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We show that the Hilbert space of even numbersù4d of qubits can always be decomposed as a direct sum
of four orthogonal subspaces such that the normalized projectors onto the subspaces are activable bound
entangledsABEd states. These states also show a surprising recursive relation in the sense that the states
belonging to 2N+2 qubits are Bell correlated to the states of 2N qubits; hence, we refer to these states as
Bell-correlated ABEsBCABEd states. We also study the properties of noisy BCABE states and show that they
are very similar to that of two qubit Bell-diagonal states.

DOI: 10.1103/PhysRevA.71.062317 PACS numberssd: 03.67.Mn

I. INTRODUCTION AND RESULTS

The quantum states that are not distillablef1g under local
operations and classical communicationssLOCCd despite be-
ing inseparable are said to be bound entangledsBEd f2–7g.
Bound entangled states exhibit a new kind of irreversibility
in physics where one has to spend finite amount of entangle-
ment to prepare such states but one cannot extract any non-
zero amount of entanglement from such states via LOCC.
Thus the amount of entanglement of formation is irreversibly
lost during the state preparation. Recent studies involving
bound entangled states include characterization of such states
f8–12g, violation of Bell type inequalitiesf13–16g and pos-
sible practical applicationsf17,18g.

For bipartite systems, bound entanglement is clearly de-
fined as it involves only two spatially separated parties and a
necessary and sufficient condition for distillability of bipar-
tite quantum states is knownf5g. In a multiparty setting,
however, due to several distinct spatially separated configu-
rations, the definition of bound entanglement is not unique. A
multipartite quantum state is said to be bound entangled if
there is no distillable entanglement between any subset as
long asall the parties remain spatially separated from each
other. When, however, one also allows some of the parties to

group together and perform local operations collectively, two
qualitatively different classes of bound entanglement arise:
sad activable bound entangledsABEd states—the states that
are not distillable when every party is separated from every
other but becomes distillable, if certain parties decide to
group togetherf19,20g. This implies that there is at least one
bipartite partition/cut where the state is negative under par-
tial transpositionsNPTd f21g. Such states have been also re-
ferred to as unlockable bound entangledsUBEd states in the
literature. sbd Nonactivable Bound Entangled states—states
that are not distillable under any modified configuration as
long as there are at least two spatially separated groups. In
other words, such states are always positive under partial
transposition across any bipartite partitionf6g.

Despite recent studies, the distribution and structure of
such states in the Hilbert space have not been explicitly stud-
ied. In this work we show that bound entangled states have
natural existence in the structure of the Hilbert space of even
number, 2N+2, of qubits swhen Nù1d. In particular, the
Hilbert space of 2N+2 qubits,Nù1, can be decomposed as
a direct sum of four orthogonal subspaces such that the nor-
malized projector onto each subspace is an activable bound
entangled state. The set of four ABE states are shown to be
unitarily related to each other via a local Pauli operator on
one of the qubits. Surprisingly, the states exhibit a recursive
property, i.e., each state of 2N+2 qubits can be expressed as
a convex combinationswith equal weightsd of four two-qubit
Bell states correlated with the four ABE states of 2N qubits.
The only exception occurs for four qubit states, where the
Bell states of two qubits are correlated to Bell states of the
other two qubits. It is interesting to note that one of these
four ABE states for the four-qubit system has been previ-
ously discovered by Smolin f20g. We call these
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s2N+2d-qubit ABE states Bell-correlated activable bound
entangled statessBCABEd.

As noted before the bound entangled states that we
present in this work are activable. In such an activable con-
figuration we find that the distillable entanglement between
any two parties is always one ebit and therefore independent
of N. We also study properties of the noisy BCABE states.
The noisy states are constructed by taking a convex combi-
nation of the four BCABE states. Remarkably, the entangle-
ment properties of these noisy 2N+2 qubit bound entangled
states can be directly mapped onto that of two qubit Bell
diagonal states.

II. HILBERT SPACE OF 2 N+2 QUBITS: DECOMPOSITION
AND BOUND ENTANGLED STATES

Consider now a system of 2N qubits. Let upil
= ua1

i a2
i , . . . ,a2N

i l where a1
i =0, and aj

i P h0,1j, for all j
=2,¯ ,2N such that there is an even number of 0s in the
string a1

i a2
i , . . . ,a2N

i . Likewise, let uqil= ub1
i b2

i
¯b2N

i l, where
b1

i =0, andb2
i , . . . ,b2N

i are either 0 or 1 with odd number of 0s
in the string b1

i b2
i , . . . ,b2N

i . One can also define the states
orthogonal to upil, uqil as: upil= ua1

i a2
i
¯a2N

i l and uqil
= ub1

i b2
i
¯b2N

i l where kaj
i uaj

i l=0=kbj
i ubj

i l, ∀ j =1, . . . ,2N and
i =1, . . . ,22N−2. Note that the four sets of states, defined by
upil’s, upil’s, uqil, and uqil’s, respectively, are nonoverlapping
and all have same cardinality, and they together span the
complete Hilbert space of 2N+2 qubit systems.

Now we define the following four sets of states:

SF
± = HuFi

±l =
1
Î2

supil ± upild,i = 1, . . . ,22N−2J , s1d

SC
± = HuCi

±l =
1
Î2

suqil ± uqild,i = 1, . . . ,22N−2J . s2d

We can associate with every setS, a subspace of the com-
plete Hilbert space where the states belonging toS span that
subspace and all the subspaces are orthogonal to each other.
In terms of Hilbert space decomposition we can write this as

H = HF
+

% HF
−

% HC
+

% HC
− . s3d

Observe that together the states span the full Hilbert space
and often this basis is referred to as the cat or GHZ basis.

We will use the notationf·g for pure state projectoru·l k·u.
Let us now define the unnormalized projectors on to the
subspaces spanned by the set of states given by Eqs.s1d and
s2d:

P2N
± = o

i=1

22N−2

fFi
±g; Q2N

± = o
i=1

22N−2

fCi
±g. s4d

The set of the above four projectors are connected to each
other by one Pauli operation on one qubit. For instance, con-
sider the unitary operatorsUi = I1 ^ ¯ ^ I2N−1 ^ s2N

i , where
i P hz,x,yj, i.e., Ui applies theith Pauli operator on the
s2Ndth qubit. Then one can verify that

P2N
− = UzP2N

+ Uz
†, s5d

Q2N
+ = UxP2N

+ Ux
†, s6d

Q2N
− = UyP2N

+ Uy
†. s7d

We will now show how to generate the above set of four
projectors in the case of 2N+2 qubits starting from the set of
2N qubits. First one can writeP2N+2

+ as

P2N+2
+ = o

i=1

22N−2

o
k=1

k=4

fVi
kg, s8d

where theV states are defined as

uVi
1l =

1
Î2

su00lupil + u11lupild

uVi
2l =

1
Î2

su11lupil + u00lupild

uVi
3l =

1
Î2

su01luqil + u10luqild

uVi
4l =

1
Î2

su10luqil + u01luqild. s9d

Now recall that,

u00l =
1
Î2

suF+l + uF−ld, u11l =
1
Î2

suF+l − uF−ld,

u01l =
1
Î2

suC+l + uC−ld, u10l =
1
Î2

suC+l − uC−ld s10d

where the two qubit Bell states are defined by

uF±l =
1
Î2

su00l ± u11ld, uC±l =
1
Î2

su01l ± u10ld. s11d

Substituting the above in the expression forV, and after
some algebraic manipulations, one obtains

P2N+2
+ = fF+g ^ P2N

+ + fF−g ^ P2N
− + fC+g ^ Q2N

+

+ fC−g ^ Q2N
− . s12d

This recursive form is particularly illuminating. However
at this point let us normalize the above projector to make it a
legitimate density matrix and write it as:

r2N+2
+ =

1

4
sfF+g ^ r2N

+ + fF−g ^ r2N
− + fC+g ^ s2N

+

+ fC−g ^ s2N
− d, s13d

where

r2N
± =

1

22N−2P2N
± ,s2N

± =
1

22N−2Q2N
± . s14d

Let us now look at the properties of the stater2N+2
+ more

closely.
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sid By construction, the state is invariant under inter-
change of parties. To see this, consider the unnormalized
stateP2N

+ . This projector is an equally weighted convex com-
bination of the states belonging to the setSF

+ . Now if we
interchange the qubits, then under any such permutation the
states belonging to the set just map onto each other leaving
the whole projector invariant. In other words if one denotes
the j th party as Aj, then rs. . . ,Ai , . . . ,Ak, . . .d
=rs. . . ,Ak, . . . ,Ai , . . .d for all possiblei ,k.

sii d The state is entangled. One way to see is that if any
2N parties come together and do a joint measurement to
discriminate the stateshr2N

+ ,r2N
− ,s2N

+ ,s2N
− j sas they are mutu-

ally orthogonald, then this will result in a maximally en-
tangled state between the remaining two. Or else,N parties
could pair up and do sequential Bell measurements on their
two qubits which will lead to distillation of a maximally
entangled state between the remaining two who did not come
together and remained spatially separated. Therefore the state
must be entangled to begin with, otherwise no configuration
could allow any entanglement to be distilled between sepa-
rated parties.

siii d When all the 2N+2 parties remain spatially sepa-
rated, then the state is not distillable as it is separable across
every 2:2N bipartite cut. This is easily seen as the state itself
is written in a 2:2N separable form. That it is separable
across every such cut follows from the permutation symme-
try. This makes every party separated from every other by at
least one separable cut and hence no entanglement can be
distilled.

As the state is entangled but not distillable whenall the
parties are separated from each other the state must be a
bound entangled state. Since the state becomes distillable if a
subset of the parties come together and perform collective
LOCC, the state is activable. Hence the state is an ABE state.

For 2N+2 qubits one can generate the other three states
following the same prescription. However it is much simpler
by noting that the states are all single Pauli connected. Ex-
plicitly the remaining three states can be written using Eqs.
s5d–s7d as:

r2N+2
− =

1

4
sfF+g ^ r2N

− + fF−g ^ r2N
+ + fC+g ^ s2N

−

+ fC−g ^ s2N
+ d, s15d

and

s2N+2
± =

1

4
sfC+g ^ r2N

± + fC−g ^ r2N
7 + fF+g ^ s2N

±

+ fF−g ^ s2N
7 d. s16d

The above results can now be summarized in the form of
a theorem.

Theorem. The Hilbert space of 2N+2 qubits,Nù1, can
always be decomposed as a direct sum of four orthogonal
subspaces such that the normalized projectors onto the sub-
spaces are activable bound entangled states.

Let us note here that whenN=1, the set of stateshr4
± ,s4

±j
are Bell correlated to the set of stateshr2

± ,s2
±j, which are not

bound entangled but maximally entangled and hence distill-

able. However this case is the only exception when the set of
bound entangled stateshr2N+2

± ,s2N+2
± j is not Bell correlated to

the set of bound entangled stateshr2N
± ,s2N

± j.

III. ILLUSTRATIONS

A. Hilbert space of four qubits

Consider the four sets of states as defined before in Eqs.
s1d and s2d.

SF
± = H 1

Î2
su0000l ± u1111ld,

1
Î2

su0011l ± u1100ld,

1
Î2

su0101l ± u1010ld,
1
Î2

su0110l ± u1001ld,J
SC

± = H 1
Î2

su0001l ± u1110ld,
1
Î2

su0010l ± u1101ld,

1
Î2

su0100l ± u1011ld,
1
Î2

su0111l ± u1000ld.J s17d

The 16 states span the full Hilbert space. The four sets are
all mutually orthogonal to each other. As before, we can
assign a subspace to each of the four sets spanned by the
members of the respective set and therefore get the desired
decomposition. Consider now the normalized projector onto
the first subspace spanned by the setSF

+ :

r+ =
1

4
sf0000 + 1111g + f0011 + 1100g + f0101 + 1010g

+ f0110 + 1001gd. s18d

The permutation symmetry is obvious in the above form.
Now replacing the first two and the last two qubit states by
linear combination of Bell states in accordance to Eq.s10d,
one obtains,

r+ =
1

4o
k=±

sfFkg ^ fFkg + fCkg ^ fCkgd, s19d

which we recognize as the unlockable bound entangled state
presented by Smolinf20g.

One can now generate three other mutually orthogonal
activable bound entangled states by applying local pauli op-
erators on any one of the qubits ofr+ using Eqs.s5d–s7d. For
instance,r− can be generated in the following way:

r− = sI ^ I ^ I ^ szdr+sI ^ I ^ I ^ szd =
1

4
sf0000 − 1111g

+ f0011 − 1100g + f0101 − 1010g + f0110 − 1001gd,

s20d

=
1

4 o
k,l=±;kÞl

sfFkg ^ fFlg + fCkg ^ fClgd. s21d

The remaining two statess± can likewise be obtained
from r+ by applying the appropriate Pauli operatorssx/y.
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B. Hilbert space of six qubits

Although by following our prescription, the six qubit
BCABE states can be generated from the four qubit states in
a straightforward manner, here we provide the construction
from the first principles. First define the following four sets
of states:

sad SF
+ : States with even number of 0 and 1 with1 sign in

the superposition, such as 1/Î2su000000l+ u111111ld,
1 /Î2su000011l+ u111100ld.

sbd SF
− : States with even number of 0 and 1 with2 sign in

the superposition, such as 1/Î2su000000l− u111111ld,
1 /Î2su000011l− u111100ld.

scd SC
+ : States with odd number of 0 and 1 with1 sign in

the superposition, such as 1/Î2su000001l+ u111110ld,
1 /Î2su100011l+ u011100ld.

sdd SC
− : States with odd number of 0 and 1 with2 sign in

the superposition, such as 1/Î2su000001l− u111110ld,
1 /Î2su100011l− u011100ld.

Note that every group consists of 16 members. Every
group spans subspaces that are orthogonal to each other by
construction and together they span the full Hilbert space.
The decomposition is also clearly understood. Let us now
consider the unnormalized projector on the subspace spanned
by the states in the first group:

P+ = f000000 + 111111g + f000011 + 111100g + f000101

+ 111010g + f000110 + 111001g + f001001 + 110110g

+ f001010 + 110101g + f001100 + 110011g + f001111

+ 110000g + f010001 + 101110g + f010010 + 101101g

+ f010100 + 101011g + f010111 + 101000g + f011000

+ 100111g + f011011 + 100100g + f011101 + 100010g

+ f011110 + 100001g. s22d

By construction the projector is invariant under permuta-
tion and the normalized projector can indeed be written in a
Bell-correlated form using the Eq.s10d:

rABCDEF
+ =

1

4
sfF+gAB ^ rCDEF

+ + fF−gAB ^ rCDEF
− + fC+gAB

^ sCDEF
+ + fC−gAB ^ sCDEF

− d. s23d

It is now easy to construct the other three activable bound
entangled states whose unnormalized forms are projectors on
the orthogonal subspaces:

rABCDEF
− =

1

4
sfF+gAB ^ rCDEF

− + fF−gAB ^ rCDEF
+ + fC+gAB

^ sCDEF
− + fC−gAB ^ sCDEF

+ d. s24d

sABCDEF
± =

1

4
sfC+gAB ^ rCDEF

± + fC−gAB ^ rCDEF
7 + fF+gAB

^ sCDEF
± + fF−gAB ^ sCDEF

7 d. s25d

IV. NOISY BELL CORRELATED ACTIVABLE BOUND
ENTANGLED STATES

The noisy bound entangled states are constructed by tak-
ing a convex combination of the four BCABE states with
different weights. For 2N+2 qubits we construct the follow-
ing state:

r2N+2
noisy = o

i=±
xir2N+2

i + yis2N+2
i , s26d

whereoi=±sxi +yid=1, 1ùxi, yi ù0.
Expanding the statesr2N+2

i ,s2N+2
i using Eqs.s13d, s15d,

and s16d one obtains,

r2N+2
noisy = x+

1

4o
k=±

sfFkg ^ r2N
k + fCkg ^ s2N

k d

+ x−
1

4 o
kÞl;k,l=±

sfFkg ^ r2N
l + fCkg ^ s2N

l d

+ y+
1

4o
k=±

sfCkg ^ r2N
k + fFkg ^ s2N

k d

+ y−
1

4 o
kÞl;k,l=±

sfCkg ^ r2N
l + fFkg ^ s2N

l d, s27d

which can be further expressed as

r2N+2
noisy =

1

4o
k=±

sPk
^ r2N

k + Gk
^ s2N

k d, s28d

whereP ,G are two qubit Bell diagonal density matrices de-
fined as follows:

P± = x+fF±g + x−fF7g + y+fC±g + y−fC7g, s29d

G± = x+fC±g + x−fC7g + y+fF±g + y−fF7g. s30d

The entanglement properties of such states are well
known f23g. Let us note that the two qubit Werner states are
special cases of the above class of Bell diagonal states. Let
w=maxhx± ,y±j. Then the statesP± ,G± are entangled as well
as distillable if and only ifw.1/2. With the aid of this result
we can now state the following properties of the noisy states
r2N+2

noisy:
The state is an activable bound entangled state whenw

.1/2. The proof is as follows. First note that the state is
invariant under interchange of parties. This is because the
state is a convex combination of the states that are permuta-
tionally invariant. From Eq.s27d the state is written in a
separable form across the 2:2N bipartite cut. By virtue of
being symmetric under interchange of parties, the state is
separable across every 2:2N bipartite cut. Hence, the state is
not distillable if all the parties are separated from each other.

The state is entangled and distillable whenw.1/2. This
is also clear from Eq.s28d. In this case, if 2N parties come
together and do collective LOCC they can distill one of the
P± ,G± states between the remaining two parties. However
these states are distillable ifw.1/2.

The states further resemble other properties of mixture of
Bell states. For instance, a mixture of two Bell states is al-
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ways entangled as long as the weights are different. Similarly
one can show here by putting any two of the coefficients
hx± ,y±j equal to zero that the noisy state thus constructed is
also entangled as long as the weight of the two nonvanishing
coefficients are different. However the difference is that a
mixture of Bell states is distillable while these states are only
activable and not distillable when all the parties remain sepa-
rated from each other.

V. DISCUSSION AND OPEN PROBLEMS

To summarize we showed that the Hilbert space of an
even number of qubitssgreater than equal to fourd can al-
ways be decomposed as a direct sum of four orthogonal sub-
spaces such that the normalized projectors onto the sub-
spaces are activable bound entangled states. The states show
a surprising recursive relation in the sense that the states
belonging to 2N+2 qubits are Bell correlated to the states of
2N qubits. It is also shown that in an activable configuration
the distillable entanglement between any two qubits is al-
ways one ebit irrespective of the total number of qubits
forming the state itself. We also studied the properties of
noisy BCABE states and showed that they are very similar to
that of two qubit Bell diagonal states.

One question is immediate: Can such a decomposition be
observed in the case of odd number of qubits? Our strategy
definitely does not work in the case of odd number of qubits

because the states do not have the even–even symmetry with
respect to the number of 0s or 1s in its cat/GHZ basis states.
This lack of symmetry only allows two orthogonal decom-
position following our strategy but they result into separable
states.

A possible generalization of our states would be to extend
to higher dimensions. Although one can possibly do that us-
ing general Pauli matrices, the structure of such states is not
immediately clear. We suspect if such a decomposition is
indeed possible then it would certainly be the number of
generators of the pauli group in dimensiond.

As a part of future research work, one could investigate
several properties of these BCABE states. For example, one
of the four qubit BCABE statessi.e., Smolin stated has been
shown to be useful for secret key distillationf17g, violation
of Bell inequality f16g, remote information concentration
f18g and superactivation of bound entanglementf22g. We
believe the results obtained in the case of the four-qubit
BCABE state, could also be generalized using our states.
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