated belief de-
grees is shown in Table V.
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TABLE VI
RULE BASE FOR X9 WITH THE UPDATED BELIEF DEGREE

Using the above sub-rule base, the assessment result for X6

is obtained using IDS as

X6 : {(H, 0.0679), (M, 0.2402)

(L, 0.6062), (Unknown, 0.0856)}

and the confidence score is given by 0.2309.
“Unknown” in the above result means that the output is also

incomplete due to the incomplete input from X5.
Since the assessment for X8 has already been generated

from X1 and X7, the output for X9 can be inferred from the
incomplete input from X6 and the complete input from X8.
Due to the incomplete input from X6, the belief degree of
the relevant rules for X9 needs to be updated to reflect the
incompleteness, which are associated with X6. Using (8)

βik =βik

2∑
t=1

(
τ(t, k)

3∑
j=1

αtj

)
2∑

t=1
τ(t, k)

= βik

1.9144
2

=βik ∗ 0.9572, i = 1, 2, 3; k = 28, . . . , 36.

Therefore, 0 <
∑3

i=1 βik < 1 for all rules associated with
X6. The sub-rule base for X9 with the updated belief degrees is
shown in Table VI.

Finally, X9 can be inferred from the incomplete input from
X6 and the complete input from X8 using IDS as

X9 : {(H, 0.1151), (M, 0.248), (L, 0.5998)

(Unknown, 0.0371)}

which is depicted as in Fig. 4, and the confidence score of X9

is 0.2576 generated by using (12c).

VI. CONCLUSION

In this paper, existing knowledge representation and in-
ference schemes were first investigated, and a new generic
knowledge representation scheme was then proposed, based on
the theory of evidence and fuzzy set theory, where a belief
rule base was designed to capture uncertainty and nonlinear

causal relationships. The inference process of such a rule-
based system was characterized by a belief rule expression
matrix and was implemented using the evidential reasoning
(ER) approach. The methodology was further extended to the
inference of hierarchical knowledge bases. A numerical ex-
ample was used to illustrate the application of the proposed
methodology.

In this methodology, various types of information from dif-
ferent sources can be transformed and used in the inference
process. One of the unique features of the methodology is that
if vague information coexists with ignorance or incompleteness
caused by evidence not strong enough to make simple true or
false judgments but with degrees of belief, the new methodol-
ogy can provide a flexible and effective way to represent and
a rigorous procedure to deal with such hybrid uncertain assess-
ment information to arrive at rational conclusions. The evidence
theory combined with fuzzy logic equips the new methodology
with a flexible and versatile framework to represent not only
precise data but also vagueness and ignorance in knowledge.
The weights of antecedent attributes and rules were also taken
into account in the framework to provide a more informative
representation of knowledge and reflect the dynamic nature of
decision-making problems.

Furthermore, the inference is implemented using the rigorous
yet pragmatic ER approach, which establishes a nonlinear re-
lationship between antecedent attributes and an associated
consequent attribute. This is regarded as an advantage over
traditional approaches, which suffer from lack of mathematical
foundation. Moreover, this new methodology provides scopes
and flexibility for rule training and self-learning/updating in a
rule base.

Different from most conventional rule-base inference meth-
ods, the rule-base inference methodology using the evidential
reasoning (RIMER) approach is characterized with certain
unique features. First, each input can be represented as a dis-
tribution on referential values using a belief structure. The
main advantage of doing so is that precise data, random num-
bers, and subjective judgments with uncertainty can be con-
sistently modeled under the unified framework. Second, the
ER approach provides a novel procedure for aggregating rules,
which can preserve the original features of various types of
information.

It is expected that the proposed RIMER approach can be used
for rule-based evaluation analysis, classification, diagnosis, and
decision making in a range of engineering, management, and
medical fields. The application of the methodology to the rule-
based safety analysis and synthesis of maritime systems is
reported by Liu et al. in [20] and [21].

The problem of consistency of a rule base depends on how
to generate rules. It would be usually thought to be trivial if
rules are extracted from expert knowledge. However, if rules
are generated from a set of data affected by noise, this problem
can become serious. Consistency between generated rules with
the intuition and common sense of human beings needs to
be further investigated. For instance, rules are regarded to be
inconsistent if they have very similar premise parts but possess
significantly different consequents that conflict with expert
knowledge or heuristics.
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Fig. 4. Evaluation on X9 based on the incomplete input.
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